JPH0651897B2 - Semi-process electrical steel sheet - Google Patents

Semi-process electrical steel sheet

Info

Publication number
JPH0651897B2
JPH0651897B2 JP1098170A JP9817089A JPH0651897B2 JP H0651897 B2 JPH0651897 B2 JP H0651897B2 JP 1098170 A JP1098170 A JP 1098170A JP 9817089 A JP9817089 A JP 9817089A JP H0651897 B2 JPH0651897 B2 JP H0651897B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
annealing
semi
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1098170A
Other languages
Japanese (ja)
Other versions
JPH02274845A (en
Inventor
裕義 屋鋪
輝雄 金子
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1098170A priority Critical patent/JPH0651897B2/en
Publication of JPH02274845A publication Critical patent/JPH02274845A/en
Publication of JPH0651897B2 publication Critical patent/JPH0651897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、変圧器や電動機等の鉄心形状或いは磁気シ
ールド材に加工した後に脱炭を伴う歪取り焼鈍を実施す
ることで板面垂直方向に結晶格子の〈100〉軸が高密
度に集積した磁束密度の高い材料とすることのできるセ
ミプロセス電磁鋼板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is directed to a plate vertical direction by performing strain relief annealing accompanied with decarburization after processing into an iron core shape of a transformer or an electric motor or a magnetic shield material. In addition, the present invention relates to a semi-processed electromagnetic steel sheet which can be a material having a high magnetic flux density in which the <100> axis of the crystal lattice is integrated with high density.

〈従来の技術〉 一般に、電動機,発電機,変圧器等の鉄心材料には高率
でSiを含有すると共にC等の不純物元素を極力抑えた電
磁鋼板が使用されているが、この電磁鋼板には低い鉄損
値と高い磁束密度が要求されており、これら所要磁気特
性を実現するためには電気抵抗を高めかつ磁化容易軸方
向である体心立方格子の〈100〉軸を使用磁界方向に
集積させるのが有効とされている。
<Prior Art> Generally, magnetic steel sheets containing Si at a high rate and suppressing impurity elements such as C as much as possible are used for iron core materials of electric motors, generators, transformers, etc. Requires a low iron loss value and a high magnetic flux density. In order to realize these required magnetic characteristics, the <100> axis of the body-centered cubic lattice, which is the axis direction of the easy magnetization, is set in the direction of the magnetic field used. It is considered effective to collect them.

そして、使用磁界方向が一方向に限られている場合に
は、このような使用形態の下で特に良好な磁気特性を示
す3%程度(以降、成分割合を示す%は重量%とする)
のSiを含んだ一方向性電磁鋼板が適用される。これは、
第1図(a)で示すように、一方向性電磁鋼板では{11
0}面が板面に平行していて〈100〉軸を圧延方向に
集積させているため、圧延方向に磁界をかけて使用した
場合の磁気特性が著しく優れていることによるものであ
る。しかし、一方で、この一方向性電磁鋼板は圧延方向
以外の方向の磁化が難しく、そのため電動機や発電機等
の回転機器の如き磁界が板面内の様々な方向に作用する
部材として使用した場合には格別な効果の得られるもの
ではなかった。
Then, when the direction of the magnetic field used is limited to one direction, about 3% showing particularly good magnetic characteristics under such a usage pattern (hereinafter,% indicating the component ratio is weight%).
The grain-oriented electrical steel sheet containing Si is applied. this is,
As shown in Fig. 1 (a), in the grain-oriented electrical steel sheet {11
This is because the {0} plane is parallel to the plate surface and the <100> axis is integrated in the rolling direction, so that the magnetic properties are extremely excellent when used by applying a magnetic field in the rolling direction. However, on the other hand, this unidirectional electrical steel sheet is difficult to magnetize in a direction other than the rolling direction, and therefore, when it is used as a member in which a magnetic field acts in various directions within the plate surface, such as a rotating machine such as an electric motor or a generator. It wasn't a special effect.

そこで、磁界が板面内の不特定方向に作用する用途の場
合には、第1図(b)〜第1図(e)に示されるような集合組
織を持つ“無方向性電磁鋼板”が使用される。もっと
も、これら無方向性電磁鋼板の中にあっても、実際に良
好な磁気特性を示すのは第1図(b)乃至第1図(d)に示す
ような{100}面が板面に平行し〈100〉軸が板面
垂直方向に集積したものであるが、このような集合組織
を持つと3つの互いに直交した〈100〉軸のうちの2
つまでが板面に平行となる。そして、この板面に平行な
2つの〈100〉軸の集積具合は用途によって望まれる
ものが異なり、例えば板面内の互いに直交する2方向に
磁界が加わる“EI型鉄心”のような場合は第1図(b)
及び第1図(c)に示す如き{100}〈001〉,{1
00}〈011〉方位の集合組織のものが好ましく、ま
た板面内のあらゆる方向に磁界が加わるものの場合は第
1図(d)に示す{100}面内無方向集合組織のものを
使用するか、もしくは第1図(b)及び第1図(c)に示す
{100}〈001〉,{100}〈011〉型集合組
織のものを板面内で角度を変えて打ち抜き、これらを重
ね合わせて使用するのが好ましいと言える。
Therefore, in the case where the magnetic field acts in an unspecified direction on the plate surface, a "non-oriented electrical steel sheet" having a texture as shown in Figs. 1 (b) to 1 (e) is used. used. However, even among these non-oriented electrical steel sheets, the fact that good magnetic properties are actually shown is that the {100} plane shown in FIGS. 1 (b) to 1 (d) is the plate surface. The parallel <100> axes are accumulated in the direction perpendicular to the plate surface. With such a texture, two out of three <100> axes which are orthogonal to each other are formed.
Up to two are parallel to the board surface. The desired degree of integration of the two <100> axes parallel to the plate surface differs depending on the application. For example, in the case of "EI type iron core" where magnetic fields are applied in two directions orthogonal to each other in the plate surface. Fig. 1 (b)
And {100} <001>, {1} as shown in FIG. 1 (c).
00} <011> orientation texture is preferred, and in the case where a magnetic field is applied in all directions within the plate surface, use the {100} in-plane non-directional texture shown in Fig. 1 (d). Alternatively, the {100} <001>, {100} <011> type textures shown in FIGS. 1 (b) and 1 (c) are punched at different angles in the plate plane, and these are stacked. It can be said that it is preferable to use them together.

ところで、このような板面垂直方向に〈100〉軸を持
つ無方向性電磁鋼板は、従来、次に示す如き「凝固組織
を用いる方法」と「高温焼鈍による方法」の2方法で製
造されている。
By the way, such a non-oriented electrical steel sheet having a <100> axis in the direction perpendicular to the sheet surface has been conventionally manufactured by two methods, "a method using a solidification structure" and "a method by high temperature annealing" as shown below. There is.

このうち、「凝固組織を用いる方法」は「鋼を凝固させ
ると熱流方向に〈100〉軸を持つ結晶が成長するが、
板状に凝固させると冷却面である板面に対して熱流方向
が垂直となるのでこの方向に〈100〉軸が配向する」
との“鋼の凝固時における結晶の配向性”を利用したも
ので、具体的には“溶湯超急冷法によるもの”と“イン
ゴット柱状晶を利用する方法”の2方法がある。
Among them, the "method using a solidification structure" is "when solidifying steel, crystals having a <100> axis in the heat flow direction grow,
When solidified into a plate, the heat flow direction becomes perpendicular to the plate surface, which is the cooling surface, so the <100> axis is oriented in this direction. ”
And "the orientation of crystals during solidification of steel" are used, and specifically, there are two methods, "a method using a melt quenching method" and "a method using ingot columnar crystals".

“溶湯急冷によるもの”は、高速回転する冷却ロールの
表面に溶湯を噴出して0.05〜0.5mm厚程度の薄板を直接
的に製造する方法であり、この方法で6%程度のSiを含
む珪素薄帯を製造すると板面に垂直か或いは垂直方向に
対して20〜30°傾いた方向に長軸を持つ柱状粒組織
が得られる。
"Melting by quenching" is a method of directly producing a thin plate with a thickness of about 0.05 to 0.5 mm by jetting the molten metal onto the surface of a cooling roll that rotates at a high speed, and using this method, silicon containing about 6% Si. When a thin strip is manufactured, a columnar grain structure having a long axis in a direction perpendicular to the plate surface or inclined by 20 to 30 ° with respect to the vertical direction is obtained.

一方、“インゴット柱状晶を利用する方法”は、特殊な
鋳造方法によって製造した〈100〉繊維組織の柱状晶
インゴットを{100}面が圧延面となるように圧延
し、これを1000℃以上の温度で焼鈍して{100}
〈001〉集合組織の珪素鋼板を製造する方法である。
On the other hand, in the "method using ingot columnar crystals", a columnar crystal ingot having a <100> fiber structure manufactured by a special casting method is rolled so that the {100} plane becomes a rolling plane, and this is rolled at 1000 ° C or higher. Annealed at temperature {100}
<001> A method for producing a silicon steel sheet having a texture.

これに対して、「高温焼鈍による方法」は高温焼鈍によ
って板面垂直方向に〈100〉軸を持った結晶粒を成長
させる方法で、次の2つの手法が知られている。
On the other hand, the “method by high temperature annealing” is a method of growing crystal grains having a <100> axis in the direction perpendicular to the plate surface by high temperature annealing, and the following two methods are known.

一つは、焼鈍雰囲気の規定に主たる特徴を持った方法で
あって、厚さ:0.15mm以下の薄珪素鋼板を用い、弱酸化
性雰囲気下において1000℃以上の温度で焼鈍を施す
手法である。この方法によると、既存の結晶粒は一旦板
厚程度の大きさにまで成長するが、その後表面エネルギ
ーを駆動力として板面垂直方向に〈100〉軸を持った
結晶粒が優先的に成長することとなる。
One is a method that has a main characteristic in the regulation of the annealing atmosphere, and is a method of using a thin silicon steel sheet having a thickness of 0.15 mm or less and performing annealing at a temperature of 1000 ° C. or more in a weakly oxidizing atmosphere. . According to this method, the existing crystal grains once grow to the size of the plate thickness, but thereafter the crystal grains having the <100> axis in the direction perpendicular to the plate surface preferentially grow with the surface energy as the driving force. It will be.

今一つは、Al等を微量添加した珪素鋼を用い、これを0
°と90°の両方向に圧延(交叉圧延)してから115
0℃の温度で最終焼鈍を行う方法であって、2次再結晶
により{100}〈001〉方位の結晶粒を実現する手
法である。
Another is to use silicon steel with a slight addition of Al, etc.
115 after rolling (cross rolling) in both 90 ° and 90 ° directions
This is a method of performing final annealing at a temperature of 0 ° C., which is a method of realizing crystal grains of {100} <001> orientation by secondary recrystallization.

しかしながら、これら何れの方法にも以下に示すような
各種の問題点が指摘されており、所望性能の製品を安定
して製造する上で少なからぬ障害となっていた。
However, in each of these methods, the following various problems have been pointed out, which has been a considerable obstacle to the stable manufacture of products with desired performance.

〈発明が解決しようとする課題〉 即ち、「凝固組織を用いる方法」のうちの“溶湯急冷法
によるもの”では、得られる電磁鋼板は板面垂直方向の
〈100〉軸密度が3〜6倍程度しかなく、また板厚精
度も低いため、電磁鋼板に必要とされる高い占積率は確
保できない。
<Problems to be Solved by the Invention> That is, in the “melting quenching method” of “method using solidification structure”, the electrical steel sheet obtained has a <100> axial density of 3 to 6 times in the sheet surface vertical direction. Since the thickness is low and the plate thickness accuracy is low, the high space factor required for electromagnetic steel plates cannot be secured.

また、“インゴット柱状晶を用いる方法”では板面垂直
方向に〈100〉軸を高密度で集積させると非常に大き
な結晶粒組織となり、通常は板厚の10〜100倍の結
晶粒となる。このため、交流磁界中では渦電流損失が大
きく、十分な低鉄損が確保できない。しかも、特殊な鋳
造方法の採用が必要であることから、工業的規模で実施
するのは困難である。
Further, in the "method using an ingot columnar crystal", when the <100> axis is densely integrated in the direction perpendicular to the plate surface, a very large crystal grain structure is formed, and the crystal grain is usually 10 to 100 times the plate thickness. Therefore, the eddy current loss is large in the AC magnetic field, and a sufficient low iron loss cannot be secured. Moreover, since it is necessary to adopt a special casting method, it is difficult to carry out on an industrial scale.

他方、「高温焼鈍による方法」では、何れの手法によっ
ても上記「凝固組織を用いる方法」での“インゴット柱
状晶を用いる方法”の場合と同様の問題が指摘されてい
る。つまり、弱酸化性雰囲気で焼鈍を行う場合であって
も、また交叉圧延を行う場合であっても、得られる電磁
鋼板の“板面垂直方向の〈100〉軸の集積度”を高め
ようとすると結晶粒組織が非常に大きくなり、交流磁界
中での鉄損特性が悪化するのを防止できなかった。加え
て、“弱酸化性雰囲気で焼鈍を行う方法”は厚さ0.15mm
以下の極く薄い板にしか適用できないとの制約もあり、
何れにしても工業的に満足できる方法とは言い難かっ
た。
On the other hand, in the "method by high temperature annealing", the same problems as in the case of "method using ingot columnar crystals" in "method using solidified structure" are pointed out by any method. That is, even when annealing is performed in a weakly oxidizing atmosphere or when cross rolling is performed, it is attempted to increase the "integration degree of the <100> axis in the direction perpendicular to the plate surface" of the obtained electrical steel sheet. Then, the crystal grain structure became very large, and it was not possible to prevent deterioration of iron loss characteristics in an alternating magnetic field. In addition, the "method of annealing in a weakly oxidizing atmosphere" is 0.15mm thick
There is also a restriction that it can only be applied to the following extremely thin plates,
In any case, it was hard to say that it was an industrially satisfactory method.

このようなことから、本発明の目的は、従来の電磁鋼板
に指摘される前記問題点を払拭し、高磁束密度でしかも
鉄損特性の良好な電磁材料製品を簡単かつ安定に提供し
得る工業的な手段を見出すことに置かれた。
Therefore, an object of the present invention is to eliminate the above-mentioned problems pointed out in conventional electromagnetic steel sheets, and to easily and stably provide an electromagnetic material product having a high magnetic flux density and good iron loss characteristics. To find a suitable means.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく数多くの実験を繰
り返しながら研究を重ねた結果、「Si含有量の他にC含
有量等をも特定範囲に規制した珪素鋼板に、歪取焼鈍を
行っていないセミプロセス電磁鋼板の段階で“板面垂直
方向への〈100〉軸密度の高いα単相の集合組織”の
表層を形成しておくと共に、鉄心形状又は磁気シールド
材への加工後に施される歪取焼鈍を脱炭が進行する条件
で実施するようにし、この脱炭を兼ねた歪取焼鈍によっ
て脱炭が進行する過程で表層以外の鋼板内部にγ→α変
態を発生させると、板厚全体にわたり板面垂直方向に
〈100〉軸が高密度で集積した“低鉄損で磁束密度も
高い結晶粒組織の電磁鋼板製品”が格別な寸法上の制限
を受けることなく、しかも工業的に十分満足できる規模
で簡単かつ安定して得られる」ことを知見するに至っ
た。
<Means for Solving the Problems> The inventors of the present invention conducted repeated research while repeating many experiments to achieve the above-mentioned object, and as a result, “the C content and the like in addition to the Si content are regulated within a specific range. A surface layer of "α single phase texture with high <100> axial density in the direction perpendicular to the plate surface" is formed on the formed silicon steel plate at the stage of the semi-processed electromagnetic steel plate not subjected to stress relief annealing, and The stress relief annealing performed after processing into the shape or the magnetic shield material should be performed under the condition that decarburization progresses, and inside the steel sheet other than the surface layer during the process of decarburization by the strain relief annealing that also serves as decarburization. When the γ → α transformation occurs in the sheet, the "100 degree" axis high-density magnetic steel sheet product with a low grain loss and high magnetic flux density in the direction perpendicular to the sheet surface over the entire sheet thickness has an exceptional size. We are not subject to the above restrictions, and we are fully satisfied industrially. That it has led to the knowledge that the simple and stable obtained "in scale.

本発明は、上記知見等に基づいてなされたものであり、 「C:0.02〜1.0%及びSi:0.2〜6.5%を含むと共に、
必要によりMn:5%以下をも含み、C:0.01%以下まで
脱炭したときに850℃以下の温度で実質的にα−フェ
ライト単相となる板厚:0.05〜5mmの鋼板であって、か
つ、その表層部の5〜100μmが平均結晶粒径:1mm
以下で板面垂直方向に〈100〉軸が高密度に集積した
C:0.01%以下の脱炭層とされた状態にセミプロセス電
磁鋼板を構成した点」 に特徴を有している。
The present invention has been made based on the above findings and the like, and includes "C: 0.02 to 1.0% and Si: 0.2 to 6.5%,
A steel sheet having a thickness of 0.05 to 5 mm, which also includes Mn: 5% or less if necessary, and C: becomes substantially an α-ferrite single phase at a temperature of 850 ° C. or less when decarburized to 0.01% or less, And, the average crystal grain size is 5 mm in the surface layer portion of 5 to 100 μm.
In the following, the point is that the semi-processed electromagnetic steel sheet is formed in a state in which a decarburized layer of C: 0.01% or less in which the <100> axis is densely accumulated in the sheet surface vertical direction ”.

〈作用〉 まず、本発明に係るセミプロセス電磁鋼板の製造は次の
ような観点の下に行われる。
<Operation> First, the production of the semi-processed electromagnetic steel sheet according to the present invention is performed from the following viewpoints.

即ち、従来、電磁鋼板に対する焼鈍はα−フェライト単
相の温度域で行うのが通例である。これに対し、Cを適
量添加してオーステナイト相(γ相)の温度域を拡大し
た冷間圧延珪素鋼板を“脱炭が完了したときにα単相と
なる温度域”において例えば弱脱炭性雰囲気で焼鈍する
と、この焼鈍ではCが十分に含有されていることから
〔α+γ〕2相域若しくはγ単相の温度域で焼鈍が行わ
れることになる。
That is, conventionally, it is customary to anneal an electromagnetic steel sheet in the temperature range of α-ferrite single phase. On the other hand, a cold rolled silicon steel sheet in which an appropriate amount of C is added to expand the temperature range of the austenite phase (γ phase) has, for example, a weak decarburization property in the “temperature range where the α single phase is obtained when decarburization is completed”. When annealed in an atmosphere, since C is sufficiently contained in this annealing, the annealing is performed in the [α + γ] two-phase region or the γ single-phase temperature region.

その結果、弱脱炭性雰囲気下での焼鈍のため表層部領域
が脱炭され、この部分のみがα単相となる。そして、こ
のα単相域が深部まで至らないような弱脱炭性雰囲気条
件での保持により、α結晶粒は第2図に示す如く板面垂
直方向に成長する。かくして、珪素鋼板の表層部領域は
板面垂直方向に〈100〉軸が強く集積したα単相の集
合組織を持つようになる。なお、この際の粒成長は表面
エネルギーを駆動力としたものと推定される。そして、
この段階での珪素鋼板表層のα粒は、板面平行方向に3
0〜300μm程度の大きさの柱状粒となっている。
As a result, the surface layer region is decarburized due to the annealing in the weakly decarburizing atmosphere, and only this portion becomes the α single phase. Then, the α crystal grains grow in the direction perpendicular to the plate surface as shown in FIG. 2 by holding under the condition of the weak decarburizing atmosphere such that the α single phase region does not reach the deep portion. Thus, the surface layer region of the silicon steel sheet has an α single phase texture in which the <100> axis is strongly integrated in the direction perpendicular to the sheet surface. Note that it is presumed that the grain growth at this time uses the surface energy as a driving force. And
At this stage, the α-grains on the surface of the silicon steel plate are 3 in the direction parallel to the plate surface.
It is a columnar particle having a size of about 0 to 300 μm.

このようにして製造されたセミプロセス電磁鋼板は、例
えば客先などで打ち抜き等によって変圧器や電動機の鉄
心形状や磁気シールド材に加工後、歪取焼鈍を脱炭雰囲
気下で実施して脱炭を進行させると、表層のα粒が内部
の〔α+γ〕2相域もしくはγ相域に向かって成長し、
最終的には第3図に示す如く“両表面から内部へ向かっ
て延びた柱状粒が板厚中心部で衝突したα単相の柱状粒
組織”となる。
The semi-processed electrical steel sheet produced in this way is processed into the core shape of transformers and electric motors and magnetic shield materials by punching at customers, for example, and then subjected to stress relief annealing in a decarburizing atmosphere for decarburization. , The surface α grains grow toward the internal [α + γ] 2 phase region or γ phase region,
Finally, as shown in FIG. 3, "a single phase columnar grain structure in which columnar grains extending inward from both surfaces collide at the center of the plate thickness" is obtained.

上述のように、本発明に係るセミプロセス電磁鋼板は、
歪取焼鈍での脱炭過程でγ→α変態を生じさせると予め
表層で成長していた{100}集合組織が粒成長により
内部にまで受け継がれ、板全体を簡単・容易に{10
0}集合組織とすることができる。しかも、粒成長の過
程で板面垂直方向の〈100〉軸の集積度も向上する。
As described above, the semi-processed electromagnetic steel sheet according to the present invention,
When the γ → α transformation is generated in the decarburization process in the strain relief annealing, the {100} texture that had been previously grown in the surface layer is inherited to the inside by grain growth, and the entire plate can be easily and easily {10
0} texture. Moreover, the degree of integration of the <100> axis in the direction perpendicular to the plate surface is also improved in the course of grain growth.

そして、このような処理によって実現された高集積度の
{100}集合組織では、その柱状晶の直径が板厚の数
倍以下であると渦電流損失が従来のものよりも格段に低
下し、かつ高磁束密度となることも判明した。
Then, in the highly integrated {100} texture realized by such a treatment, if the diameter of the columnar crystals is several times or less the plate thickness, the eddy current loss is significantly reduced as compared with the conventional one. It was also found that the magnetic flux density was high.

ところで、本発明においてセミプロセス電磁鋼板の成分
組成や板厚等を前記の如くに数値限定したのは次の理由
による。
By the way, in the present invention, the reason why the component composition, the plate thickness and the like of the semi-processed electromagnetic steel plate are numerically limited as described above is as follows.

A)鋼板の成分組成 C 客先等における加工後の歪取焼鈍の際、脱炭に伴うγ→
α変態を利用した集合組織制御を行うためには、歪取焼
鈍前の段階でのセミプロセス電磁鋼板のC含有量は0.02
%以上、好ましくは0.05%以上を必要とする。しかし、
C含有量が多くなり過ぎると脱炭時間が長くなって工業
プロセスとして好ましくなくなることから、C含有量は
1.0%以下、好ましくは0.5%以下、出来れば0.3%以下
とする。
A) Component composition of steel sheet C γ accompanying decarburization during stress relief annealing after processing at customers etc. →
In order to control the texture using α transformation, the C content of the semi-processed electrical steel sheet before the stress relief annealing is 0.02
% Or more, preferably 0.05% or more. But,
If the C content is too high, the decarburization time becomes long, which is not preferable for an industrial process. Therefore, the C content is
1.0% or less, preferably 0.5% or less, and preferably 0.3% or less.

なお、歪取り焼鈍後の段階におけるC含有量は、磁気特
性を劣化させないために0.01%以下、好ましくは0.005
%以下、出来れば0.003%以下を目標とするのが良い。
The C content after the stress relief annealing is 0.01% or less, preferably 0.005% or less in order not to deteriorate the magnetic properties.
% Or less, preferably 0.003% or less.

Si 磁気特性や機械的性質確保のためにSi含有量は0.2%以
上とする必要があるが、好ましくは1%以上の添加する
のが良い。ただ、過剰にSiを含有させると材料の脆化が
著しくなるばかりか磁束密度の低下を招くようにもなる
ことから、Si含有量の上限を6.5%と定めたが、好まし
くは5%以下、より好ましくは4%以下に抑えるのが良
い。
In order to secure Si magnetic properties and mechanical properties, the Si content needs to be 0.2% or more, but preferably 1% or more is added. However, if Si is excessively contained, not only the embrittlement of the material becomes remarkable but also the magnetic flux density is lowered, so the upper limit of the Si content is set to 6.5%, but preferably 5% or less, More preferably, it should be suppressed to 4% or less.

Mn Mnには電気抵抗を増大させて渦電流損失を低下させる作
用に加えて、γ相温度域を拡大しγ→α変態利用の集合
組織制御を容易化する作用があるので添加することが望
まれる成分であるが、添加する場合は0.5%以上、特に
0.8%以上含有させるのが望ましく、何れにしても脱炭
完了後850℃以下で実質的にα−フェライト単相とな
る量を最大限として添加する。これは、Mnを多量に含有
させると脱炭完了後実質的にα−フェライト単相となる
温度が低下し、焼鈍温度を極端に低くしなければならな
いためである。もっとも、Si量が高い場合にはMnを多量
に含有させることができるが、5%を超えてMnを含有さ
せると磁束密度の低下を招くようになることから、Mn含
有量の上限は5%と定めた。
Mn Mn not only has the effect of increasing the electrical resistance and reducing the eddy current loss, but also has the effect of expanding the γ phase temperature range and facilitating the texture control of the γ → α transformation utilization, so it is desirable to add it. If added, 0.5% or more, especially
It is desirable to contain 0.8% or more, and in any case, the maximum addition is the amount that substantially forms an α-ferrite single phase at 850 ° C. or lower after decarburization is completed. This is because when Mn is contained in a large amount, the temperature at which the α-ferrite single phase is substantially reduced after decarburization is completed, and the annealing temperature must be extremely lowered. However, if the Si content is high, a large amount of Mn can be contained, but if the Mn content exceeds 5%, the magnetic flux density will decrease, so the upper limit of the Mn content is 5%. I decided.

なお、「実質的にα−フェライト単相となる」とは、Mn
SやAlN等の微量な第二相が存在しても良いことを意味
している。
Note that "substantially becoming an α-ferrite single phase" means Mn
This means that a slight amount of second phase such as S or AlN may be present.

そして、C,Si,Mn以外の成分で本発明の効果を損なわ
ずに含有させ得るものとして次のものが挙げられる。即
ち、Al:3%以下、W,V,Cr,Co,Ni及びMoの1種以上:1
%以下、Cu:0.5%以下、Nb:0.5%以下、N:0.05%以
下、S:0.5%以下、Sb,Se及びAsの1種以上:0.05%以
下、B:0.005%以下並びにP:0.5%以下。
Then, as components other than C, Si and Mn which can be contained without impairing the effects of the present invention, the following can be mentioned. That is, Al: 3% or less, one or more of W, V, Cr, Co, Ni and Mo: 1
% Or less, Cu: 0.5% or less, Nb: 0.5% or less, N: 0.05% or less, S: 0.5% or less, one or more of Sb, Se and As: 0.05% or less, B: 0.005% or less and P: 0.5 %Less than.

B)鋼板の板厚 本発明では、結晶組織的な面から板厚に上限を設ける必
要はない。しかし、板厚が厚いと内部まで脱炭するのに
長時間を要し、また渦電流損失が増大するのでその上限
を5mmに定めたが、好ましくは1mm以下、出来れば0.5m
m以下とするのが良い。一方、十分に集積した{10
0}集合組織とするためには少なくとも0.05mmの板厚が
必要であるが、好ましくは0.1mm以上、更には0.15mm以
上とするのが良い。
B) Plate Thickness of Steel Plate In the present invention, it is not necessary to set an upper limit on the plate thickness in terms of crystallographic texture. However, if the plate is thick, it takes a long time to decarburize to the inside and the eddy current loss increases, so the upper limit was set to 5 mm, but preferably 1 mm or less, preferably 0.5 m.
It should be less than m. On the other hand, it was well accumulated {10
A plate thickness of at least 0.05 mm is required to form a 0} texture, but it is preferably 0.1 mm or more, and more preferably 0.15 mm or more.

C)セミプロセス電磁鋼板(歪取焼鈍前)の結晶組織 鋼板表層部に5〜100μmのC:0.01%以下の脱炭層
が存在し、その脱炭層の結晶粒が平均直径1mm以下で、
しかも板面垂直方向に〈100〉軸が高度に集積した結
晶組織である必要があり、この条件を満たしていない
と、その後の歪取脱炭焼鈍によっても製品に所望の結晶
組織を実現することが困難となる。なお、〈100〉軸
の集積度は、歪取脱炭焼鈍後に十分な磁気特性を確保す
るため結晶方位配向のないもの(ランダムなもの)に比
べて3倍以上が好ましく、より好ましくは5倍以上、出
来れば10〜15倍以上であるのが良い。
C) Crystal structure of semi-processed electromagnetic steel sheet (before stress relief annealing) 5-100 μm C: 0.01% or less decarburized layer exists in the steel sheet surface layer portion, and the crystal grains of the decarburized layer have an average diameter of 1 mm or less,
Moreover, it is necessary to have a crystal structure in which the <100> axis is highly integrated in the direction perpendicular to the plate surface. If this condition is not satisfied, the desired crystal structure can be realized in the product by subsequent strain relief decarburization annealing. Will be difficult. The degree of integration of the <100> axis is preferably 3 times or more, and more preferably 5 times, as compared with that without a crystal orientation orientation (random one) in order to secure sufficient magnetic properties after strain relief decarburization annealing. Above, if possible, it is better to be 10 to 15 times or more.

そして、先にも触れたが、このような鋼板表層部の特殊
な結晶組織は次のような方法で形成することができる。
And, as mentioned above, such a special crystal structure of the steel sheet surface layer portion can be formed by the following method.

即ち、最終製品板厚に冷間圧延された珪素鋼板を、脱炭
完了後、α−フェライト単相となる温度域で弱脱炭焼鈍
すれば良い。
That is, the silicon steel plate cold-rolled to the final product thickness may be weakly decarburized and annealed in the temperature range where the α-ferrite single phase is obtained after the decarburization is completed.

弱脱炭焼鈍は、例えば10-1Torr以下の真空中、もしくは
露点:0℃以下のH2,He,Ne,Ar,Kr,Xe,Rn,N2の1種又は
2種以上の雰囲気中にて850℃以上の温度で行い、鋼
板表層部に表面から5〜100μmの深さでα単相域を
形成する。なお、焼鈍時間は好ましくは1分〜48時間
程度である。
The weak decarburizing annealing is performed in a vacuum of, for example, 10 -1 Torr or less, or in an atmosphere of one or more of H 2 , He, Ne, Ar, Kr, Xe, Rn, N 2 having a dew point of 0 ° C. or less. At a temperature of 850 ° C. or higher to form an α single phase region at a depth of 5 to 100 μm from the surface on the surface layer of the steel sheet. The annealing time is preferably about 1 minute to 48 hours.

ところで、本発明に係る電磁鋼板用のストリップは格別
にその製造条件を問うものではないが、冷間圧延に際し
ての圧下率は10%以上、好ましくは30%以上、出来
れば50%以上とするのが良い。通常は、連続鋳造−熱
間圧延−冷間圧延の工程が採用されるが、その後に前述
した歪取焼鈍前の結晶組織を形成する弱脱炭焼鈍工程が
取り入れられ、セミプロセス電磁鋼板が製造される。な
お、この際、熱間圧延後に焼鈍を行ったり、或いは冷間
圧延を複数回行うと共に圧延間に中間焼鈍を行うこと等
は何らの妨げともならない。
By the way, the strip for magnetic steel sheets according to the present invention does not particularly require the manufacturing conditions thereof, but the rolling reduction in cold rolling is 10% or more, preferably 30% or more, and preferably 50% or more. Is good. Normally, the steps of continuous casting-hot rolling-cold rolling are adopted, but after that, the weak decarburizing annealing step of forming the crystal structure before the stress relief annealing described above is adopted, and a semi-processed electromagnetic steel sheet is manufactured. To be done. At this time, annealing after hot rolling, or performing cold rolling a plurality of times and performing intermediate annealing during rolling does not hinder anything.

上記冷延板は、連続鋳造に代わって例えば溶鋼を50mm
以下の板厚に直接凝固させた薄スラブ又は溶湯超急冷法
による極薄板を直接又は熱間圧延後に冷間圧延して製造
しても良いことは言うまでもない。
The cold-rolled sheet is made of, for example, 50 mm molten steel instead of continuous casting.
It goes without saying that a thin slab directly solidified to the following plate thickness or an ultrathin plate by a melt quenching method may be directly or hot rolled and then cold rolled.

なお、ここで言う「冷間圧延」とは「再結晶の生じない
500℃以下での圧延」を指している。
The "cold rolling" referred to here means "rolling at 500 ° C or lower at which recrystallization does not occur".

さて、セミプロセス電磁鋼板は、例えば客先等において
変圧器や電動機の鉄心形状或いは磁気シールド材に加工
された後歪取焼鈍が施されて使用されるものであるが、
本発明に係るセミプロセス電磁鋼板での上記歪取焼鈍は
通常の脱炭完了後にα−フェライト単相となる温度域で
強脱炭焼鈍する形態で実施される。これにより、歪取焼
鈍前には脱炭の行われていない鋼板内部については〔α
+γ〕2相域もしくはγ単相域の温度で焼鈍が行われる
こととなり、該脱炭焼鈍によってこの部分の脱炭が進行
するにつれ表層部より内部に向かってγ→α変態が生
じ、最終的には全板厚を通じて板面垂直方向に〈10
0〉軸が強く集積した実質的にα単相の柱状組織が得ら
れる。
By the way, the semi-processed electromagnetic steel sheet is used, for example, after being subjected to stress relief annealing after being processed into an iron core shape of a transformer or an electric motor or a magnetic shield material at a customer or the like.
The above-mentioned strain relief annealing in the semi-processed electromagnetic steel sheet according to the present invention is carried out in a form in which strong decarburization annealing is performed in a temperature range where a normal α-ferrite single phase is obtained after completion of decarburization. As a result, for the inside of the steel sheet that has not been decarburized before stress relief annealing, [α
+ Γ] Annealing is performed at a temperature of a two-phase region or a γ single-phase region, and as decarburization of this portion progresses by the decarburization annealing, a γ → α transformation occurs from the surface layer portion toward the inside, and finally <10 in the direction perpendicular to the plate surface through the entire plate thickness.
A substantially α single-phase columnar structure in which the 0> axis is strongly integrated is obtained.

上記歪取焼鈍の雰囲気は強脱炭性雰囲気であり、例えば
露点:0℃以上のHに不活性ガス又はCO或いはCO
を添加したガス中で650〜900℃の温度で焼鈍
し、板表層部に形成したα単相域を板内部に向かって成
長させる。焼鈍時間は、好ましくは5分〜20時間程度
である。
The stress relief annealing atmosphere is a strong decarburizing atmosphere. For example, dew point: H 2 at 0 ° C. or higher with an inert gas, CO, or CO.
Annealing is performed at a temperature of 650 to 900 ° C. in a gas containing 2 to grow the α single phase region formed in the surface layer of the plate toward the inside of the plate. The annealing time is preferably about 5 minutes to 20 hours.

なお、この歪取焼鈍工程は、当初のC含有量下でα相と
セメンタイトとの混合相となる温度域で行っても良い。
Note that this strain relief annealing step may be performed in a temperature range in which the α phase and cementite are mixed phases under the initial C content.

また、本発明に係るセミプロセス電磁鋼板から製造され
る製品にはコーティング等によって表面に絶縁皮膜を形
成することが好ましいが、この工程は通常は鉄心等に加
工される前に行われる。
In addition, it is preferable to form an insulating film on the surface of the product manufactured from the semi-processed electromagnetic steel sheet according to the present invention by coating or the like, but this step is usually performed before being processed into an iron core or the like.

続いて、本発明を実施例により更に具体的に説明する。Next, the present invention will be described more specifically by way of examples.

〈実施例〉 第1表に示す11種類の組成(A〜K)の真空溶製イン
ゴットを熱間鍛造にて30mm厚の板となし、次いで得ら
れた各板を2.3mm厚まで熱間圧延した後、0.5mm厚まで冷
間圧延した。しかる後、真空中で870〜1150℃,
1分〜24時間の弱脱炭焼鈍を施し、セミプロセス製品
とした。
<Examples> Vacuum ingots of 11 kinds of compositions (AK) shown in Table 1 were hot forged into a plate having a thickness of 30 mm, and each of the obtained plates was hot rolled to a thickness of 2.3 mm. After that, it was cold rolled to a thickness of 0.5 mm. Then, in vacuum, 870 ~ 1150 ℃,
Weak decarburization annealing was performed for 1 minute to 24 hours to obtain a semi-processed product.

上記焼鈍条件と表層部のC≦0.01%以下の脱炭層の厚
み,結晶粒径及びこの脱炭層の板面垂直方向の〈10
0〉軸密度に対応するX線の{200}面反射強度をま
とめて第2表に示す。
The above-mentioned annealing conditions, the thickness of the decarburized layer of C ≦ 0.01% or less in the surface layer, the crystal grain size, and the decarburized layer <10
Table 2 collectively shows the {200} plane reflection intensities of X-rays corresponding to the 0> axis density.

次に、得られたセミプロセス電磁鋼板から外径45mm,
内径33mmのリング状試片を打ち抜いた後、歪取焼鈍と
して“Hを20%含む露点:+40℃のAr気流中での
850℃,5分〜5時間の強脱炭焼鈍”を施した。この
歪取焼鈍後のC量は、 全ての試料について0.003%以下となった。
Next, from the obtained semi-processed electrical steel sheet, an outer diameter of 45 mm,
After punching out a ring-shaped specimen having an inner diameter of 33 mm, as stress relief annealing "dew containing H 2 20%: + 40 ℃ of 850 ° C. in Ar stream, strong decarburization annealing of 5 minutes to 5 hours" was subjected to . The amount of C after this strain relief annealing is It became 0.003% or less for all the samples.

そして、歪取焼鈍を終えた各試料の“表面から板厚の2/
5の位置”においてX線回折測定を行い、板面垂直方向
の〈100〉軸密度に対応するX線の{200}面反射
強度を配向性のないものの倍数で求めると共に、結晶粒
径を求めた。
Then, from the surface of each sample that has undergone strain relief annealing,
X-ray diffraction measurement was performed at the "5 position", and the {200} plane reflection intensity of the X-ray corresponding to the <100> axis density in the direction perpendicular to the plate surface was calculated as a multiple of the non-oriented one and the crystal grain size was also calculated. It was

これらの測定結果も第2表に併せて示した。The results of these measurements are also shown in Table 2.

第2表に示される結果からも次のことが確認できる。即
ち、C量が0.02%未満と本発明での規定よりも低い組成
Bのインゴットから得られた鋼板は、セミプロセス製品
段階で表層部のみが脱炭層を形成した本発明に係る製品
にならず、このようなものでは歪取焼鈍後の全厚に亘る
板面垂直方向の〈100〉軸集積度が極端に低い。
The following can be confirmed from the results shown in Table 2. That is, a steel sheet obtained from an ingot having a composition B having a C content of less than 0.02%, which is lower than the definition in the present invention, is not a product according to the present invention in which only a surface layer portion has a decarburized layer in a semi-process product stage. However, in such a material, the degree of <100> axis integration in the direction perpendicular to the plate surface over the entire thickness after strain relief annealing is extremely low.

また、Si含有量が6.5%を大きく上回る組成Jのインゴ
ットから得られた鋼板は歪取焼鈍後も飽和磁束密度が極
めて低く、良好な集合組織ができても圧延方向のB10
の値はそれ程高くならない。
Further, the steel sheet obtained from the ingot having the composition J having a Si content much higher than 6.5% has an extremely low saturation magnetic flux density even after stress relief annealing, and even if a good texture is formed, B 10 in the rolling direction is
The value of is not so high.

そして、Mn含有量が5%を大きく上回る組成Kのインゴ
ットから得られた鋼板は、冷延後に施された前記弱脱炭
焼鈍の温度では脱炭はなされてもα単相とならないので
本発明に係る製品にならず、このようなものでは歪取焼
鈍後も〈100〉軸密度が高くならないため良好な磁気
特性を獲得できない。
Further, the steel sheet obtained from the ingot having the composition K having a Mn content greatly exceeding 5% does not become the α single phase even if decarburized at the temperature of the weak decarburization annealing performed after cold rolling. The above-mentioned product cannot be obtained and good magnetic properties cannot be obtained because the <100> axial density does not increase even after strain relief annealing.

これに対して、組成A並びにC〜Iのインゴットから得
られた本発明に係るセミプロセス製品については、何れ
も歪取焼鈍後に“板面垂直方向に成長したα相の柱状組
織”が実現されており、しかも〈100〉軸が全板厚に
亘り板面垂直方向に強く集積していて優れた磁気特性を
発揮することが確認できる。
On the other hand, in the semi-processed products according to the present invention obtained from the ingots having the compositions A and C to I, the "columnar structure of the α phase grown in the direction perpendicular to the plate surface" is realized after the strain relief annealing. Moreover, it can be confirmed that the <100> axis is strongly integrated in the direction perpendicular to the plate surface over the entire plate thickness and exhibits excellent magnetic characteristics.

〈効果の総括〉 以上に説明した如く、この発明によれば、板面垂直方向
に結晶格子の〈100〉軸が高密度に集積したところ
の、高磁束密度,低鉄損の電磁材料製品を容易かつ安定
して実現し得るセミプロセス電磁鋼板が得られるなど、
産業上極めて有用な効果がもたらされる。
<Summary of Effects> As described above, according to the present invention, an electromagnetic material product having a high magnetic flux density and a low iron loss, in which the <100> axis of the crystal lattice is densely integrated in the direction perpendicular to the plate surface, is provided. It is possible to obtain a semi-processed electrical steel sheet that can be easily and stably realized.
It has an extremely useful effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は、電磁鋼板の結晶配列を説明した模式図であ
り、第1図(a),第1図(b),第1図(c),第1図(d)及び
第1図(e)はそれぞれ別の例を示したものである。 第2図は、本発明に係るセミプロセス電磁鋼板断面の金
属組織例を示した写真図である。 第3図は、本発明に係るセミプロセス電磁鋼板を歪取脱
炭焼鈍した後の断面組織を示した金属組織写真図であ
る。
FIG. 1 is a schematic diagram illustrating the crystal arrangement of an electromagnetic steel sheet, and includes FIGS. 1 (a), 1 (b), 1 (c), 1 (d) and 1 ( e) shows different examples. FIG. 2 is a photograph showing an example of the metallographic structure of the cross section of the semi-processed electromagnetic steel sheet according to the present invention. FIG. 3 is a metallographic photograph showing the cross-sectional structure of the semi-processed electromagnetic steel sheet according to the present invention after strain relief decarburization annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.02〜1.0重量%及びSi:0.2〜6.5重
量%を含み、C:0.01重量%以下まで脱炭したときに8
50℃以下の温度で実質的にα−フェライト単相となる
板厚:0.05〜5mmの鋼板であって、その表層部の5〜1
00μmが平均結晶粒径:1mm以下で板面垂直方向に
〈100〉軸が高密度に集積したC:0.01重量%以下の
脱炭層とされたことを特徴とするセミプロセス電磁鋼
板。
1. C: 0.02 to 1.0% by weight and Si: 0.2 to 6.5% by weight, and 8 when decarburized to C: 0.01% by weight or less.
A steel sheet having a thickness of 0.05 to 5 mm, which is a substantially α-ferrite single phase at a temperature of 50 ° C. or lower, and having a surface layer portion of 5 to 1
A semi-processed electrical steel sheet characterized by a decarburized layer of C: 0.01 wt% or less, in which 00 μm has an average crystal grain size of 1 mm or less and the <100> axis is densely accumulated in the direction perpendicular to the plate surface.
【請求項2】C:0.02〜1.0重量%,Si:0.2〜6.5重量
%及びMn:5重量%以下を含み、C:0.01重量%以下ま
で脱炭したときに850℃以下の温度で実質的にα−フ
ェライト単相となる板厚:0.05〜5mmの鋼板であって、
その表層部の5〜100μmが平均結晶粒径:1mm以下
で板面垂直方向に〈100〉軸が高密度に集積したC:
0.01重量%以下の脱炭層とされたことを特徴とするセミ
プロセス電磁鋼板。
2. C: 0.02 to 1.0% by weight, Si: 0.2 to 6.5% by weight and Mn: 5% by weight or less, and when decarburized to C: 0.01% by weight or less, it is substantially at a temperature of 850 ° C. or less. A steel plate with a thickness of 0.05 to 5 mm, which is an α-ferrite single phase,
5-100 μm of the surface layer has an average crystal grain size of 1 mm or less, and the <100> axis is densely integrated in the direction perpendicular to the plate surface C:
A semi-processed electrical steel sheet characterized by having a decarburized layer of 0.01% by weight or less.
JP1098170A 1989-04-18 1989-04-18 Semi-process electrical steel sheet Expired - Lifetime JPH0651897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098170A JPH0651897B2 (en) 1989-04-18 1989-04-18 Semi-process electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098170A JPH0651897B2 (en) 1989-04-18 1989-04-18 Semi-process electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH02274845A JPH02274845A (en) 1990-11-09
JPH0651897B2 true JPH0651897B2 (en) 1994-07-06

Family

ID=14212582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098170A Expired - Lifetime JPH0651897B2 (en) 1989-04-18 1989-04-18 Semi-process electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH0651897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765347B2 (en) * 2005-03-14 2011-09-07 Jfeスチール株式会社 Electrical steel sheet
JP5573147B2 (en) * 2009-12-22 2014-08-20 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH02274845A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JP6794630B2 (en) Electromagnetic steel sheet and its manufacturing method
RU2092605C1 (en) Sheets of isotropic electrotechnical steel and method for their manufacturing
US9856549B2 (en) Fe-based metal sheet and manufacturing method thereof
CN111566245A (en) Dual-orientation electrical steel sheet and method for manufacturing the same
JPH0651889B2 (en) Method for producing non-oriented silicon steel by ultra-high speed annealing
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH01252727A (en) Double oriented silicon steel sheet and its production
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JP2015061940A (en) Fe-BASED METAL PLATE HAVING EXCELLENT MAGNETIC CHARACTERISTIC
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JP2590533B2 (en) Manufacturing method of silicon steel sheet
JPH0651897B2 (en) Semi-process electrical steel sheet
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP3252700B2 (en) Electrical steel sheet with excellent magnetic properties and punchability
JP3890876B2 (en) Method for producing non-oriented electrical steel sheet
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
CN114651079A (en) Non-oriented electromagnetic steel sheet
JPH04202644A (en) Silicon steel sheet and its production
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density