JP6464753B2 - Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof - Google Patents

Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof Download PDF

Info

Publication number
JP6464753B2
JP6464753B2 JP2015003683A JP2015003683A JP6464753B2 JP 6464753 B2 JP6464753 B2 JP 6464753B2 JP 2015003683 A JP2015003683 A JP 2015003683A JP 2015003683 A JP2015003683 A JP 2015003683A JP 6464753 B2 JP6464753 B2 JP 6464753B2
Authority
JP
Japan
Prior art keywords
layer
metal plate
plate
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015003683A
Other languages
Japanese (ja)
Other versions
JP2016128601A (en
Inventor
坂本 広明
広明 坂本
徹 稲熊
徹 稲熊
美穂 冨田
美穂 冨田
洋治 水原
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015003683A priority Critical patent/JP6464753B2/en
Publication of JP2016128601A publication Critical patent/JP2016128601A/en
Application granted granted Critical
Publication of JP6464753B2 publication Critical patent/JP6464753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、厚み方向に複数の結晶配向層を有する軟磁性Fe系金属板に関し、特に、磁束密度および高周波鉄損に優れるとともに、モ−タコアとして組み付ける際に圧縮応力がコア材に付加された場合においても磁気特性の劣化の小さい軟磁性Fe系金属板に関するものである。   The present invention relates to a soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the thickness direction, and particularly excellent in magnetic flux density and high-frequency iron loss, and compressive stress is applied to the core material when assembled as a motor core. Even in this case, the present invention relates to a soft magnetic Fe-based metal plate with little deterioration of magnetic characteristics.

電動機、発電機、変圧器などのコア用部材として、珪素鋼板を代表とする軟磁性鋼板が用いられている。その磁気特性としては、交番磁界中での磁気的エネルギー損失(鉄損)が少ないこと、小型・軽量化の観点から磁束密度が高いことが必要とされている。さらには、近年の自動車分野等における小型の高速回転モータの需要の高まりで、高周波鉄損にも優れることも求められている。   A soft magnetic steel plate represented by a silicon steel plate is used as a core member for an electric motor, a generator, a transformer or the like. As its magnetic characteristics, it is required that the magnetic energy loss (iron loss) in an alternating magnetic field is small and that the magnetic flux density is high from the viewpoint of miniaturization and weight reduction. Furthermore, due to the recent increase in demand for small high-speed rotary motors in the automobile field and the like, there is also a demand for excellent high-frequency iron loss.

また、軟磁性鋼板を用いたコア用部材については、モ−タに組み付ける際、コア材に面内方向に圧縮応力が作用して磁気特性が劣化してしまうという問題もある。   In addition, the core member using the soft magnetic steel plate has a problem in that when it is assembled to the motor, a compressive stress acts on the core material in the in-plane direction and the magnetic characteristics deteriorate.

このような要求や問題に対して、特許文献1〜4に開示されている技術が知られている。
特許文献1、2では、α−γ変態を生じ得る組成のFe系金属板の表面に、Si、Alなどのフェライト生成元素を含有する金属層を形成し、次に、この金属板に、α−γ変態点(A3点)以上の温度に加熱・保持した後に冷却する熱処理を施し、冷却後に、板表面に対するフェライト相の{200}面集積度が30%以上である、高い磁束密度を有するFe系金属板を得る技術が開示されている。
The technique currently disclosed by patent documents 1-4 is known with respect to such a request | requirement and a problem.
In Patent Documents 1 and 2, a metal layer containing a ferrite-forming element such as Si or Al is formed on the surface of an Fe-based metal plate having a composition capable of causing α-γ transformation, and then α A high heat flux density in which the {200} plane integration degree of the ferrite phase with respect to the plate surface is 30% or more after cooling is performed after heating and holding at a temperature equal to or higher than the −γ transformation point (A3 point). A technique for obtaining an Fe-based metal plate is disclosed.

特許文献3では、鋼板表面から少なくとも板厚の10%の距離までの範囲において、αFe相の鋼板面に対する{222}面集積度を55%以上99%以下と高くすることにより、鋼板面に平行な方向から磁化困難方位である<111>方位を排除することができるため、磁化容易方向である<100>方位を使用磁界方向に集積させなくても、比較的好ましい磁気特性が実現できるとともに、打ち抜き加工を行った際に歪が入りがたくなり、歪による磁気特性の劣化が少なくなる軟磁性鋼板が開示されている。   In Patent Document 3, in a range from the steel plate surface to at least a distance of 10% of the plate thickness, the {222} plane integration with respect to the steel plate surface of the αFe phase is increased to 55% or more and 99% or less, thereby being parallel to the steel plate surface. The <111> orientation, which is a difficult magnetization direction, can be eliminated from any direction, so that relatively preferable magnetic characteristics can be realized without integrating the <100> orientation, which is the easy magnetization direction, in the magnetic field direction used. A soft magnetic steel sheet is disclosed in which distortion hardly occurs when punching is performed, and deterioration of magnetic properties due to distortion is reduced.

特許文献4では、Si:6.6%超10%以下、Al:1%以下、Mn:0.05〜2%、S:0.005%以下、N:0.005%以下を含有するか、または、Ni:30〜45%を含有する成分組成を有し、ステータ周方向に相当する方向(例えば圧延方向に直角な方向)のコア材の磁歪定数を−0.1×10−7以下の負の値とした鋼板を、コア周方向の圧縮応力が10MPa以上となるように用いることにより、圧縮応力による磁化ベクトルの鋼板板厚方向への配向を抑制し、渦電流損の増加を低減することにより、製品組み付けの際の焼き嵌め等による圧縮応力下でも鉄損劣化が小さいモータを実現できる技術が開示されている。 In patent document 4, Si: more than 6.6%, 10% or less, Al: 1% or less, Mn: 0.05-2%, S: 0.005% or less, N: 0.005% or less Or having a component composition containing Ni: 30 to 45%, and the magnetostriction constant of the core material in the direction corresponding to the circumferential direction of the stator (for example, the direction perpendicular to the rolling direction) is −0.1 × 10 −7 or less By using a steel sheet with a negative value of 1 so that the compressive stress in the core circumferential direction is 10 MPa or more, the orientation of the magnetization vector due to the compressive stress in the steel sheet thickness direction is suppressed, and the increase in eddy current loss is reduced. Thus, there is disclosed a technology capable of realizing a motor with small iron loss deterioration even under compressive stress due to shrink fitting or the like during product assembly.

しかし、特許文献1〜4では、高い磁束密度を確保したうえで高周波鉄損にも優れ、同時に、軟磁性鋼板からコア用部材を製造する際の、コアへの組み付けによる磁気特性の劣化を抑制できる手段は開示されていない。
また、特許文献4の技術は磁歪定数を負の値にするため、SiやNiなどを高濃度で含有させる必要があり、加工性が劣化するばかりでなく、理論的な飽和磁束密度が低下し、実用的な磁束密度の劣化は避けられないものである。
これに対し、単一構造の鋼板では達成できない複数の機能を一つの鋼板で達成するために、複層構造の鋼板として、各層に目的とする個々の機能を担わせるようにすることが、特許文献5、6などで知られている。
However, Patent Documents 1 to 4 are excellent in high-frequency iron loss while ensuring a high magnetic flux density, and at the same time, suppressing deterioration of magnetic characteristics due to assembly to the core when manufacturing a core member from a soft magnetic steel sheet. No possible means are disclosed.
Moreover, since the technique of Patent Document 4 makes the magnetostriction constant a negative value, it is necessary to contain Si, Ni, etc. at a high concentration, which not only deteriorates workability but also reduces the theoretical saturation magnetic flux density. Degradation of practical magnetic flux density is inevitable.
On the other hand, in order to achieve a plurality of functions that cannot be achieved with a single steel sheet, a single steel sheet allows each layer to have a desired individual function as a multilayer steel sheet. It is known from documents 5, 6 and the like.

特許文献5では、内層の方向性電磁鋼板の両面を無方向性電磁鋼板で挟んで表層とした3層クラッド構造とし、表層である無方向性電磁鋼板については、Si:2〜7質量%およびAl:3質量%以下を、(Si+Al)≧4質量%を満足する範囲で含有する組成とし、一方内層である方向性電磁鋼板については、Si:5質量%以下およびAl:0.5質量%以下を含有する組成とすることにより、高磁束密度と高周波低鉄損を両立させた電磁鋼板が開示されている。   In patent document 5, it is set as the three-layer clad structure which made the surface layer the both sides of the directional electrical steel plate of an inner layer with the non-oriented electrical steel plate, and about non-oriented electrical steel plates which are surface layers, Si: 2-7 mass% and Al: 3% by mass or less in a range satisfying (Si + Al) ≧ 4% by mass. On the other hand, for the grain-oriented electrical steel sheet as the inner layer, Si: 5% by mass or less and Al: 0.5% by mass or less. An electromagnetic steel sheet that achieves both high magnetic flux density and high frequency and low iron loss by using the composition contained is disclosed.

特許文献6では、炭素鋼と合金鋼の一方又は両方からなる複数の鋼板が積層され一体化している積層鋼板であって、前記積層鋼板の鋼板面と板厚中心の両方におけるαFe相またはγFe相の一方または両方の、鋼板面に対する{222}面集積度が60%以上99%以下で、{200}面集積度が0.01%以上15%以下とすることによって、積層鋼板の{222}面集積度を著しく高くして、積層鋼板の加工性を向上させるとともに、積層鋼板の各層の種類を選択することにより、高強度化、耐肌荒れ性の向上、耐食性の向上を合わせて実現できる技術が開示されている。
しかしこれらの文献でも、高磁束密度で高周波鉄損にも優れるという課題とコア用部材製造の際の磁気特性の劣化を防止するという課題を同時に解決する軟磁性鋼板は示されていない。
In Patent Document 6, a laminated steel plate in which a plurality of steel plates made of one or both of carbon steel and alloy steel are laminated and integrated, and an αFe phase or a γFe phase at both the steel plate surface and the thickness center of the laminated steel plate. The {222} plane integration degree with respect to the steel sheet surface is 60% or more and 99% or less and the {200} plane integration degree is 0.01% or more and 15% or less. Technology that can improve the workability of laminated steel sheets by increasing the degree of surface integration, and by selecting the type of each layer of laminated steel sheets, it is possible to achieve high strength, improved rough skin resistance, and improved corrosion resistance. Is disclosed.
However, these documents do not show a soft magnetic steel sheet that simultaneously solves the problem of high magnetic flux density and excellent high-frequency iron loss and the problem of preventing the deterioration of magnetic properties during the manufacture of core members.

特許第5136687号公報Japanese Patent No. 5136687 特許第5533801号公報Japanese Patent No. 5533801 特開2009−256758号公報JP 2009-256758 A 特開2011−089170号公報JP 2011-089170 A 特開2010−132938号公報JP 2010-1332938 A 特開2009−256734号公報JP 2009-256734 A

以上のような従来技術に鑑み、本発明は、高い磁束密度と低い高周波鉄損を有するとともに、モータコアへの組み付けなどの製品製造の際にも鉄損の劣化を小さくできる軟磁性Fe系金属板を提供することを目的とする。   In view of the prior art as described above, the present invention is a soft magnetic Fe-based metal plate that has a high magnetic flux density and a low high-frequency iron loss, and can reduce the deterioration of iron loss even when manufacturing a product such as a motor core. The purpose is to provide.

特許文献1、2には、高い磁束密度を有する軟磁性Fe系金属板が開示され、特許文献4には、組み付け工程を経てコアを製造する際の磁気特性の劣化が小さい軟磁性鋼板が開示されている。
そこで、本発明者らは、それらの軟磁性Fe系金属板が有する機能を単一構造の金属板で実現するのではなく、特許文献5、6に記載のように複層構造とすることで、一つのFe系金属板で同時に実現することを検討した。
Patent Documents 1 and 2 disclose a soft magnetic Fe-based metal plate having a high magnetic flux density, and Patent Document 4 discloses a soft magnetic steel sheet having a small deterioration in magnetic properties when a core is manufactured through an assembly process. Has been.
Therefore, the present inventors do not realize the functions of these soft magnetic Fe-based metal plates with a single-structure metal plate, but instead have a multilayer structure as described in Patent Documents 5 and 6. The realization simultaneously with one Fe-based metal plate was studied.

本発明者らは、特許文献1、2に開示されている、{200}面集積度を高めた組織を形成して良好な磁気特性を確保したうえで、さらに、特許文献4に開示されている製品への組み付けの際の鉄損劣化を抑制する技術を組み合わせることについて検討した。
その検討の過程で、(i)特許文献4のように金属板全体の磁歪を負の値にしなくても、金属板の中心層だけの磁歪を負の値にすることで、コア材の組み付けによる板面内圧縮応力下での磁気特性の劣化を十分小さくできること、(ii){222}面集積度を高めた組織を形成すれば、特許文献4のようにSiやNiを高濃度に含有させなくても磁歪を負の値にできることを知見した。
The inventors have disclosed a structure disclosed in Patent Documents 1 and 2, which has an increased degree of {200} plane integration to ensure good magnetic properties, and is further disclosed in Patent Document 4. We examined the combination of technologies to suppress iron loss deterioration during assembly to existing products.
In the course of the study, (i) assembling the core material by making the magnetostriction of only the central layer of the metal plate negative even if the magnetostriction of the whole metal plate is not made negative as in Patent Document 4 (Ii) If a structure with increased {222} plane integration is formed, Si and Ni are contained in a high concentration as in Patent Document 4 It was found that the magnetostriction can be made negative even if it is not performed.

そのような知見に基づきさらに検討した結果、表層に{200}面集積度を高めた領域を形成し、中心層に、飽和磁歪が負の値であり、{222}面集積度を高めた領域を形成することを着想し、下記(1)〜()複層構造の本発明に到達した。
As a result of further examination based on such knowledge, a region where the {200} plane integration degree is increased is formed on the surface layer, and the saturation magnetostriction is a negative value in the central layer, and the {222} plane integration degree is increased. The present invention having the multilayer structure (1) to ( 6 ) below has been reached.

(1)板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
Al、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、WおよびZnの少なくとも一種以上のフェライト生成元素を含み、板面に対するαFe相の{200}面集積度が25%以上で、αFe相の{222}面集積度が40%以下である領域をA層とし、
Si、Al、Sn、TiおよびVの少なくとも一種以上のフェライト生成元素を、質量%で、Si=0〜1.5%、Al=0〜3.5%、Sn=0〜4%、Ti=0〜3%、V=0〜6.5%の範囲で含み、板面に対するαFe相の{222}面集積度が55%以上99%以下であり、板面内の平均の飽和磁歪が−0.2×10−6以下である領域をB層として、
板厚方向に前記A層とB層が存在し、
かつ、金属板の両面において、板表面と、該板表面から該板表面の反対側の板表面に向かって最初に確認されるB層との間に、A層が存在する積層構成となっており、
A層とB層の界面が金属結合で一体化されている
ことを特徴とする金属板。
(1) In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
Contains at least one ferrite-forming element of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ti, V, W, and Zn, and has a {200} plane integration degree of 25% or more of the αFe phase with respect to the plate surface Then, the region where the {222} plane integration degree of the αFe phase is 40% or less is defined as A layer,
At least one ferrite-forming element of Si, Al, Sn, Ti, and V, in mass%, Si = 0 to 1.5%, Al = 0 to 3.5%, Sn = 0 to 4%, Ti = In the range of 0 to 3% and V = 0 to 6.5%, the {222} plane integration degree of the αFe phase with respect to the plate surface is 55% or more and 99% or less, and the average saturation magnetostriction in the plate surface is − A region that is 0.2 × 10 −6 or less as a B layer,
The A layer and the B layer exist in the thickness direction,
And on both surfaces of a metal plate, it becomes a laminated structure in which an A layer exists between the plate surface and the B layer first confirmed from the plate surface toward the plate surface opposite to the plate surface. And
A metal plate, wherein the interface between the A layer and the B layer is integrated by metal bonding .

(2)板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
前記A層でもB層でもない領域をC層とし、板厚方向に前記A層とB層とC層が存在し、
A層とB層の界面、さらに、A層及びB層とC層の界面が金属結合で一体化されてい
ことを特徴とする前記(1)に記載の金属板。
(2) In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The region that is neither the A layer nor the B layer is a C layer, and the A layer, the B layer, and the C layer exist in the thickness direction ,
Interface of the A layer and the B layer, further metal sheet according to (1) the interface between the A layer and the B layer and the C layer is characterized that you have been integrated with a metal bond.

(3)板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
前記A層、B層、さらにC層が存在する場合はC層の間の界面から両層側に10μmの距離における領域内のFe濃度の差が1.0%以下である
ことを特徴とする前記(1)または(2)に記載の金属板。
(3) In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layer in the thickness direction,
When the A layer, the B layer, and the C layer are present, the difference in Fe concentration in the region at a distance of 10 μm from the interface between the C layers on both sides is 1.0% or less. The metal plate according to (1) or (2) .

)板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
前記A層について、板表面に最も近いA層の厚さが全体の板厚に対して70〜97%である
ことを特徴とする前記(1)〜()のいずれかに記載の金属板。
( 4 ) In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The metal plate according to any one of (1) to ( 3 ), wherein the thickness of the A layer closest to the plate surface is 70 to 97% with respect to the entire plate thickness. .

)板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
該金属板の厚さが0.03mm以上1.5mm以下である
ことを特徴とする前記(1)〜()のいずれかに記載の金属板。
( 5 ) In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The metal plate according to any one of (1) to ( 4 ), wherein the metal plate has a thickness of 0.03 mm to 1.5 mm.

)板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板の製造において、
70質量%以上のFeを含有しα−γ変態を生じ得る組成を有する金属板A を97%超99.99%以下の圧下率で冷間圧延し、その表面にAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、WおよびZnの少なくとも一種以上のフェライト生成元素を付着させた金属板を金属板Aとし、
70質量%以上のFeを含有しα−γ変態を生じ得る組成を有する金属板B を30%以上95%以下の圧下率で冷間圧延し、その表面にSi、Al、Sn、TiおよびVの少なくとも一種以上のフェライト生成元素を付着させた金属板を金属板Bとし、
少なくとも金属板Aと金属板Bを積層したものを、前記α−γ変態点以上の温度で熱処理し、
フェライト生成元素を前記金属板A 及び金属板Bの内部へ拡散させる
ことを特徴とする前記(1)〜()のいずれかに記載の軟磁性Fe系金属板の製造方法。
( 6 ) In the production of a soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The metal plate A 1 having the composition which can cause alpha-gamma transformation contains 70 mass% or more Fe and cold rolling at 97 percent 99.99% less reduction ratio, Al on the surface of that, Cr, Ga , and Ge, Mo, Sb, Si, Sn, Ti, V, a metal plate is adhered at least one kind of ferrite forming elements of W and Zn and the metal plate a 2,
A metal plate B 1 having a composition that may occur were alpha-gamma transformation containing 70 mass% or more Fe and cold rolling at a reduction ratio of 95% or more and 30% or less, Si in the surface of that, Al, Sn, Ti and a metal plate obtained by attaching at least one kind of ferrite-forming elements V and the metal plate B 2,
Heat-treating at least the α-γ transformation point or higher at least the metal plate A 2 and the metal plate B 2 laminated,
Production method of (1) to a soft magnetic Fe-based metal sheet according to any one of (5), characterized in that diffusing the ferrite forming elements into the interior of the metal plate A 1 and the metal plate B 1.

ここで{200}面集積度、あるいは{222}面集積度は、MoKα線によるX線回折により、試料表面に対して平行なαFe相の11ある方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除して合計した値に対する、{200}あるいは{222}方位面の強度の比率を百分率で求めたものである。   Here, the {200} plane integration degree or the {222} plane integration degree is determined by X-ray diffraction using MoKα rays, and there are 11 orientation planes ({110}, {200}, {200} having an αFe phase parallel to the sample surface. 211}, {310}, {222}, {321}, {411}, {420}, {332}, {521}, {442}), and measure each of the measured values in a random orientation. The ratio of the intensity of the {200} or {222} azimuth plane to the value obtained by dividing by the theoretical integrated intensity of the sample is obtained as a percentage.

以上のような本発明において、複層構造の金属板の中心層領域のみの磁歪を負の値にして、圧縮応力下での磁気特性の劣化を抑制する効果は、結晶配向の異なる金属板を単に積層しただけでは十分に発現せず、各金属板間を元素の拡散等による金属結合によって一体化することによる各層間の磁気相互作用により顕著に発現する。
この効果は、板面内圧縮応力下で磁化の方向を面内に維持するという磁歪が負の値である材料で発現する効果が、金属結合によって一体化されている磁歪が負の値でない材料にまで比較的広く広がるものであるという、従来の複層化技術では想定されていない現象を利用したものでもある。
In the present invention as described above, the effect of suppressing the deterioration of the magnetic properties under compressive stress by setting the magnetostriction of only the central layer region of the metal plate having a multilayer structure to a negative value is different from that of the metal plate having a different crystal orientation. Simply laminating does not give sufficient expression, but it remarkably develops due to magnetic interaction between the layers by integrating the metal plates by metal bonding such as element diffusion.
This effect is manifested in a material with a negative magnetostriction that maintains the direction of magnetization in the plane under in-plane compressive stress, and a material with a non-negative magnetostriction integrated by metal bonding. It is also a phenomenon that utilizes a phenomenon that is not widely assumed in the conventional multi-layer technology, which is relatively widespread.

また、このような金属板構成は、表層領域に低合金の{200}面集積度を高めた金属板を配置できるため、金属板全体の磁束密度の向上に寄与するものである。
特に、高速回転機のような高周波域での使用では、磁束が表層に集中するため、表層部の磁束密度を向上させることにより高周波鉄損を効果的に低減できる。
In addition, such a metal plate configuration contributes to an improvement in the magnetic flux density of the entire metal plate because a metal plate having a high degree of {200} plane integration of a low alloy can be disposed in the surface layer region.
In particular, when used in a high-frequency region such as a high-speed rotating machine, the magnetic flux concentrates on the surface layer, so that the high-frequency iron loss can be effectively reduced by improving the magnetic flux density of the surface layer portion.

本発明によれば、従来の軟磁性鋼板では達成できない高い磁束密度と低い高周波鉄損を有するとともに、組み付けなどの製品製造の際にも磁気特性の劣化を小さくできる軟磁性Fe系金属板を提供することができる。   According to the present invention, there is provided a soft magnetic Fe-based metal plate that has a high magnetic flux density and a low high-frequency iron loss that cannot be achieved by a conventional soft magnetic steel sheet, and that can reduce the deterioration of magnetic properties even during product manufacturing such as assembly. can do.

本発明は、板厚方向に、{200}面が優先配向した層と、{222}面が優先配向しかつ磁歪が負になるような組成を有する層を、元素の相互拡散による金属結合によって一体化させることにより、高磁束密度で高周波鉄損に優れ、製品製造の際の組み付けによる磁気特性の劣化が小さい軟磁性Fe系金属板としたものである。   In the present invention, a layer in which the {200} plane is preferentially oriented and a layer having a composition in which the {222} plane is preferentially oriented and the magnetostriction is negative are formed by metal bonding by mutual diffusion of elements. By integrating, a soft magnetic Fe-based metal plate having a high magnetic flux density, excellent high-frequency iron loss, and small deterioration in magnetic properties due to assembly during product manufacture is obtained.

以下、本発明の軟磁性Fe系金属板について、個々の条件の限定理由及び好ましい条件、製造方法について説明する。なお、以下の記載において、元素の含有量の%は質量%を意味するものとする。   Hereinafter, the reason for limitation of individual conditions, preferable conditions, and a manufacturing method are demonstrated about the soft-magnetic Fe type metal plate of this invention. In the following description,% of the element content means mass%.

本発明の軟磁性Fe系金属板は、{200}面が優先配向した層(以降、A層と呼ぶ)と、{222}面が優先配向しかつ磁歪が負になるような組成を有する層(以降、B層と呼ぶ)が積層した構造である。また、A層、B層に加え、A層でもB層でもない層(以降、C層と呼ぶ)が積層した構造である。
以下では、まず各層の特徴について説明する。
The soft magnetic Fe-based metal plate of the present invention includes a layer in which the {200} plane is preferentially oriented (hereinafter referred to as A layer), and a layer having a composition in which the {222} plane is preferentially oriented and magnetostriction is negative. (Hereinafter referred to as B layer) is a laminated structure. In addition to the A layer and the B layer, a layer that is neither the A layer nor the B layer (hereinafter referred to as the C layer) is stacked.
Below, the characteristic of each layer is demonstrated first.

A〜C層の特徴
(A層の結晶配向)
後述するように、A層は基本的に金属板の最表層または表面近傍の層を構成する層であり、金属板に高い磁束密度と低い高周波鉄損を付与するための層になる。A層については、αFe相の金属板面に対する{200}面集積度を高める。これにより、磁化容易方位である[100]方位が使用磁界方向に存在する比率が高まり、磁化困難方位である[111]方位が存在する比率は低減するので、本発明金属板の磁束密度を効果的に高めることが可能となる。また、高周波域での使用では磁束は表層に集中するので、同時に高周波鉄損を低くすることも可能になる。
そのような効果を得るために、A層は、板面に対する{200}面集積度が25%以上で、{222}面集積度が40%以下とする。好ましくは、{200}面集積度が30%以上で、{222}面集積度が30%以下である。
{200}面集積度は高いほうが望ましいが、99%を越えても前記磁束密度向上の効果は飽和し、製造の困難性も伴う。
Characteristics of A to C layers (Crystal orientation of A layer)
As will be described later, the A layer is basically a layer constituting the outermost layer of the metal plate or a layer in the vicinity of the surface, and is a layer for imparting high magnetic flux density and low high-frequency iron loss to the metal plate. About A layer, the {200} plane integration degree with respect to the metal plate surface of (alpha) Fe phase is raised. As a result, the ratio of the [100] orientation, which is the easy magnetization direction, increases in the direction of the magnetic field used, and the ratio of the [111] orientation, which is the hard magnetization direction, decreases, so that the magnetic flux density of the metal plate of the present invention is effective. Can be increased. Moreover, since the magnetic flux concentrates on the surface layer when used in a high frequency region, it is possible to simultaneously reduce the high frequency iron loss.
In order to obtain such an effect, the A layer has a {200} plane integration degree of 25% or more and a {222} plane integration degree of 40% or less with respect to the plate surface. Preferably, the {200} plane integration degree is 30% or more and the {222} plane integration degree is 30% or less.
It is desirable that the {200} plane integration degree is high, but even if it exceeds 99%, the effect of improving the magnetic flux density is saturated, and manufacturing is also difficult.

(B層の結晶配向)
後述するように、B層は基本的に金属板の中心層または中心近傍の層を構成する層であり、板面内の平均の飽和磁歪の値が負になるような化学組成を有する層である。
本発明では、磁歪を負にするために添加されるSiやNiの含有量を抑制するため、B層のαFe相の金属板面に対する{222}面集積度を高める。また、{222}面集積度が高まると、磁化容易方向である[100]方位が使用磁界方向、すなわち板面内に存在する比率は低下するものの、磁化困難方位である[111]方位が使用磁界方向に存在する比率も低減するので、磁束密度の劣化は許容できる程度に抑えられる効果もある。
(Crystal orientation of layer B)
As will be described later, the B layer is basically a layer constituting the central layer of the metal plate or a layer near the center, and has a chemical composition such that the average saturation magnetostriction value in the plate surface is negative. is there.
In the present invention, in order to suppress the content of Si or Ni added to make magnetostriction negative, the {222} plane integration degree with respect to the metal plate surface of the αFe phase of the B layer is increased. Further, when the degree of {222} plane integration increases, the [100] orientation, which is the easy magnetization direction, decreases in the used magnetic field direction, that is, the ratio existing in the plate surface, but the [111] orientation, which is the hard magnetization orientation, is used. Since the ratio existing in the magnetic field direction is also reduced, there is an effect that the deterioration of the magnetic flux density is suppressed to an acceptable level.

αFe相の板面に対する{222}面集積度が55%以上であれば、低合金でも磁歪を負の値にして板面内圧縮応力下での磁気特性劣化を回避する効果を得ることが可能となり、同時に、[111]方位の排除による磁気特性の改善効果を享受することが可能となる。
{222}面集積度は、高いほうが望ましいが、99%を越えても、前記磁気特性の劣化防止効果は飽和し、製造の困難性も伴う。
If the {222} plane integration degree with respect to the plate surface of the αFe phase is 55% or more, it is possible to obtain the effect of avoiding deterioration of the magnetic characteristics under the in-plane compressive stress by setting the magnetostriction to a negative value even with a low alloy. At the same time, it is possible to enjoy the effect of improving the magnetic characteristics by eliminating the [111] orientation.
It is desirable that the {222} plane integration degree is high, but even if it exceeds 99%, the effect of preventing the deterioration of the magnetic characteristics is saturated and there is a difficulty in manufacturing.

(A、B層の面集積度の測定)
上記の面集積度の測定は、MoKα線によるX線回折(反射法)で行うことができる。
具体的には、各試料について、金属板表面に対して平行αFe相の11の方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除して合計した値に対する、{200}強度または{222}強度の比率を百分率で求める。
(Measurement of surface integration of A and B layers)
The measurement of the surface integration degree can be performed by X-ray diffraction (reflection method) using MoKα rays.
Specifically, for each sample, eleven orientation planes ({110}, {200}, {211}, {310}, {222}, {321}, {411 of the parallel αFe phase with respect to the metal plate surface. }, {420}, {332}, {521}, {442}) are measured, and each of the measured values is divided by the theoretical integrated intensity of a sample having a random orientation, and the sum of the measured values is { 200} strength or {222} strength ratio as a percentage.

つまり、{200}強度比率では、以下の式(1)で、{222}強度比率では、以下の式(2)で表される。
{200}面集積度=[{i(200)/I(200)}/Σ{i(hkl)/I(hkl)}]×100 ・・・(1)
{222}面集積度=[{i(222)/I(222)}/Σ{i(hkl)/I(hkl)}]×100 ・・・(2)
ただし、記号は以下のとおりである。
i(hkl): 測定した試料における{hkl}面の実測積分強度
I(hkl): ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ: αFe相の11の方位面についての和
ここで、ランダム方位を持つ試料の積分強度は、試料を用意して実測して求めてもよい。
That is, the {200} strength ratio is represented by the following formula (1), and the {222} strength ratio is represented by the following formula (2).
{200} plane integration degree = [{i (200) / I (200)} / Σ {i (hkl) / I (hkl)}] × 100 (1)
{222} plane integration degree = [{i (222) / I (222)} / Σ {i (hkl) / I (hkl)}] × 100 (2)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample I (hkl): Theoretical integrated intensity of {hkl} plane in the sample with random orientation Σ: Sum of 11 orientation planes of αFe phase The integrated intensity of a sample having a random orientation may be obtained by preparing a sample and actually measuring it.

なお、上記の測定は、板厚方向にわたる結晶方位の変化を十分に把握できる程度に、板厚方向に細分化した領域で行う必要がある。具体的には、板厚方向の結晶組織を観察し、板厚方向位置での各領域の平均粒径に相当する厚さに分割した程度に細分化して測定する。これはつまり、例えば平均粒径が30μmの領域があれば、30μm間隔で面集積度を測定することを意味し、一つの結晶粒内は同じ結晶方位であることから、特定の位置での結晶方位はその領域での平均結晶粒径程度の距離の中では変動しないとの考えに基づくものである。板厚方向に狙いとする厚さ位置まで金属板を表面研磨し、研磨面にX線を照射する手順は、一般的な板厚方向での結晶方位の測定手順と異なるものではない。
結晶粒組織から見て、例えば板厚方向に3層または数層程度の変化しか有さないことが明確であれば、これら各層について代表的と判断できる位置で測定すればよい。
なお、結晶粒径は、板厚断面において研磨およびナイタール等による化学エッチングで結晶粒界を現出し、一定面積内で観察される結晶粒の個数を計測し、1個の結晶粒の平均面積を円相当とした際の直径である。
In addition, it is necessary to perform said measurement in the area | region subdivided in the plate | board thickness direction so that the change of the crystal orientation in the plate | board thickness direction can fully be grasped | ascertained. Specifically, the crystal structure in the plate thickness direction is observed, and the measurement is performed by subdividing the thickness into portions corresponding to the average grain size of each region at the plate thickness direction position. This means that, for example, if there is a region with an average grain size of 30 μm, it means that the degree of surface integration is measured at intervals of 30 μm, and since one crystal grain has the same crystal orientation, the crystal at a specific position The orientation is based on the idea that it does not vary within a distance of about the average grain size in that region. The procedure for polishing the surface of the metal plate to a target thickness position in the plate thickness direction and irradiating the polished surface with X-rays is not different from the general procedure for measuring crystal orientation in the plate thickness direction.
If it is clear that there is only a change of about three layers or several layers in the thickness direction as seen from the crystal grain structure, the measurement may be performed at a position where each of these layers can be judged as representative.
The crystal grain size is determined by measuring the number of crystal grains observed within a certain area by measuring the number of crystal grains observed by chemical etching such as polishing and nital in the plate thickness section, and calculating the average area of one crystal grain. This is the diameter when it is equivalent to a circle.

(B層の磁歪)
軟磁性Fe系金属板から打ち抜かれたコア材をコア部材に組み付ける際、金属板表面に平行な方向に圧縮応力が付与されコア部材の磁気特性を劣化させる原因となる。本発明ではB層を{222}面集積度を高めた状態でさらに板面内の平均の飽和磁歪を−0.2×10−6以下とすることによって、板面内圧縮応力による鉄損の劣化を抑制させる。
この効果は本発明に特徴的なものであり、ここで説明した磁歪のみならず、各層の積層構造および各層の結合状態(界面構造)に関連して発現する磁気相互作用に起因するものである。本発明の積層構造や界面構造に関する規定の後、メカニズムについて後述する。
(B-layer magnetostriction)
When the core material punched from the soft magnetic Fe-based metal plate is assembled to the core member, compressive stress is applied in a direction parallel to the surface of the metal plate, causing deterioration of the magnetic properties of the core member. In the present invention, the average saturation magnetostriction in the plate surface is set to −0.2 × 10 −6 or less in the state where the {222} plane integration degree is increased in the B layer, thereby reducing the iron loss due to the compressive stress in the plate surface. Deterioration is suppressed.
This effect is characteristic of the present invention, and is caused not only by the magnetostriction described here, but also by magnetic interactions that develop in relation to the laminated structure of each layer and the coupling state (interface structure) of each layer. . After defining the laminated structure and interface structure of the present invention, the mechanism will be described later.

本発明で規定する飽和磁歪は以下のように測定する。
まず、上述した板厚方向での結晶方位分布の変化に応じ、αFe相の{222}面集積度が55%以上99%以下である層を研磨等により切り出す。そして、切り出した金属板について、板面内で22.5°毎に360°にわたり飽和磁歪を測定する。この際、各方向とその方向に垂直方向へ800kA/mの磁場をそれぞれ印加し、磁場0を基準にした磁歪を歪みゲージなどで測定した後、狙い方向の磁歪と垂直方向の磁歪差に2/3を乗じた値が各方向での飽和磁歪であり、本発明で規定する飽和磁歪はこれらの平均値として求めることができる。
The saturation magnetostriction defined in the present invention is measured as follows.
First, in accordance with the change in the crystal orientation distribution in the plate thickness direction described above, a layer having an αFe phase {222} plane integration degree of 55% or more and 99% or less is cut out by polishing or the like. And about the cut-out metal plate, a saturation magnetostriction is measured over 360 degrees every 22.5 degrees within a plate surface. At this time, a magnetic field of 800 kA / m is applied to each direction and the direction perpendicular thereto, and the magnetostriction with respect to the magnetic field 0 is measured with a strain gauge or the like, and then the magnetostriction difference between the target direction and the magnetostriction in the vertical direction is 2 A value obtained by multiplying / 3 is the saturation magnetostriction in each direction, and the saturation magnetostriction defined in the present invention can be obtained as an average value of these.

ちなみに板面に{222}面に配向している結晶においては、磁化が向き易い板面内での方位は[110]であるため、{222}面方位の結晶の磁歪は[110]方向の磁歪となる。
[110]方向の磁歪λ110は、式[λ110=(1/4)λ100+(3/4)λ111]から求められる。
Fe−X系の合金においては、[100]方向の磁歪は、6.5%Siでゼロになる以外はすべて正の値であり、[111]方向の磁歪は、元素XとしてSi、Al、V、Ti、Snが、Si=0〜4%、Al=0〜9%、V=0〜14%、Ti=0〜3%、Sn=0〜4%の範囲で負の値となることが知られている(例えば、「鉄鋼材料便覧」の図1・61参照)。
これらのことを考慮すると、α−γ変態成分系のFe系金属の飽和磁歪λ110は、Si、Al、V、Ti、Snの各含有量が、Si=0〜1.5%、Al=0〜3.5%、V=0〜6.5%、Ti=0〜3%、Sn=0〜4%。の範囲で負とすることができる。
By the way, in the crystal oriented in the {222} plane on the plate surface, the orientation in the plate surface where the magnetization is easily oriented is [110], so the magnetostriction of the crystal in the {222} plane orientation is in the [110] direction. It becomes magnetostriction.
The magnetostriction λ 110 in the [110] direction is obtained from the equation [λ 110 = (1/4) λ 100 + (3/4) λ 111 ].
In the Fe-X alloys, the magnetostriction in the [100] direction is all positive except that it becomes zero at 6.5% Si, and the magnetostriction in the [111] direction is Si, Al, V, Ti, and Sn are negative values in the range of Si = 0 to 4%, Al = 0 to 9%, V = 0 to 14%, Ti = 0 to 3%, and Sn = 0 to 4%. (For example, refer to FIGS. 1 and 61 of “Handbook of Steel Materials”).
In consideration of these, the saturation magnetostriction λ 110 of the Fe-based metal of the α-γ transformation component is such that each content of Si, Al, V, Ti, and Sn is Si = 0 to 1.5%, Al = 0-3.5%, V = 0-6.5%, Ti = 0-3%, Sn = 0-4%. It can be negative in the range.

(C層について)
本発明においてC層は、上記のA層でもB層でもない金属層として規定される。すなわち、板面に対する{222}面集積度が40%超、55%未満であるか、{222}面集積度が99%超であるか、{222}面集積度が55%以上99%以下であっても板面内の平均の飽和磁歪が−0.2×10−6超であるか、あるいは{222}面集積度が40%以下であっても{200}面集積度が25%未満である層である。
(About layer C)
In the present invention, the C layer is defined as a metal layer that is neither the A layer nor the B layer. That is, the {222} plane integration degree with respect to the plate surface is more than 40% and less than 55%, the {222} plane integration degree is more than 99%, or the {222} plane integration degree is 55% or more and 99% or less. Even if the average saturation magnetostriction in the plate surface is more than −0.2 × 10 −6 or the {222} plane integration degree is 40% or less, the {200} plane integration degree is 25%. It is a layer that is less than.

C層は、意図的に本発明金属板に含むように形成させることも可能であるが、意図的に形成させることでの実用的なメリットは小さく、本発明では、A層とB層の間の遷移領域、または最表面などの特殊な領域に、不可避的に存在するものとなる場合が多い。これは、例えば、A層とB層の界面は、板面に完全に並行かつ直線的に形成されることは少なく、板面との多少の角度を有していたり、凹凸を有することが多いため、本発明でA層、B層を板面に対して平行な領域で規定する場合、A層の特徴とB層の特徴を併せ持つような混合領域が存在してしまうことを想定したものである。   The C layer can be intentionally formed so as to be included in the metal plate of the present invention, but the practical merit of intentionally forming the layer is small. In the present invention, the C layer is formed between the A layer and the B layer. In many cases, it is inevitable to exist in a special region such as the transition region or the outermost surface. This is because, for example, the interface between the A layer and the B layer is rarely formed completely in parallel and linearly with the plate surface, and has a slight angle with the plate surface or is often uneven. Therefore, when the A layer and the B layer are defined in a region parallel to the plate surface in the present invention, it is assumed that there is a mixed region having both the characteristics of the A layer and the features of the B layer. is there.

また、例えば、後述するように、A層やB層の結晶配向をフェライト生成元素の拡散およびそれに関連する変態挙動に起因する結晶粒成長により形成する場合、{200}面方位粒または{222}面方位粒の成長終点には、不可避的に{200}面方位粒または{222}面方位粒以外の結晶粒が残存してしまうことを想定したものでもある。
このような事情から、本発明においては、A層にもB層にも分類されない金属層が存在することを許容するものである。
Further, for example, as described later, when the crystal orientation of the A layer or the B layer is formed by crystal grain growth caused by diffusion of ferrite-forming elements and transformation behavior related thereto, {200} plane orientation grains or {222} It is also assumed that crystal grains other than {200} plane orientation grains or {222} plane orientation grains inevitably remain at the growth end point of plane orientation grains.
Under such circumstances, in the present invention, the presence of a metal layer that is not classified as either the A layer or the B layer is allowed.

金属板の構成
(積層構造)
上記のA層、B層およびC層は本発明金属板において、板厚方向に積層した状態で存在するが、その配置として必要なのは、板表面と、該板表面から該板表面の反対側の板表面に向かって最初に確認されるB層との間に、A層が存在する積層構成となっていることである。本発明金属板は金属板の表と裏の両方の表面についてこの条件を満足する必要がある。
具体的な例として、最も単純な構成は、「A-B-A」である。
本発明はこれに限らず、例えば、「A-C-B-C-A」、「C-A-B-A-C」なども可能であるし、板厚中心に対して対象である必要はなく、例えば「A-C-B-A」、「C-A-C-B-A-B-A」のような構成も可能である。
Metal plate configuration (laminated structure)
In the metal plate of the present invention, the A layer, the B layer, and the C layer described above exist in a state of being laminated in the plate thickness direction. However, the arrangement is necessary for the plate surface and the plate surface on the opposite side of the plate surface. That is, a layered structure in which an A layer exists between the B layer first confirmed toward the plate surface. The metal plate of the present invention must satisfy this condition for both the front and back surfaces of the metal plate.
As a specific example, the simplest configuration is “ABA”.
The present invention is not limited to this, and for example, “ACBCA”, “CABAC”, and the like are possible, and it is not necessary to be an object with respect to the thickness center. For example, configurations such as “ACBA”, “CACBABA” Is possible.

また、本発明金属板を構成するA層、B層、C層は、結晶面の配向と磁歪により規定されるが、これらの各層について、各層が2層以上存在する場合、それらは同じ配向と磁歪である必要はない。例えば、A層の規定を満足するが異なる配向や磁歪を有する層としてA1層とA2層、B層の規定を満足するが異なる配向を有する層としてB1層とB2層がある場合、「A1-B-A2」のような構成や「A1-B1-C-B2-C-A2」のような構成でも構わない。
もちろん、上記で単純に「A-B-A」とした場合に、各A層やB層内で板厚方向に結晶面の配向や磁歪の変動があっても構わない。つまり、「A1-A2-B1-B2-A1-A2]のような構成は簡単に「A-B-A」とも表記できる。一般には、例えば「A-B-A」の構成においても、A層の中では配向や磁歪は板厚方向に多少の変動が伴うことが通常とも言える。
In addition, the A layer, the B layer, and the C layer constituting the metal plate of the present invention are defined by the orientation of the crystal plane and the magnetostriction. When each of these layers has two or more layers, they have the same orientation. It need not be magnetostrictive. For example, if the A1 and A2 layers satisfy the definition of the A layer but have different orientation and magnetostriction, and the B1 and B2 layers satisfy the definition of the B layer but have different orientation, A configuration such as “B-A2” or a configuration such as “A1-B1-C-B2-C-A2” may be used.
Of course, when “ABA” is simply used as described above, the crystal plane orientation and magnetostriction may vary in the thickness direction in each of the A and B layers. That is, a configuration such as “A1-A2-B1-B2-A1-A2” can be simply expressed as “ABA”. In general, for example, even in the configuration of “ABA”, it can be said that the orientation and magnetostriction are usually accompanied by some variation in the thickness direction in the A layer.

(厚さ)
本発明の軟磁性Fe系金属板全体の厚さは0.03mm以上1.5mm以下が好ましい。板の厚さが0.03mm以下であると、軟磁性Fe系金属板から製造したコア用部材を磁気コアに積層する場合に手間がかかり生産性が悪くなる。また、厚さが1.5mmを超えると渦電流が大きくなって鉄損が増加してしまう。より好ましくは、0.05mm以上1mm以下である。
(thickness)
The total thickness of the soft magnetic Fe-based metal plate of the present invention is preferably 0.03 mm to 1.5 mm. When the thickness of the plate is 0.03 mm or less, it takes time and labor to laminate the core member produced from the soft magnetic Fe-based metal plate on the magnetic core, resulting in poor productivity. Moreover, when thickness exceeds 1.5 mm, an eddy current will become large and an iron loss will increase. More preferably, it is 0.05 mm or more and 1 mm or less.

板表面から該板表面の反対側の板表面に向かって最初に確認されるA層の厚さは、金属板全体の板厚に対して70〜97%%が好ましい。この値が70%以上ないと、金属板全体として高い磁束密度を得にくくなる。また、この値が97%を超えるとB層が薄くなり、コア材製造の際の板面内圧縮応力下での鉄損の低下を抑制する効果が十分に得られない。
C層については、測定上不可避的に存在するものでもあり、また後述するが、各層間の磁気相互作用の発現に関して特性上のメリットが小さくなるため、本発明金属板全体でのC層の合計厚さは、A層およびB層それぞれの合計厚さよりも少ないもので、存在する場合の厚さは薄いほど好ましい。
The thickness of the A layer that is first confirmed from the plate surface toward the plate surface opposite to the plate surface is preferably 70 to 97% with respect to the plate thickness of the entire metal plate. If this value is not 70% or more, it is difficult to obtain a high magnetic flux density as a whole metal plate. On the other hand, when this value exceeds 97%, the B layer becomes thin, and the effect of suppressing the reduction in iron loss under the in-plane compressive stress during the production of the core material cannot be sufficiently obtained.
The C layer is inevitably present in the measurement, and will be described later. However, since the merit in terms of the magnetic interaction between the layers is reduced, the total of the C layers in the entire metal plate of the present invention is reduced. The thickness is smaller than the total thickness of each of the A layer and the B layer, and the thinner the thickness when it is, the better.

(各層の一体化と界面)
本発明金属板はA層、B層およびC層が積層した構造を有することは前記のとおりであるが、これらの一体化の方法は特に問わない。単純には各層の間に接着剤のような特別な機能を有する物質を介在させて一体化することも可能である。しかし、この場合は、本発明の独創的な特徴である、各層間、特にA層とB層の間の磁気相互作用による効果が非常に小さくなってしまう。すなわち、A層とB層の間に接着剤のような非金属または非磁性物質が介在すると、各層間の磁気相互作用が小さくなるため、板面内圧縮応力下での磁気特性劣化を回避する効果が小さくなる。
(Integration of each layer and interface)
As described above, the metal plate of the present invention has a structure in which the A layer, the B layer, and the C layer are laminated, but the integration method is not particularly limited. Simply, a material having a special function such as an adhesive may be interposed between the layers and integrated. However, in this case, the effect of the magnetic interaction between the respective layers, particularly between the A layer and the B layer, which is an original feature of the present invention, becomes very small. That is, if a non-metal or non-magnetic material such as an adhesive is interposed between the A layer and the B layer, the magnetic interaction between each layer is reduced, so that deterioration of magnetic characteristics under in-plane compressive stress is avoided. The effect is reduced.

このため、本発明においてはA層、B層およびC層は直接金属結合して一体となっていることが好ましく、特に強磁性を示すFe原子が連続的につながっている状況が好ましい。具体的には、各層の界面から隣接する各層内に10μmの距離においてFe濃度の差が1.0%以下であれば本発明で特徴的な磁気相互作用を十分に活用することが可能となる。
この磁気相互作用による板面内圧縮応力下での磁気特性劣化回避の効果は、A層とB層の間の磁気相互作用によるものが主であり、A層とB層を連続して積層させることが好ましい。またA層とB層の間にC層が介在する場合は、C層の厚さは薄い方が好ましい。
各層の界面におけるFe濃度分布は、界面を含む断面で界面を跨ぐ板厚方向にEPMAライン分析によって測定することができる。
For this reason, in the present invention, the A layer, the B layer, and the C layer are preferably integrated by direct metal bonding, and in particular, a situation where Fe atoms exhibiting ferromagnetism are continuously connected is preferable. Specifically, if the difference in Fe concentration is 1.0% or less at a distance of 10 μm from each interface to each adjacent layer, the magnetic interaction characteristic of the present invention can be fully utilized. .
The effect of avoiding the deterioration of the magnetic characteristics under the in-plane compressive stress due to the magnetic interaction is mainly due to the magnetic interaction between the A layer and the B layer, and the A layer and the B layer are continuously laminated. It is preferable. When the C layer is interposed between the A layer and the B layer, it is preferable that the thickness of the C layer is thin.
The Fe concentration distribution at the interface of each layer can be measured by EPMA line analysis in the thickness direction across the interface in a cross section including the interface.

上記の磁気相互作用と効果は、前述したように、A層の磁歪、各層の積層構造および各層の結合状態(界面構造)に関連して発現するものである。このメカニズムは以下のように考えられる。
一般に板面内に圧縮応力が作用すると磁気特性が劣化するのは、以下のような現象による。
As described above, the above magnetic interaction and effect are manifested in relation to the magnetostriction of the A layer, the laminated structure of each layer, and the coupling state (interface structure) of each layer. This mechanism is considered as follows.
In general, when compressive stress acts on the plate surface, the magnetic characteristics deteriorate due to the following phenomenon.

一般的な磁歪定数が正の値である磁性材料では、磁化ベクトルは引張応力に対しては同じ向きになる方が、圧縮応力に対しては垂直の方向を向く方が系のエネルギーが低下する。このため板面内に圧縮応力が作用すると磁化ベクトルは板面内方向からずれて板厚方向の成分を増大させる。本発明の金属板は板面内に磁場を印加して使用されるものであるため、磁化ベクトルが板面内から外れることは磁束密度向上にとって好ましいことではない。また交番磁場を印加する場合、磁化ベクトルの板厚方向成分が増加すると、磁化ベクトルの垂直面に発生する渦電流については、板面内で流れる電流が増加することとなる。電流が板面内で流れる場合と、板断面内で流れる場合を比較すると、広い面積を有する板面内で流れる方が比抵抗が小さくなるため渦電流損失が増加してしまう。
これとは逆に、磁歪定数が負の値である場合には、板面内方向に圧縮応力が作用しても、磁化ベクトルは板面内から外れず、むしろ板面内から外れていた磁化ベクトルがあればそれが板面内を向くようになり、磁束密度向上にも好ましく、渦電流は比抵抗が大きい板断面内で流れるため渦電流損失も抑制される。
In a magnetic material with a general magnetostriction constant having a positive value, the magnetization vector has the same orientation with respect to tensile stress, but the direction of the perpendicular direction with respect to compressive stress reduces the energy of the system. . For this reason, when a compressive stress acts on the plate surface, the magnetization vector deviates from the plate surface direction and increases the component in the plate thickness direction. Since the metal plate of the present invention is used by applying a magnetic field in the plate surface, it is not preferable for improving the magnetic flux density that the magnetization vector deviates from the plate surface. When an alternating magnetic field is applied, if the plate thickness direction component of the magnetization vector increases, the eddy current generated on the vertical plane of the magnetization vector increases the current flowing in the plate surface. Comparing the case where the current flows in the plate surface and the case where the current flows in the plate cross section, the eddy current loss increases because the specific resistance decreases when flowing in the plate surface having a large area.
On the other hand, when the magnetostriction constant is negative, the magnetization vector does not deviate from the plane of the plate even if a compressive stress is applied in the direction of the plane of the plate. If there is a vector, it comes to face in the plane of the plate, which is preferable for improving the magnetic flux density. Since the eddy current flows in the cross section of the plate having a large specific resistance, eddy current loss is also suppressed.

また本発明金属板のように、磁気特性が異なるA層とB層が一体化されていると、層間で磁気双極子相互作用を主体とした磁気相互作用が働く。一般的には、保磁力が低い方位の挙動は、保磁力が高い方位の挙動に従うようになる。すなわち、保磁力が低い{200}面方位に配向したA層は、保磁力が高い{222}面方位に配向したB層の挙動に従うようになる。   Further, when the A layer and the B layer having different magnetic properties are integrated as in the metal plate of the present invention, a magnetic interaction mainly composed of a magnetic dipole interaction works between the layers. In general, the behavior in an orientation with a low coercivity follows the behavior in an orientation with a high coercivity. That is, the A layer oriented in the {200} plane orientation with low coercivity follows the behavior of the B layer oriented in the {222} plane orientation with high coercivity.

上記の2つの基礎現象を元にすると、本発明においてA層は磁歪定数が正の値であるにも関わらず、磁歪定数が負の値であるB層と同様に、板面内圧縮応力下でも磁化ベクトルが面内方向を維持するようにできる。この結果、本来単独であれば板面内圧縮応力の影響を受けやすく磁気特性劣化の原因ともなるA層は、板面内圧縮応力の影響を受けにくくなり、金属板全体として板面内圧縮応力による磁気特性劣化が回避される。   Based on the two basic phenomena described above, in the present invention, the A layer has a negative magnetostriction constant, but the B layer has a negative magnetostriction constant. However, the magnetization vector can be maintained in the in-plane direction. As a result, the layer A, which is inherently susceptible to the effects of in-plane compressive stress, is less susceptible to the in-plane compressive stress, and the metal plate as a whole is less susceptible to in-plane compressive stress. Magnetic property deterioration due to is avoided.

(組成)
本発明の軟磁性Fe系金属板の組成は特に限定されるものではない。組成に関して必要なのは、「Fe系金属」であることである。これは、本発明金属板がモータコア材として使用され、各種の磁気特性を必要とするためのものであるからである。
本発明では、「Fe系金属」を金属板全体の平均組成で、70%以上のFeを含有するものとする。Fe系金属の一般的な例としては、C:1ppm〜0.02%、残部Fe及び不可避不純物よりなる純鉄、C:0.02〜0.2%を含有する炭素鋼を基本とし、適宜、添加元素を含有させた鋼、C:0.1%以下、Si:0.1〜2.5%を基本成分とするケイ素鋼や、Mn:0.02〜3%、P:0.3%以下、S:0.05%以下、Al:4%以下、N:0.1%以下を含む公知の各種鋼などが例示できる。
(composition)
The composition of the soft magnetic Fe-based metal plate of the present invention is not particularly limited. What is necessary for the composition is that it is an “Fe-based metal”. This is because the metal plate of the present invention is used as a motor core material and requires various magnetic properties.
In the present invention, the “Fe-based metal” is an average composition of the entire metal plate and contains 70% or more of Fe. As a general example of an Fe-based metal, C: 1 ppm to 0.02%, pure iron composed of the balance Fe and inevitable impurities, C: carbon steel containing 0.02 to 0.2%, and as appropriate, , Steel containing additive elements, C: 0.1% or less, silicon steel having Si: 0.1-2.5% as a basic component, Mn: 0.02-3%, P: 0.3 Examples include various known steels including% or less, S: 0.05% or less, Al: 4% or less, and N: 0.1% or less.

本発明のFe系金属板は、材質の異なるA層、B層、さらに状況によりC層からなるが、これら各層の組成も特に限定されない。ただし本発明で要求される磁気特性を発揮するためA層とB層については、Fe系金属であることを必要条件とする。C層についても、磁気特性への直接的な影響や、A層とB層の間に介在する場合は磁気相互作用に寄与することから、Fe系金属であることが好ましい。
また各層は組成として異なる必要性はない。しかし、各層は材質に差異を有するものであるので、組成としても差を有するものになることが一般的で、それでも構わない。
The Fe-based metal plate of the present invention comprises an A layer and a B layer of different materials, and a C layer depending on the situation, but the composition of these layers is not particularly limited. However, in order to exhibit the magnetic properties required in the present invention, the A layer and the B layer are required to be Fe-based metals. The C layer is also preferably an Fe-based metal because it directly affects the magnetic properties and contributes to the magnetic interaction when interposed between the A and B layers.
Each layer need not have a different composition. However, since each layer has a difference in material, it is common to have a difference in composition, and that is not a problem.

本発明では金属板全体の平均組成を考慮することはあまり意味がない。というのは、本発明は特にA層とB層の結晶方位と磁歪を制御することが重要であり、このために各層の組成が考慮されるが、金属板全体の組成はさらに各層の厚さを含めた積層構造にも依存するため、金属板の特性とは関連が小さいものになるためである。
さらに、各層を個別に見ても、各層内の組成が均一であることは本発明効果の発現には必要な条件ではなく、例えば板厚方向での成分変動が許容される。
In the present invention, it is meaningless to consider the average composition of the entire metal plate. This is because, in the present invention, it is particularly important to control the crystal orientation and magnetostriction of the A layer and the B layer. For this reason, the composition of each layer is considered, but the composition of the entire metal plate further includes the thickness of each layer. This is because the relationship with the characteristics of the metal plate is small because it depends on the laminated structure including the metal layer.
Furthermore, even if each layer is viewed individually, a uniform composition in each layer is not a necessary condition for the manifestation of the effects of the present invention, and for example, component variations in the thickness direction are allowed.

このこともあるので以下に、各層毎の平均組成に関して好ましいものを説明しておく。
A層の化学組成は例えば、一般的に{200}面方位を多く含むように制御された電磁鋼板で使用されるAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、Znのいずれか1種以上を含む組成となる。
B層の化学組成は例えば、必要な特性に制御するために、一般的に電磁鋼板で使用され、さらに磁歪を制御するためSi、Al、V、Ti、Snのいずれか1種以上を含む組成となる。特に磁歪を負の値とするためには、Si=0〜1.5%、Al=0〜3.5%、V=0〜6.5%、Ti=0〜3%、Sn=0〜4%の範囲で含有させることが好ましい。
C層についても、A層、B層と同様に、一般的に電磁鋼板で使用される元素を含む組成とすればよい。
各層とも、さらに公知の特定の目的をもって上記以外の元素を含有していても、本発明効果が消失するものではない。
Since this may be the case, what is preferable regarding the average composition for each layer will be described below.
The chemical composition of the A layer is, for example, Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ta, Ti, which are generally used in electrical steel sheets controlled to include many {200} plane orientations. The composition contains one or more of V, W, and Zn.
The chemical composition of the B layer is, for example, a composition that is generally used in electrical steel sheets to control necessary characteristics, and further includes any one or more of Si, Al, V, Ti, and Sn to control magnetostriction. It becomes. In particular, in order to set the magnetostriction to a negative value, Si = 0 to 1.5%, Al = 0 to 3.5%, V = 0 to 6.5%, Ti = 0 to 3%, Sn = 0 to It is preferable to make it contain in 4% of range.
Similarly to the A layer and the B layer, the C layer may be composed of an element that is generally used in an electromagnetic steel sheet.
Even if each layer further contains an element other than the above for a known specific purpose, the effects of the present invention are not lost.

また、本発明金属板の各層は製造法によっては、各層内で組成が均一でない場合も想定される。つまり、金属板を板厚方向に細かく見れば、Fe以外の元素の濃度が相当程度に高く、Fe濃度が70%未満になるような領域も想定される。このような状況は、上記のように強磁性体であるFe原子の磁気特性を活用した本発明金属板にとっては好ましいものとは言えない。特に、A層とB層の磁気相互作用が起きるA層とB層との遷移領域にFe濃度が70%未満であるような領域が存在すると、相互作用を阻害してしまう。   Further, depending on the production method, the layers of the metal plate of the present invention may be assumed to have a nonuniform composition within each layer. That is, if the metal plate is viewed in the thickness direction, a region where the concentration of elements other than Fe is considerably high and the Fe concentration is less than 70% is also assumed. Such a situation is not preferable for the metal plate of the present invention utilizing the magnetic properties of Fe atoms, which are ferromagnetic materials, as described above. In particular, if there is a region where the Fe concentration is less than 70% in the transition region between the A layer and the B layer where magnetic interaction between the A layer and the B layer occurs, the interaction is inhibited.

(その他)
本発明金属板は、一般的な電磁鋼板で知られているようなコーティングを施される場合もある。このようなコーティングは本発明効果を消失させるものではない。
(Other)
The metal plate of the present invention may be coated as is known in general electromagnetic steel sheets. Such a coating does not lose the effect of the present invention.

軟磁性Fe系金属板の製造方法
本発明の複数の結晶配向層を有する軟磁性Fe系金属板は、たとえば次のような工程を経て得られる。
以下では、A層に関する素材の準備、B層に関する素材の準備、該素材の一体化、一体とした材料の熱処理の順で説明する。
Method for Producing Soft Magnetic Fe-Based Metal Plate The soft magnetic Fe-based metal plate having a plurality of crystal orientation layers of the present invention is obtained, for example, through the following steps.
Below, it demonstrates in order of the preparation of the raw material regarding A layer, the preparation of the raw material regarding B layer, integration of this raw material, and the heat processing of the integrated material.

(A層を形成する素材)
A層を形成する素材としては例えば、70質量%以上のFeを含有しα−γ変態を生じ得る組成を有するFe系金属板(以降、金属板Aと呼ぶ)を97%超99.99%以下の圧下率で冷間圧延し、その表面にAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、WおよびZnの少なくとも一種以上のフェライト生成元素を含有する金属または合金を付着させた金属板(以降、金属板Aと呼ぶ)を用いることができる。
この金属板Aを後述のように加工および熱処理することで、最終的に本発明金属板の中にA層に相当する領域を形成することができる。
(Material that forms layer A)
As a material for forming the layer A for example, Fe-based metal plate having a composition may result in containing and alpha-gamma transformation 70 mass% or more Fe (hereinafter referred to as metal plate A 1) 97 percent 99.99 Or a metal containing at least one ferrite-forming element of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ti, V, W, and Zn on the surface thereof. metal plate adhered with alloy (hereinafter referred to as metal plate a 2) can be used.
The metal plate A 2 is processed and heat treated as described below, can be finally formed a region corresponding to the A layer in the present invention the metal plate.

ここで素材としての金属板Aの組成をα−γ変態を生じ得るものとするのは、後述の熱処理において、α−γ変態を活用してA層の{200}面集積度を高めるためである。なお、本製造法で説明する方法では、金属板Aの表面から内部に向かってフェライト生成元素が合金化し局所的に見ると少なからざる組成変化が起き、その少なくとも一部はα−γ変態を生じ得ない組成(α単相組成)に変化する。α−γ変態を生じ得る組成である必要があるのは、あくまでも素材とする金属板Aであり、最終的には金属板Aに相当する領域全体がα単相組成に変化するような状況も考えられる。詳細は後述する。 Here the assumed that the composition of the metal plate A 1 as the material can result in alpha-gamma transformation, in the heat treatment described later, to increase the {200} plane integration of the A layer by utilizing the alpha-gamma transformation It is. In the method described in this manufacturing method, the ferrite-forming elements from the surface toward the inside of the metal plate A 2 is occurred locally see the considerable Zaru composition change alloyed, the at least a portion alpha-gamma transformation It changes to a composition (α single phase composition) that cannot be generated. The composition that can cause the α-γ transformation needs to be the metal plate A 1 as a raw material, and finally the entire region corresponding to the metal plate A 1 changes to the α single-phase composition. The situation is also conceivable. Details will be described later.

注意すべきは、上記で用いる金属板Aは、最終的にその表面に付着させたフェライト生成元素が拡散により侵入し、Fe濃度が減少する方向で組成が変化するので、最終製品でのA層が想定したFe系金属相当の組成となるようなFe含有量に設定しておく必要がある。これを、表面に付着させる金属の種類や厚さ、拡散による合金化の程度などにより適切に制御することは、通常のメタラジー知識を有する当業者にとっては容易なことである。 It should be noted that the metal plate A 1 used above has a composition that changes in a direction in which the ferrite-forming element finally adhered to the surface penetrates by diffusion and the Fe concentration decreases. It is necessary to set the Fe content so that the layer has a composition equivalent to the Fe-based metal. It is easy for those skilled in the art having ordinary metallurgy knowledge to appropriately control this by the kind and thickness of the metal deposited on the surface, the degree of alloying by diffusion, and the like.

(B層を形成する素材)
B層を形成する素材としては、例えば、70質量%以上のFeを含有するα−γ変態を生じ得るFe系金属板(以降、金属板Bと呼ぶ)を30%以上95%以下の圧下率で冷間圧延し、その表面にSi、Al、Sn、TiおよびVの少なくとも一種以上のフェライト生成元素を含有する金属または合金を付着させた金属板(以降、金属板Bと呼ぶ)を用いることができる。
(Material that forms layer B)
As a material for forming the B layer, for example, Fe-based metal plate which can cause alpha-gamma transformation containing 70 mass% or more Fe (hereinafter, a metal plate B 1 and referred) reduction below 95% 30% or more cold rolling at a rate, Si on the surface, Al, Sn, metal plate to adhere the metal or alloy containing at least one or more of ferrite forming elements of Ti and V to (hereinafter referred to as metal plate B 2) Can be used.

ここで素材としての金属板Bの組成をα−γ変態を生じ得るものとするのは、後述の熱処理において、α−γ変態を活用してB層の{222}面集積度を高めるためであり、熱処理での組成変化がおき、最終的に金属板Bに相当する領域の組成の少なくとも一部がα−γ変態を生じ得ないものに変化する可能性ついては金属板Aと同様である。詳細は後述する。
上記で用いるFe系金属板BのFe濃度については、金属板Aについてと同様の注意が必要である。
Here the assumed that the composition of the metal plate B 1 as the material can result in alpha-gamma transformation, in the heat treatment described later, to increase the {222} plane integration of the B layer by utilizing the alpha-gamma transformation As in the case of the metal plate A 1 , there is a possibility that the composition changes due to the heat treatment and that at least a part of the composition in the region corresponding to the metal plate B 1 eventually changes to one that cannot cause the α-γ transformation. It is. Details will be described later.
Regarding the Fe concentration of the Fe-based metal plate B 1 used above, the same caution as for the metal plate A 1 is necessary.

Fe系金属板AとFe系金属板Bの厚さは、最終的な本発明Fe系金属板の厚さが0.03mm以上1.5mmとなるようにそれぞれ定めればよいが、いずれも、製造上や取り扱いの点から0.01mm以上の厚さとすることが望ましい。 The thicknesses of the Fe-based metal plate A 1 and the Fe-based metal plate B 1 may be determined so that the final thickness of the Fe-based metal plate of the present invention is 0.03 mm or more and 1.5 mm. However, it is desirable that the thickness be 0.01 mm or more from the viewpoint of manufacturing and handling.

フェライト生成元素の各金属板への付着は、溶融めっき法、電気めっき法、ドライプロセス法、圧延クラッド法等によって実施でき、いずれの方法で付着を行ってもよい。
各金属板に付着させるフェライト生成元素の付着厚さは、0.05μm以上であることが望ましい。厚さが0.05μm未満では、後述の熱処理工程において十分な{200}面または{222}面集積度を有するA層またはB層を得ることができない。
また、ここで説明している方法においては、本発明金属板は最終的に板厚方向に少なからざる濃度変動を有するものになる場合があるが、最終的な本発明金属板は全板厚にわたって強磁性体元素であるFeの濃度が70%以上となっていることが好ましいため、金属板AまたはBで表面に形成されたフェライト生成元素の層の最大厚さは、後述する熱処理条件も考慮し、熱処理後にFe系金属板AまたはFe系金属板Bと十分に合金化するように設定することが好ましい。
The ferrite-forming element can be attached to each metal plate by a hot dipping method, an electroplating method, a dry process method, a rolling clad method, or the like, and any method may be used.
The thickness of the ferrite-forming element attached to each metal plate is preferably 0.05 μm or more. If the thickness is less than 0.05 μm, it is not possible to obtain an A layer or a B layer having a sufficient {200} plane or {222} plane integration degree in the heat treatment step described later.
Further, in the method described here, the metal plate of the present invention may eventually have a considerable concentration variation in the plate thickness direction, but the final metal plate of the present invention will be covered over the entire plate thickness. Since the concentration of Fe, which is a ferromagnetic element, is preferably 70% or more, the maximum thickness of the ferrite-forming element layer formed on the surface of the metal plate A 2 or B 2 is the heat treatment condition described later. In view of the above, it is preferable to set so as to sufficiently alloy with the Fe-based metal plate A 1 or the Fe-based metal plate B 1 after the heat treatment.

なお、金属板Aと金属板Bは、同じ組成のFe系金属板を用いることができるし、異なる組成のFe系金属板を用いることもできる。
また、フェライト生成元素も金属板Aと金属板Bで同じ元素を使用できるし、異なる元素の組み合わせも使用できる。
金属板Aと金属板Bで同じ組成のFe系金属板を用い、フェライト生成元素も金属板Aと金属板Bで同じ元素を使用することにより、金属板全体の平均組成は一般的な単層の金属板とほぼ同じで、結晶配向性や磁歪定数が異なる複数の層で形成されたFe系金属板とすることもできる。
The metal plate A 1 and the metal plate B 1 represents, to be able to use a Fe-based metal plate of the same composition, it is also possible to use a Fe-based metal plate of a different composition.
Furthermore, to the ferrite forming elements you can also use the same element in the metal plate A 2 and the metal plate B 2, can also be used in combination of different elements.
By using the Fe-based metal plate having the same composition in the metal plate A 1 and the metal plate B 1 and using the same element in the metal plate A 2 and the metal plate B 2 as the ferrite-forming element, the average composition of the entire metal plate is generally It is also possible to use an Fe-based metal plate formed of a plurality of layers that are substantially the same as a typical single-layer metal plate and have different crystal orientation and magnetostriction constant.

(金属板Aと金属板Bの積層)
金属板Aと金属板Bを、積層体の最表面から該表面の反対側の表面に向かって最初に確認される金属板が金属板Aであるように積層する。このようにすることで、後述の熱処理後、最終的な本発明金属板において、板表面と、該板表面から該板表面の反対側の板表面に向かって最初に確認されるB層との間に、A層が存在する積層構成とすることができる。
(Laminated metal plate A 2 and the metal plate B 2)
The metal plate A 2 and the metal plate B 2, the first metal plate to be verified are stacked such that the metal plate A 1 toward the opposite surface of the surface from the outermost surface of the laminate. In this way, after the heat treatment described later, in the final metal plate of the present invention, the plate surface and the B layer first confirmed from the plate surface toward the plate surface opposite to the plate surface It can be set as the laminated structure in which A layer exists in between.

最終的には後述する熱処理により各金属板を相互拡散による金属結合によって一体化するが、各金属板を単に重ねて熱処理しただけでは、各金属板の向かい合った表面の間の空隙が熱処理後も残存したり、向かい合った表面が酸化してこれが残存し一体化が阻害されやすい。このため、積層前に各鋼板表面をクリーニングして異物を取り除くことは望ましく、例えば、酸洗したり、逆スパッタして新生面を出しておくことが望ましい。また、熱処理前に低温で圧着させたり、放電により接合してもよい。熱処理時の各金属板の積層空隙の酸化や窒化を防ぐには、空隙を真空にして予め酸素や窒素を表面付近から除去した上で積層体周囲をシールして外部雰囲気からの酸素や窒素の侵入を防ぐことや、熱処理雰囲気を不活性ガスとすることも有効である。さらに熱処理時には積層方向に荷重をかけることも効果的である。   Eventually, the metal plates are integrated by metal bonding by mutual diffusion by heat treatment described later. However, if the metal plates are simply stacked and heat-treated, the gaps between the opposing surfaces of the metal plates will remain after heat treatment. Remaining or facing surfaces oxidize and remain, which tends to hinder integration. For this reason, it is desirable to remove the foreign matters by cleaning the surface of each steel plate before lamination, for example, pickling or reverse sputtering is desirable to bring out a new surface. Further, it may be bonded at a low temperature before heat treatment or may be joined by electric discharge. To prevent oxidation and nitridation of the laminated voids of each metal plate during heat treatment, the voids are evacuated in advance to remove oxygen and nitrogen from the vicinity of the surface, and then the periphery of the laminate is sealed to remove oxygen and nitrogen from the external atmosphere. It is also effective to prevent intrusion and to make the heat treatment atmosphere an inert gas. It is also effective to apply a load in the stacking direction during heat treatment.

(積層体の熱処理)
上記のように準備された積層体に熱処理を施し、金属板AおよびB表面のフェライト生成元素を各金属板内および相互に拡散させて、各金属板を一体化すると同時に、各金属板の再結晶と変態を利用して、{200}面集積度の高いA層と、{222}面集積度の高いB層をそれぞれ形成する。また、B層では飽和磁歪の値が負になるように、フェライト生成元素を拡散させ合金化する。
(Heat treatment of laminate)
The laminated body prepared as described above is subjected to a heat treatment, and ferrite forming elements on the surfaces of the metal plates A 2 and B 2 are diffused in each metal plate and to each other so that each metal plate is integrated and at the same time each metal plate. Using the recrystallization and transformation of A, an A layer having a high {200} plane integration degree and a B layer having a high {222} plane integration degree are formed. Further, in the B layer, the ferrite-forming element is diffused and alloyed so that the saturation magnetostriction value becomes negative.

以上のようにするためには、上記積層体を、金属板Aと金属板Bの両方がA3点以上になるまで加熱する必要がある。A3点以上からの冷却の過程でのγ相からα相への変態に伴い、もともと金属板Aであった領域では、{200}面方位であるα相粒が優先的に成長し、もともと金属板Bであった領域では、{222}面方位であるα相粒が優先的に成長するため、A層では{200}面集積度を、B層では{222}面集積度を増加させることができる。 In order to make the above, the laminated body, it is necessary to heat up both metal plate A 1 and the metal plate B 1 is equal to or larger than A3 point. Along with the transformation from the γ phase to the α phase in the process of cooling from the A3 point or higher, in the region that was originally the metal plate A 1 , α phase grains having a {200} plane orientation grew preferentially. In the region that was the metal plate B 1 , α-phase grains having the {222} plane orientation grow preferentially, so that the {200} plane integration degree is increased in the A layer and the {222} plane integration degree is increased in the B layer. Can be made.

このメカニズムについては特許文献1および2に詳しく述べられており、ここでは本発明における熱処理条件例の範囲とともに簡単に説明しておく。
以下では、A層について説明し、フェライト生成元素がAlで、{200}面集積度が増加する状況について説明する。
積層体を加熱すると、冷延加工が施されていた金属板Aの領域は再結晶を開始する。金属板Aでは、冷延率が好ましく制御されているため{100}に配向した方位が比較的多数生成する。また、昇温につれて金属板Aに付着していたAlが金属板A内部に拡散し、合金化してAl濃度が高まった領域はα単相成分となる。
This mechanism is described in detail in Patent Documents 1 and 2, and will be briefly described here together with a range of heat treatment conditions in the present invention.
In the following, the A layer will be described, and the situation in which the ferrite-forming element is Al and the {200} plane integration degree will be described.
Heating the laminate, the area of the metal plate A 1 that cold working has been performed to start the re-crystallization. In the metal plate A 1, orientation oriented in {100} for cold rolling rate is preferably controlled to a relatively large number generation. Further, Al adhering to the metal plate A 1 diffuses into the metal plate A 1 as the temperature rises, and the region where the Al concentration is increased due to alloying becomes an α single phase component.

積層体をさらにA3点以上1300℃以下の温度に加熱、保持する。
すでにα単相成分となっている領域では再結晶で生じた{100}方位粒はそのまま保存され、その領域の中で{100}}方位粒が優先成長して、{200}面集積度が増加する。この時、α単相組成でない領域(元の金属板Aの中心側領域)はα相からγ相に変態する。
この温度域で保持すると、Alの拡散に伴いα単相組成領域は元の金属板Aの中心側に広がっていく。このため元の金属板Aの中心側領域でγ相に変態していた領域は元の金属板Aの表面側領域から再びα相に変態していく。その際、すでにα単相組成となって{100}方位粒が優先成長しているα相領域の結晶粒がγ相側に成長する。このためγ相はα単相領域の結晶方位を引き継ぐかたちで変態することとなり、保持時間の増加にともない、元の金属板Aであった領域の{200}面集積度はさらに増加していく。
このような{100}方位粒の発達は、元の金属板Aの表面に付着させていたAl層内に金属板A側からFe原子が拡散していくことでも起きる。結果として、元の金属板A領域全体において{200}面集積度が高まることとなる。
The laminate is further heated and held at a temperature of not less than A3 and not more than 1300 ° C.
In the region already having an α single phase component, {100} oriented grains generated by recrystallization are preserved as they are, and {100} oriented grains are preferentially grown in the region, and the {200} plane integration degree is increased. To increase. In this case, the region not α single phase composition (the center side region of the original metal plate A 1) is transformed into γ phase from α phase.
Holding in this temperature range, single phase composition region α with the diffusion of Al spreads toward the center of the original metal plate A 1. This region which has been transformed into γ phase in the center side region of the original metal plate A 1 because gradually transformed into α phase again from the surface side region of the original metal plate A 1. At that time, the crystal grains in the α phase region having the α single phase composition and the {100} orientation grains preferentially growing grow on the γ phase side. For this reason, the γ phase is transformed in the form of taking over the crystal orientation of the α single phase region, and as the retention time increases, the {200} plane integration degree of the region that was the original metal plate A 1 further increases. Go.
Development of such a {100} oriented grains takes place even the Fe atoms of a metal plate A 1 side diffuses into the original metal plate A 1 in Al layer that has adhered to the surface. As a result, so that the {200} plane integration throughout the original metal plate A 2 region is increased.

元の金属板A領域全体にわたりα単相組成として合金化されるまでA3点以上で保持された場合には、元の金属板A領域の全体にわたりすでに{200}面集積度の高い組織が形成されているので、冷却後もそれが維持される。
また、元の金属板A領域全体にわたりα単相組成となるまで合金化されていない場合は、元の金属板Aの中心領域にはγ相が残存しており、冷却中にこれがα相へ変態する。この際も上記と同様に、γ相領域はα相粒の結晶方位を引き継いで変態する。この結果、合金化の程度とは無関係に、元の金属板A領域全体にわたり{200}面集積度の高い層、すなわちA層が形成できる。
When the original metal plate A 2 region is held at A3 or higher until it is alloyed as an α single-phase composition, the entire structure of the original metal plate A 2 region is already highly integrated in the {200} plane. Since it is formed, it is maintained even after cooling.
Also, if it is not alloyed until α single phase composition throughout the original metal plate A 2 region, the central region of the original metal plate A 2 has residual γ phase, which during cooling α Transform to phase. At this time, similarly to the above, the γ phase region is transformed by taking over the crystal orientation of the α phase grains. As a result, the degree of alloying independently, high layer of {200} plane integration throughout the original metal plate A 2 regions, i.e. A layer can be formed.

元の金属板Bに関する領域についても同様の挙動により、元の金属板B領域全体にわたり{222}面集積度の高い層、すなわちB層が形成できる。 The same behavior applies to regions about the original metal plate B 2, a high layer of {222} plane integration throughout the original metal plate B 2 region, i.e. B layer can be formed.

熱処理条件については、上記の拡散現象および変態挙動そのものは基本的には一般的な現象であり、これを制御することは、通常のメタラジーの知識を有する当業者であれば、詳細に調整することは容易である。
本発明で特に注意すべきは、拡散が過度になると、例えばA層とB層の間で拡散が進むと適切な結晶方位や磁歪定数を有する領域の境界が失われていくことである。このような領域は上述したC層に相当するものにもなる。これも通常のメタラジーの知識を有する当業者であれば、調整することは容易であるが、過度な熱処理は避けるべきである。
また例えば金属板Aの厚さとそれに付着させるフェライト生成元素の付着量によっては、熱処理により拡散が進むと熱処理の途中で、元の金属板A領域の全てがα−γの二相領域となってしまう。このような状況になると、上記のようなα単相領域からγ相領域への結晶方位の引き継ぎが不十分になるため好ましくない。このような構成である場合は、α単相領域が残存している間に冷却し、全体をα相に変態させることが好ましい。
Regarding the heat treatment conditions, the above-mentioned diffusion phenomenon and transformation behavior itself are basically general phenomena, and those skilled in the art having knowledge of ordinary metallurgy should control in detail to control this. Is easy.
It should be particularly noted in the present invention that if the diffusion becomes excessive, for example, if the diffusion proceeds between the A layer and the B layer, the boundary of the region having an appropriate crystal orientation and magnetostriction constant is lost. Such a region also corresponds to the above-described C layer. Those skilled in the art who also have knowledge of ordinary metallurgy are easy to adjust, but excessive heat treatment should be avoided.
Further, for example, depending on the thickness of the metal plate A 1 and the amount of ferrite-forming elements attached thereto, when diffusion proceeds by heat treatment, all of the original metal plate A 2 region becomes an α-γ two-phase region during the heat treatment. turn into. Such a situation is not preferable because the crystal orientation from the α single phase region to the γ phase region as described above becomes insufficient. In the case of such a configuration, it is preferable to cool while the α single-phase region remains to transform the whole into the α phase.

また、B層については、金属板B、付着させるSi、Al、Sn、TiおよびVから選択されるフェライト生成元素の種類と付着量、さらに熱処理条件を考慮しての合金化の程度により、磁歪定数が本発明の範囲になるように制御される。この条件は上記各要因により非常に多くの事例が考えられるため、あえてここでは説明せず、後述の実施例で示すにとどめておく。拡散現象を用いて、適切な組成に合金化させることは、通常のメタラジーの知識を有する当業者であれば容易なことである。 In addition, for the B layer, depending on the degree of alloying in consideration of the metal plate B 1 , the type and amount of ferrite-forming elements selected from Si, Al, Sn, Ti and V to be adhered, and the heat treatment conditions, The magnetostriction constant is controlled to be within the range of the present invention. Since there are many cases of this condition due to the above factors, they are not described here, but only shown in the examples described later. It is easy for a person skilled in the art with knowledge of ordinary metallurgy to alloy to an appropriate composition using the diffusion phenomenon.

以上のように構成される本発明のFe系金属板について、実施例によりさらに詳しく説明する。   The Fe-based metal plate of the present invention configured as described above will be described in more detail with reference to examples.

(金属板A、Bの作製)
金属板A用として表1のC、DおよびFに示す成分系のFe系金属を用意し、金属板B用として表1のAおよびBに示す成分系のFe系金属を用意した。各成分系のA3点を表1に示した。
まず、真空溶解によってそれぞれの組成を有するインゴットを溶製した後に、熱延と冷延によって所定の厚みに加工した。
金属板Aの作製は、以下のように行った。熱延では1200℃に加熱した厚み250mmのインゴットを厚み50mm〜3mmまで薄肉化した。3mmまで薄肉化した熱延板については、表面からスケールを除去した後に、最小厚で0.4mmまで冷延し、それぞれの厚みの冷延材を窒素ガス中で800℃×600秒の熱処理を施して再結晶させて歪を取り除いた。50mm〜3mmの熱延板の表面スケールも除去した。続いて、最終冷延によって、板厚50mm〜0.4mmから板厚0.7mm〜0.01mmまで薄肉化した。
金属板Bの作製は、以下のように行った。熱延では1200℃に加熱した厚み250mmのインゴットを厚み3mmまで薄肉化した。この熱延板の表面からスケールを除去した後に、冷延で厚み2.0mm〜0.02mmまで薄肉化した。さらに、窒素ガス中で800℃×600秒の熱処理を施して再結晶させて歪を取り除いた。引き続き、最終冷延で厚み0.2mm〜0.005mmまで薄肉化した。
表2−1、表4−1、表6−1、表8−1に、作製した金属板A及び金属板Bの最終冷延の冷延前板厚、冷延後板厚、および、圧延率を合わせて記載した。
(Production of metal plates A 1 and B 1 )
C in Table 1 as a metal plate A 1, prepared Fe-based metal component system shown in D and F, were prepared Fe-based metal component system shown in A and B of Table 1 as a metal plate B 1. The A3 point of each component system is shown in Table 1.
First, ingots having respective compositions were melted by vacuum melting, and then processed to a predetermined thickness by hot rolling and cold rolling.
Preparation of the metal plate A 1 was performed as follows. In hot rolling, an ingot having a thickness of 250 mm heated to 1200 ° C. was thinned to a thickness of 50 mm to 3 mm. For the hot-rolled sheet thinned to 3 mm, after removing the scale from the surface, it is cold-rolled to a minimum thickness of 0.4 mm, and the cold-rolled material of each thickness is subjected to heat treatment at 800 ° C. for 600 seconds in nitrogen gas. And recrystallized to remove strain. The surface scale of the hot rolled sheet of 50 mm to 3 mm was also removed. Subsequently, the thickness was reduced from 50 mm to 0.4 mm to 0.7 mm to 0.01 mm by final cold rolling.
Preparation of the metal plate B 1 represents, was performed as follows. In hot rolling, an ingot having a thickness of 250 mm heated to 1200 ° C. was thinned to a thickness of 3 mm. After removing the scale from the surface of the hot-rolled sheet, the thickness was reduced to 2.0 mm to 0.02 mm by cold rolling. Further, a heat treatment was performed in nitrogen gas at 800 ° C. for 600 seconds to recrystallize and remove the strain. Subsequently, the thickness was reduced to 0.2 mm to 0.005 mm by final cold rolling.
Table 2-1, Table 4-1, Table 6-1, Table 8-1, cold rolled front plate thickness of the final cold rolling of the metal plate A 1 and the metal plate B 1 produced cold rolled KoitaAtsu, and The rolling ratio is also described.

それぞれの金属板の両面に、フェライト形生成元素を付着して皮膜を形成した。
金属板Aには、Zn、Sn、Al、Si、Ti、Mo、V、Cr、W層のいずれかを形成し、金属板Bには、Si、Al、V、Ti、Sn層のいずれかを形成した。Snは電気めっき法または溶融めっき法、Zn、Alは溶融めっき法によって形成した。ただし、Alの付着厚みが1μm以下の場合にはスパッタリング法を用いた。その他はイオンプレーティング(以下IP法と呼ぶ)とスパッタリング法で行なった。
フェライト形生成元素の種類と付着厚み及びフェライト形生成元素(皮膜元素と記載)の量も前記のそれぞれの表に記載した。なお、皮膜元素の量は、金属板Aの含有量と付着量を合計して、全体に対する質量%(mass%と記載)で求めた。
A film was formed on both surfaces of each metal plate by attaching ferrite-type forming elements.
The metal plate A 1 is, Zn, Sn, Al, Si , Ti, Mo, V, Cr, to form one of the W layer, the metal plate B 1 represents, Si, Al, V, Ti, and Sn layer Either formed. Sn was formed by electroplating or hot dipping, and Zn and Al were formed by hot dipping. However, the sputtering method was used when the thickness of Al deposited was 1 μm or less. Others were performed by ion plating (hereinafter referred to as IP method) and sputtering method.
The types and adhesion thicknesses of the ferrite-type forming elements and the amounts of ferrite-type forming elements (described as coating elements) are also described in the respective tables. The amount of the coating element, by summing the adhesion amount and the content of the metal plate A 1, was determined by mass% to the total (mass% as indicated).

フェライト生成元素を付着させた各金属板AおよびBを、表2−1、表4−1、表6−1、表8−1に示すように組み合わせて積層し、接合して積層体とし、その積層体を熱処理して製品板となる軟磁性Fe系金属板を製造した。接合方法、厚さおよび、熱処理条件を表2−2、表4−2、表6−2、表8−2に示した。
金属板AおよびBをロール圧着法で接合する場合には、ロール圧着させる前に各金属板の表面に脱脂処理を施し、新生面が出るようにした。
積層体の熱処理にはゴールドイメージ炉を用い、プログラム制御により昇温速度を10℃/分とし、加熱温度およびその温度での保持時間を表2−2、表4−2、表6−2、表8−2に記載の条件で制御した。昇温、保持の間は10-3Paレベルまで真空引きした雰囲気中で行なった。積層体の冷却時には、Arガスを導入して流量の調整によって100℃/分の冷却速度で冷却した。
Each metal plate A 2 and B 2 to which the ferrite-forming element is attached is laminated in combination as shown in Table 2-1, Table 4-1, Table 6-1, and Table 8-1, and joined to form a laminate. Then, the laminate was heat treated to produce a soft magnetic Fe-based metal plate to be a product plate. The joining method, thickness, and heat treatment conditions are shown in Table 2-2, Table 4-2, Table 6-2, and Table 8-2.
When the metal plates A 2 and B 2 were joined by the roll pressure bonding method, the surface of each metal plate was degreased before roll pressure bonding so that a new surface appeared.
A gold image furnace is used for heat treatment of the laminate, and the heating rate is set to 10 ° C./min under program control, and the heating temperature and the holding time at that temperature are shown in Table 2-2, Table 4-2, Table 6-2, Control was performed under the conditions described in Table 8-2. The temperature raising and holding were performed in an atmosphere evacuated to a level of 10 −3 Pa. At the time of cooling the laminated body, Ar gas was introduced and cooled at a cooling rate of 100 ° C./min by adjusting the flow rate.

得られた製品板から種々の試験片を作製して、以下の測定を行い、結果を表3、表5、表7、表9に記載した。   Various test pieces were produced from the obtained product plate, the following measurements were performed, and the results are shown in Table 3, Table 5, Table 7, and Table 9.

製品板の板厚と各層の厚さの測定は、製品板の断面の組織観察から求めた。その際に各相の接合状態を組織写真から判定した。各層間に隙間、等が見られない場合には「一体化」されていると判定した。
板厚方向の{200}面集積度および{222}面集積度は、板厚方向の結晶組織を観察し、平均結晶粒径に相当する厚さに板厚方向で分割したそれぞれの領域で前述したX線回折法にて測定した。板厚方向でのX線の各測定面を出す方法には、製品板表面からエメリー紙による機械研磨と化学研磨を繰り返す方法を用いた。
The thickness of the product plate and the thickness of each layer were determined from observation of the structure of the cross section of the product plate. At that time, the bonding state of each phase was determined from the structure photograph. When no gap or the like was found between the layers, it was determined that they were “integrated”.
The {200} plane integration degree and the {222} plane integration degree in the plate thickness direction are as described above for each region obtained by observing the crystal structure in the plate thickness direction and dividing in the plate thickness direction into a thickness corresponding to the average crystal grain size. Measured by the X-ray diffraction method. A method of repeating mechanical polishing and chemical polishing with emery paper from the surface of the product plate was used as a method of obtaining each X-ray measurement surface in the plate thickness direction.

さらに{222}面集積度が55%以上、99%以下のB層については、そのB層以外の領域を前述の機械研磨、あるいは、化学研磨で取り除き、B層のみを取り出し、板面内の平均の飽和磁歪を測定した。具体的には、取り出したB層について、板面内で22.5°毎に360°にわたり飽和磁歪を測定する。この際、各方向とその方向に垂直方向へ800kA/mの磁場をそれぞれ印加し、磁場0を基準にした磁歪を歪みゲージなどで測定した後、狙い方向の磁歪とそれと垂直方向の磁歪の差に2/3を乗じた値が各方向での飽和磁歪であり、各方向の平均値として求めた。板厚が薄い場合には、歪の測定が難しくなるが、その場合には、同じ方向で切り出し試料を複数枚重ねて測定した。   Furthermore, for the B layer having a {222} plane integration degree of 55% or more and 99% or less, the region other than the B layer is removed by the above-described mechanical polishing or chemical polishing, and only the B layer is taken out. Average saturation magnetostriction was measured. Specifically, for the extracted B layer, the saturation magnetostriction is measured over 360 ° every 22.5 ° within the plate surface. At this time, after applying a magnetic field of 800 kA / m perpendicularly to each direction and measuring the magnetostriction based on the magnetic field 0 with a strain gauge or the like, the difference between the magnetostriction in the target direction and the magnetostriction in the perpendicular direction is measured. The value obtained by multiplying by 2/3 is the saturation magnetostriction in each direction, and was obtained as an average value in each direction. When the plate thickness is thin, it is difficult to measure the strain. In that case, a plurality of cut samples were stacked in the same direction and measured.

このようにして、各試験片について、板厚方向でのA層(表では他側のA層をA’層と記載した)、B層およびC層(A、B層以外)についての積層構成を決定した。   In this way, for each test piece, the laminated structure of the A layer in the plate thickness direction (the A layer on the other side is described as the A ′ layer in the table), the B layer, and the C layer (other than A and B layers). It was determined.

界面の鉄濃度を調べた。測定はEPMAにより行った。測定位置は、界面位置から両側へそれぞれ1μmピッチで界面から10μmの距離まで合計21点測定し、21点の中での最大値と最小値の差分を「界面のFe濃度差」とし、製品板の複数個所での測定結果の最大値を「界面のFe濃度差の最大値」とした。一つの界面で5カ所測定し、界面が複数存在する場合には、それぞれの界面で5カ所づつ測定した。ただし、層の厚みが10μm未満の場合には、層の厚み分のみの測定を行い、21点未満の測定点の中での最大値と最小値の差分とした。   The iron concentration at the interface was examined. The measurement was performed by EPMA. The measurement position is 21 points in total from the interface position to the distance of 10 μm from the interface at a pitch of 1 μm on each side. The difference between the maximum value and the minimum value among the 21 points is defined as the “Fe concentration difference at the interface”. The maximum value of the measurement results at a plurality of locations was defined as “the maximum value of the Fe concentration difference at the interface”. Measurements were made at five locations at one interface, and when there were multiple interfaces, measurement was made at five locations at each interface. However, when the thickness of the layer was less than 10 μm, only the thickness of the layer was measured, and the difference between the maximum value and the minimum value among the measurement points of less than 21 points was obtained.

磁気特性の評価はSST(Single Sheet Tester)を用いて行った。磁束密度については、5000A/mの磁化力に対する磁束密度B50を求めた。この時、測定周波数は50Hzとした。さらに、鉄損は磁束密度が1.0Tとなる励磁磁場で800Hzの周波数でW10/800を測定した。板面内に圧縮応力が作用した際の磁気特性劣化の有無は、SST測定の際に測定方向と平行に試料に30MPa圧縮応力を付加して調べた。 Evaluation of magnetic characteristics was performed using SST (Single Sheet Tester). For the magnetic flux density, the magnetic flux density B 50 for a magnetizing force of 5000 A / m was determined. At this time, the measurement frequency was 50 Hz. Furthermore, the iron loss was measured as W10 / 800 at a frequency of 800 Hz in an exciting magnetic field with a magnetic flux density of 1.0T. The presence or absence of magnetic property deterioration when compressive stress was applied to the plate surface was examined by applying 30 MPa compressive stress to the sample parallel to the measurement direction during SST measurement.

表2と表3には、No.1〜No.24の実施例と比較例を示した。
No.1、No.2およびNo.11の比較例では、B層の{222}面集積度が55%未満であるため、板面内での[110]方向を向いている結晶の割合が低下しており、飽和磁歪を−0.2×10-6以下にできていない。そのために、圧縮応力負荷による鉄損増加率が、圧縮応力負荷前鉄損に対する圧縮応力負荷後の鉄損の比(「負荷後/負荷前」と簡略化して記載する。)で見た場合、1.3倍以上と大きくなっている。
No.3、No.4、および、No.6の比較例では、B層の飽和磁歪が−0.2×10-6超であるため、圧縮応力負荷による鉄損劣化が、負荷後/負荷前の比で見た場合、1.3倍以上と大きくなっている。
No.7〜No.10の実施例の比較では、飽和磁歪が負の値の方へ低下するにつれて、負荷後/負荷前の比の値は小さくなり、鉄損劣化がより抑制されていることがわかる。
No.13〜No.18の実施例では、No.13からNo.18へ向かうにつれて、{222}面集積度が57%〜93%と大きくなっているが、この範囲の集積度においては、圧縮応力負荷による鉄損劣化が安定して抑制されている。
No.1、No.5、およびNo、12の比較例では、A層の{200}面集積度が25%未満であるために、磁束密度B50が1.6T以下と低い値となっている。これに対して、A層の{200}面集積度が25%以上、{222}面集積度が40%以下の実施例では、1.75T超の、一部では1.9Tを越えるレベルにも達する高いB50が得られている。
Tables 2 and 3 show examples No. 1 to No. 24 and comparative examples.
In the comparative examples of No. 1, No. 2 and No. 11, since the {222} plane integration degree of the B layer is less than 55%, the proportion of crystals facing the [110] direction in the plate surface is The saturation magnetostriction is not reduced to −0.2 × 10 −6 or less. Therefore, when the rate of increase in iron loss due to compressive stress loading is viewed as a ratio of iron loss after compressive stress loading to iron loss before compressive stress loading (simply described as “after loading / before loading”), It is larger than 1.3 times.
In the comparative examples of No. 3, No. 4, and No. 6, since the saturation magnetostriction of the B layer is more than −0.2 × 10 −6 , iron loss deterioration due to compressive stress load is When viewed from the previous ratio, it is 1.3 times or more.
In the comparison of the examples of No. 7 to No. 10, as the saturation magnetostriction decreases toward the negative value, the value of the ratio after load / before load becomes smaller and the iron loss deterioration is further suppressed. I understand.
In the examples of No. 13 to No. 18, the {222} plane integration degree increases from 57% to 93% from No. 13 to No. 18, but in this range of integration degree, Iron loss deterioration due to compressive stress loading is stably suppressed.
In the comparative examples of No. 1, No. 5, and No. 12, the {200} plane integration degree of the A layer is less than 25%, so that the magnetic flux density B 50 is a low value of 1.6 T or less. Yes. On the other hand, in the embodiment in which the {200} plane integration degree of the A layer is 25% or more and the {222} plane integration degree is 40% or less, the level exceeds 1.75T, and in part exceeds 1.9T. A high B 50 is also achieved.

表4と表5には、No.31〜No.57の実施例を示した。
各実施例において、C層は、付着させるフェライト生成元素がTi、W、およびMoの場合に界面に形成された。これらのC層の厚みはいずれも3μm以下であった。これら以外の元素の場合には、C層は確認できなかった。
No.31〜No.57の実施例において、B層が板面に対するαFe相の{222}面集積度が55%以上99%以下であり、かつ、板面内の平均の飽和磁歪が−0.2×10−6以下を満たすため、圧縮応力負荷による鉄損劣化が同時に抑制されている。
さらに、A層が板面に対するαFe相の{200}面集積度が25%以上で、αFe相の{222}面集積度が40%以下を満たすため、高いB50が得られている。
Tables 4 and 5 show examples No. 31 to No. 57.
In each example, the C layer was formed at the interface when the ferrite-forming elements to be deposited were Ti, W, and Mo. The thicknesses of these C layers were all 3 μm or less. In the case of elements other than these, the C layer could not be confirmed.
In the examples of No. 31 to No. 57, the B layer has an αFe phase {222} plane integration degree of 55% or more and 99% or less with respect to the plate surface, and the average saturation magnetostriction in the plate surface is −0. In order to satisfy .2 × 10 −6 or less, iron loss deterioration due to compressive stress load is simultaneously suppressed.
Further, {200} plane integration of αFe phase layer A with respect to the plate surface is 25% or more, since the {222} plane integration of αFe phase satisfies 40% or less, a high B 50 is obtained.

表6と表7には、No.61〜No.66の実施例を示した。表6−1、2のように表2、4で準備した積層板を用い、表6−2のように条件を変えて熱処理して、界面のFe濃度差を変えた結果を表7に示したものである。
No.61−1からNo.61−5へと界面のFe濃度差が大きくなるにつれて、圧縮応力を負荷した場合の鉄損増加率は大きくなり、Feの濃度差が1.0%を超えると、鉄損増加率は1.1倍以上と1割以上の鉄損が増加している。これは、Fe濃度差が大きくなるにつれて、界面での磁気的相互作用を十分に活用できなることを意味している。No.62−1〜No.62−4、No.63−1〜No.63−4、No.64−1〜No.64−4、No.65−1〜No.65−4、および、No.66−1〜No.66−4のそれぞれの比較においても同様である。
Tables 6 and 7 show Examples No. 61 to No. 66. Table 7 shows the result of changing the difference in Fe concentration at the interface by using the laminate prepared in Tables 2 and 4 as shown in Tables 6-1 and 2 and heat-treating under different conditions as shown in Table 6-2. It is a thing.
As the Fe concentration difference at the interface increases from No. 61-1 to No. 61-5, the rate of increase in iron loss when a compressive stress is applied increases, and the difference in Fe concentration exceeds 1.0%. The iron loss increase rate is 1.1 times or more, increasing by 10% or more. This means that the magnetic interaction at the interface can be fully utilized as the Fe concentration difference increases. No. 62-1 to No. 62-4, No. 63-1 to No. 63-4, No. 64-1 to No. 64-4, No. 65-1 to No. 65-4, and The same applies to the comparison of each of No. 66-1 to No. 66-4.

表8と表9には、No.71〜No.84の実施例を示した。
No.71は、全体板厚が0.024mmと0.03mmより薄く、かつ、A層の両面合計の板厚が全体板厚の66.7%と70%未満となっている。この場合には、全体板厚が薄く過ぎるため、取り扱い中に曲がりやすくなり、その影響で圧縮応力負荷による鉄損増加率が大きくなっている、また、B層の割合が増えA層の割合が低下するため、磁束密度B50も低下している。No.71からNo.78へと全体板厚が増加するにつれて鉄損が増加し、全体板厚が1.6mmのNo.78では鉄損が50W/kgを越えている。これは、全体板厚が増加するにつれて渦電流損失が増加するためである。また、全体板厚が増加するにつれて、B50が低下しているが、これは{200}面集積度が低下しているためである。
No.79からNo.84へと全体板厚に対する両面合計のA層板厚の割合が増加するにつれて、B50が増加する傾向にあるのがわかる。これはB50の向上により効果が大きい{200}面集積度の高いA層の板厚割合が相対的に増加しているためである。No.79では、両面合計のA層の厚さが全体板厚の66.7%と70%より低くなっているため、B50が低くなっている。No.84では全体板厚に対する両面合計のA層の割合が98.4%と97%より大きくなっている。この場合には、B層が薄くなり過ぎるため、圧縮応力負荷による鉄損増加の抑制効果が低下している。
Tables 8 and 9 show examples No. 71 to No. 84.
In No. 71, the total plate thickness is thinner than 0.024 mm and 0.03 mm, and the total plate thickness of both surfaces of the A layer is 66.7% and less than 70% of the total plate thickness. In this case, since the overall plate thickness is too thin, it becomes easy to bend during handling, and the influence increases the iron loss increase rate due to the compressive stress load, and the ratio of the B layer increases and the ratio of the A layer increases. Since it decreases, the magnetic flux density B 50 also decreases. As the overall plate thickness increases from No. 71 to No. 78, the iron loss increases. With No. 78 having an overall plate thickness of 1.6 mm, the iron loss exceeds 50 W / kg. This is because eddy current loss increases as the overall plate thickness increases. Further, as the overall plate thickness increases, B 50 decreases because the {200} plane integration degree decreases.
From No. 79 to No. 84, it can be seen that B 50 tends to increase as the ratio of the total thickness of the A layer on both sides to the total thickness increases. This is because the thickness ratio of the A layer having a high {200} plane integration degree, which has a large effect due to the improvement of B 50 , is relatively increased. No. In No. 79, since the total thickness of the A layer on both sides is 66.7% of the total plate thickness, which is lower than 70%, B 50 is low. In No. 84, the ratio of the total A layer on both sides to the total plate thickness is 98.4%, which is larger than 97%. In this case, since the B layer becomes too thin, the effect of suppressing an increase in iron loss due to a compressive stress load is reduced.

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Figure 0006464753
Figure 0006464753

Claims (6)

板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
Al、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、WおよびZnの少なくとも一種以上のフェライト生成元素を含み、板面に対するαFe相の{200}面集積度が25%以上で、αFe相の{222}面集積度が40%以下である領域をA層とし、
Si、Al、Sn、TiおよびVの少なくとも一種以上のフェライト生成元素を、質量%で、Si=0〜1.5%、Al=0〜3.5%、Sn=0〜4%、Ti=0〜3%、V=0〜6.5%の範囲で含み、板面に対するαFe相の{222}面集積度が55%以上99%以下であり、板面内の平均の飽和磁歪が−0.2×10−6以下である領域をB層として、
板厚方向に前記A層とB層が存在し、
かつ、金属板の両面において、板表面と、該板表面から該板表面の反対側の板表面に向かって最初に確認されるB層との間に、A層が存在する積層構成となっており、
A層とB層の界面が金属結合で一体化されている
ことを特徴とする金属板。
In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
Contains at least one ferrite-forming element of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ti, V, W, and Zn, and has a {200} plane integration degree of 25% or more of the αFe phase with respect to the plate surface Then, the region where the {222} plane integration degree of the αFe phase is 40% or less is defined as A layer,
At least one ferrite-forming element of Si, Al, Sn, Ti, and V, in mass%, Si = 0 to 1.5%, Al = 0 to 3.5%, Sn = 0 to 4%, Ti = In the range of 0 to 3% and V = 0 to 6.5%, the {222} plane integration degree of the αFe phase with respect to the plate surface is 55% or more and 99% or less, and the average saturation magnetostriction in the plate surface is − A region that is 0.2 × 10 −6 or less as a B layer,
The A layer and the B layer exist in the thickness direction,
And on both surfaces of a metal plate, it becomes a laminated structure in which an A layer exists between the plate surface and the B layer first confirmed from the plate surface toward the plate surface opposite to the plate surface. And
A metal plate, wherein the interface between the A layer and the B layer is integrated by metal bonding .
板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
前記A層でもB層でもない領域をC層とし、板厚方向に前記A層とB層とC層が存在し、
A層とB層の界面、さらに、A層及びB層とC層の界面が金属結合で一体化されてい
ことを特徴とする請求項1に記載の金属板。
In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The region that is neither the A layer nor the B layer is a C layer, and the A layer, the B layer, and the C layer exist in the thickness direction ,
Interface of the A layer and the B layer, further, the metal plate according to claim 1, the interface of A layer and B layer and the C layer is characterized that you have been integrated with a metal bond.
板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
前記A層、B層、さらにC層が存在する場合はC層の間の界面から両層側に10μmの距離における領域内のFe濃度の差が1.0%以下である
ことを特徴とする請求項1または2に記載の金属板。
In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
When the A layer, the B layer, and the C layer are present, the difference in Fe concentration in the region at a distance of 10 μm from the interface between the C layers on both sides is 1.0% or less. The metal plate according to claim 1 or 2 .
板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
前記A層について、板表面に最も近いA層の厚さの両面の合計が全体の板厚に対して70〜97%である
ことを特徴とする請求項1〜のいずれか1項に記載の金属板。
In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
For the A layer, according to any one of claims 1 to 3, wherein the sum of the surfaces of the thickness of the closest A layer on the plate surface is 70 to 97% relative to the thickness of the entire Metal plate.
板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板において、
該金属板の厚さが0.03mm以上1.5mm以下である
ことを特徴とする請求項1〜のいずれか1項に記載の金属板。
In the soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The thickness of this metal plate is 0.03 mm or more and 1.5 mm or less, The metal plate of any one of Claims 1-4 characterized by the above-mentioned.
板厚方向に複数の結晶配向層を有する軟磁性Fe系金属板の製造において、
70質量%以上のFeを含有しα−γ変態を生じ得る組成を有する金属板A を97%超99.99%以下の圧下率で冷間圧延し、その表面にAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、WおよびZnの少なくとも一種以上のフェライト生成元素を付着させた金属板を金属板Aとし、
70質量%以上のFeを含有しα−γ変態を生じ得る組成を有する金属板B を30%以上95%以下の圧下率で冷間圧延し、その表面にSi、Al、Sn、TiおよびVの少なくとも一種以上のフェライト生成元素を付着させた金属板を金属板Bとし、
少なくとも金属板Aと金属板Bを積層したものを、
前記α−γ変態点以上の温度で熱処理し、
フェライト生成元素を前記金属板A 及び金属板Bの内部へ拡散させる
ことを特徴とする請求項1〜のいずれか1項に記載の軟磁性Fe系金属板の製造方法。
In the production of a soft magnetic Fe-based metal plate having a plurality of crystal orientation layers in the plate thickness direction,
The metal plate A 1 having the composition which can cause alpha-gamma transformation contains 70 mass% or more Fe and cold rolling at 97 percent 99.99% less reduction ratio, Al on the surface of that, Cr, Ga , and Ge, Mo, Sb, Si, Sn, Ti, V, a metal plate is adhered at least one kind of ferrite forming elements of W and Zn and the metal plate a 2,
A metal plate B 1 having a composition that may occur were alpha-gamma transformation containing 70 mass% or more Fe and cold rolling at a reduction ratio of 95% or more and 30% or less, Si in the surface of that, Al, Sn, Ti and a metal plate obtained by attaching at least one kind of ferrite-forming elements V and the metal plate B 2,
A material obtained by laminating at least a metal plate A 2 and the metal plate B 2,
Heat treatment at a temperature equal to or higher than the α-γ transformation point,
Soft Fe-based method for producing a metal plate according to any one of claims 1 to 5, characterized in that diffusing the ferrite forming elements into the interior of the metal plate A 1 and the metal plate B 1.
JP2015003683A 2015-01-09 2015-01-09 Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof Active JP6464753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003683A JP6464753B2 (en) 2015-01-09 2015-01-09 Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003683A JP6464753B2 (en) 2015-01-09 2015-01-09 Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016128601A JP2016128601A (en) 2016-07-14
JP6464753B2 true JP6464753B2 (en) 2019-02-06

Family

ID=56384144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003683A Active JP6464753B2 (en) 2015-01-09 2015-01-09 Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6464753B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816258B2 (en) * 1990-11-06 1996-02-21 日本鋼管株式会社 Clad type non-oriented electrical steel sheet
JP5186989B2 (en) * 2008-04-21 2013-04-24 新日鐵住金株式会社 Soft magnetic steel sheet for core and core member
JP5272688B2 (en) * 2008-12-02 2013-08-28 Jfeスチール株式会社 Clad type electrical steel sheet
JP5526701B2 (en) * 2009-10-22 2014-06-18 Jfeスチール株式会社 Motor core
JP5136687B2 (en) * 2009-10-28 2013-02-06 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
JP5648335B2 (en) * 2010-06-17 2015-01-07 新日鐵住金株式会社 Fe-based metal plate with partially controlled crystal orientation

Also Published As

Publication number Publication date
JP2016128601A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP5186989B2 (en) Soft magnetic steel sheet for core and core member
JP5272688B2 (en) Clad type electrical steel sheet
TWI692534B (en) Multilayer electromagnetic steel plate
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP5278626B2 (en) Fe-based metal plate and manufacturing method thereof
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP7518340B2 (en) Clad material and its manufacturing method
WO2004059022A1 (en) Fe-Cr-Si NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
JP5648335B2 (en) Fe-based metal plate with partially controlled crystal orientation
JP2018113313A (en) Magnetic shield member, manufacturing method of magnetic shield member, and magnetic shield panel
JP6464750B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP6481288B2 (en) Fe-based metal plate with excellent magnetic properties
JP6044093B2 (en) Fe-based metal plate and manufacturing method thereof
JP6623533B2 (en) Fe-based metal plate
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP5724727B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP6203473B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP6464753B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP6613589B2 (en) High strength, high magnetic flux density Fe-based metal plate and method for producing the same
JP6464581B2 (en) Fe-based metal plate and manufacturing method thereof
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP6631750B2 (en) Clad steel plate
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP2001295001A (en) Nonoriented silicon steel sheet excellent in high frequency magnetic property and weldability
JP2017214623A (en) Steel sheet excellent in processability, corrosion resistance and toughness and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R151 Written notification of patent or utility model registration

Ref document number: 6464753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350