JP5326441B2 - Motor core and motor core material - Google Patents

Motor core and motor core material Download PDF

Info

Publication number
JP5326441B2
JP5326441B2 JP2008225460A JP2008225460A JP5326441B2 JP 5326441 B2 JP5326441 B2 JP 5326441B2 JP 2008225460 A JP2008225460 A JP 2008225460A JP 2008225460 A JP2008225460 A JP 2008225460A JP 5326441 B2 JP5326441 B2 JP 5326441B2
Authority
JP
Japan
Prior art keywords
surface layer
less
motor core
iron loss
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008225460A
Other languages
Japanese (ja)
Other versions
JP2010062275A (en
Inventor
善彦 尾田
雅昭 河野
藤田  明
善彰 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008225460A priority Critical patent/JP5326441B2/en
Publication of JP2010062275A publication Critical patent/JP2010062275A/en
Application granted granted Critical
Publication of JP5326441B2 publication Critical patent/JP5326441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Laminated Bodies (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Soft Magnetic Materials (AREA)

Description


本発明は、例えば、家庭用エアコンコンプレッサーモータやハイブリッド電気自動車用モータ等に用いられるモータコアおよびモータコア材料に関する。

The present invention relates to a motor core and a motor core material used for, for example, a home air conditioner compressor motor, a hybrid electric vehicle motor, and the like.

例えば、家庭用エアコンコンプレッサーモータでは可変速運転が行われており、最高周波数は200〜400Hz程度である。そのため、PWM制御等により数kHzのキャリア周波数が重畳した状態で使用されている。
また、最近急速に普及しているハイブリッド電気自動車の駆動モータや発電機も、高出力、小型化の観点から数kHzの周波数で駆動されている。
ゆえに、このようなモータのコア材として使用される無方向性電磁鋼板には高周波鉄損の低い電磁鋼板が要望されており、Si+Al=3〜4%程度の高グレードの電磁鋼板が使用されている。
For example, a variable speed operation is performed in a home air conditioner compressor motor, and the maximum frequency is about 200 to 400 Hz. Therefore, it is used in a state where a carrier frequency of several kHz is superimposed by PWM control or the like.
In addition, drive motors and generators of hybrid electric vehicles that have been rapidly spreading recently are also driven at a frequency of several kHz from the viewpoint of high output and miniaturization.
Therefore, a non-oriented electrical steel sheet used as the core material of such a motor is required to have a low high-frequency iron loss, and a high grade electrical steel sheet with Si + Al = 3-4% is used. Has been.

ところで、コンプレッサーモータではコア締結に焼きばめが行われており、モータコアは100MPa程度の圧縮応力が加わった状態で使用されている。また、ハイブリッド電気自動車の駆動モータにも樹脂モールド等が施され、モータコアには圧縮応力が加わることとなる。
このような圧縮応力下で電磁鋼板を使用した場合、磁気特性は大きく劣化することが知られており、上記を受けて、圧縮応力下での鉄損劣化の少ない材料が求められている。
圧縮応力下での鉄損特性を改善したものとして、例えば、特許文献1には、Si=2.6〜4%で比抵抗が50〜75×10-8Ωm、結晶粒径が60〜165μmとした無方向性電磁鋼板が開示されている。しかし、特許文献1の材料を用いても圧縮応力付与による鉄損劣化量は従来材と著しく異なるものでなく、応力依存性の小さい材料が求められているのが現状である。
特許第4023183号公報
By the way, in a compressor motor, shrink fitting is performed for core fastening, and the motor core is used in a state where a compressive stress of about 100 MPa is applied. In addition, a resin mold or the like is also applied to the drive motor of the hybrid electric vehicle, and compressive stress is applied to the motor core.
It is known that when an electrical steel sheet is used under such a compressive stress, the magnetic characteristics are greatly deteriorated. In view of the above, a material with little iron loss deterioration under a compressive stress is demanded.
For example, in Patent Document 1, Si = 2.6 to 4%, specific resistance is 50 to 75 × 10 −8 Ωm, and crystal grain size is 60 to 165 μm as an improvement in iron loss characteristics under compressive stress. Non-oriented electrical steel sheets are disclosed. However, even if the material of Patent Document 1 is used, the amount of iron loss deterioration due to the application of compressive stress is not significantly different from that of the conventional material, and there is a demand for a material having low stress dependency.
Japanese Patent No. 4023183

本発明は、かかる事情に鑑みなされたもので、圧縮応力下においても高周波鉄損の低い材料を用いたモータコアおよびモータコア材料を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a motor core and a motor core material using a material having low high-frequency iron loss even under compressive stress.

本発明者らは、上記課題を解決するために、鋭意検討した。その結果、表層部にSi量を高めた複層型材料を用いることにより圧縮応力下においても鉄損劣化が抑制できることを知見した。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, it was found that the deterioration of iron loss can be suppressed even under compressive stress by using a multilayer material with an increased Si content in the surface layer portion.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]表層部が、質量%で、Si:4〜7%、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなり、内層部が、質量%で、Si: 4%以下、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなる複層型材料を鉄心として用い、該複層型材料の表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とするモータコア。
[2]前記[1]において、前記複層型材料において、表層部における直径5μm以上の介在物量が30個/mm2以下であることを特徴とするモータコア。
[3]表層部が、質量%で、Si:4〜7%、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなり、内層部が、質量%で、Si: 4%以下、Al:3%以下を含み、残部Feおよび不可避不純物からなる複層型モータコア材料であり、前記表層部厚みの全厚に対する比率が0.1〜0.7であることを特徴とするモータコア材料。
[4]前記[3]において、前記表層部における直径5μm以上の介在物量が30個/mm2以下であることを特徴とするモータコア材料。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] The surface layer part is composed of a steel sheet containing 4% to 7%, Al: 3% or less, and the balance Fe and unavoidable impurities, and the inner layer part is mass% and Si: 4% or less. Al: 3% or less, and using a multi-layered material made of steel sheet as the balance Fe and inevitable impurities as the iron core, the ratio of the thickness of the surface layer portion of the multi-layered material to the total thickness is 0.1 to 0.7 The featured motor core.
[2] The motor core according to [1], wherein in the multilayer material, the amount of inclusions having a diameter of 5 μm or more in the surface layer portion is 30 pieces / mm 2 or less.
[3] The surface layer part is composed of a steel sheet that includes Si: 4 to 7%, Al: 3% or less, with the balance being Fe and inevitable impurities, and the inner layer part is mass% and Si: 4% or less. Al: 3% or less, a multi-layer motor core material composed of the remaining Fe and inevitable impurities, wherein the ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
[4] The motor core material according to [3], wherein an amount of inclusions having a diameter of 5 μm or more in the surface layer portion is 30 pieces / mm 2 or less.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、鉄損特性に優れたモータコアおよびモータコア材料が得られる。
そして、本発明のモータコアは圧縮応力下でも鉄損劣化が少ないため、樹脂モールド等によりコア材料に圧縮応力が付与されるエアコンコンプレッサーモータ、ハイブリッドEV用駆動モータ、EV用駆動モータ、FCEV用駆動モータ、高速発電機の高周波回転機の鉄損を低減することが可能となる。
According to the present invention, a motor core and a motor core material excellent in iron loss characteristics can be obtained.
Since the motor core of the present invention has little iron loss deterioration even under compressive stress, an air conditioner compressor motor, a hybrid EV drive motor, an EV drive motor, and an FCEV drive motor in which a compressive stress is applied to the core material by a resin mold or the like It becomes possible to reduce the iron loss of the high-frequency rotating machine of the high-speed generator.

本発明におけるモータコアは、下記(1)〜(3)を満足する複層型材料を鉄心として用い所定の形状に打ち抜き加工することにより得られる。
(1)表層部が、質量%で、Si:4〜7%、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなり、
(2)内層部が、質量%で、Si: 4%以下、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなり、
(3)表層部厚みの全厚に対する比率が0.1〜0.7である。
このように、本発明においては、モータコアを構成する材料として、表層部のSi量を高めた複層型材料を用いることを特徴とする。これは本発明において最も重要な要件であり、このような複層型材料を鉄心として用いることで鉄損特性に優れたモータコアが得られることになる。そして、本発明は、圧縮応力下で使用される場合に、特に効果を発揮する。
The motor core in the present invention is obtained by punching into a predetermined shape using a multilayer material satisfying the following (1) to (3) as an iron core.
(1) The surface layer part is composed of a steel sheet that includes, by mass%, Si: 4 to 7%, Al: 3% or less, and the balance Fe and inevitable impurities,
(2) The inner layer part is composed of a steel sheet that includes, by mass%, Si: 4% or less, Al: 3% or less, the remaining Fe and inevitable impurities,
(3) The ratio of the surface layer thickness to the total thickness is 0.1 to 0.7.
As described above, the present invention is characterized in that a multilayer material having an increased Si amount in the surface layer portion is used as the material constituting the motor core. This is the most important requirement in the present invention. By using such a multilayer material as an iron core, a motor core having excellent iron loss characteristics can be obtained. The present invention is particularly effective when used under compressive stress.

なお、本発明は板厚方向に表層−内層−表層の3層構造を有する複層材を対象としており、表層部とは鋼板表面を含む層のことを指す。一方、内層部とは前記表層部を除いた板厚方向での中央部のことである。ここで、表層部と内層部の界面は以下の領域のことを指す。すなわち、EPMAにて鋼板板厚方向にSiの濃度勾配を測定した場合、表層部と内層部の境界においてSiの濃度分布の急激な変化が生じる。このSiの急激な濃度変化が見られる位置を界面とする。ただし、Siの拡散等により、界面が一義的に定まらない場合は、界面の始まりは、表面のSi濃度を100としたとき、Si濃度が90となる位置とする。一方、界面の終わりは、中心のSi濃度を100としたとき、Si濃度が110となる位置とする。   The present invention is directed to a multilayer material having a three-layer structure of surface layer-inner layer-surface layer in the plate thickness direction, and the surface layer portion refers to a layer including the steel plate surface. On the other hand, the inner layer portion is a central portion in the thickness direction excluding the surface layer portion. Here, the interface between the surface layer portion and the inner layer portion refers to the following region. That is, when the Si concentration gradient is measured in the steel plate thickness direction by EPMA, a rapid change in the Si concentration distribution occurs at the boundary between the surface layer portion and the inner layer portion. The position at which this rapid concentration change of Si is seen is taken as the interface. However, when the interface is not uniquely determined due to Si diffusion or the like, the interface starts at a position where the Si concentration becomes 90 when the Si concentration on the surface is 100. On the other hand, the end of the interface is a position where the Si concentration becomes 110 when the central Si concentration is 100.

次に、本発明の詳細を実験結果に基づいて説明する。
まず、圧縮応力下での磁気特性について調査する。
Si=2.50%、Al=0.50%、O=0.0020%とした鋼を実験室にて溶製し、インゴットとした。その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板厚を0.25mmとし、引き続き1000℃×30sの仕上焼鈍を行い、圧延方向に沿って長さ180mm、幅30mmの単板サンプルを作製した。この単板の長手方向に100MPaの圧縮応力を加え、応力負荷方向にサンプルを励磁して磁気特性を調査した。また、比較のため、無応力での磁気特性も調査した。
結果は、圧縮応力下での鉄損はW3/5k=169W/kgであり、無応力での鉄損はW3/5k=65W/kgであった。この結果より、圧縮応力を付与することで鉄損は2.6倍程度に劣化していることがわかる。
この原因を調査するため、鉄損分離を行ったところ、ヒステリシス損、渦電流損ともに圧縮応力付与により増加しており、特に、渦電流損の劣化比率が大きいことがあきらかとなった。ヒステリシス損の劣化原因に関しては、上記成分のような鋼板においては正磁歪を有しているため、鋼板を磁化した際に、鋼板は磁化方向に伸びることとなるが、磁化方向に圧縮応力が付与されていると鋼板が伸びることができず、磁化が困難となり、鉄損が増加したものと考えられる。一方、渦電流損の増加原因に関しては原因はあきらかでないが、何らかの磁区構造の変化が原因ではないかと考えられる。
Next, details of the present invention will be described based on experimental results.
First, the magnetic properties under compressive stress are investigated.
A steel with Si = 2.50%, Al = 0.50% and O = 0.020% was melted in the laboratory to obtain an ingot. After that, hot rolling and hot-rolled sheet annealing at 900 ° C x 30s were performed to make the plate thickness 0.25mm, followed by finish annealing at 1000 ° C x 30s, and a single plate with a length of 180mm and a width of 30mm along the rolling direction. A sample was made. A compressive stress of 100 MPa was applied in the longitudinal direction of the single plate, and the sample was excited in the stress loading direction to investigate the magnetic properties. For comparison, the stressless magnetic properties were also investigated.
As a result, the iron loss under compressive stress was W3 / 5k = 169 W / kg, and the iron loss without stress was W3 / 5k = 65 W / kg. From this result, it is understood that the iron loss is deteriorated by about 2.6 times by applying the compressive stress.
In order to investigate this cause, when iron loss separation was performed, both hysteresis loss and eddy current loss increased due to the application of compressive stress. In particular, it was revealed that the deterioration ratio of eddy current loss was large. As for the cause of the deterioration of hysteresis loss, the steel sheets as described above have positive magnetostriction, so when the steel sheet is magnetized, the steel sheet will stretch in the magnetization direction, but compressive stress is applied to the magnetization direction. If this is done, the steel sheet cannot be stretched, magnetization becomes difficult, and iron loss is considered to have increased. On the other hand, the cause of the increase in eddy current loss is not clear, but it may be due to some change in the magnetic domain structure.

ところで、鋼板を1kHzを超えるような高周波域で励磁した場合、磁束は表皮効果により鋼板表層部のみに集中することが知られている。ゆえに、圧縮応力付与時に何らかの手法で表層部に付与される応力を低減することができれば、鉄損劣化は抑制できるものと考えられる。
そこで、表層部と内層部の成分を変えた材料を作製することにより、機械特性、磁気特性を変化させ圧縮応力下での磁気特性を調査した。
By the way, it is known that when the steel plate is excited in a high frequency range exceeding 1 kHz, the magnetic flux is concentrated only on the surface layer portion of the steel plate due to the skin effect. Therefore, it is considered that the iron loss deterioration can be suppressed if the stress applied to the surface layer portion can be reduced by any method when compressive stress is applied.
Therefore, the magnetic properties under compressive stress were investigated by changing the mechanical and magnetic properties by producing materials with different surface layer and inner layer components.

最初に表層部のSi量の影響について検討する。
内層部に用いるSi=3.0%、Al=0.20%、O=0.0018%とした鋼と、表層部に用いるAl=0.2%、O=0.0018%とし、Siを3.0〜6.5%まで変化させた鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)が0.3となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため250℃で温間圧延を行い、板厚を0.25mmとした。その後、1000℃×30sの仕上焼鈍を行い圧延方向に沿って長さ180mm、幅30mmの単板サンプルを作製した。得られた単板に対して、長手方向に100MPaの圧縮応力を加え、応力負荷方向にサンプルを励磁して磁気特性を調査した。
得られた結果を、図1に表層部のSi量と鉄損W3/5kとの関係として示す。図1より、表層のSi量が4%以上で鉄損が低下していることがわかる。この原因は明確ではないが複層化により鋼板表層部の応力が相対的に低くなり、渦電流損に好ましくない磁区構造変化が生じにくくなったためではないかと考えられる。
以上より、表層部のSi量は4%以上、好ましくは4.5%以上とする。一方、Si量が7%を超えた場合には温間圧延を行っても板破断を防止することが困難であるため、表層部のSi量の上限は7%とする。
First, the influence of the Si content in the surface layer will be examined.
Steel with Si = 3.0%, Al = 0.20% and O = 0.0018% used for the inner layer, and steel with Al = 0.2% and O = 0.0018% used for the surface layer and Si varied from 3.0 to 6.5% After melting and making each ingot, lamination is performed so that the multilayer ratio (surface layer thickness / total thickness) is 0.3, and then hot rolling and hot-rolled sheet annealing at 900 ° C x 30s are performed to prevent sheet breakage. Therefore, warm rolling was performed at 250 ° C., and the plate thickness was set to 0.25 mm. Thereafter, finish annealing at 1000 ° C. × 30 s was performed to produce a single plate sample having a length of 180 mm and a width of 30 mm along the rolling direction. The obtained single plate was subjected to a compressive stress of 100 MPa in the longitudinal direction, and the sample was excited in the stress load direction to investigate the magnetic characteristics.
The obtained results are shown in FIG. 1 as the relationship between the Si amount in the surface layer portion and the iron loss W3 / 5k. FIG. 1 shows that the iron loss is reduced when the Si content in the surface layer is 4% or more. The cause of this is not clear, but it is thought that the stress at the surface layer portion of the steel sheet becomes relatively low due to the multi-layering, and the magnetic domain structure change which is undesirable for eddy current loss is less likely to occur.
From the above, the Si content in the surface layer portion is 4% or more, preferably 4.5% or more. On the other hand, when the Si content exceeds 7%, it is difficult to prevent sheet breakage even if warm rolling is performed, so the upper limit of the Si content in the surface layer portion is 7%.

次に内層部のSi量について検討する。
表層部に用いるSi=5.40%、Al=0.30%、O=0.0018%とした鋼と、内層部に用いるAl=0.2%、O=0.0017%とし、Siを1.0〜5.0%まで変化させた鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)が0.3となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため250℃で温間圧延を行い、板厚を0.25mmとした。その後、1000℃×30sの仕上焼鈍を行い幅30mm、長さ180mmの単板サンプルを切り出し磁化方向に100MPaの圧縮応力を付与して上記と同様に磁気特性を評価した。
以上より得られた結果を、図2に内層部のSi量と鉄損W3/5kとの関係として示す。図2より、内層部のSi量が4%を超えると鉄損が増加することがわかる。これは、表層と内層のSi差が小さくなったために、複層化の効果が小さくなり、渦電流損に好ましくない磁区構造変化が生じたためではないかと考えられる。
以上より、内層部のSi量は4%以下とする。また、下限は鉄損の観点から好ましくは2%以上、より好ましくは2.5%以上とする。
Next, the amount of Si in the inner layer will be examined.
Steel with Si = 5.40%, Al = 0.30% and O = 0.0018% used for the surface layer part, and steel with Al = 0.2% and O = 0.0017% used for the inner layer part and Si varied from 1.0 to 5.0% After melting and making each ingot, lamination is performed so that the multilayer ratio (surface layer thickness / total thickness) is 0.3, and then hot rolling and hot-rolled sheet annealing at 900 ° C x 30s are performed to prevent sheet breakage. Therefore, warm rolling was performed at 250 ° C., and the plate thickness was set to 0.25 mm. Thereafter, finish annealing at 1000 ° C. × 30 s was performed, a single plate sample having a width of 30 mm and a length of 180 mm was cut out, a compressive stress of 100 MPa was applied in the magnetization direction, and the magnetic characteristics were evaluated in the same manner as described above.
The results obtained from the above are shown in FIG. 2 as the relationship between the Si amount in the inner layer and the iron loss W3 / 5k. FIG. 2 shows that the iron loss increases when the Si content in the inner layer exceeds 4%. This is considered to be because the difference in Si between the surface layer and the inner layer is reduced, so that the effect of multi-layering is reduced and a magnetic domain structure change which is undesirable for eddy current loss occurs.
From the above, the Si content in the inner layer is made 4% or less. The lower limit is preferably 2% or more, more preferably 2.5% or more from the viewpoint of iron loss.

次に複層比について検討する。
表層部に用いるSi=5.30%、Al=0.20%、O=0.0018%とした鋼と、内層部に用いるSi=3.3%、Al=0.2%、O=0.0017%とした鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)を0.05〜0.9となるように貼り合わせ、その後、熱間圧延、900℃×30sの熱延板焼鈍を行い、板破断を防止するため250℃で温間圧延を行い、板厚を0.25mmとした。その後、1000℃×30sの仕上焼鈍を行い、上記により得られた材料に対して、上記実験と同様に磁気特性を評価した。
以上より得られた結果を、図3に複層比と鉄損W3/5kとの関係として示す。図3より、複層比が0.1〜0.7の場合に鉄損が低下していることがわかる。これは表層の高Si部が0.1未満もしくは0.7超では複層化の効果が小さくなったため、渦電流損に好ましくない磁区構造の変化が生じやすくなり鉄損が高くなったものと考えられる。
以上より、複層比は0.1〜0.7とする。
Next, the multilayer ratio will be examined.
Ingot made by melting steel with Si = 5.30%, Al = 0.20% and O = 0.0018% used for the surface layer and steel with Si = 3.3%, Al = 0.2% and O = 0.0017% used for the inner layer. In order to prevent sheet breakage, it is laminated so that the multilayer ratio (surface layer thickness / total thickness) is 0.05 to 0.9, followed by hot rolling and hot-rolled sheet annealing at 900 ° C. × 30 s. Warm rolling was performed at a temperature of 0.25 mm. Thereafter, finish annealing at 1000 ° C. × 30 s was performed, and the magnetic characteristics of the material obtained as described above were evaluated in the same manner as in the above experiment.
The results obtained as described above are shown in FIG. 3 as the relationship between the multilayer ratio and the iron loss W3 / 5k. FIG. 3 shows that the iron loss is reduced when the multilayer ratio is 0.1 to 0.7. This is probably because when the surface high Si part is less than 0.1 or more than 0.7, the effect of the multi-layering is reduced, and the magnetic domain structure changes unfavorably for eddy current loss and the iron loss is increased.
From the above, the multilayer ratio is 0.1 to 0.7.

このような表層部のSi量が高い複層型材料を製造もしくは加工する場合、割れやすいという問題がある。例えば、インゴット段階で複層組織とした材料を熱延、冷間圧延する場合、コイルの曲げ、曲げ戻し工程で表層に大きな引張り力が作用するため材料が割れやすい。また、モータコア加工時もコイルの曲げ、曲げ戻しが行われるため、割れの危険性がある。そこで、このような割れが生じた材料を観察したところ粗大な介在物により割れが発生している頻度が割れにくい材料と比較して大きいことが明らかとなった。そこで、粗大介在物と割れとの関係を調査した。
表層部に用いるSi=5.5%、Al=0.50%、O=0.0018%とした鋼と、内層部に用いるSi=3.5%、Mn=0.30%、Al=0.5%、O=0.0017%とした鋼を各々溶製しインゴットとした後、複層比(表層厚/全厚)が0.3となるように貼り合わせた。この際、表層部の粗大介在物量を変化させるため、表層鋼の溶製時の脱酸時間を種々変化させた。その後、熱間圧延により板厚2mmとし、900℃×30sの熱延板焼鈍を行い、40℃にて熱延焼鈍板を角度45°まで曲げ、曲げ戻し試験を行い、曲げ回数を測定した。
以上より得られた結果を、図4に直径5μm以上の介在物量と曲げ回数の関係として示す。ここで、介在物の観察は光学顕微鏡を用い、200倍で20視野観察してサイズと数量を求めた。また、5μm以上の介在物を対象としたのは、それ以下の介在物では曲げ性に影響を及ぼさないためである。図4より、介在物数が30個/mm2以下で曲げ回数が大きくなることがわかる。
以上より、鋼板表層部の直径5μm以上の介在物量は30個/mm2以下とする。
When manufacturing or processing such a multilayer material having a high Si content in the surface layer portion, there is a problem that it is easily broken. For example, when a material having a multilayer structure in the ingot stage is hot-rolled and cold-rolled, a large tensile force acts on the surface layer in the coil bending and unbending processes, so that the material is easily cracked. In addition, there is a risk of cracking because the coil is bent and unbent during the machining of the motor core. Therefore, when the material in which such a crack occurred was observed, it was found that the frequency of occurrence of the crack due to coarse inclusions was larger than that of a material that is difficult to break. Therefore, the relationship between coarse inclusions and cracks was investigated.
Steel with Si = 5.5%, Al = 0.50%, O = 0.0018% used for the surface layer part, and steel with Si = 3.5%, Mn = 0.30%, Al = 0.5%, O = 0.0017% used for the inner layer part Each was melted to form an ingot, and then bonded so that the multilayer ratio (surface layer thickness / total thickness) was 0.3. At this time, in order to change the amount of coarse inclusions in the surface layer portion, the deoxidation time at the time of melting the surface steel was variously changed. Thereafter, hot rolling was performed to obtain a sheet thickness of 2 mm, 900 ° C. × 30 s hot-rolled sheet annealing was performed, the hot-rolled annealed sheet was bent to an angle of 45 ° at 40 ° C., a bending test was performed, and the number of bendings was measured.
The results obtained above are shown in FIG. 4 as the relationship between the amount of inclusions having a diameter of 5 μm or more and the number of bendings. Here, the inclusions were observed by using an optical microscope, observing 20 fields of view at 200 ×, and determining the size and quantity. The reason why inclusions of 5 μm or more are targeted is that inclusions smaller than that do not affect the bendability. FIG. 4 shows that the number of bending increases when the number of inclusions is 30 / mm 2 or less.
From the above, the amount of inclusions with a diameter of 5 μm or more in the steel sheet surface layer portion is 30 pieces / mm 2 or less.

次に、その他の成分の限定理由について説明する。
Al:3%以下
Alは固有抵抗を上げるために有効な元素であるが、3%を超えると飽和磁束密度の低下に伴い磁束密度が低下する。よって、上限を3%とする。下限は規定しないが、脱酸の観点から0.01%以上であることが好ましい。
O:0.01%以下(好適範囲)
Oは、含有量が多い場合には介在物が多くなり、材料が割れやすくなるため、0.01%以下が好ましい。
なお、本特許は高周波域にて鉄損の低い材料を提供するものであり、1kHz以上の周波数で使用されるモータに適用することが好ましい。なお、ここで言う周波数とは基本波周波数以外にキャリア周波数が1kHz以上となっている場合も含み、このような場合に対しても効果的である。
Next, the reasons for limiting other components will be described.
Al: 3% or less
Al is an effective element for increasing the specific resistance, but if it exceeds 3%, the magnetic flux density decreases as the saturation magnetic flux density decreases. Therefore, the upper limit is 3%. Although a lower limit is not prescribed | regulated, it is preferable that it is 0.01% or more from a viewpoint of deoxidation.
O: 0.01% or less (preferable range)
O content is preferably 0.01% or less because inclusions increase when the content is large and the material is easily cracked.
This patent provides a material with low iron loss in a high frequency range, and is preferably applied to a motor used at a frequency of 1 kHz or higher. The frequency mentioned here includes a case where the carrier frequency is 1 kHz or more in addition to the fundamental frequency, and is effective also in such a case.

次に、本発明のモータコア材料の製造方法について説明する。
本発明においては、表層部と内層部のSi量を変化させることが重要である。そのための手法として、例えば、成分の異なる材料を各々転炉で吹練し、溶鋼を脱ガス処理し所定の成分に調整し、引き続き、鋳造を行いスラブとした後、所定の複層比となるように表層部の鋼板と内層部の鋼板を貼り合わせる。その後、スラブを通常の方法にて熱間圧延、次いで、一回の冷間または温間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間または温間圧延により所定の板厚とした後に、仕上焼鈍を行うことにより本発明の複層型材料を得ることができる。ここで、熱間圧延時の仕上温度、巻取り温度は特に規定する必要はなく、通常でかまわない。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。
また、鋼板を複層組織とすることで上記複層型材料として用いることも可能である。例えば、表層部をSi:4〜7%とし、内層部をSi: 4%以下とするために、仕上焼鈍板にSiの浸珪処理を行うことができる。
仕上焼鈍板への浸珪処理を行う場合には、高温での浸珪、拡散処理が必要となるため結晶粒が粗大化し、材料が割れやすくなる。このため、浸珪処理を行う場合にはAlを0.01%以上とし、浸珪処理時の粒成長を抑制する等の手法をとることが好ましい。
板厚の規定は特にないが、高周波鉄損低減の観点から0.35mm以下、より好ましくは0.2mm以下である。下限は生産性の観点から0.05mm以上とすることが好ましい。
Next, the manufacturing method of the motor core material of this invention is demonstrated.
In the present invention, it is important to change the amount of Si in the surface layer portion and the inner layer portion. For this purpose, for example, materials having different components are blown in a converter, the molten steel is degassed and adjusted to a predetermined component, and subsequently cast into a slab, and then a predetermined multilayer ratio is obtained. Thus, the steel plate of the surface layer portion and the steel plate of the inner layer portion are bonded together. After that, the slab is hot-rolled in a normal manner, and then made into a predetermined sheet thickness by two or more cold or warm rolling sandwiched between one cold or warm rolling or intermediate annealing, By performing the finish annealing, the multilayer material of the present invention can be obtained. Here, the finishing temperature and the coiling temperature at the time of hot rolling do not need to be specified in particular, and may be normal. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential.
Moreover, it is also possible to use as a multilayer material by making a steel plate into a multilayer structure. For example, in order to set the surface layer portion to Si: 4 to 7% and the inner layer portion to Si: 4% or less, the finish annealing plate can be subjected to Si siliconization treatment.
When performing the siliconization treatment to the finish annealed plate, it is necessary to perform the siliconization and diffusion treatment at a high temperature, so that the crystal grains become coarse and the material is easily broken. For this reason, when performing a siliconization process, it is preferable to take Al and 0.01% or more, and to take the technique of suppressing the grain growth at the time of a siliconization process.
The thickness of the plate is not particularly specified, but is 0.35 mm or less, more preferably 0.2 mm or less from the viewpoint of reducing high-frequency iron loss. The lower limit is preferably 0.05 mm or more from the viewpoint of productivity.

以上により、本発明のモータコア用材が得られる。そして、これを鉄心として用いることで本発明のモータコアが得られ、本発明のモータコアは、特に、圧縮応力下で使用される場合に適している。前述したように、通常、焼きばめ相当の圧縮応力100MPaを付与することで鉄損は2.6倍程度劣化する。これに対し、本発明の材料を用いることにより従来材に比べ1割以上(鉄損劣化割合2.3倍以下)の鉄損低減を図ることが可能となりモータの効率向上に寄与できる。ここで、圧縮応力を印加される部分の鉄損改善代が1割以下ではモータの効率向上割合が小さく、材料の改善代が製造ばらつき等にまぎれてしまうため、材料の鉄損改善代は従来材の1割以上とした。   Thus, the motor core material of the present invention is obtained. And the motor core of this invention is obtained by using this as an iron core, and the motor core of this invention is suitable especially when used under a compressive stress. As described above, the iron loss usually deteriorates about 2.6 times by applying a compressive stress of 100 MPa equivalent to shrink fitting. On the other hand, by using the material of the present invention, it is possible to reduce the iron loss by 10% or more (iron loss deterioration ratio 2.3 times or less) compared to the conventional material, which can contribute to the improvement of the motor efficiency. Here, if the iron loss improvement allowance of the part to which compressive stress is applied is less than 10%, the efficiency improvement rate of the motor is small, and the material improvement allowance is covered by manufacturing variations, etc. More than 10% of the material.

表1に示す鋼を用い、転炉で吹練した後に脱ガス処理を行うことにより所定の成分に調整後鋳造し、スラブとした。次いで、得られたスラブを表2に示す複層比となるように積層し、外周を溶接した後、1140℃で1hr加熱し、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は610℃とし、巻取り後、900℃×30sの熱延板焼鈍を施した。その後、酸洗を行い、表2に示す仕上焼鈍条件で焼鈍を行った。   The steel shown in Table 1 was blown in a converter and then degassed to adjust to a predetermined component and then cast into a slab. Subsequently, the obtained slabs were laminated so as to have a multilayer ratio shown in Table 2, the outer periphery was welded, heated at 1140 ° C. for 1 hour, and hot rolled to a thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C. The coiling temperature was 610 ° C., and after coiling, hot rolled sheet annealing at 900 ° C. × 30 s was performed. Thereafter, pickling was performed, and annealing was performed under the finish annealing conditions shown in Table 2.

Figure 0005326441
Figure 0005326441

以上により得られた供試材に対して、圧延方向より長さ180mmの単板サンプルを切り出し、長手方向に100MPaの圧縮応力を付与し、圧縮応力付与方向の磁気特性を単板磁気測定器にて測定した。 A single plate sample with a length of 180 mm from the rolling direction is cut out from the specimen obtained as described above, and a compressive stress of 100 MPa is applied in the longitudinal direction. Measured.

また、上記供試材を用いて曲げ試験を行った。曲げ試験は、熱延焼鈍板を40℃にて角度45°の曲げ、曲げ戻しを行うことにより評価した。
また、5μm以上の介在物量は以下のようにして求めた。
5μm以上の介在物量
光学顕微鏡を用い200倍にて20視野観察し、介在物と明確に識別可能な円相当直径が5μm以上の量をカウントした
得られた結果を成分、製造条件と併せて表2に示す。
Moreover, the bending test was done using the said test material. The bending test was evaluated by bending and unbending the hot-rolled annealed plate at an angle of 45 ° at 40 ° C.
Further, the amount of inclusions of 5 μm or more was determined as follows.
Inclusion amount of 5 μm or more Using an optical microscope, 20 fields of view were observed at 200 ×, and the results of counting the amount of the circle equivalent diameter of 5 μm or more that can be clearly distinguished from inclusions were listed together with the components and manufacturing conditions. It is shown in 2.

Figure 0005326441
Figure 0005326441

表2より、表層および内層の成分、複層比を本発明の範囲とすることにより鉄損が低く通板時の割れのない鋼板が得られることがわかる。特に、100MPaの圧縮応力下における鉄損特性は比較例に一層優れていることがわかる。そして、本発明では100MPaの圧縮応力下における鉄損値W3/5kが無応力下における鉄損値W3/5kの2.3倍以下となっており、圧縮応力下で使用されるモータコアとして最適であることがわかる。   From Table 2, it can be seen that by setting the components of the surface layer and the inner layer and the multilayer ratio within the range of the present invention, a steel sheet having low iron loss and no cracking during sheet passing can be obtained. In particular, it can be seen that the iron loss characteristics under a compressive stress of 100 MPa are even better than the comparative example. In the present invention, the iron loss value W3 / 5k under a compressive stress of 100 MPa is 2.3 times or less than the iron loss value W3 / 5k under no stress, which is optimal as a motor core used under a compressive stress. I understand.

本発明の鉄損特性に優れたモータコアを用いることにより、コア材料に圧縮応力が付与されるエアコンコンプレッサーモータ、ハイブリッドEV用駆動モータ、EV用駆動モータ、FCEV用駆動モータ、高速発電機の高周波回転機を中心に、多様な用途での使用が可能となる。   Air conditioning compressor motor, hybrid EV drive motor, EV drive motor, FCEV drive motor, and high-speed generator high-speed generator that compressive stress is applied to the core material by using the motor core with excellent iron loss characteristics of the present invention It can be used for a variety of purposes, mainly in the machine.

表層Si量と鉄損との関係を示す図である。It is a figure which shows the relationship between surface layer Si amount and an iron loss. 内層Si量と鉄損との関係を示す図である。It is a figure which shows the relationship between inner layer Si amount and iron loss. 複層比と鉄損との関係を示す図である。It is a figure which shows the relationship between a multilayer ratio and an iron loss. 5μm以上の介在物個数と曲げ回数との関係を示す図である。It is a figure which shows the relationship between the number of inclusions 5 micrometers or more, and the bending frequency.

Claims (2)

表層部が、質量%で、Si:4〜7%、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなり、内層部が、質量%で、Si:4%以下、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなる複層型材料を鉄心として用い、該複層型材料の表層部厚みの全厚に対する比率が0.1〜0.7であり、前記表層部における直径5μm以上の介在物量が30個/mm 以下であることを特徴とするモータコア。 The surface layer part is composed of a steel sheet that includes Si: 4 to 7%, Al: 3% or less, with the balance being Fe and inevitable impurities, and the inner layer part is mass%, Si: 4% or less, Al: comprises 3%, using a multilayered material consisting of a steel plate is a balance of Fe and inevitable impurities as a core, Ri ratio 0.1-0.7 der to total thickness of the surface layer portion thickness of said plurality layer-type material , motor core amount of inclusions or more in diameter 5μm in the surface layer portion, characterized in der Rukoto 30 / mm 2 or less. 表層部が、質量%で、Si:4〜7%、Al:3%以下を含み、残部Feおよび不可避不純物である鋼板からなり、内層部が、質量%で、Si:4%以下、Al:3%以下を含み、残部Feおよび不可避不純物からなる複層型モータコア材料であり、前記表層部厚みの全厚に対する比率が0.1〜0.7であり、前記表層部における直径5μm以上の介在物量が30個/mm 以下であることを特徴とするモータコア材料。 The surface layer part is composed of a steel sheet that includes Si: 4 to 7%, Al: 3% or less, with the balance being Fe and inevitable impurities, and the inner layer part is mass%, Si: 4% or less, Al: comprises 3%, a multilayered motor core material balance consisting of Fe and unavoidable impurities, Ri total ratio thickness 0.1-0.7 der of the surface layer portion thickness, diameter of at least 5μm in the surface layer portion motor core material interposed amount is characterized in der Rukoto 30 / mm 2 or less.
JP2008225460A 2008-09-03 2008-09-03 Motor core and motor core material Active JP5326441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225460A JP5326441B2 (en) 2008-09-03 2008-09-03 Motor core and motor core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225460A JP5326441B2 (en) 2008-09-03 2008-09-03 Motor core and motor core material

Publications (2)

Publication Number Publication Date
JP2010062275A JP2010062275A (en) 2010-03-18
JP5326441B2 true JP5326441B2 (en) 2013-10-30

Family

ID=42188776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225460A Active JP5326441B2 (en) 2008-09-03 2008-09-03 Motor core and motor core material

Country Status (1)

Country Link
JP (1) JP5326441B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326440B2 (en) * 2008-09-03 2013-10-30 Jfeスチール株式会社 High-speed motor core and high-speed motor core material with excellent heat dissipation
JP5561068B2 (en) * 2010-09-28 2014-07-30 Jfeスチール株式会社 Motor core with low iron loss degradation under compressive stress
JP5561094B2 (en) * 2010-10-18 2014-07-30 Jfeスチール株式会社 Motor core with low iron loss degradation under compressive stress
JP5561148B2 (en) * 2010-12-22 2014-07-30 Jfeスチール株式会社 Motor core with low iron loss degradation under compressive stress
JP6024867B2 (en) * 2012-02-06 2016-11-16 Jfeスチール株式会社 Steel sheet for motor cores with excellent iron loss characteristics after punching
JP6048282B2 (en) * 2013-03-29 2016-12-21 Jfeスチール株式会社 Electrical steel sheet
JP6884013B2 (en) * 2017-03-22 2021-06-09 日立ジョンソンコントロールズ空調株式会社 Compressor
US20230223798A1 (en) * 2020-06-25 2023-07-13 Jfe Steel Corporation Motor core and motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177521A (en) * 1974-12-28 1976-07-05 Nippon Steel Corp
JPH05161985A (en) * 1991-12-13 1993-06-29 Nippon Steel Corp Manufacture of clad electric steel sheet
JPH05263198A (en) * 1991-12-26 1993-10-12 Nippon Steel Corp Double-layered non-oriented silicon steel sheet excellent in magnetic property
JPH11307354A (en) * 1998-04-17 1999-11-05 Nkk Corp High efficiency and high speed rotary machine
JPH11307352A (en) * 1998-04-17 1999-11-05 Nkk Corp High efficiency motor
JP2003027193A (en) * 2001-07-10 2003-01-29 Nkk Corp Nonoriented silicon steel sheet having excellent calking property
JP4852804B2 (en) * 2001-07-13 2012-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP4827368B2 (en) * 2003-06-26 2011-11-30 Jfeスチール株式会社 Manufacturing method of stator core for rotating machine with excellent magnetic properties

Also Published As

Publication number Publication date
JP2010062275A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
TWI683009B (en) Non-oriented electrical steel sheet
JP5326441B2 (en) Motor core and motor core material
JP6866935B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
JP5444812B2 (en) Core material for high-speed motors
JP5699642B2 (en) Motor core
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP6555448B1 (en) Multi-layer electrical steel sheet
WO2014024222A1 (en) High-strength electromagnetic steel sheet and method for producing same
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
WO2013024894A1 (en) Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
JP5939190B2 (en) Electrical steel sheet
JP6048282B2 (en) Electrical steel sheet
JP6123234B2 (en) Electrical steel sheet
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP4827368B2 (en) Manufacturing method of stator core for rotating machine with excellent magnetic properties
JP2010229519A (en) Method for manufacturing non-oriented magnetic steel sheet
JP7028148B2 (en) Non-oriented electrical steel sheet and its manufacturing method
CN111465709B (en) Multilayer electromagnetic steel sheet
JP4810788B2 (en) Helical machining core material and helical machining core with excellent iron loss characteristics
JP5825479B2 (en) Manufacturing method of high strength non-oriented electrical steel sheet
JP5088144B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250