JP4765347B2 - Electrical steel sheet - Google Patents
Electrical steel sheet Download PDFInfo
- Publication number
- JP4765347B2 JP4765347B2 JP2005071337A JP2005071337A JP4765347B2 JP 4765347 B2 JP4765347 B2 JP 4765347B2 JP 2005071337 A JP2005071337 A JP 2005071337A JP 2005071337 A JP2005071337 A JP 2005071337A JP 4765347 B2 JP4765347 B2 JP 4765347B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal grain
- steel sheet
- thickness
- surface layer
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 22
- 239000013078 crystal Substances 0.000 claims description 117
- 229910000831 Steel Inorganic materials 0.000 claims description 77
- 239000010959 steel Substances 0.000 claims description 77
- 239000002344 surface layer Substances 0.000 claims description 38
- 238000009826 distribution Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 64
- 229910052742 iron Inorganic materials 0.000 description 28
- 230000035699 permeability Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 238000005096 rolling process Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000004907 flux Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000000137 annealing Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000005475 siliconizing Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、電動機や発電機の鉄心あるいは変圧器やリアクトルなどの静止器の鉄心に用いられる電磁鋼板に関し、特に、400Hz〜2kHz程度の高周波域において鉄損が低い電磁鋼板とその製造方法に関するものである。 The present invention relates to an electromagnetic steel sheet used for an iron core of an electric motor or a generator or an iron core of a stationary machine such as a transformer or a reactor, and more particularly to an electromagnetic steel sheet having a low iron loss in a high frequency range of about 400 Hz to 2 kHz and a manufacturing method thereof. It is.
電気機器や電気自動車等に用いられるモータには、小型・軽量化に対応するため、従来よりも高い回転数が採用されつつある。また、磁石モータには、トルク向上、トルクリップル低減のため、多極ロータが採用されつつある。このような高速回転あるいは多極ロータのモータにおいては、回転数や極数の増加に応じて、駆動周波数も高くなる傾向にある。従って、このようなモータの鉄心に用いられる電磁鋼板には、高周波域、特に、400Hz〜2kHz程度の高周波域での磁気特性に優れることが重要視されるようになってきた。すなわち、この周波数域は、モータの駆動周波数に相当し、また、駆動時には、駆動周波数の数倍の周波数の高周波成分(同じ周波数域)が駆動周波数に重畳されるからである。 Motors used in electric devices, electric vehicles, and the like are being adopted at higher rotational speeds than before in order to cope with the reduction in size and weight. Also, multi-pole rotors are being adopted for magnet motors in order to improve torque and reduce torque ripple. In such a high-speed rotation or multi-pole rotor motor, the drive frequency tends to increase as the number of rotations and the number of poles increase. Therefore, it has been emphasized that the magnetic steel sheet used for the iron core of such a motor is excellent in magnetic properties in a high frequency range, particularly in a high frequency range of about 400 Hz to 2 kHz. That is, this frequency range corresponds to the drive frequency of the motor, and a high frequency component (same frequency range) of several times the drive frequency is superimposed on the drive frequency during driving.
ところで、鉄心が高周波で磁化された場合には、渦電流損の増加により、エネルギー損失が増加することが知られている。これを防止するには、鉄心の素材となる電磁鋼板の固有抵抗を増加することや板厚を低減することが有効である。しかし、電磁鋼板の固有抵抗を増加するためには、Si,Al,Cr,Mnなどの固有抵抗増加元素を多量に添加する必要があり、原料コストの増加や圧延負荷の増大等により、製造コストの上昇を招く。さらに、鋼板の硬さ上昇により、ユーザにおける打ち抜きコストを増加させるという問題もある。一方、板厚を減少することは、圧延工程や焼鈍工程での製造コストの増大を招くとともに、鋼板の剛性低下により、ユーザでの取り扱いが困難になる等の問題を引き起こす。 By the way, when the iron core is magnetized at a high frequency, it is known that energy loss increases due to an increase in eddy current loss. In order to prevent this, it is effective to increase the specific resistance of the electromagnetic steel sheet that is the material of the iron core or to reduce the plate thickness. However, in order to increase the specific resistance of electrical steel sheets, it is necessary to add a large amount of specific resistance increasing elements such as Si, Al, Cr, Mn, etc., which increases production costs due to increased raw material costs and increased rolling load. Invite the rise. Furthermore, there is a problem that the punching cost for the user is increased due to the increase in hardness of the steel plate. On the other hand, reducing the plate thickness causes an increase in manufacturing costs in the rolling process and the annealing process, and causes problems such as difficulty in handling by the user due to a decrease in rigidity of the steel sheet.
そこで、上記固有抵抗の増加や板厚の低減とは異なる渦電流損の低減技術が提案されている。例えば、特許文献1には、板厚を0.10〜0.25mmとすると共に、平均結晶粒径を、従来の適正値よりも小さい5〜60μmに制御する技術が提案されている。しかし、この技術は、高周波域での鉄損に対する最適結晶粒径を規定しただけに過ぎず、結晶粒径の微細化に伴う透磁率の減少やヒステリシス損の増加が避けられないため、低周波域では却って鉄損が著しく増加するという問題がある。また、特許文献2には、ヒステリシス損の役割に注目して、板厚最表層の結晶粒径を適正範囲に制御する技術が開示されている。しかし、この技術は、鋼板の表面に接した結晶粒のヒステリシス損に着目し、その結晶粒の大きさと板厚内部の結晶粒の大きさとの関係に適正範囲を求めているにすぎないため、高周波数域で問題となる渦電流を有効に低減することが難しい。
Therefore, a technique for reducing eddy current loss that is different from the increase in the specific resistance and the reduction in the plate thickness has been proposed. For example, Patent Document 1 proposes a technique for controlling the average crystal grain size to 5 to 60 μm, which is smaller than a conventional appropriate value, while setting the plate thickness to 0.10 to 0.25 mm. However, this technology only specifies the optimum crystal grain size for iron loss in the high frequency range, and since it is inevitable that the magnetic permeability decreases and the hysteresis loss increases as the crystal grain size becomes finer. On the other hand, there is a problem that iron loss increases remarkably.
その他の高周波域での鉄損低減技術としては、例えば、特許文献3および4には、鋼板表面から浸珪処理を施し、板厚方向にSiの濃度勾配を付与することによって、板厚表層部の透磁率を増加させて磁束を板厚表層部に集中させ、もって、高周波域における板厚全体としての鉄損を低下させる技術が開示されている。しかし、この技術は、浸珪処理に伴う製造コストの上昇や生産性の低下という問題を抱えている。また、鋼板表層におけるSi含有量の増加は、鋼板の硬さを増加させるため、ユーザにおける鉄心打抜用金型の摩耗を促進するという問題もある。
上記のように、固有抵抗の増加や板厚の低減あるいは鋼板板厚方向にSi濃度勾配を付与する従来技術では、高周波域、特に、400Hz〜2kHz程度の高周波域で、安定して鉄損が低い電磁鋼板を低コストで得ることは難しいのが実情である。 As described above, in the conventional technique in which the specific resistance is increased, the thickness is reduced, or the Si concentration gradient is applied in the thickness direction of the steel plate, iron loss is stably generated in a high frequency range, particularly in a high frequency range of about 400 Hz to 2 kHz. Actually, it is difficult to obtain a low electrical steel sheet at low cost.
そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、400Hz〜2kHz程度の高周波域で、安定して低鉄損特性を示す電磁鋼板とその安価な製造方法を提案することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to propose an electrical steel sheet that stably exhibits low iron loss characteristics in a high frequency range of about 400 Hz to 2 kHz and an inexpensive manufacturing method thereof. is there.
発明者らは、400Hz〜2kHz程度の高周波域で安定して低鉄損を示す電磁鋼板を開発するために、電磁鋼板の板厚方向にSi濃度勾配を付与する従来技術とは異なる方法で板厚方向の透磁率に分布を持たせる方法について検討した。そして、無方向性電磁鋼板においては、透磁率は結晶粒径に依存し、結晶粒径が大きいほど透磁率が向上することに着目し、検討を重ねた結果、電磁鋼板の表裏の両表層部に粗大結晶粒組織からなる透磁率の高い領域を、板厚中央部に微細結晶粒組織からなる透磁率の低い領域をそれぞれ配すると共に、それらの厚さおよび平均結晶粒径を適正範囲に制御すれば、磁束を鋼板の両表層部に集中させることができ、ひいては、400Hz〜2kHz程度の高周波域での鉄損を低減できることを見出し、本発明を完成させた。 In order to develop an electromagnetic steel sheet that stably exhibits a low iron loss in a high frequency range of about 400 Hz to 2 kHz, the inventors have used a method different from the conventional technique in which a Si concentration gradient is imparted in the thickness direction of the electromagnetic steel sheet. A method for providing a distribution of magnetic permeability in the thickness direction was studied. And in the non-oriented electrical steel sheet, the magnetic permeability depends on the crystal grain size, and paying attention to the fact that the larger the crystal grain size, the higher the magnetic permeability. In addition, a high-permeability region consisting of a coarse crystal grain structure and a low-permeability region consisting of a fine crystal grain structure are arranged at the center of the plate thickness, and the thickness and average crystal grain size are controlled within an appropriate range. As a result, it was found that the magnetic flux can be concentrated on both surface layers of the steel sheet, and consequently, iron loss in a high frequency range of about 400 Hz to 2 kHz can be reduced, and the present invention has been completed.
すなわち、本発明は、Cを0.010mass%以下、Siを4mass%以下含有する電磁鋼板であって、該鋼板の両表層部には下記のように定義される粗大結晶粒部分を有し、板厚方向の中央部には下記のように定義される微細結晶粒部分を有し、かつ、該粗大結晶粒部分と該微細結晶粒部分とは平均結晶粒径の比が2.0以上であり、上記粗大結晶粒部分の両表層部の合計厚さが全板厚の10%以上、上記微細結晶粒部分の厚さが全板厚の10%以上である(ただし、板厚が0.08〜0.22mmのものを除く。)ことを特徴とする電磁鋼板である。
記
鋼板表面に平行な面内での平均結晶粒径Dの板厚方向の分布を測定し、その最大値をDmax、最小値をDminとしたとき、
粗大結晶粒部分:D≧0.5Dmaxを満たす部分
微細結晶粒部分:D≦2.0Dminを満たす部分
That is, the present invention is an electrical steel sheet containing 0.010 mass% or less of C and 4 mass% or less of Si, and both surface layer portions of the steel sheet have coarse crystal grain portions defined as follows: The center part in the plate thickness direction has a fine crystal grain part defined as follows, and the ratio of the average crystal grain size between the coarse crystal grain part and the fine crystal grain part is 2.0 or more. The total thickness of both surface layer portions of the coarse crystal grain portion is 10% or more of the total plate thickness, and the thickness of the fine crystal grain portion is 10% or more of the total plate thickness (however, the plate thickness is 0.00 . Except for those having a thickness of 08 to 0.22 mm .)
When the distribution in the thickness direction of the average grain size D in a plane parallel to the surface of the steel sheet is measured, the maximum value is D max and the minimum value is D min .
Coarse crystal grain part: part satisfying D ≧ 0.5D max Fine crystal grain part: part satisfying D ≦ 2.0 D min
また、本発明の電磁鋼板における上記粗大結晶粒部分は、両表層部の厚さの差が両表層部の平均厚さの30%以下、両表層部の平均結晶粒径の差が両表層部の平均結晶粒径の30%以下であることを特徴とする。 The coarse crystal grain portion in the electrical steel sheet of the present invention has a difference in thickness between both surface layer portions of 30% or less of the average thickness of both surface layer portions, and a difference in average crystal grain size between both surface layer portions. The average crystal grain size is 30% or less.
本発明によれば、400Hz〜2kHz程度の高周波域において鉄損が低い電磁鋼板を安価に提供することができる。
According to the present invention, it is possible to provide an electromagnetic steel sheet having a low iron loss in a high frequency range of about 400 Hz to 2 kHz at a low cost.
発明者らは、鋼板の板厚方向にSi濃度勾配を付与する従来技術とは異なる方法かつ安価な方法で、板厚方向の透磁率に分布を持たせることにより、高周波域において安定して鉄損が低い電磁鋼板を開発するべく、結晶粒径による透磁率の差、すなわち、方向性電磁鋼板と比較して結晶粒径が小さい無方向性電磁鋼板においては、結晶粒径の増加に伴い透磁率が向上することに着目し検討を重ねた。その結果、電磁鋼板の表裏の両表層部に透磁率の高い粗大結晶粒組織を配することで、磁束を鋼板の両表層部に集中させ、高周波域の鉄損を有効に低減することができることに想到した。また、粗大結晶粒組織はヒステリシス損が小さいので、この組織を板厚表層部に配することで、高周波で励磁されて磁束が板厚表層部に集中した場合においても、ヒステリシス損を有効に低減することができる。すなわち、本発明によれば、高周波域における渦電流損とヒステリシス損を同時に低減できるので、鉄損を有効に低減することが可能となる。なお、上述した特許文献3や4の技術は、10kHzという非常に高い周波数域での鉄損低減を意図しているために、鋼板の表層と内部とで2倍以上の透磁率差を設けているが、本発明は、400Hz〜2kHz程度の周波数域で使用されるモータの鉄心やリアクトル等に用いる電磁鋼板を対象としているため、必ずしも表層/中心層の透磁率の比が2倍以上である必要はない。 The inventors have established a stable distribution in the high-frequency region by providing a distribution in the magnetic permeability in the thickness direction, which is different from the prior art in which the Si concentration gradient is imparted in the thickness direction of the steel plate and by a cheap method. In order to develop an electrical steel sheet with low loss, the difference in permeability depending on the crystal grain size, i.e., in the non-oriented electrical steel sheet having a smaller crystal grain size compared to the grain oriented electrical steel sheet, the permeability increases as the crystal grain size increases. We focused on the improvement of magnetic susceptibility and studied repeatedly. As a result, it is possible to concentrate the magnetic flux on both surface layers of the steel sheet and to effectively reduce the iron loss in the high frequency region by arranging coarse crystal grain structures with high magnetic permeability on both surface layers on the front and back sides of the electromagnetic steel sheet. I came up with it. In addition, since the coarse crystal grain structure has a small hysteresis loss, it is possible to effectively reduce the hysteresis loss even when the magnetic flux is concentrated on the plate thickness surface layer by being excited at a high frequency by arranging this structure in the plate thickness surface layer portion. can do. That is, according to the present invention, the eddy current loss and the hysteresis loss in the high frequency region can be reduced at the same time, so that the iron loss can be effectively reduced. In addition, since the techniques of Patent Documents 3 and 4 described above are intended to reduce iron loss in a very high frequency range of 10 kHz, a magnetic permeability difference of twice or more is provided between the surface layer and the inside of the steel sheet. However, since the present invention is intended for electromagnetic steel sheets used for motor cores, reactors, etc. used in a frequency range of about 400 Hz to 2 kHz, the surface layer / center layer permeability ratio is not less than twice. There is no need.
以下、本発明に係る電磁鋼板について説明する。
Si:4mass%以下
Siは、鋼板の固有抵抗を増加させて渦電流損を低減する元素であり、高周波域での鉄損低減を図る場合には、想定する周波数域に応じて添加させる必要がある。しかし、Si添加量が4mass%を超えると、圧延が困難となり製造することが難しくなるため、4mass%以下に制限する。好ましいSiの範囲は、0.5〜3.5mass%である。なお、板厚を薄くすることで渦電流損の低減を図る場合には、Siを敢えて添加する必要はない。また、本発明は、Si濃度勾配による板厚方向の透磁率の差を利用して鉄損低減を図る技術ではないが、板厚方向にSi濃度勾配を設ける技術を併用しても、本発明の効果を妨げるものではない。
Hereinafter, the electrical steel sheet according to the present invention will be described.
Si: 4 mass% or less
Si is an element that reduces the eddy current loss by increasing the specific resistance of the steel sheet. When reducing iron loss in a high frequency range, it is necessary to add Si according to the assumed frequency range. However, if the Si addition amount exceeds 4 mass%, rolling becomes difficult and manufacturing becomes difficult, so the amount is limited to 4 mass% or less. A preferable Si range is 0.5 to 3.5 mass%. When reducing the eddy current loss by reducing the plate thickness, it is not necessary to add Si. Further, the present invention is not a technique for reducing iron loss by utilizing the difference in magnetic permeability in the plate thickness direction due to the Si concentration gradient, but the present invention can also be used in combination with the technology for providing the Si concentration gradient in the plate thickness direction. It does not interfere with the effect.
本発明の電磁鋼板においては、Si以外の成分組成は、特に制限する必要はなく、通常の電磁鋼板に含まれる範囲であればよい。具体的には、Si以外の成分組成として、C:0.010mass%以下、Mn:0.1〜1.5mass%、P:0.5mass%以下、S:0.01mass%以下、Al:2.0mass%以下、Ti:0.010mass%以下、Nb:0.010mass%以下、Sb:0.020mass%以下、Se:0.020mass%以下の範囲で含まれてもよい。 In the electrical steel sheet of the present invention, the composition of components other than Si is not particularly limited, and may be in a range included in a normal electrical steel sheet. Specifically, as component composition other than Si, C: 0.010 mass% or less, Mn: 0.1 to 1.5 mass%, P: 0.5 mass% or less, S: 0.01 mass% or less, Al: 2.0 mass% or less, Ti: 0.010 mass% or less, Nb: 0.010 mass% or less, Sb: 0.020 mass% or less, Se: 0.020 mass% or less may be included.
次に、本発明の電磁鋼板が特徴とする鋼板組織について説明する。
本発明は、粗大結晶粒組織は、微細結晶粒組織に比べて透磁率が高く、ヒステリシス損が低いことを利用し、400Hz〜2kHz程度の高周波域における渦電流損およびヒステリシス損を低減し、もって上記高周波数域における鉄損低減を図る技術である。そのため、本発明の電磁鋼板は、上記効果を得るために、鋼板表層部に透磁率の高い粗大結晶粒組織からなる部分(以降、「粗大結晶粒部分」と称する)、鋼板中央部に透磁率の低い微細結晶粒組織からなる部分(以降、「微細結晶粒部分」と称する)を配することを必須とする。
Next, the steel sheet structure characterized by the magnetic steel sheet of the present invention will be described.
The present invention utilizes the fact that the coarse crystal grain structure has higher magnetic permeability and lower hysteresis loss than the fine grain structure, and reduces eddy current loss and hysteresis loss in a high frequency range of about 400 Hz to 2 kHz. This is a technique for reducing iron loss in the high frequency range. Therefore, in order to obtain the above effect, the electrical steel sheet of the present invention is a part made of a coarse crystal grain structure having a high magnetic permeability in the steel sheet surface layer part (hereinafter referred to as “coarse crystal grain part”), and the magnetic permeability in the steel sheet center part. It is essential to provide a portion (hereinafter referred to as “fine crystal grain portion”) having a low crystal grain structure having a low particle size.
ここで、本発明における上記粗大結晶粒部分および微細結晶粒部分は、電磁鋼板の鋼板表面に平行な面内での平均粒径Dの板厚方向の分布を求め、その平均粒径Dの最大値をDmax、最小値をDminとした時、D≧0.5Dmaxを満たす厚み方向領域を粗大結晶粒部分、また、上記D≦2.0Dminを満たす厚み方向領域を微細結晶粒部分と定義したものである。 Here, the coarse crystal grain part and the fine crystal grain part in the present invention determine the distribution in the thickness direction of the average grain diameter D in a plane parallel to the steel sheet surface of the electrical steel sheet, and the maximum of the average grain diameter D is obtained. When the value is D max and the minimum value is D min , the thickness direction region satisfying D ≧ 0.5D max is defined as a coarse crystal grain portion, and the thickness direction region satisfying D ≦ 2.0 D min is defined as a fine crystal grain portion. It is a thing.
鋼板表面に平行な面内での平均粒径Dの板厚方向の分布は、以下のように計測する。図1は、鋼板表裏の両表層部の結晶粒径が、鋼板中央部のそれに比べて粗大な組織を有する鋼板の、板厚方向(圧延面に垂直方向)の断面図を模式図に示したものである。まず、鋼板断面の結晶粒界を、エッチングなどの方法で顕わにした後、この断面の板厚方向の任意の位置zに、圧延面に平行な線分Lを引き、この線分Lと交差する結晶粒界の数Nを線分Lの長さを割った値を、板厚方向の位置zにおける平均結晶粒径D(z)とする。すなわち、板厚方向zの位置における平均結晶粒径D(z)は、L/Nで表される。なお、
圧延方向と圧延直角方向の平均結晶粒径D(z)に差がある場合は、両者の平均とする。
The distribution in the plate thickness direction of the average particle diameter D in a plane parallel to the steel plate surface is measured as follows. FIG. 1 is a schematic diagram showing a cross-sectional view in the plate thickness direction (perpendicular to the rolling surface) of a steel plate having a coarser grain structure than that of the center portion of the steel plate, in which the grain size of both surface layers on the front and back sides of the steel plate is large. Is. First, after revealing the crystal grain boundary of the cross section of the steel plate by a method such as etching, a line segment L parallel to the rolling surface is drawn at an arbitrary position z in the plate thickness direction of the cross section. A value obtained by dividing the number N of intersecting crystal grain boundaries by the length of the line segment L is defined as an average crystal grain size D (z) at a position z in the plate thickness direction. That is, the average crystal grain size D (z) at the position in the plate thickness direction z is expressed by L / N. In addition,
If there is a difference in the average grain size D (z) between the rolling direction and the direction perpendicular to the rolling direction, the average of the two is taken.
また、本発明の電磁鋼板における粗大結晶粒部分および微細結晶粒部分の平均結晶粒径は、それぞれの領域の平均結晶粒径D(z)をさらに平均したものである。すなわち、鋼板の表裏の両表層部に存在する粗大結晶粒部分をそれぞれ1,2、それらの厚さおよびそれらの合計厚さをそれぞれt1,t2、(t1+t2)、板厚中心部の微細結晶粒部分を3、その厚さをt3としたとき、以下のように定義される。
<D1>:粗大結晶粒部分1の平均結晶粒径=(1/t1)∫粗大結晶粒部分1D(z)dz
<D2>:粗大結晶粒部分1の平均結晶粒径=(1/t2)∫粗大結晶粒部分2D(z)dz
<D12>:粗大結晶粒部分1と2の平均結晶粒径=(1/(t1+t2))∫粗大結晶粒部分1+2D(z)dz
<D3>:微細結晶粒部分3の平均結晶粒径=(1/t3)∫微細結晶粒部分3D(z)dz
Further, the average crystal grain size of the coarse crystal grain portion and the fine crystal grain portion in the electrical steel sheet of the present invention is obtained by further averaging the average crystal grain size D (z) of each region. That is, the coarse crystal grain portions existing in both surface layers on the front and back sides of the steel sheet are 1, 2, respectively, their thicknesses and their total thicknesses are t 1 , t 2 , (t 1 + t 2 ), plate thickness, respectively. When the fine crystal grain portion in the center is 3 and the thickness is t 3 , the definition is as follows.
<D 1 >: Average crystal grain size of coarse crystal grain part 1 = (1 / t 1 ) ∫Coarse crystal grain part 1 D (z) dz
<D 2 >: Average crystal grain size of coarse crystal grain part 1 = (1 / t 2 ) ∫Coarse crystal grain part 2 D (z) dz
<D 12 >: Average crystal grain size of coarse
<D 3 >: average crystal grain size of fine crystal grain part 3 = (1 / t 3 ) ∫fine crystal grain part 3 D (z) dz
上記のように定義したとき、本発明の電磁鋼板は、400Hz〜2kHz程度の高周波域において低鉄損を実現するためには、表裏の両表層部に存在する粗大結晶粒部分1,2の平均結晶粒径<D12>と微細結晶粒部分の平均結晶粒径<D3>が、下記(1)式;
<D12>/<D3> ≧ 2.0 ・・・・・・(1)
を満たすことが必要である。
なお、鋼板表面付近(すなわち、D=0.5Dmaxとなる線分Lの位置と鋼板表面との間)に粗大結晶粒部分の上記定義から逸脱する部分が存在する場合、その厚さ(または体積分率)が全板厚の5%以下であるならば、本発明の効果を阻害しない。また、先述したように、粗大結晶粒部分と微細結晶粒部分の透磁率の比は、必ずしも2.0以上である必要はない。
When defined as described above, the electrical steel sheet according to the present invention has an average of coarse
<D 12 > / <D 3 > ≧ 2.0 (1)
It is necessary to satisfy.
When there is a portion deviating from the above definition of the coarse crystal grain portion in the vicinity of the steel plate surface (ie, between the position of the line segment L where D = 0.5D max and the steel plate surface), the thickness (or volume) If the (fraction) is 5% or less of the total thickness, the effect of the present invention is not hindered. Further, as described above, the ratio of the magnetic permeability between the coarse crystal grain portion and the fine crystal grain portion is not necessarily 2.0 or more.
次に、本発明の電磁鋼板は、粗大結晶粒部分の両表層部の合計厚さ(t1+t2)が全板厚の10%以上、微細結晶粒部分の厚さt3が全板厚の10%以上であることが好ましい。鋼板表裏の両表層部に存在する粗大結晶部分は、高周波域において実質的に磁束が主に通る部分であり、この部分の表裏両表層部の合計厚さ(t1+t2)が全板厚Tの10%を下回ると、高周波域での鉄損低減効果が得られない。また、板厚中心部の微細結晶粒部分は、透磁率を低下させて高周波域における鉄損を低減させる効果を有しており、この部分の厚みt3が全板厚Tの10%を下回ると所望の高周波域の鉄損低減効果が得られないからである。ここで、上記関係を数式化すれば、下記(2)式となる。
(t1+t2)/T≧0.1 かつ t3/T≧0.1 ・・・・・・(2)
Next, in the electrical steel sheet of the present invention, the total thickness (t 1 + t 2 ) of both surface layer portions of the coarse crystal grain portion is 10% or more of the total plate thickness, and the thickness t 3 of the fine crystal grain portion is the entire plate. It is preferably 10% or more of the thickness. The coarse crystal parts present on both front and back surface portions of the steel plate are portions where the magnetic flux substantially passes mainly in the high frequency range, and the total thickness (t 1 + t 2 ) of the front and back surface layers of this portion is the entire plate. If it is less than 10% of the thickness T, the effect of reducing iron loss in the high frequency region cannot be obtained. Further, the fine crystal grain portion at the center of the plate thickness has the effect of reducing the magnetic loss and reducing the iron loss in the high frequency region, and the thickness t 3 of this portion is less than 10% of the total plate thickness T. This is because the desired high-frequency iron loss reduction effect cannot be obtained. Here, when the above relationship is formulated into a mathematical formula, the following formula (2) is obtained.
(t 1 + t 2 ) /T≧0.1 and t 3 /T≧0.1 (2)
また、本発明の電磁鋼板は、両表層部の粗大結晶粒部分の厚さの差が、両表層部の粗大結晶粒部分の平均厚さの30%以下であることが好ましい。鋼板表面の粗大結晶粒部分は、鋼板の表裏の両表層部にほぼ同等の厚みだけ存在することで、渦電流による損失増加を有効に防止することが可能となる。その理由は、鋼板の表層部を流れる磁束の量が異なると、磁束分布の不均一から、渦電流損が却って増加するからである。従って、このような鉄損増加を防止する観点から、表裏の両表層部に存在する粗大結晶粒部分の厚さt1およびt2の差は、それらの平均値の30%以下とするのが良い。ここで、上記関係を数式化すれば、下記(3)式となる。
|t1−t2|/{(t1+t2)/2}≦0.3 ・・・・・・(3)
In the electrical steel sheet of the present invention, the difference in thickness between the coarse crystal grain portions of both surface layer portions is preferably 30% or less of the average thickness of the coarse crystal grain portions of both surface layer portions. The coarse crystal grain portions on the surface of the steel sheet are present in both surface layer portions of the front and back surfaces of the steel sheet in substantially the same thickness, so that an increase in loss due to eddy current can be effectively prevented. The reason is that if the amount of the magnetic flux flowing through the surface layer portion of the steel sheet is different, the eddy current loss is increased due to the non-uniform magnetic flux distribution. Therefore, from the viewpoint of preventing such an increase in iron loss, the difference between the thickness t 1 and the thickness t 2 of the coarse crystal grain portions present on both front and back surface portions should be 30% or less of the average value thereof. good. Here, when the above relationship is formulated into a mathematical expression, the following expression (3) is obtained.
| t 1 −t 2 | / {(t 1 + t 2 ) / 2} ≦ 0.3 (3)
また、本発明の電磁鋼板は、両表層部の粗大結晶粒部分の平均結晶粒径の差が、両表層部の粗大結晶粒部分の平均結晶粒径の30%以下であることが好ましい。鋼板の表層部に存在する粗大結晶粒部分の透磁率は、上記と同じ理由から、表裏でほぼ同等であることが望ましい。このような観点から、粗大結晶粒部分の平均結晶粒径の差が、粗大結晶粒部分全体の平均結晶粒径の30%以下であることが好ましい。ここで、上記関係を数式化すれば、下記(4)式となる。
|<D1>-<D2>|/<D12>≦0.3 ・・・・・・(4)
In the electrical steel sheet of the present invention, the difference in average crystal grain size between the coarse crystal grain portions of both surface layer portions is preferably 30% or less of the average crystal grain size of the coarse crystal grain portions in both surface layer portions. For the same reason as described above, the magnetic permeability of the coarse crystal grain portion present in the surface layer portion of the steel sheet is preferably substantially equal on the front and back sides. From such a viewpoint, it is preferable that the difference in the average crystal grain size of the coarse crystal grain portion is 30% or less of the average crystal grain size of the entire coarse crystal grain portion. Here, when the above relationship is formulated into a mathematical expression, the following expression (4) is obtained.
| <D 1 >-<D 2 > | / <D 12 > ≦ 0.3 (4)
次に、本発明に係る電磁鋼板の製造方法について説明する。
本発明の電磁鋼板は、鋼板表層部に透磁率の高い粗大結晶粒部分を、鋼板内部に透磁率の低い微細結晶粒部分を有するものである。このような板厚方向に粒径分布を有する電磁鋼板の製造方法としては、1つの素材を用いて、板厚方向における析出物の制御や合金成分の制御、脱炭等の表面改質による表層の粒成長制御などの方法を用いることができる。また、初期粒径や成分が異なる複数の素材を準備し、これらの素材を熱間圧延や冷間圧延において複数重ねて圧延することにより圧着する方法を用いることもできる。
Next, the manufacturing method of the electrical steel sheet which concerns on this invention is demonstrated.
The electromagnetic steel sheet of the present invention has a coarse crystal grain portion having a high magnetic permeability in the surface layer portion of the steel plate and a fine crystal grain portion having a low permeability inside the steel plate. As a method of manufacturing an electrical steel sheet having a particle size distribution in the plate thickness direction, a single material is used to control precipitates in the plate thickness direction, control of alloy components, surface modification by surface modification such as decarburization, etc. A method such as grain growth control can be used. Alternatively, a method can be used in which a plurality of materials having different initial particle diameters and components are prepared, and the materials are pressure-bonded by rolling a plurality of these materials in hot rolling or cold rolling.
なお、本発明の電磁鋼板を圧延し、圧着して製造する場合には、例えば、最終的に上述した(1)式を満たすような粗大な結晶組織が得られる厚さaを有する素材鋼帯Aおよび厚さbを有する素材鋼帯Bと、微細な結晶組織が得られる厚さcを有する素材鋼帯Cとを準備し、これらをA/C/Bのように3層に重ねて圧延し、圧着することが好ましい。これらの圧着圧延は、熱間圧延を用いる場合は、表面スケールを除去した後、900℃以上に加熱してから圧延するのがよい。冷間圧延を用いる場合は、接合する表面を清浄化した後、50%以上の圧下率で150℃以上の温度にて圧延するのがよい。なお、素材鋼帯AとBは、同一のものであっても、異なるものであってもよい。この際、上述した(2)式を満たすためには、(a+b)を(a+b+c)の10%以上かつ鋼帯Cの厚さcを(a+b+c)の10%以上とすればよい。また、上述した(3)式を満たすためには、鋼帯Bを挟み込む鋼帯A,Bの厚みの差の絶対値|a−b|を(a+b)/2の30%以内とすればよい。さらに、上述した(4)式を満たすためには、素材鋼帯A,Bおよび素材鋼帯Cを製造条件と同一条件で仕上げ焼鈍等して、(4)式を満たすよう予め素材の成分組成等を調整しておくことが好ましい。 When the electromagnetic steel sheet of the present invention is rolled and pressure-bonded and manufactured, for example, a material steel strip having a thickness a that finally obtains a coarse crystal structure that satisfies the above-mentioned formula (1) A material steel strip B having A and a thickness b and a material steel strip C having a thickness c capable of obtaining a fine crystal structure are prepared, and these are rolled in three layers like A / C / B. Then, it is preferable to perform pressure bonding. In the case of using hot rolling, these crimp rollings are preferably rolled after heating to 900 ° C. or higher after removing the surface scale. When using cold rolling, it is preferable to roll at a temperature of 150 ° C. or more at a reduction rate of 50% or more after cleaning the surfaces to be joined. The raw steel strips A and B may be the same or different. At this time, in order to satisfy the above-described expression (2), (a + b) may be set to 10% or more of (a + b + c) and the thickness c of the steel strip C may be set to 10% or more of (a + b + c). Further, in order to satisfy the above-described expression (3), the absolute value | ab− of the difference between the thicknesses of the steel strips A and B sandwiching the steel strip B may be set within 30% of (a + b) / 2. . Furthermore, in order to satisfy the above-mentioned equation (4), the material steel strips A and B and the material steel strip C are subjected to finish annealing under the same conditions as the manufacturing conditions, and the component composition of the material in advance to satisfy the equation (4). Etc. are preferably adjusted in advance.
なお、上記説明では、3層構造からなる電磁鋼板を例として説明したが、本発明は3層構造だけに限定されるものではなく、例えば、AとCの間および/またはBとCの間に、粗大結晶粒と微細結晶粒の中間組織が得られる素材鋼帯を介在させて、4層以上の構造としてもよい。 In the above description, the electromagnetic steel sheet having a three-layer structure has been described as an example. However, the present invention is not limited to the three-layer structure, and for example, between A and C and / or between B and C. In addition, a material steel strip from which an intermediate structure of coarse crystal grains and fine crystal grains is obtained may be interposed to form a structure of four or more layers.
(参考例)
C:0.07mass%、Si:3.0mass%、Mn:0.5mass%、Al:0.5mass%、残部がFeおよび不可避的不純物からなる鋼を溶製し、連続鋳造により鋼スラブとし、この鋼スラブを熱間圧延および冷間圧延して板厚が0.35mmの冷延鋼帯とした。この冷延鋼帯を、700℃の温度で再結晶させたのち、900℃の脱炭雰囲気中にて表層部分を脱炭する連続焼鈍を行い、表層に粗大結晶粒を生成させた。この際、焼鈍温度を種々変化させることにより、鋼板表層に生成する粗大結晶粒部分の厚さと粒径を変化させた。その後、この鋼板表面に、絶縁コーティングを塗布して製品とした後、約500gのエプスタイン試験片を、圧延方向および圧延直角方向から半量ずつ切り出し、JIS C2550に準じて磁気測定を行った。
(Reference example)
C: 0.07% by mass, Si: 3.0% by mass, Mn: 0.5% by mass, Al: 0.5% by mass, the balance is made of steel composed of Fe and inevitable impurities, and a steel slab is obtained by continuous casting. This steel slab was hot-rolled and cold-rolled to form a cold-rolled steel strip having a sheet thickness of 0.35 mm. The cold-rolled steel strip was recrystallized at a temperature of 700 ° C., and then subjected to continuous annealing in which a surface layer portion was decarburized in a 900 ° C. decarburizing atmosphere, thereby generating coarse crystal grains on the surface layer. At this time, the thickness and the grain size of the coarse crystal grain portion generated on the steel sheet surface layer were changed by variously changing the annealing temperature. Thereafter, an insulating coating was applied to the surface of the steel sheet to obtain a product, and about 500 g of an Epstein test piece was cut out in half from the rolling direction and the direction perpendicular to the rolling direction, and magnetic measurement was performed according to JIS C2550.
上記測定の結果を表1に示す。また、図2に粗大結晶粒部分の厚みが全板厚の60%、微細結晶粒部分の厚みが全板厚の30%の場合における、粗大結晶部分と微細結晶部分の平均結晶粒径の比<D12>/<D3>と鉄損W10/1kの関係を示す。表1および図2から、参考例の電磁鋼板では、鉄損W10/1kが低減しており、特に上記(1)および(2)式の関係を満たす、No.5〜8、10および12の試料では、特に低い鉄損値が得られている。 The results of the measurement are shown in Table 1. FIG. 2 shows the ratio of the average crystal grain size of the coarse crystal portion to the fine crystal portion when the thickness of the coarse crystal grain portion is 60% of the total plate thickness and the thickness of the fine crystal grain portion is 30% of the total plate thickness. <D 12> / <D 3 > and showing the relationship between iron loss W 10 / 1k. From Table 1 and FIG. 2, the electromagnetic steel sheets of Example, iron loss W 10 / 1k has reduced, satisfy (1) above and (2) the relationship especially, No. Particularly low iron loss values have been obtained for samples 5-8, 10 and 12.
表2に示すA〜Cの3種類の成分組成を有する鋼を溶製し、連続鋳造により鋼スラブとした後、これらの鋼スラブを熱間圧延、冷間圧延して種々の板厚の冷延鋼帯を製造した。これらの冷延鋼帯を、図3に示したように、鋼帯AまたはBを外層1または2、鋼帯Cを内層3とする3層構造となるよう重ね合わせたのち、200℃に加熱しつつ冷間圧延して圧着して板厚0.50mmの鋼板とし、その後、仕上げ焼鈍し、絶縁被膜を塗布して電磁鋼板とした。これらの鋼板から、約500gのエプスタイン試験片を圧延方向および圧延直角方向から半量づつ切り出し、JIS C 2550に準じて磁気測定を行った。また、製品版の断面について調査し、粗大結晶粒部分(外層1、2)および微細結晶粒部分(内層3)の平均結晶粒径および厚さを測定した。
After melting steels having three kinds of component compositions A to C shown in Table 2 and making them steel slabs by continuous casting, these steel slabs were hot-rolled and cold-rolled to obtain various cold sheet thicknesses. A steel strip was produced. As shown in FIG. 3, these cold-rolled steel strips are stacked to form a three-layer structure in which the steel strip A or B is the
素材鋼帯の組み合わせと、上記磁気特性、平均結晶粒径および厚さの測定結果を表3に併記して示した。この表3から、本発明の(1)式を満たすNo.14〜19では鉄損が低下しており、特に、上述した本発明の(1)〜(4)式の全てを満たすNo.14〜16では、鉄損値が大きく低下していることがわかる。 Table 3 shows the combinations of the steel strips and the measurement results of the magnetic characteristics, average crystal grain size, and thickness. From Table 3, the iron loss decreased in Nos. 14 to 19 satisfying the formula (1) of the present invention, and in particular, No. 14 satisfying all the above-described formulas (1) to (4) of the present invention. It can be seen that at ˜16, the iron loss value is greatly reduced.
本発明の電磁鋼板は、モータ、発電機用の鉄心材料として使用することで、特に、400〜2kHz域の高い周波数域での鉄損を低減し、高効率化に寄与するものである。
The electromagnetic steel sheet according to the present invention is used as an iron core material for motors and generators, and particularly reduces iron loss in a high frequency range of 400 to 2 kHz and contributes to high efficiency.
Claims (2)
記
鋼板表面に平行な面内での平均結晶粒径Dの板厚方向の分布を測定し、その最大値をDmax、最小値をDminとしたとき、
粗大結晶粒部分:D≧0.5Dmaxを満たす部分
微細結晶粒部分:D≦2.0Dminを満たす部分 An electrical steel sheet containing 0.010 mass% or less of C and 4 mass% or less of Si, wherein both surface layer portions of the steel sheet have coarse crystal grain portions defined as follows, and a central portion in the thickness direction Has a fine crystal grain portion defined as follows, and the ratio of the average crystal grain size between the coarse crystal grain portion and the fine crystal grain portion is 2.0 or more, and the coarse crystal grain The total thickness of both surface layer portions of the portion is 10% or more of the total plate thickness, and the thickness of the fine crystal grain portion is 10% or more of the total plate thickness (however, the plate thickness is 0.08 to 0.22 mm) Electrical steel sheet characterized by the above.
When the distribution in the thickness direction of the average grain size D in a plane parallel to the surface of the steel sheet is measured, the maximum value is D max and the minimum value is D min .
Coarse crystal grain part: part satisfying D ≧ 0.5D max Fine crystal grain part: part satisfying D ≦ 2.0 D min
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005071337A JP4765347B2 (en) | 2005-03-14 | 2005-03-14 | Electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005071337A JP4765347B2 (en) | 2005-03-14 | 2005-03-14 | Electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006249555A JP2006249555A (en) | 2006-09-21 |
JP4765347B2 true JP4765347B2 (en) | 2011-09-07 |
Family
ID=37090350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005071337A Expired - Fee Related JP4765347B2 (en) | 2005-03-14 | 2005-03-14 | Electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4765347B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5272688B2 (en) * | 2008-12-02 | 2013-08-28 | Jfeスチール株式会社 | Clad type electrical steel sheet |
JP6623533B2 (en) * | 2015-03-25 | 2019-12-25 | 日本製鉄株式会社 | Fe-based metal plate |
KR102108231B1 (en) * | 2017-12-26 | 2020-05-07 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method of the same |
JP7557123B2 (en) * | 2020-02-06 | 2024-09-27 | 日本製鉄株式会社 | Non-oriented electrical steel sheet and its manufacturing method |
CN112496036A (en) * | 2020-11-12 | 2021-03-16 | 太原理工大学 | Method for preparing metal gradient material by rolling |
CN113029778A (en) * | 2021-02-26 | 2021-06-25 | 武汉钢铁有限公司 | Method for rapidly judging grain diameter of primary recrystallization of oriented silicon steel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651897B2 (en) * | 1989-04-18 | 1994-07-06 | 住友金属工業株式会社 | Semi-process electrical steel sheet |
JPH05263198A (en) * | 1991-12-26 | 1993-10-12 | Nippon Steel Corp | Double-layered non-oriented silicon steel sheet excellent in magnetic property |
JP2855994B2 (en) * | 1992-08-25 | 1999-02-10 | 日本鋼管株式会社 | Non-oriented electrical steel sheet with excellent high frequency magnetic properties |
-
2005
- 2005-03-14 JP JP2005071337A patent/JP4765347B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006249555A (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6866935B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP4855222B2 (en) | Non-oriented electrical steel sheet for split core | |
JP4329538B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5699642B2 (en) | Motor core | |
JP4855220B2 (en) | Non-oriented electrical steel sheet for split core | |
WO2018079059A1 (en) | Nonoriented electromagnetic steel sheet and method for producing same | |
WO2018135414A1 (en) | Non-oriented electromagnetic steel sheet and production method therefor | |
JP2011084761A (en) | Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor | |
JP6319465B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4765347B2 (en) | Electrical steel sheet | |
JP2008174773A (en) | Nonoriented electromagnetic steel sheet for rotor, and its production method | |
JP5326441B2 (en) | Motor core and motor core material | |
JP2021025097A (en) | Non-oriented electromagnetic steel sheet and method for producing the same | |
JP5646745B2 (en) | Steel plate for rotor core of IPM motor and manufacturing method thereof | |
JP4311127B2 (en) | High tension non-oriented electrical steel sheet and method for producing the same | |
JP6339768B2 (en) | Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof | |
JP7253054B2 (en) | Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method | |
JP2005120403A (en) | Non-oriented electrical steel sheet with low core loss in high-frequency region | |
CN111479942A (en) | Multilayer electromagnetic steel sheet | |
JP5614063B2 (en) | High tension non-oriented electrical steel sheet with excellent high-frequency iron loss | |
JP2008260996A (en) | Non-oriented electromagnetic steel sheet superior in magnetic properties in rolling direction, and manufacturing method therefor | |
JP4568999B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
US11827961B2 (en) | FeCoV alloy and method for producing a strip from an FeCoV alloy | |
KR102394513B1 (en) | Multilayer electrical steel sheet | |
JP5561094B2 (en) | Motor core with low iron loss degradation under compressive stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4765347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |