JP6623533B2 - Fe-based metal plate - Google Patents

Fe-based metal plate Download PDF

Info

Publication number
JP6623533B2
JP6623533B2 JP2015062702A JP2015062702A JP6623533B2 JP 6623533 B2 JP6623533 B2 JP 6623533B2 JP 2015062702 A JP2015062702 A JP 2015062702A JP 2015062702 A JP2015062702 A JP 2015062702A JP 6623533 B2 JP6623533 B2 JP 6623533B2
Authority
JP
Japan
Prior art keywords
region
metal plate
ferrite
forming element
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015062702A
Other languages
Japanese (ja)
Other versions
JP2016183359A (en
Inventor
美穂 冨田
美穂 冨田
徹 稲熊
徹 稲熊
坂本 広明
広明 坂本
洋治 水原
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015062702A priority Critical patent/JP6623533B2/en
Publication of JP2016183359A publication Critical patent/JP2016183359A/en
Application granted granted Critical
Publication of JP6623533B2 publication Critical patent/JP6623533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電動機、発電機、変圧器などの電磁部品に用いる応力負荷の大きい磁心の用途に好適であり、これらの磁心の小型化やエネルギー損失低減に貢献できる、高強度Fe系金属板に関する。   The present invention relates to a high-strength Fe-based metal plate that is suitable for applications of magnetic cores having a large stress load used for electromagnetic components such as electric motors, generators, and transformers, and that can contribute to downsizing and reducing energy loss of these magnetic cores. .

従来から、電動機、発電機、変圧器などの磁心には、ケイ素鋼板が用いられている。ケイ素鋼板に求められる特性は、交番磁界中で磁気的なエネルギー損失(鉄損)が少ないこと、及び、実用的な磁界中で磁束密度が高いことである。これらを実現するには、電気抵抗を高め、かつ、磁化容易方向であるα−Fe相の<100>軸を、使用する磁界方向に集積させることが有効とされている。   Conventionally, silicon steel plates have been used for magnetic cores of electric motors, generators, transformers and the like. The characteristics required for the silicon steel sheet are that the magnetic energy loss (iron loss) is small in an alternating magnetic field, and that the magnetic flux density is high in a practical magnetic field. To realize these, it is effective to increase the electric resistance and integrate the <100> axis of the α-Fe phase, which is the direction of easy magnetization, in the direction of the magnetic field to be used.

特に、圧延面内にα−Fe相の{100}面を高集積化すると、<100>軸が圧延面内に集積するようになり、同じ磁界を印加した場合、より高い磁束密度が得られるため、ケイ素鋼板の板面に平行に{100}面を高集積化することを目的とした技術が種々開発されている。   In particular, when the {100} plane of the α-Fe phase is highly integrated in the rolling plane, the <100> axis becomes integrated in the rolling plane, and a higher magnetic flux density can be obtained when the same magnetic field is applied. Therefore, various techniques have been developed for the purpose of highly integrating the {100} plane parallel to the silicon steel sheet.

本発明者らも、先に特許文献1として、次のような技術を提案している。
(a)α−γ変態系のFe系金属よりなる母材金属板の片面あるいは両面にフェライト生成元素を付着させる工程と、
(b)該母材金属板を、室温から母材金属板のA3点まで加熱して母材金属板内にフェライト生成元素を拡散させ、一部を母材に合金化させるとともに、合金化された領域でのα−Fe相の{200}面集積度を25%以上50%以下とし、かつ、{222}面集積度を40%以下とする工程と、
(c)母材金属板をA3点以上の温度に加熱、保持して、フェライト生成元素と合金化されたα−Fe相の面集積度について、{200}面集積度を増加させるとともに{222}面集積度を低下させる工程と、
(d)母材金属板をA3点未満の温度へ冷却し、合金化していない領域のγ−Fe相がα−Fe相へ変態する際に、該α−Fe相の{200}面集積度を高めて、{200}面集積度が 30%以上99%以下となり、かつ、{222}面集積度が30%以下となるようにする工程とを有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
The present inventors have previously proposed the following technology as Patent Document 1.
(A) attaching a ferrite-forming element to one or both surfaces of a base metal plate made of an α-γ transformation type Fe-based metal;
(B) heating the base metal plate from room temperature to point A3 of the base metal plate to diffuse the ferrite-forming element into the base metal plate, partially alloying the base metal with the base metal, and The {200} plane integration degree of the α-Fe phase in the region of 25% to 50% and the {222} plane integration degree of 40% or less,
(C) Heating and holding the base metal plate at a temperature of A3 point or higher, increase the {200} plane integration degree of the α-Fe phase alloyed with the ferrite-forming element and increase the {222}工程 a process of reducing the degree of surface integration;
(D) When the base metal plate is cooled to a temperature lower than the A3 point and the γ-Fe phase in the unalloyed region transforms to the α-Fe phase, the {200} plane integration of the α-Fe phase A {200} plane integration degree of 30% or more and 99% or less, and a {222} plane integration degree of 30% or less. A method for producing an Fe-based metal plate having a high degree of integration.

一方、電動機の駆動システムの発達により、駆動電源の周波数制御が可能となり、可変速運転や商用周波数以上での高速回転を行う電動機が増加している。このような高速回転を行う電動機では、ロータのような回転体に作用する遠心力は回転半径に比例し、回転速度の2乗に比例して大きくなるため、特に中・大型の高速電動機のロータに用いられる磁心としては、高強度であることが必要となる。   On the other hand, with the development of the motor drive system, frequency control of the drive power supply has become possible, and the number of motors that perform variable-speed operation and high-speed rotation at a commercial frequency or higher is increasing. In a motor that performs such high-speed rotation, the centrifugal force acting on a rotating body such as a rotor increases in proportion to the radius of rotation and increases in proportion to the square of the rotation speed. It is necessary that the magnetic core used for (1) have high strength.

このような状況下、特許文献1に開示のFe系金属板においても、高強度化が望まれるところ、特許文献1では、Fe系金属板の高強度化について、具体的に検討されていなかった。   Under such circumstances, the Fe-based metal plate disclosed in Patent Literature 1 is also desired to have higher strength. However, Patent Literature 1 does not specifically study the enhancement of the strength of the Fe-based metal plate. .

一般に、鋼板の高強度化手法としては、固溶強化、析出強化、結晶粒微細化強化、複合組織強化などが知られているが、高い機械強度と磁気特性とは相反する関係にあり、これらを同時に満足させることは極めて困難であった。近年、電磁鋼板において、高い機械強度と磁気特性を両立する技術が提案されている。   Generally, as a method for increasing the strength of a steel sheet, solid solution strengthening, precipitation strengthening, grain refinement strengthening, composite structure strengthening, and the like are known.However, there is a conflicting relationship between high mechanical strength and magnetic properties. It was extremely difficult to satisfy at the same time. 2. Description of the Related Art In recent years, a technique has been proposed for electrical steel sheets that achieves both high mechanical strength and magnetic properties.

たとえば、特許文献2には、Si含有量が2.0%以上4.0%未満の鋼において、Nb、Zr、Ti及びVの炭窒化物による析出硬化及び細粒化硬化を利用する技術が提案されている。また、特許文献3には、Al及びNの析出物による結晶粒の微細化及びCuの析出強化を利用する技術が提案されている。   For example, Patent Literature 2 discloses a technique that utilizes precipitation hardening and grain hardening by carbonitrides of Nb, Zr, Ti, and V in a steel having a Si content of 2.0% or more and less than 4.0%. Proposed. Patent Literature 3 proposes a technique that utilizes refinement of crystal grains by precipitation of Al and N and strengthening of precipitation of Cu.

しかし、特許文献1に開示の技術は、フェライト生成元素の拡散及び合金化、結晶の配向及び成長を行う技術であり、特許文献2及び3に開示の技術は、Nb、Zr、Ti及びVの炭窒化物や、AlN及びCuの析出を仕上焼鈍において行う技術であり、特許文献1に開示の技術と、特許文献2及び3に開示の技術とは、基本となる鋼板の製造技術が異なる。そのため、特許文献1に開示の技術において、特許文献2及び3に開示の技術を適用することはできなかった。   However, the technology disclosed in Patent Literature 1 is a technology for diffusing and alloying a ferrite-forming element, orienting and growing a crystal, and the technology disclosed in Patent Literatures 2 and 3 is based on Nb, Zr, Ti, and V. This is a technique for performing precipitation of carbonitride, AlN, and Cu in finish annealing, and the technique disclosed in Patent Document 1 and the techniques disclosed in Patent Documents 2 and 3 are different from each other in a basic steel plate manufacturing technique. Therefore, the technology disclosed in Patent Documents 2 and 3 cannot be applied to the technology disclosed in Patent Document 1.

国際公開第2011/052654号International Publication No. 2011/052654 特開平06−330255号公報JP-A-06-330255 特開2010−024509号公報JP 2010-024509 A

本発明は、上記の従来技術の現状に鑑みて、磁気特性と強度に優れたFe系金属板を提供することを目的とする。   An object of the present invention is to provide an Fe-based metal plate having excellent magnetic properties and strength in view of the above-mentioned state of the art.

特許文献1に開示のFe系金属板では、板内部までα−Fe単相よりなり、{100}方位に配向した粗大粒組織で構成され易いため、必ずしも強度が高いものとはいえなかった。そこで、本発明者らは、磁気特性と強度を両立するために、表層を特許文献1のような{200}面集積度が高い粗大粒組織の領域とし、その内部の中心層を、強度を高めた領域とする3層構造のFe系金属板とすることを着想し、{200}面集積度が高い粗大粒組織の層の成長を抑制して、内部をα−γ変態系領域のままとすることを検討した。   The Fe-based metal plate disclosed in Patent Literature 1 is not necessarily high in strength because the inside of the plate is composed of a single phase of α-Fe and easily formed of a coarse-grained structure oriented in {100} orientation. In order to achieve both magnetic properties and strength, the present inventors set the surface layer as a region of a coarse grain structure having a high degree of {200} plane integration as in Patent Document 1, and set the inner central layer to have a high strength. With the idea of using a three-layer Fe-based metal plate with an increased region, the growth of a layer of a coarse-grained structure with a high degree of {200} plane integration is suppressed, and the inside remains in the α-γ transformation region. Was considered.

すなわち、結晶粒の成長を抑制すると考えられる種々の元素を含有する母材金属板を用いて、特許文献1に開示の技術に従い、Fe系金属板を作成した。その結果、Mnなどの特定の元素を所定量含有する母材金属板を用いることで、{200}面集積度が高い粗大粒組織の領域と、強度を高める細粒組織の領域を含む構造のFe系金属板が得られることを知見し、当該Fe系金属板が高磁束密度で、かつ高強度となることを見出した。   That is, using a base metal plate containing various elements which are considered to suppress the growth of crystal grains, an Fe-based metal plate was prepared according to the technique disclosed in Patent Document 1. As a result, by using a base metal plate containing a predetermined amount of a specific element such as Mn, a structure including a region of a coarse-grained structure having a high degree of {200} plane integration and a region of a fine-grained structure for increasing the strength is obtained. The inventors have found that an Fe-based metal plate can be obtained, and have found that the Fe-based metal plate has a high magnetic flux density and a high strength.

本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)フェライト生成元素が合金化されて濃化した領域を有するFe系金属板であって、
前記Fe系金属が、質量%で、Si:1.500%以上3.500%以下、及び、Al:0.500%以上3.000%以下の少なくとも一方と、Mn:2.500%以上6.500%以下、及び、Ni:2.500%以上6.500%以下の少なくとも一方とを含有するものであり、
前記フェライト生成元素が濃化した領域のうちの少なくとも表面から0.2μmの領域あるいは全部の領域がα−Fe単相の組成で、その内側の領域がα−γ変態を生じ得る組成であり、
平均結晶粒径を板表面に平行な面における結晶粒径の平均とし、平均結晶粒径が8μm超を粗大粒組織、平均結晶粒径が8μm以下を細粒組織として、
前記フェライト生成元素が濃化した領域のうち少なくとも表面から0.2μmの領域あるいは全部が粗大粒組織の領域であり、
前記粗大粒組織の領域における{200}面集積度が30%以上99%以下であり、
前記粗大粒組織の領域の内側の領域が細粒組織であり、該細粒組織の厚さがFe系金属板の板厚をtとして、1/10t以上7/10t以下であることを特徴とするFe系金属板。
(2)前記フェライト生成元素が濃化した領域のうち少なくとも表面から0.2μmの領域あるいは全部の領域を占めている結晶粒の表面が、板の表面を形成し、さらに、当該結晶粒の板内の粒界が前記細粒組織との境界となっていることを特徴とする前記(1)に記載のFe系金属板。
(3)前記フェライト生成元素が濃化した領域における{100}<011>のX線ランダム強度比が50以上400以下であることを特徴とする前記(1)又は(2)に記載のFe系金属板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) An Fe-based metal plate having a region where a ferrite-forming element is alloyed and concentrated,
The Fe-based metal is, by mass%, at least one of Si: 1.500% to 3.500% and Al: 0.500% to 3.000%, and Mn: 2.500% to 6%. .500% or less, and Ni: at least one of 2.500% to 6.500%.
At least a 0.2 μm region or the entire region from the surface of the region in which the ferrite-forming element is concentrated is an α-Fe single phase composition, and an inner region is a composition that can cause α-γ transformation,
The average grain size is defined as the average of the grain sizes in a plane parallel to the plate surface, the average grain size is more than 8 μm as a coarse grain structure, and the average grain size is 8 μm or less as a fine grain structure.
A region of at least 0.2 μm from the surface or the entire region of the region in which the ferrite forming element is concentrated is a region of a coarse grain structure,
{200} plane integration in the region of the coarse grain structure is 30% or more and 99% or less;
The region inside the region of the coarse grain structure is the fine grain structure, the thickness of Said sub grain structure by the thickness of the Fe-based metal plate is t, that is 1 / 10t or 7 / 10t or less Characterized Fe-based metal plate.
(2) The surface of the crystal grains occupying at least a 0.2 μm region or the entire region from the surface of the region in which the ferrite forming element is concentrated forms the surface of the plate, and further, the plate of the crystal particles The Fe-based metal plate according to the above (1), wherein a grain boundary inside is a boundary with the fine grain structure.
(3) The Fe system according to (1) or (2), wherein the X-ray random intensity ratio of {100} <011> in the region where the ferrite-forming element is concentrated is 50 or more and 400 or less. Metal plate.

本発明によれば、磁束密度が高く、さらに、強度が高いFe系金属板とすることができる。   According to the present invention, an Fe-based metal plate having a high magnetic flux density and a high strength can be obtained.

Fe系金属板の厚さ方向の断面図を示す。1 shows a cross-sectional view in the thickness direction of an Fe-based metal plate.

以下の説明において、元素含有量の「%」は「質量%」を意味するものとする。また、結晶方位及び結晶面は、一般的に鋼板内の結晶の方位や測定される結晶面及び集合組織を表現する際に用いられる、鋼板表面に対するもので記述する。すなわち、結晶方位は鋼板表面に垂直な方位であり、結晶面は鋼板表面に平行な面である。また、Feのα相である体心立方の結晶構造に起因した、結晶面についてのX線測定における消滅則を適用した表現としている。例えば、結晶方位については、{100}、{111}を用い、結晶面や集合組織については、{200}や{222}を用いているが、これらは同じ結晶粒に関する情報を表すものである。   In the following description, “%” of the element content means “% by mass”. In addition, the crystal orientation and the crystal plane are generally described with respect to the steel sheet surface, which is used when expressing the crystal orientation in the steel sheet and the measured crystal plane and texture. That is, the crystal orientation is a direction perpendicular to the steel sheet surface, and the crystal plane is a plane parallel to the steel sheet surface. The expression is based on the body-centered cubic crystal structure, which is the α phase of Fe, and is based on the annihilation rule in X-ray measurement of the crystal plane. For example, {100} and {111} are used for the crystal orientation, and {200} and {222} are used for the crystal plane and texture, but these represent information about the same crystal grain. .

本発明のFe系金属板は、フェライト生成元素が合金化されて濃化した領域を有し、その領域の一部あるいは全部が粗大粒組織の領域で、その領域の内側が細粒組織の領域であり、かつ、フェライト生成元素が濃化した領域が高い{200}面集積度を有するようにして、高い磁束密度を有するとともに高い強度を有する金属板としたものである。
最初に、本発明を規定する個々の条件の限定理由及び本発明を実施するに当たり好ましい条件について説明する。
The Fe-based metal plate of the present invention has a region in which ferrite-forming elements are alloyed and concentrated, and a part or all of the region is a region of a coarse-grained structure, and the inside of the region is a region of a fine-grained structure. And a metal plate having a high magnetic flux density and a high strength such that the region where the ferrite forming element is concentrated has a high degree of {200} plane integration.
First, reasons for limiting individual conditions that define the present invention and preferable conditions for carrying out the present invention will be described.

Fe系金属板は、フェライト生成元素が濃化した表層と、フェライト生成元素が濃化していない中心層からなるが、まずこの境界の規定について説明する。   The Fe-based metal plate includes a surface layer in which the ferrite-forming element is concentrated and a central layer in which the ferrite-forming element is not concentrated. First, the definition of the boundary will be described.

本発明で規定されるフェライト生成元素が濃化した濃化部は、フェライト生成元素の濃度が金属板中心部の濃度の1.1倍以上である領域で有り、鋼板表面から深さ方向に、0.5μm以上の厚さを有する。この厚さが0.5μm未満であると、表層の{100}方位粒を十分に発達させることができず、鋼板内部の{200}面集積度を30%以上とすることが困難である。この濃化部の厚さの上限は、Fe系金属板の板厚をtとすると、9/20tとするのが好ましい。9/20tを超えると中心層の厚みを十分にとることができず、強度の高い金属板が得られない。   The concentrated portion where the ferrite-forming element specified in the present invention is concentrated is a region where the concentration of the ferrite-forming element is 1.1 times or more the concentration of the central part of the metal plate, and in the depth direction from the steel sheet surface, It has a thickness of 0.5 μm or more. If the thickness is less than 0.5 μm, the {100} oriented grains in the surface layer cannot be sufficiently developed, and it is difficult to increase the degree of {200} plane integration inside the steel sheet to 30% or more. The upper limit of the thickness of the concentrated portion is preferably 9 / 20t, where t is the thickness of the Fe-based metal plate. If the thickness exceeds 9/20 t, the thickness of the central layer cannot be made sufficiently large, and a metal plate having high strength cannot be obtained.

フェライト生成元素の濃化部に対して、フェライト生成元素の濃度が鋼板中心部の濃度の1.1倍未満である領域を非濃化部とする。本明細書においては、フェライト生成元素の濃化部は「表層」と記述する場合があり、非濃化部は「中心層」と記述する場合がある。フェライト生成元素の濃化部(表層)とフェライト生成元素の非濃化部(中心層)の境界は、例えば、鋼板の板厚方向の断面を、EPMAを用いて線分析を行うことで決定できる。   A region where the concentration of the ferrite-forming element is less than 1.1 times the concentration of the central part of the steel sheet with respect to the concentrated portion of the ferrite-forming element is defined as a non-concentrated portion. In this specification, a concentrated portion of a ferrite-forming element may be described as “surface layer”, and a non-concentrated portion may be described as “center layer”. The boundary between the concentrated portion (surface layer) of the ferrite-forming element and the non-concentrated portion (center layer) of the ferrite-forming element can be determined, for example, by performing a line analysis on a cross section of the steel sheet in the thickness direction using EPMA. .

なお、フェライト生成元素の濃化部形成の一手法として、鋼板表面にフェライト生成元素の被膜を形成し、熱処理によりフェライト生成元素を板厚中心方向に拡散させるものがあるが、{200}面集積度を30%以上とするためには、必ずしも被膜のすべてを合金化させる必要はなく、加工性などに大きな影響を与えない範囲で被膜を表面に残留させることも可能である。このように、表面に皮膜の一部が残留する場合、残留した被膜はフェライト生成元素の濃化部には含めないものとする。熱処理において被膜中には母材金属板側からFeが拡散していくことから、初期の被膜に含まれていたFe以外の元素の合計含有量が50%以上の領域を残留した被膜と判断する。   As a method of forming the ferrite-forming element concentrated portion, there is a method of forming a film of the ferrite-forming element on the steel sheet surface and diffusing the ferrite-forming element in the direction of the center of the sheet thickness by heat treatment. In order to set the degree to 30% or more, it is not always necessary to alloy all of the coating, and it is possible to leave the coating on the surface within a range that does not significantly affect workability and the like. As described above, when a part of the film remains on the surface, the remaining film is not included in the concentrated portion of the ferrite forming element. Since Fe diffuses into the film from the base metal plate side in the heat treatment, it is determined that a region where the total content of elements other than Fe contained in the initial film is 50% or more remains. .

(Fe系金属板の組成)
本発明のFe系金属板は、Fe系金属板全体に対する割合で、Si:1.500%以上3.500%以下、及び、Al:0.500%以上3.000%以下の少なくとも一方と、Mn:2.500%以上6.500%以下、及び、Ni:2.500%以上6.500%以下の少なくとも一方とを含有し、更に、フェライト生成元素を含有するものである。
Siの含有率は1.500%以上3.500%以下とする。1.500%未満であると、細粒組織を得ることができない。3.500%超であると、α単相成分となり、集合組織を{100}に揃えることが出来ない。2.000%以上3.500%以下が好ましい。
Alの含有率は0.500%以上3.000%以下とする。0.500%未満であると、細粒組織を得ることができない。3.000%超であると、磁束密度が低下する。0.500%以上2.500%以下が好ましい。
Mnの含有率は2.500%以上6.500%以下とする。2.500%未満であると、細粒組織を得ることができない。6.500%超であると、磁束密度が低下する。2.500%以上4.500%以下が好ましい。
Niの含有率は2.500%以上6.500%以下とする。2.500%未満であると、細粒組織を得ることができない。6.500%超であると、磁束密度が低下する。2.500%以上6.500%以下が好ましい。
なお、複数種類のγ安定化元素を含有させる場合は、元素の含有率の合計を2.500%以上6.000%以下とするとよい。
(Composition of Fe-based metal plate)
The Fe-based metal plate according to the present invention has at least one of Si: 1.500% or more and 3.500% or less and Al: 0.500% or more and 3.000% or less with respect to the entire Fe-based metal plate; It contains at least one of Mn: 2.500% to 6.500% and Ni: 2.500% to 6.500%, and further contains a ferrite-forming element.
The Si content is set to 1.500% or more and 3.500% or less. If it is less than 1.500%, a fine grain structure cannot be obtained. If it exceeds 3.500%, it becomes an α-single-phase component, and the texture cannot be adjusted to {100}. It is preferably from 2.000% to 3.500%.
The content of Al is set to 0.500% or more and 3.000% or less. If it is less than 0.500%, a fine-grained structure cannot be obtained. If it exceeds 3.000%, the magnetic flux density decreases. It is preferably from 0.500% to 2.500%.
The content of Mn is set to 2.500% or more and 6.500% or less. If it is less than 2.500%, a fine-grained structure cannot be obtained. If it exceeds 6.500%, the magnetic flux density decreases. It is preferably from 2.500% to 4.500%.
The content of Ni is set to 2.500% or more and 6.500% or less. If it is less than 2.500%, a fine-grained structure cannot be obtained. If it exceeds 6.500%, the magnetic flux density decreases. It is preferably from 2.500% to 6.500%.
When a plurality of types of γ-stabilizing elements are contained, the total content of the elements is preferably set to 2.500% or more and 6.000% or less.

(フェライト生成元素の非濃化部/中心層の組成)
フェライト生成元素の非濃化部/中心層は、非濃化部/中心層全体に対する割合で、Si:1.500%以上3.500%以下、及び、Al:0.500%以上3.000%以下の少なくとも一方と、Mn:2.500%以上6.500%以下、及び、Ni:2.500%以上6.500%以下の少なくとも一方とを含有し、フェライト生成元素の合計濃度が板中心部の濃度の1.1倍未満であり、常温でα相であるα-γ変態成分系の組成を有する。
なお、フェライト生成元素の非濃化部/中心層のうち、フェライト生成元素の濃化部/表層との境界近傍において、Mn及びNiの濃度が高くなることがあるが、フェライト生成元素の非濃化部/中心層の組成は、非濃化部/中心層全体に対する割合では、上記組成となっている。
(Composition of non-concentrated part / center layer of ferrite forming element)
The ratio of the non-concentrated portion / central layer of the ferrite forming element to the non-concentrated portion / central layer is Si: 1.500% to 3.500%, and Al: 0.500% to 3.000. % And at least one of Mn: 2.500% to 6.500% and Ni: 2.500% to 6.500%, and the total concentration of ferrite forming elements is It has a composition of the α-γ transformation component system which is less than 1.1 times the concentration of the central part and which is in the α phase at room temperature.
In the non-concentrated part / center layer of the ferrite-forming element, the concentration of Mn and Ni may increase near the boundary with the concentrated part / surface layer of the ferrite-forming element. The composition of the non-concentrated portion / central layer is the above composition in proportion to the entire non-concentrated portion / central layer.

(フェライト生成元素の濃化部/表層の組成)
フェライト生成元素の濃化部/表層の組成は、フェライト生成元素の非濃化部/中心層の組成に、フェライト生成元素の合計濃度が金属板の板厚中心の濃度の1.1倍以上となるようにフェライト形成元素を加えたものである。
(Concentration of ferrite-forming element / composition of surface layer)
The composition of the concentrated part / surface layer of the ferrite-forming element is such that the total concentration of the ferrite-forming element is 1.1 times or more the concentration of the center of the thickness of the metal plate in the composition of the non-concentrated part / center layer of the ferrite-forming element. The ferrite-forming element is added in such a manner.

(フェライト生成元素の濃化部/表層の厚み)
フェライト生成元素の濃化部/表層の厚みは、0.5μm以上9/20t以下とするのが好ましい。この厚さが0.5μm未満であると、表層の{100}方位粒を十分に発達させることができず、鋼板内部の{200}面集積度を30%以上とすることが困難である。この厚みが9/20tを超えると中心層の厚みを十分にとることができず、強度の高い金属板が得られない。
(Concentrated part of ferrite forming element / thickness of surface layer)
It is preferable that the thickness of the concentrated portion / surface layer of the ferrite-forming element be 0.5 μm or more and 9/20 t or less. If the thickness is less than 0.5 μm, the {100} oriented grains in the surface layer cannot be sufficiently developed, and it is difficult to increase the degree of {200} plane integration inside the steel sheet to 30% or more. If the thickness exceeds 9/20 t, the thickness of the central layer cannot be sufficiently increased, and a metal plate having high strength cannot be obtained.

(Fe系金属板の厚さ)
Fe系金属板の厚さは、たとえば、10μm以上5mm以下であることが好ましい。厚みが10μm未満であると、積層させて磁心として使用する際に、積層枚数が増加して隙間が多くなり高い磁束密度が得られ難くなる。また、厚みが5mm超であると、{100}集合組織を十分に成長させられず、高い磁束密度が得られ難くなる。
(Thickness of Fe-based metal plate)
The thickness of the Fe-based metal plate is preferably, for example, not less than 10 μm and not more than 5 mm. When the thickness is less than 10 μm, when the magnetic core is laminated and used as a magnetic core, the number of laminated layers increases, the gap increases, and it becomes difficult to obtain a high magnetic flux density. On the other hand, if the thickness is more than 5 mm, the {100} texture cannot be sufficiently grown, and it is difficult to obtain a high magnetic flux density.

(Fe系金属板の組織)
図1には、Fe系金属板の厚さ方向の断面図を示す。フェライト生成元素の濃化部のうちの少なくとも表面から0.2μmの領域あるいは全部の領域がα−Fe単相である。α−単層の厚さは、Fe系金属板の板厚方向の断面を、EPMAを用いて線分析を行うことで求めることができる。
(Structure of Fe-based metal plate)
FIG. 1 shows a cross-sectional view in the thickness direction of the Fe-based metal plate. At least a region of 0.2 μm from the surface or the entire region of the concentrated portion of the ferrite-forming element is an α-Fe single phase. The thickness of the α-single layer can be determined by performing a line analysis of the cross section of the Fe-based metal plate in the plate thickness direction using EPMA.

また、α−Fe単相の領域を含み、フェライト生成元素の濃化部のうちの少なくとも表面から0.2μmの領域あるいは全部の領域が粗大粒組織1である。粗大粒組織1は、板厚方向に、単一の結晶粒で形成されている(すなわち、粗大粒の層が板厚方向に1つの結晶粒の層によって構成されている)か、あるいは複数の結晶粒によって形成されている(すなわち、粗大粒の層が板厚方向に2以上の結晶粒の層によって構成されている)。   In addition, at least the region of 0.2 μm from the surface or the entire region of the concentrated portion of the ferrite-forming element includes the α-Fe single phase region, and is the coarse grain structure 1. The coarse grain structure 1 is formed of a single crystal grain in the plate thickness direction (that is, the coarse grain layer is constituted by one crystal grain layer in the plate thickness direction) or a plurality of grains. It is formed by crystal grains (that is, a coarse grain layer is formed by two or more crystal grain layers in the thickness direction).

粗大粒組織1の領域が1層の結晶粒によって構成されている場合は、その結晶粒の表面は、板の表面を形成し、かつ、結晶粒の板内の粒界が細粒組織2との境界を形成している。粗大粒組織1の領域が板厚方向に1つの結晶粒によって構成されている場合は、{100}面の方位集積度が高まるため、磁束密度が向上するという効果がある。   When the region of the coarse grain structure 1 is composed of one layer of crystal grains, the surface of the crystal grains forms the surface of the plate, and the grain boundaries in the plate of the crystal grains are the same as the fine grain structure 2. Form the boundary. When the region of the coarse grain structure 1 is constituted by one crystal grain in the plate thickness direction, the degree of azimuthal integration of the {100} plane is increased, and thus there is an effect that the magnetic flux density is improved.

粗大粒組織1の平均結晶粒径は、細粒組織の平均結晶粒径より大きい8μm超のものである。平均結晶粒径は、板表面に平行な面における結晶粒径の平均である。粗大粒組織1の領域が1層の結晶粒によって構成されている場合は、粗大粒組織1の領域内で、板表面に平行な少なくとも1つの面において、500μm×500μmの視野における結晶粒径を光学顕微鏡にて測定し、平均することで平均結晶粒径が求められる。粗大粒組織1の領域が2層以上の複数の結晶粒によって構成されている場合は、粗大粒組織1の領域内で、板表面に平行で、かつ、板厚方向に0.2μm以上離間した複数の面において、500μm×500μmの視野における結晶粒径を光学顕微鏡にて測定し、平均することで平均結晶粒径が求められる。   The average grain size of the coarse grain structure 1 is larger than the average grain size of the fine grain structure, and is larger than 8 μm. The average crystal grain size is the average of the crystal grain sizes in a plane parallel to the plate surface. When the region of the coarse-grained structure 1 is composed of one layer of crystal grains, the crystal grain size in a field of 500 μm × 500 μm in at least one plane parallel to the plate surface in the region of the coarse-grained structure 1 The average crystal grain size is determined by measuring and averaging with an optical microscope. When the region of the coarse-grained structure 1 is composed of a plurality of crystal grains of two or more layers, in the region of the coarse-grained structure 1, the region is parallel to the plate surface and separated by 0.2 μm or more in the plate thickness direction. On a plurality of surfaces, the average crystal grain size is determined by measuring and averaging the crystal grain size in a visual field of 500 μm × 500 μm with an optical microscope.

なお、粗大粒組織1の結晶粒には、板表面に平行な面における平均結晶粒径が8μm超で、板厚方向の結晶粒径が8μm超の結晶粒に限らず、圧延することにより形成される板表面に平行な面における平均結晶粒径が8μm超で、板厚方向の結晶粒径が8μm以下の結晶粒、例えば、偏平状の結晶粒も含まれる。   The grains of the coarse grain structure 1 are not limited to those having an average grain size of more than 8 μm in a plane parallel to the sheet surface and a grain size in the thickness direction of more than 8 μm, and are formed by rolling. Crystal grains having an average crystal grain size of more than 8 μm in a plane parallel to the plate surface to be formed and having a crystal grain size in the plate thickness direction of 8 μm or less, for example, flat crystal grains are also included.

粗大粒組織1である領域の厚さは、光学顕微鏡を用いて測定し求めることができ、粗大粒組織1である領域は、{200}面集積度が30%以上99%以下である{100}集合組織である。電気抵抗の増加に伴う鉄損の低減を目的として、鋼板にAl及びSiを含有させても、磁歪の影響により、それだけでは鉄損を十分に低減することは困難であるが、面集積度を上記の範囲内とすることで、極めて良好な鉄損を得ることができる。   The thickness of the region that is the coarse-grained structure 1 can be determined by measuring using an optical microscope, and the region that is the coarse-grained structure 1 has a {200} plane integration of 30% or more and 99% or less. } It is a texture. Even if Al and Si are contained in a steel sheet for the purpose of reducing iron loss due to an increase in electric resistance, it is difficult to sufficiently reduce iron loss by itself due to the effect of magnetostriction. When the content is in the above range, extremely good iron loss can be obtained.

Fe系金属板は、粗大粒組織1の領域の内側に細粒組織2で構成される領域を有する。細粒組織2とは、平均結晶粒径が8μm以下の結晶から構成される組織である。平均結晶粒径は、粗大粒組織の結晶粒と同様に板表面に平行な面における結晶粒径の平均である。細粒組織2の領域内で、板表面に平行で、かつ、板厚方向に0.2μm以上離間した複数の面において、100μm×100μmの視野における結晶粒径を光学顕微鏡にて測定し、平均することで平均結晶粒径が求められる。   The Fe-based metal plate has a region composed of the fine-grained structure 2 inside the region of the coarse-grained structure 1. The fine grain structure 2 is a structure composed of crystals having an average crystal grain size of 8 μm or less. The average crystal grain size is the average of the crystal grain sizes in a plane parallel to the plate surface, similarly to the crystal grains having a coarse grain structure. In the region of the fine grain structure 2, on a plurality of surfaces parallel to the plate surface and spaced apart by 0.2 μm or more in the plate thickness direction, the crystal grain size in a visual field of 100 μm × 100 μm was measured with an optical microscope, and the average was measured. By doing so, the average crystal grain size is obtained.

細粒組織2で構成される領域は、Fe系金属板の板厚をtとすると、板厚方向の厚さが1/10t以上7/10t以下である。細粒組織で構成される領域の厚さが1/10t未満であると、強度向上の効果が得られない。また、7/10t超であると、Fe系金属板における{200}面集積度が30%以上99%以下である粗大粒組織のα−Fe単相の領域の割合が少なくなり、磁束密度向上の効果が得られない。細粒組織で構成される領域の厚さは3/10t以上5/10t以下が好ましい。   The region composed of the fine grain structure 2 has a thickness in the thickness direction of 1/10 t or more and 7/10 t or less, where t is the thickness of the Fe-based metal plate. If the thickness of the region composed of the fine-grained structure is less than 1/10 t, the effect of improving the strength cannot be obtained. On the other hand, if it exceeds 7/10 t, the ratio of the α-Fe single phase region of the coarse-grained structure having a {200} plane integration of 30% or more and 99% or less in the Fe-based metal plate is reduced, and the magnetic flux density is improved. Effect cannot be obtained. The thickness of the region composed of the fine grain structure is preferably 3/10 t or more and 5/10 t or less.

また、細粒組織で構成される領域の厚さは、Fe系金属板面の板厚方向の断面を、Fe系金属板面に平行方向に100μm間隔で20箇所以上、Fe系金属板の断面を光学顕微鏡を用いて測定し、測定データを平均して求められるものである。厚さの平均では、測定データのうち、最小値側及び最大値側から10%の測定データを除外したうえで平均値を算出して求める。例えば、100μm毎に20箇所の厚さを測定し、厚さの最小値側から2点、厚さの最大値側から2点の測定データを除いて、16箇所の厚さの測定データから平均厚さを求める。
なお、フェライト生成元素の濃化部/表層の厚さ、α−単層の厚さ、及び、粗大粒組織の厚さを求める際も、上記する細粒組織で構成される領域の厚さの求め方と同様の手法により、測定点を決定して平均値を算出して求める。
The thickness of the region composed of the fine-grained structure is such that the cross section of the surface of the Fe-based metal plate in the plate thickness direction is at least 20 points at 100 μm intervals in a direction parallel to the surface of the Fe-based metal plate. Is measured using an optical microscope, and the measured data is averaged. The average of the thickness is obtained by calculating the average value after excluding 10% of the measurement data from the minimum value side and the maximum value side of the measurement data. For example, the thickness is measured at 20 points every 100 μm, and the average is calculated from the measured data at 16 points, excluding two points from the minimum value of the thickness and two points from the maximum value of the thickness. Find the thickness.
In addition, when obtaining the thickness of the concentrated portion / surface layer of the ferrite forming element, the thickness of the α-monolayer, and the thickness of the coarse grain structure, the thickness of the region constituted by the fine grain structure is also determined. The measurement point is determined and the average value is calculated and obtained by the same method as the method for obtaining the value.

前記{100}集合組織の{200}面集積度の測定は、MoKα線によるX線回折で行うことができる。詳細に述べると、各試料について、試料表面に対して平行なα−Fe結晶のある11の方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除して合計した値に対する{200}強度の比率を百分率で求める。   The {200} plane integration of the {100} texture can be measured by X-ray diffraction using MoKα radiation. More specifically, for each sample, there are eleven orientation planes ({110}, {200}, {211}, {310}, {222}, {321}) with α-Fe crystals parallel to the sample surface. , {411}, {420}, {332}, {521}, {442}), and each measured value is divided by the theoretical integrated intensity of the sample in random orientation to obtain a total value. The ratio of the {200} intensity to is calculated as a percentage.

たとえば、{200}強度比率では、以下の(1)式で表される。
{200}面集積度=[{i(200)/I(200)}/Σ{i(hkl)/I(hkl)}]×100
・・・(1)
ただし、記号は以下のとおりである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ :α−Fe結晶の11の方位面についての和
ここで、ランダム方位を持つ試料の積分強度は、試料を用意して実測して求めてもよい。
For example, the {200} intensity ratio is represented by the following equation (1).
{200} surface integration = [{i (200) / I (200)} / {i (hkl) / I (hkl)}] × 100
... (1)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in sample measured I (hkl): Theoretical integrated intensity of {hkl} plane in sample having random orientation Σ: Sum of 11 orientation planes of α-Fe crystal Here, the integrated intensity of a sample having a random orientation may be obtained by preparing a sample and actually measuring it.

また、フェライト生成元素が濃化した領域における{100}<011>のX線ランダム強度比を50以上400以下とすることで、さらに、磁束密度向上の効果を得ることができる。X線ランダム強度比は、X線回折測定において、ランダム方位をもつ試料の{100}<011>のX線回折強度に対する、測定した試料の{100}<011>のX線回折強度の比の値である。   Further, by setting the X-ray random intensity ratio of {100} <011> in the region where the ferrite forming element is concentrated to 50 or more and 400 or less, an effect of further improving the magnetic flux density can be obtained. The X-ray random intensity ratio is a ratio of the ratio of the measured X-ray diffraction intensity of {100} <011> of the sample to the X-ray diffraction intensity of {100} <011> in the sample having random orientation in the X-ray diffraction measurement. Value.

次に、本発明のFe系金属板の製造方法について説明する。以下に説明する方法では、特許文献1に記載された製造方法と同様に、金属板にA3点以上に加熱後冷却する熱処理を施して、熱処理の過程で、フェライト生成元素を金属板内部に拡散させて、フェライト生成元素の濃化したα−Fe単相成分系の領域を形成し、熱処理後に{200}面集積度を高める技術を用いる。
その際、フェライト生成元素を金属板内部に拡散させ、熱処理後に表層に{200}面集積度を高めた粗大粒組織の領域を形成するとともに、中心層のフェライト生成元素が濃化していないα-γ変態成分系の領域では、熱処理の際のγ-α変態を利用して細粒組織を形成する。
以下では、母材金属板の準備、母材金属板の熱処理の順で説明する。
Next, a method for manufacturing the Fe-based metal plate of the present invention will be described. In the method described below, similarly to the manufacturing method described in Patent Document 1, a metal plate is subjected to a heat treatment of heating to a point A3 or higher and then cooling, and in the course of the heat treatment, a ferrite-forming element is diffused into the metal plate. Then, a technique of forming a region of the α-Fe single phase component system in which the ferrite forming element is concentrated and increasing the degree of {200} plane integration after the heat treatment is used.
At this time, the ferrite forming element is diffused into the metal plate to form a region of a coarse-grained structure having a higher degree of {200} plane integration in the surface layer after the heat treatment, and the ferrite forming element in the central layer is not concentrated. In the region of the γ transformation component system, a fine grain structure is formed by utilizing the γ-α transformation during heat treatment.
Hereinafter, preparation of the base metal plate and heat treatment of the base metal plate will be described in this order.

[母材金属板の準備]
母材金属板として、上記Fe系金属板の成分組成を有し、表層部に歪が導入されたものを用いる。母材金属板の再結晶の際に、圧延面に平行な面が{100}に配向した結晶粒を多数発生させ、α−Fe単相の{200}面集積度を向上させるためである。たとえば、転位密度が1×1015m/m3以上1×1017m/m3以下となる加工歪が導入されていることが好ましい。このような歪を生じさせる方法は特に限定されないが、たとえば、高い圧下率、特に97%以上99.99%以下の圧下率で冷間圧延を施すことが好ましい。また、冷間圧延によって、0.2以上のせん断歪を生じさせてもよい。せん断歪は、たとえば冷間圧延時に上下の圧延ロールを互いに異なる速度で回転させれば生じさせることができる。この場合、上下の圧延ロールの回転速度の差が大きいほど、せん断歪が大きくなる。せん断歪の大きさは、圧延ロールの直径と回転速度の差とから算出することができる。
[Preparation of base metal plate]
As the base metal plate, a base metal plate having the component composition of the above-described Fe-based metal plate and having strain introduced into the surface layer is used. This is because, when the base metal plate is recrystallized, a large number of crystal grains whose plane parallel to the rolling plane is oriented in {100} are generated, and the degree of {200} plane integration of the α-Fe single phase is improved. For example, it is preferable to introduce a processing strain having a dislocation density of 1 × 10 15 m / m 3 or more and 1 × 10 17 m / m 3 or less. The method of causing such strain is not particularly limited. For example, it is preferable to perform cold rolling at a high rolling reduction, particularly at a rolling reduction of 97% or more and 99.99% or less. Further, a shear strain of 0.2 or more may be generated by cold rolling. The shear strain can be generated, for example, by rotating upper and lower rolling rolls at different speeds during cold rolling. In this case, the greater the difference between the rotational speeds of the upper and lower rolling rolls, the greater the shear strain. The magnitude of the shear strain can be calculated from the difference between the diameter of the rolling roll and the rotation speed.

[フェライト生成元素の付着]
(フェライト生成元素の種類)
歪みが蓄積された母材金属板に、Fe以外のフェライト生成元素を拡散させ、鋼板厚み方向へ{100}に配向した領域を増加させる。
そのために、α−γ変態系のFe系金属よりなる母材金属板の両面にフェライト生成元素を第二層として層状に付着させ、その元素が拡散して合金化した領域をα−Fe単相系の成分にし、{200}面集積度を高めるための{100}配向の芽とする。
そのようなフェライト生成元素として、Al、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、W、Znの少なくとも1種を単独であるいは組み合わせて使用できる。
[Adhesion of ferrite forming element]
(Type of ferrite forming element)
A ferrite-forming element other than Fe is diffused into the base metal sheet in which the strain is accumulated, and the region oriented {100} in the thickness direction of the steel sheet is increased.
For this purpose, a ferrite-forming element is deposited as a second layer on both sides of a base metal plate made of an α-γ transformation type Fe-based metal in a layered manner, and a region where the element is diffused and alloyed is formed as an α-Fe single phase. A bud of {100} orientation to increase the degree of {200} plane integration.
As such a ferrite-forming element, at least one of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ti, V, W, and Zn can be used alone or in combination.

(フェライト生成元素の付着方法)
フェライト生成元素を層状で母材金属板の表面に付着させる方法としては、溶融めっきや電解めっきなどのめっき法、圧延クラッド法、PVDやCVDなどのドライプロセス、さらには粉末塗布など種々の方法を採用することができる。工業的に実施するための効率的なフェライト生成元素の付着方法としては、めっき法又は圧延クラッド法が適している。
フェライト生成元素の加熱前の付着厚みは、0.05μm以上1000μm以下であることが望ましい。厚みが0.05μm未満では十分な{200}面集積度を得ることができない。また、1000μm超であると、付着したフェライト生成元素を表面に残留させる場合でもその厚みが必要以上に厚くなる。
(How to attach ferrite-forming elements)
Various methods such as plating methods such as hot dip plating and electrolytic plating, rolling clad methods, dry processes such as PVD and CVD, and powder coating methods can be used to attach the ferrite-forming element in a layered manner to the surface of the base metal plate. Can be adopted. A plating method or a rolled clad method is suitable as an efficient method for depositing a ferrite-forming element for industrial implementation.
The adhesion thickness of the ferrite-forming element before heating is desirably 0.05 μm or more and 1000 μm or less. If the thickness is less than 0.05 μm, sufficient {200} plane integration cannot be obtained. On the other hand, when the thickness exceeds 1000 μm, the thickness of the ferrite-forming element adhered to the surface becomes unnecessarily large even when it remains on the surface.

[加熱拡散処理]
フェライト生成元素として、たとえばAlを付着させた母材金属板を、母材のA3点まで加熱して再結晶させるとともに、母材金属板内の一部にAlを拡散させ母材に合金化させる。
母材金属板が再結晶する際、高い加工歪みが付与されている場合には、再結晶後に{100}に配向した集合組織が形成される。また、昇温につれてAlは金属板内部に拡散して鉄と合金化されるが、合金化した領域ではα−Fe単相成分となり、その領域ではγ相からα相に変態していく。その際、表層部に形成された{100}集合組織の配向を引き継いで変態するため、合金化した領域でも{100}に配向した組織が形成される。
この結果、合金化された領域では、α−Fe単相の{200}面集積度が25%以上50%以下となり、それに応じて{222}面集積度が1%以上40%以下となった組織が形成される。
[Heat diffusion treatment]
A base metal plate to which, for example, Al is attached as a ferrite forming element is heated to the point A3 of the base material to recrystallize, and Al is diffused into a part of the base metal plate to be alloyed with the base material. .
When high working strain is imparted when the base metal plate is recrystallized, a texture oriented to {100} is formed after the recrystallization. Further, as the temperature rises, Al diffuses into the metal plate and is alloyed with iron, but becomes an α-Fe single phase component in the alloyed region, and transforms from γ phase to α phase in that region. At this time, since the transformation takes over the orientation of the {100} texture formed in the surface layer, a texture oriented to {100} is formed even in the alloyed region.
As a result, in the alloyed region, the degree of {200} plane integration of the α-Fe single phase was 25% or more and 50% or less, and accordingly, the degree of {222} plane integration was 1% or more and 40% or less. An organization is formed.

母材金属板をさらに1300℃以下の温度に加熱、保持する。
すでに合金化されている領域ではγ変態しないα単相の組織となるため、{100}結晶粒はそのまま保存され、その領域の中で{100}粒が優先成長して{200}面集積度が増加する。
しかし、保持温度を高く、又は、保持時間を長くし過ぎると、γ相からα相への変態が進行し易くなり、粗大粒組織の内側に細粒組織が形成されなくなるので、母材金属板の成分組成に応じて、保持温度(A3点未満を含む温度)及び保持時間を調整し、Alの拡散、{100}粒への配向及び{100}粒の粒成長を止める。
The base metal plate is further heated and maintained at a temperature of 1300 ° C. or lower.
The {100} crystal grains are preserved as they are in the already alloyed region without the γ transformation, and the {100} crystal grains are preserved as they are. Increase.
However, if the holding temperature is high or the holding time is too long, the transformation from the γ phase to the α phase tends to proceed, and the fine grain structure is not formed inside the coarse grain structure, so the base metal sheet The retention temperature (the temperature including the point less than the A3 point) and the retention time are adjusted according to the component composition of (1) to stop diffusion of Al, orientation to {100} grains, and grain growth of {100} grains.

昇温後の保持温度は、1300℃以下とするのが好ましい。1300℃を超える温度で加熱しても磁気特性に対する効果は飽和する。また、加熱保持時間は、保持温度に到達後直ちに冷却を開始(その場合、実質的には0.01秒以上保持される)してもよいし、600分以下の時間で保持して冷却を開始してもよい。600分を超えて保持しても効果が飽和する。
この条件を満たすと、{200}面配向の芽の高集積化がより進行し、より確実に冷却後にα−Fe単相の{200}面集積度を30%以上とすることができる。
The holding temperature after the temperature rise is preferably 1300 ° C. or less. The effect on magnetic properties saturates even when heated at a temperature exceeding 1300 ° C. As for the heating and holding time, cooling may be started immediately after reaching the holding temperature (in that case, substantially held for 0.01 second or more), or cooled for 600 minutes or less. You may start. The effect saturates even if it is maintained for more than 600 minutes.
When this condition is satisfied, the integration of the {200} plane oriented buds is further promoted, and the degree of {200} plane integration of the α-Fe single phase after cooling can be more than 30%.

また、本発明は、粗大粒組織の内側を細粒組織とするものであり、板全体にわたりα−Fe単相の{200}面集積度を向上させるものでないため、母材金属板を、母材のA3点まで加熱することで、Al合金化した領域の{200}面集積度が30%以上99%以下となる場合は、母材金属板をA3点未満で加熱、保持してもよく、又は、母材金属板を1300℃以下の温度に加熱、保持する工程を省略してもよい。   Further, the present invention is to make the inside of the coarse-grained structure a fine-grained structure and does not improve the {200} plane integration degree of the α-Fe single phase over the entire plate. If the {200} plane integration degree of the Al alloyed region becomes 30% or more and 99% or less by heating to the A3 point of the material, the base metal plate may be heated and held at less than the A3 point. Alternatively, the step of heating and holding the base metal plate at a temperature of 1300 ° C. or lower may be omitted.

[加熱拡散処理後の冷却]
拡散処理後、Alが合金化されていない領域が残った状態で冷却すると、合金化していない領域は、Mnなどの相変態時の粒界の移動速度を遅らせる元素を含有しているので、γ相からα相への変態が進行し難くなり、通常は、冷却の際のγ相からα相への変態のときに、{100}に配向する結晶が大きく成長するが、結晶成長が止まり、又は、結晶成長の進行が遅くなり、合金化していない内部の領域は、細粒組織となる。なお、拡散処理後の冷却の際、冷却速度は、特に限定されてないが、0.1℃/sec以上500℃/sec以下が好ましい。
[Cooling after heat diffusion treatment]
After the diffusion treatment, when cooling is performed in a state where the region where Al has not been alloyed remains, the region where the alloy is not alloyed contains an element such as Mn which slows down the movement speed of the grain boundary at the time of phase transformation. Transformation from the phase to the α phase becomes difficult to progress, and usually, at the time of the transformation from the γ phase to the α phase during cooling, the crystal oriented in {100} grows greatly, but the crystal growth stops, Alternatively, the progress of crystal growth is slowed, and the internal region that is not alloyed has a fine grain structure. In addition, at the time of cooling after the diffusion treatment, the cooling rate is not particularly limited, but is preferably from 0.1 ° C./sec to 500 ° C./sec.

また、粗大粒組織が1層の結晶粒で構成されるか、2層以上の結晶粒で構成されるかは、母材金属板の厚さ、母材金属板の熱処理の際の保持時間や保持温度によって変化する。粗大粒組織を1層の結晶粒で構成させるにはより高温で長時間保持し、冷却過程において少なくともA3点以下までの冷却を徐冷とする。   Whether the coarse-grained structure is composed of one layer of crystal grains or two or more layers of crystal grains depends on the thickness of the base metal plate, the holding time during heat treatment of the base metal plate, It changes depending on the holding temperature. In order to form the coarse grain structure with one layer of crystal grains, the structure is held at a higher temperature for a long time, and the cooling to at least the A3 point or less in the cooling process is gradually cooled.

これにより、{200}面集積度が30%以上99%以下の領域を有する粗大粒組織でα−Fe単相の領域と、細粒組織の領域で構成されたFe系金属板が得られる。   As a result, an Fe-based metal plate having a coarse-grained structure having a region with a {200} plane integration degree of 30% or more and 99% or less and an α-Fe single phase region and a fine-grained structure region is obtained.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, an example of the present invention will be described. The conditions in the example are one condition example adopted for confirming the operability and the effect of the present invention. It is not limited. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
母材金属板の成分組成の影響について検討した。表1に示す成分組成(残部はFe及び不可避的不純物である)となるように溶製し、インゴットを鋳造した。インゴットをγ域で厚さ50mmまで熱間圧延し、続いて温間又は冷間で加工し、母材金属板とした。比較例として、本発明の範囲外の含有量で、Mn、Ni、Si、Alを含有する母材金属板を作成した。
(Example 1)
The effect of the component composition of the base metal plate was studied. An ingot was cast by melting to have a component composition shown in Table 1 (the remainder is Fe and inevitable impurities). The ingot was hot-rolled in the γ region to a thickness of 50 mm, and subsequently worked warm or cold to obtain a base metal plate. As a comparative example, a base metal plate containing Mn, Ni, Si, and Al with a content outside the range of the present invention was prepared.

Figure 0006623533
Figure 0006623533

次いで、表2に示す皮膜元素(フェライト生成元素)を母材金属板の両面に付着させた。皮膜元素は、イオンプレーティング法、又は、めっき法によって付着させた。表2に示す皮膜元素の厚さ(両面合計の厚さ)は、片面ずつで測定した厚さを合計して得られた値である。次いで、表2に示す保持温度及び保持時間で、皮膜元素の付着した母材金属板を熱処理した。熱処理炉には、赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。 Next, the coating elements (ferrite-forming elements) shown in Table 2 were adhered to both surfaces of the base metal plate. The film element was attached by an ion plating method or a plating method. The thickness of the coating element (the total thickness on both sides) shown in Table 2 is a value obtained by summing the thicknesses measured on each side. Next, at the holding temperature and holding time shown in Table 2, the base metal plate to which the coating element was adhered was heat-treated. An infrared furnace was used as the heat treatment furnace, and heat treatment was performed in an atmosphere evacuated to a level of 10 −3 Pa.

Figure 0006623533
Figure 0006623533

表3に、得られたFe系金属板の組織、α−単層の厚さ、粗大粒の層構造、細粒組織の厚さ、磁気特性、及び、強度の評価結果を示す。
組織については、X線回折法により、{200}面集積度及び{100}<011>のX線ランダム強度比を求めた。
α−単層の厚さの測定は、金属板の板厚方向の断面を、EPMAを用いて線分析を行うことで求めた。なお、α−単層は、板厚方向において、細粒組織の両側に2層形成されるが、この2層の厚さは、同等であるため、一方のα−単層の厚さのみ測定した。また、粗大粒の層構造、及び、金属板の内部の細粒組織の厚さは、光学顕微鏡を用いて測定し求めた。
Table 3 shows the evaluation results of the structure of the obtained Fe-based metal plate, the thickness of the α-monolayer, the layer structure of coarse grains, the thickness of the fine grain structure, the magnetic properties, and the strength.
Regarding the structure, the {200} plane integration degree and the X-ray random intensity ratio of {100} <011> were determined by the X-ray diffraction method.
The measurement of the thickness of the α-single layer was obtained by performing a line analysis of a cross section of the metal plate in the plate thickness direction using EPMA. The α-monolayer is formed in two layers on both sides of the fine grain structure in the plate thickness direction, but since the thicknesses of these two layers are equal, only the thickness of one α-monolayer is measured. did. The layer structure of the coarse grains and the thickness of the fine grain structure inside the metal plate were measured and determined using an optical microscope.

磁気特性については、圧延方向に対して45°方向から試料を切り出し、5000A/mの磁化力に対する磁束密度B50及び飽和磁束密度Bsを測定した。磁束密度B50の測定では、SST(Single Sheet Tester)を用い、測定周波数を50Hzとした。飽和磁束密度Bsの測定では、VSM(Vibrating Sample Magnetometer)を用い、0.8×106A/mの磁化力を印加した。そして、飽和磁束密度Bsに対する磁束密度B50の比率B50/Bsを算出した。
Fe系金属板の強度については、圧延直角方向にJIS Z2201に記載の5号引張試験片を採取し、JIS Z2241に記載の試験方法に従って、引張試験を行い、引張強度を評価した。
Regarding magnetic properties, a sample was cut out from a direction at 45 ° to the rolling direction, and a magnetic flux density B50 and a saturation magnetic flux density Bs for a magnetization force of 5000 A / m were measured. In the measurement of the magnetic flux density B50, the measurement frequency was set to 50 Hz using SST (Single Sheet Tester). In the measurement of the saturation magnetic flux density Bs, a magnetizing force of 0.8 × 10 6 A / m was applied using a VSM (Vibrating Sample Magnetometer). Then, the ratio B50 / Bs of the magnetic flux density B50 to the saturation magnetic flux density Bs was calculated.
Regarding the strength of the Fe-based metal plate, a No. 5 tensile test piece described in JIS Z2201 was sampled in a direction perpendicular to the rolling direction, and a tensile test was performed according to the test method described in JIS Z2241 to evaluate the tensile strength.

Figure 0006623533
Figure 0006623533

表3に示すように、発明例1〜5、7〜20では、いずれも、粗大粒組織のα−Fe単相を有し、α−Fe単相の厚さは0.2μm以上で、α−Fe単相の{200}面集積度は30%以上であった。また、粗大粒組織の内側の領域は、平均結晶粒径8μm以下の細粒で構成される細粒組織であった。その細粒組織の厚さは1/10t以上7/10t以下であった。比較例1、3、5〜8では、細粒組織の領域が観察されなかった。そのため、発明例1〜5、7〜20と比較して、比較例1、3、5〜8の引張強度は、低い値であった。また、発明例1〜20の磁気特性は、比較例1、3、5〜8より高く、磁気特性と強度が両立できた。
比較例2及び4は、α単相系成分となっているため、フェライト生成元素を付着、拡散させても粗大粒組織は形成されなかった。
As shown in Table 3, each of Invention Examples 1 to 5 and 7 to 20 has an α-Fe single phase having a coarse-grained structure, and the thickness of the α-Fe single phase is 0.2 μm or more, The {200} plane integration of the -Fe single phase was 30% or more. The region inside the coarse grain structure was a fine grain structure composed of fine grains having an average crystal grain size of 8 μm or less. The thickness of the fine grain structure was 1/10 t or more and 7/10 t or less. In Comparative Examples 1, 3, 5 to 8, no region of fine grain structure was observed. Therefore, the tensile strengths of Comparative Examples 1, 3, 5 to 8 were lower than those of Inventive Examples 1 to 5, 7 to 20. In addition, the magnetic properties of Inventive Examples 1 to 20 were higher than Comparative Examples 1, 3, and 5 to 8, and both magnetic properties and strength were compatible.
In Comparative Examples 2 and 4, since they were α-single-phase components, no coarse-grained structure was formed even when the ferrite-forming element was attached and diffused.

(実施例2)
皮膜元素(フェライト生成元素及びオーステナイト生成元素)、母材金属板の熱処理の保持温度と保持時間、及び、細粒組織の厚さの影響について検討した。
表4に示す皮膜元素を母材金属板の両面に付着させた。皮膜元素は、イオンプレーティング法、又は、めっき法によって付着させた。表4に示す皮膜元素の厚さ(両面合計の厚さ)は、片面ずつで測定した厚さを合計して得られた値である。次いで、表4に示す保持温度及び保持時間で、皮膜元素の付着した母材金属板を熱処理した。熱処理炉には、赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。表5に、得られたFe系金属板の組織、α−単層の厚さ、粗大粒の層構造、細粒組織の厚さ、磁気特性、及び、引張強度の評価結果を示す。なお、実施例1と同様に、α−単層の厚さの測定では、板厚方向において、細粒組織の両側に形成される2層のα−単層のうち1層の厚さのみ測定した。
(Example 2)
The effects of the coating elements (ferrite-forming element and austenite-forming element), the holding temperature and holding time of the heat treatment of the base metal plate, and the thickness of the fine grain structure were examined.
The coating elements shown in Table 4 were attached to both surfaces of the base metal plate. The film element was attached by an ion plating method or a plating method. The thickness of the coating element (the total thickness on both sides) shown in Table 4 is a value obtained by summing the thicknesses measured on each side. Next, at the holding temperature and holding time shown in Table 4, the base metal plate to which the coating element was adhered was heat-treated. An infrared furnace was used as the heat treatment furnace, and heat treatment was performed in an atmosphere evacuated to a level of 10 −3 Pa. Table 5 shows the evaluation results of the structure of the obtained Fe-based metal plate, the thickness of the α-monolayer, the layer structure of coarse grains, the thickness of the fine grain structure, the magnetic properties, and the tensile strength. In addition, in the same manner as in Example 1, in the measurement of the thickness of the α-monolayer, only the thickness of one of the two α-monolayers formed on both sides of the fine grain structure in the thickness direction was measured. did.

Figure 0006623533
Figure 0006623533

Figure 0006623533
Figure 0006623533

発明例21〜40では、いずれも粗大粒組織の領域を有し、表5に示すように、α−Fe単相の厚さは0.2μm以上で、{200}面集積度は30%以上であった。発明例21〜40では、粗大粒組織の内側の領域は、平均結晶粒径8μm以下の細粒で構成される細粒組織であった。その細粒組織の厚さが1/10t以上7/10t以下であった。   Inventive Examples 21 to 40 all have a region of coarse grain structure, and as shown in Table 5, the thickness of the α-Fe single phase is 0.2 μm or more, and the {200} plane integration degree is 30% or more. Met. In Invention Examples 21 to 40, the region inside the coarse-grained structure was a fine-grained structure composed of fine particles having an average crystal grain size of 8 μm or less. The thickness of the fine grain structure was 1/10 t or more and 7/10 t or less.

比較例9及び15は、表面にオーステナイト生成元素を付着させた場合や、フェライト生成元素を付着させなかった場合であり、集合組織を制御することが出来ず、高磁束密度を得ることが出来なかった。比較例10及び11は、フェライト生成元素の厚さが適正でなく、また、比較例12〜14は、母材金属板の熱処理の保持温度及び保持時間が適正でなく、磁気特性又は引張強度が向上しなかった。   Comparative Examples 9 and 15 are the case where the austenite forming element was adhered to the surface or the case where the ferrite forming element was not adhered, and the texture could not be controlled and the high magnetic flux density could not be obtained. Was. In Comparative Examples 10 and 11, the thickness of the ferrite forming element is not appropriate, and in Comparative Examples 12 to 14, the holding temperature and the holding time of the heat treatment of the base metal plate are not appropriate, and the magnetic properties or tensile strength are insufficient. Did not improve.

本発明によれば、磁束密度が高く、更に、強度が高いFe系金属板とすることができる。よって、本発明は、産業上の利用可能性が高いものである。   According to the present invention, an Fe-based metal plate having a high magnetic flux density and a high strength can be obtained. Therefore, the present invention has high industrial applicability.

1 粗大粒組織
2 細粒組織
1 Coarse grain structure 2 Fine grain structure

Claims (3)

フェライト生成元素が合金化されて濃化した領域を有するFe系金属板であって、
前記Fe系金属が、質量%で、Si:1.500%以上3.500%以下、及び、Al:0.500%以上3.000%以下の少なくとも一方と、Mn:2.500%以上6.500%以下、及び、Ni:2.500%以上6.500%以下の少なくとも一方とを含有するものであり、
前記フェライト生成元素が濃化した領域のうちの少なくとも表面から0.2μmの領域あるいは全部の領域がα−Fe単相の組成で、その内側の領域がα−γ変態を生じ得る組成であり、
平均結晶粒径を板表面に平行な面における結晶粒径の平均とし、平均結晶粒径が8μm超を粗大粒組織、平均結晶粒径が8μm以下を細粒組織として、
前記フェライト生成元素が濃化した領域のうち少なくとも表面から0.2μmの領域あるいは全部が粗大粒組織の領域であり、
前記粗大粒組織の領域における{200}面集積度が30%以上99%以下であり、
前記粗大粒組織の領域の内側の領域が細粒組織であり、該細粒組織の厚さがFe系金属板の板厚をtとして、1/10t以上7/10t以下であることを特徴とするFe系金属板。
A Fe-based metal plate having a region where a ferrite-forming element is alloyed and concentrated,
The Fe-based metal is, by mass%, at least one of Si: 1.500% to 3.500% and Al: 0.500% to 3.000%, and Mn: 2.500% to 6%. .500% or less, and Ni: at least one of 2.500% to 6.500%.
At least a 0.2 μm region or the entire region from the surface of the region in which the ferrite-forming element is concentrated is an α-Fe single phase composition, and an inner region is a composition that can cause α-γ transformation,
The average grain size is defined as the average of the grain sizes in a plane parallel to the plate surface, the average grain size is more than 8 μm as a coarse grain structure, and the average grain size is 8 μm or less as a fine grain structure.
A region of at least 0.2 μm from the surface or the entire region of the region in which the ferrite forming element is concentrated is a region of a coarse grain structure,
{200} plane integration in the region of the coarse grain structure is 30% or more and 99% or less;
The region inside the region of the coarse grain structure is the fine grain structure, the thickness of Said sub grain structure by the thickness of the Fe-based metal plate is t, that is 1 / 10t or 7 / 10t or less Characterized Fe-based metal plate.
前記フェライト生成元素が濃化した領域のうち少なくとも表面から0.2μmの領域あるいは全部の領域を占めている結晶粒の表面が、板の表面を形成し、さらに、当該結晶粒の板内の粒界が前記細粒組織との境界となっていることを特徴とする請求項1に記載のFe系金属板。   The surface of the crystal grains occupying at least a 0.2 μm region or the entire region from the surface of the region in which the ferrite-forming element is concentrated forms the surface of the plate, and further, the crystal particles in the plate The Fe-based metal plate according to claim 1, wherein a boundary is a boundary with the fine grain structure. 前記フェライト生成元素が濃化した領域における{100}<011>のX線ランダム強度比が50以上400以下であることを特徴とする請求項1又は2に記載のFe系金属板。   3. The Fe-based metal plate according to claim 1, wherein an X-ray random intensity ratio of {100} <011> in a region where the ferrite-forming element is concentrated is 50 or more and 400 or less. 4.
JP2015062702A 2015-03-25 2015-03-25 Fe-based metal plate Active JP6623533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015062702A JP6623533B2 (en) 2015-03-25 2015-03-25 Fe-based metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015062702A JP6623533B2 (en) 2015-03-25 2015-03-25 Fe-based metal plate

Publications (2)

Publication Number Publication Date
JP2016183359A JP2016183359A (en) 2016-10-20
JP6623533B2 true JP6623533B2 (en) 2019-12-25

Family

ID=57242671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015062702A Active JP6623533B2 (en) 2015-03-25 2015-03-25 Fe-based metal plate

Country Status (1)

Country Link
JP (1) JP6623533B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880814B2 (en) * 2017-02-21 2021-06-02 日本製鉄株式会社 Electrical steel sheet and its manufacturing method
JP6870381B2 (en) * 2017-02-28 2021-05-12 日本製鉄株式会社 Electrical steel sheet and its manufacturing method
JP6805978B2 (en) * 2017-06-30 2020-12-23 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162748A (en) * 1987-12-21 1989-06-27 Nippon Steel Corp High-tensile non-oriented magnetic steel sheet excellent in workability and magnetic property
JPH03281758A (en) * 1990-03-29 1991-12-12 Sumitomo Metal Ind Ltd High tensile strength silicon steel sheet and its manufacture
JP4356580B2 (en) * 2004-10-08 2009-11-04 住友金属工業株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP4765347B2 (en) * 2005-03-14 2011-09-07 Jfeスチール株式会社 Electrical steel sheet
WO2011052654A1 (en) * 2009-10-28 2011-05-05 新日本製鐵株式会社 Ferrous metal sheet and manufacturing method therefor
JP6405632B2 (en) * 2013-01-08 2018-10-17 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
JP6221406B2 (en) * 2013-06-26 2017-11-01 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016183359A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
EP3176279B1 (en) Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP5186989B2 (en) Soft magnetic steel sheet for core and core member
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP6767687B1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
KR101463368B1 (en) Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
TWI729701B (en) Non-oriented electrical steel sheet
JP5648335B2 (en) Fe-based metal plate with partially controlled crystal orientation
JP6623533B2 (en) Fe-based metal plate
KR101650406B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
JP6044093B2 (en) Fe-based metal plate and manufacturing method thereof
JP6481288B2 (en) Fe-based metal plate with excellent magnetic properties
JP5472198B2 (en) Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration
JP5724727B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
TWI413697B (en) Non - directional electromagnetic steel plate
JP6464581B2 (en) Fe-based metal plate and manufacturing method thereof
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP6613589B2 (en) High strength, high magnetic flux density Fe-based metal plate and method for producing the same
JP6464750B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP2017214623A (en) Steel sheet excellent in processability, corrosion resistance and toughness and manufacturing method therefor
JP6464753B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP2016183360A (en) Fe-BASED METAL PLATE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R151 Written notification of patent or utility model registration

Ref document number: 6623533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151