JPH01252727A - Double oriented silicon steel sheet and its production - Google Patents

Double oriented silicon steel sheet and its production

Info

Publication number
JPH01252727A
JPH01252727A JP8016588A JP8016588A JPH01252727A JP H01252727 A JPH01252727 A JP H01252727A JP 8016588 A JP8016588 A JP 8016588A JP 8016588 A JP8016588 A JP 8016588A JP H01252727 A JPH01252727 A JP H01252727A
Authority
JP
Japan
Prior art keywords
silicon steel
rolling
plate
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8016588A
Other languages
Japanese (ja)
Inventor
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8016588A priority Critical patent/JPH01252727A/en
Publication of JPH01252727A publication Critical patent/JPH01252727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture the title steel sheet which has a grain structure having specific texture, reduced in iron loss, and increased in magnetic flux density on an industrial scale, by allowing a rho-alpha transformation to occur in the course of the progress of the decarburizing annealing of a cold rolled silicon steel sheet prepared under specific process conditions and containing the prescribed components. CONSTITUTION:A silicon steel sheet containing, by weight, 0.02-1% C and 0.2-6.5% Si is cold-rolled twice or more, while process-annealed between the above cold rolling stages, under the conditions of >=10% draft in the first rolling and 40-75% draft in the final rolling, by which a cold rolled silicon steel sheet of 0.05-5mm thickness is prepared. Subsequently, this steel sheet is decarburized and then subjected to decarburizing annealing at a temp. where an alpha-pherrite single phase is essentially formed until <=0.01% C content is reached, by which a double oriented silicon steel steet excellent in soft-magnetic properties and having a texture which consists of columnar crystalline grains grown in a direction perpendicular to the sheet surface from the surface toward the inner part and in which average diameter in a direction parallel to the sheet surface is regulated to <=1mm and also the {100} plane is in parallel with the sheet surface and the <001> axis is highly integrated in the rolling direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟磁気特性に優れた二方向性珪素鋼板およびそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bidirectional silicon steel sheet with excellent soft magnetic properties and a method for manufacturing the same.

〔従来の技術〕 従来より電動機、発電機、変圧器等の磁心には珪素鋼板
が用いられる。この珪素鋼板に要求される磁性は、交番
磁界中で磁気的なエネルギーti失(鉄損)が少ないこ
と、実用的な磁界中で磁束密度が高いこと、の2つであ
る。これらを実現するには、電気抵抗を高め、かつ磁化
容易方向であるbcc格子の<ioo>軸を使用磁界方
向に集積させるのが有効とされている。
[Prior Art] Silicon steel plates have conventionally been used for magnetic cores of electric motors, generators, transformers, etc. The magnetic properties required of this silicon steel plate are two things: low magnetic energy loss (iron loss) in an alternating magnetic field, and high magnetic flux density in a practical magnetic field. In order to achieve these, it is considered effective to increase the electrical resistance and to integrate the <ioo> axis of the bcc lattice, which is the direction of easy magnetization, in the direction of the used magnetic field.

使用磁界方向が一方向に限られている場合に最も良好な
磁気特性を示すのは、3%程度のStを含む一方向性珪
素鋼板である。
When the direction of the used magnetic field is limited to one direction, a unidirectional silicon steel sheet containing about 3% St exhibits the best magnetic properties.

これは第7図(イ)に示すように+1101面が板面に
平行し、<100>軸を圧延方向に集積させていること
から、圧延方向に磁界をかけて使用した場合の磁気特性
が著しく優れる。しかし、この一方向性珪素鋼板は圧延
方向以外の方向に磁化し難い、したがって電動機、発電
機等の回転機器のような、磁界が板面内の様々な方向に
作用する場合には、さしたる効果は得られない。
This is because, as shown in Figure 7 (a), the +1101 plane is parallel to the plate surface and the <100> axis is concentrated in the rolling direction, so the magnetic properties when used with a magnetic field applied in the rolling direction are Remarkably superior. However, this unidirectional silicon steel sheet is difficult to magnetize in directions other than the rolling direction, so it is not very effective when magnetic fields act in various directions within the sheet surface, such as in rotating equipment such as electric motors and generators. cannot be obtained.

磁界が板面内の複数の方向の作用する場合に使用される
のは、第7図(ロ)〜(ホ)に示されるような集合組織
を持つ珪素鋼板である。
When a magnetic field acts in a plurality of directions within the plane of the plate, a silicon steel plate having a texture as shown in FIGS. 7(b) to (e) is used.

これらの珪素鋼板のなかで良好な磁気特性を示すのは、
第2図(ロ)〜に)に示すように[1001面が板面に
平行し、<100>軸が板面垂直方向に集積したもので
ある。このような集合ll1aを持つと、3つの互いに
直交した<100>軸のうち、2つまでが板面に平行す
ることになる。そして、板面に平行する2つの<100
>軸の集積具合は用途によって望まれるものが異なる。
Among these silicon steel sheets, the one that shows good magnetic properties is
As shown in FIGS. 2(B) to 2), the [1001 plane is parallel to the plate surface and the <100> axis is integrated in the direction perpendicular to the plate surface. With such a set ll1a, up to two of the three mutually orthogonal <100> axes will be parallel to the plate surface. Then, two <100 parallel to the plate surface
>The desired degree of axle accumulation varies depending on the application.

例えば板面内の互いに直交する2方向に磁界が加わるE
l型鉄心のような場合は、第71;i(ロ)(ハ)に示
す(1001<OO1>、+1001  <011)集
合組織のもの、すなわち二方向性珪素鋼板が好ましく、
板面内のあらゆる方向に磁界が加わるものの場合は、第
7図に)に示す(1001面内無方向集合組織のものを
使用するか、もしくは第7図(ロ)(ハ)に示す(10
01<OO1)、[1001<Ol l)集合Mi織の
ものを板面内で角度を変えて打ち抜いて重ねて使用する
のが好ましいと言える。
For example, a magnetic field is applied in two directions perpendicular to each other within the plate surface.
In the case of an L-type iron core, it is preferable to use a bidirectional silicon steel plate having the texture (1001<OO1>, +1001<011) shown in No. 71; i (b) and (c).
If the magnetic field is applied in all directions within the plate plane, use one with a 1001 in-plane non-directional texture as shown in Figure 7), or use one with a 1001 in-plane non-directional texture as shown in Figure 7 (B) and (C).
01<OO1), [1001<Ol l) It can be said that it is preferable to punch out pieces of agglomerated Mi weave at different angles within the plane of the plate and use them in layers.

そして、このような板面垂直方向に<100>軸を持つ
珪素鋼板は、凝固組織を用いる方法と、高温焼鈍による
方法と、オーステナイト(以下オーステナイトはTと表
わす)単相温度域からの冷却による方法の3方法で製造
できることが知られている。
Silicon steel sheets with <100> axes in the direction perpendicular to the sheet surface can be produced by methods using solidification structures, high-temperature annealing, and cooling from the austenite (hereinafter referred to as T) single-phase temperature range. It is known that it can be manufactured using three methods.

O凝固組織を用いる方法 鋼を凝固させると、熱流方向にHOO>軸を持つ結晶が
成長する。板状に凝固させると、冷却面である板面に対
して熱流方向が垂直となり、この方向に<100>軸が
配向する。凝固組織を用いる方法は、この配向性を利用
したもので、具体的には溶湯趨急冷法によるものと、イ
ンゴット柱状晶を用いるものの2つがある。
Method using O solidification structure When steel is solidified, crystals with the HOO> axis in the direction of heat flow grow. When solidified into a plate shape, the direction of heat flow is perpendicular to the plate surface, which is the cooling surface, and the <100> axis is oriented in this direction. Methods using solidified structures take advantage of this orientation, and specifically there are two methods: one using a molten metal quenching method and the other using ingot columnar crystals.

溶湯趙急冷法によるものは、高速回転する冷却ロールの
表面に溶湯を噴射し、0.05〜0.5mm厚程度の薄
板を直接製造する方法である。この方法で6%程度のS
Iを含む珪素薄帯を製造すると、板面に垂直かもしくは
垂直方向に対して20〜30°傾いた方向に長軸を持つ
柱状粒組織が得られる。
The molten metal quenching method is a method in which molten metal is injected onto the surface of a cooling roll rotating at high speed to directly produce a thin plate with a thickness of about 0.05 to 0.5 mm. With this method, about 6% S
When a silicon ribbon containing I is produced, a columnar grain structure having a long axis in a direction perpendicular to the plate surface or inclined at 20 to 30 degrees with respect to the perpendicular direction is obtained.

インゴット柱状晶を利用する方法は、特殊な鋳造方法に
よって製造した(001)繊維組織の柱状晶インゴット
をfI O01面が圧延面となるように圧延し、100
0℃以上の温度で焼鈍し、flool  <001>集
合組織の珪素鋼板を製造するものである。
In the method of using ingot columnar crystals, a columnar crystal ingot with a (001) fiber structure manufactured by a special casting method is rolled so that the fI O01 side becomes the rolling surface, and 100
A silicon steel sheet having a flool <001> texture is produced by annealing at a temperature of 0° C. or higher.

○ 高温焼鈍による方法 高温焼鈍によって板面垂直方向に<100>軸を持った
結晶粒を成長させる方法で、次の2つが周知である。
○ Method using high-temperature annealing The following two methods are well-known in which crystal grains with <100> axes are grown in the direction perpendicular to the plate surface by high-temperature annealing.

1つは、主に焼鈍雰囲気を規定する方法で、0115龍
以下の薄珪素鋼板に対し、弱酸化性の雰囲気中で100
0℃以上の温度で焼鈍を行うものである。この焼鈍によ
ると結晶粒は一度板厚程度の大きさに成長した後、板面
垂直方向に(100>軸を持った結晶粒が表面エネルギ
ーを駆動力として優先的に成長する。
One is a method that mainly specifies the annealing atmosphere.
Annealing is performed at a temperature of 0°C or higher. According to this annealing, after the crystal grains have once grown to a size comparable to the thickness of the plate, crystal grains with a (100> axis) preferentially grow in the direction perpendicular to the plate surface using surface energy as a driving force.

今1つは、微量のへ1等を添加した珪素鋼をOoと90
°の方向に圧延(交叉圧延)し、1150℃の温度で最
終焼鈍を行う方法である。この方法によると、[100
1<001)方位の結晶粒が2次再結晶により得られる
The other one is silicon steel with a trace amount of helium added to Oo and 90.
This is a method in which rolling is performed in the direction of 1150°C (cross rolling) and final annealing is performed at a temperature of 1150°C. According to this method, [100
1<001) orientation crystal grains are obtained by secondary recrystallization.

○ γ単相温度域からの冷却による方法特開昭53−3
1515号および特開昭53−31518号公報等に示
されている方法が公知である。
○ Method by cooling from the γ single-phase temperature range JP-A-53-3
1515 and Japanese Unexamined Patent Publication No. 53-31518, etc., are known.

すなわち、本質的にCを含有しないwJ板をr単相域へ
昇温した後、徐冷して、その時のγ−αフェライト(以
下αフェライトはαと表わす)変態によって板面垂直方
向に<100>軸を集積させるのである。
That is, a wJ plate that essentially does not contain C is heated to the r single-phase region, then slowly cooled, and due to the γ-α ferrite (hereinafter α ferrite is referred to as α) transformation at that time, <100> axes are accumulated.

ところが、いずれの方法も非常に問題の多いものである
However, both methods have many problems.

〔発明が解決しようする!I題〕[Invention will solve the problem! I topic]

凝固&l1mを用いる方法のうち、溶湯超急冷法による
ものでは、板面垂直方向の(100)軸密度は配向性の
ないものの高々3〜6倍程度でしがなく、また板厚精度
も低く、1i磁鋼板に必要とされる高い占積率は確保で
きない。
Among the methods using solidification and l1m, in the molten metal ultra-quenching method, the (100) axis density in the direction perpendicular to the sheet surface is at most 3 to 6 times that of a sheet without orientation, and the sheet thickness accuracy is low. The high space factor required for the 1i magnetic steel sheet cannot be secured.

インゴット柱状晶を用いる方法では、板面垂直方向に<
100>軸を高密度で4A積させようとすると、非常に
大きな結晶粒組織となり、通常は板厚の10〜100倍
の結晶粒となる。このため静磁界中での磁気特性は良好
なるも、交番磁界中では渦電流損失が大きく、十分な低
鉄損は得られない、また、特殊な鋳造方法を用いること
から、工業的規模で実施するのは非常に困難といえる。
In the method using ingot columnar crystals, <
100> axes with a high density of 4A, the result is a very large crystal grain structure, and the crystal grains are usually 10 to 100 times the thickness of the plate. For this reason, although the magnetic properties in a static magnetic field are good, the eddy current loss is large in an alternating magnetic field, making it impossible to obtain a sufficiently low iron loss.Also, because a special casting method is used, it cannot be implemented on an industrial scale. It can be said that it is extremely difficult to do so.

高温焼鈍による方法では、いずれの方法も、インゴット
柱状晶を用いる方法と同様の問題がある。
All methods using high-temperature annealing have the same problems as the method using ingot columnar crystals.

すなわち、弱酸化性雰囲気で焼鈍を行うものも、交叉圧
延を行うものも、板面垂直方向の<100)軸の集積度
を高めようとすると、非常に大きな結晶粒組織となり、
交番磁界中での鉄損特性が悪化する。
In other words, whether annealing is performed in a weakly oxidizing atmosphere or cross-rolling is performed, if an attempt is made to increase the degree of integration of <100) axes in the direction perpendicular to the sheet surface, a very large grain structure will result.
Iron loss characteristics deteriorate in an alternating magnetic field.

更に前者の弱酸化性雰囲気で焼鈍を行うものでは、0.
15龍以下という薄い板にしか適用できない制約があり
、後者の交叉圧延を行うものでは長尺の薄板には適用で
きない制約があり、いずれも工業的方法と言えない。
Furthermore, in the former case where annealing is performed in a weakly oxidizing atmosphere, the temperature is 0.
There is a restriction that it can only be applied to thin sheets of 15 mm or less, and the latter method that performs cross rolling cannot be applied to long thin sheets, so neither of these methods can be considered an industrial method.

γ単相温度域から冷却する方法ではCを実質的に含有さ
せていないことから、磁気特性のためのStを1.5%
以上程度添加するだけでγ単相温度域が消失し、γ−α
変態が実質的に不可能となる。
Since the method of cooling from the γ single-phase temperature range does not substantially contain C, the St content for magnetic properties is reduced to 1.5%.
By simply adding more than 10%, the γ single-phase temperature range disappears, and γ−α
Metamorphosis becomes virtually impossible.

また1%程度のSL添加でもAc、変態点の上昇のため
1000℃以上の高温に昇温する必要があり、必然的に
結晶粒は11以上に粗大化する。そのうえ、この方法で
は板面垂直方向の(100>軸密度は結晶方向配向性の
ないランダムなものの高々3〜7倍程度であり、従って
磁気特性も不十分である。
Furthermore, even with the addition of about 1% of SL, it is necessary to raise the temperature to a high temperature of 1000° C. or higher to raise the Ac transformation point, and the crystal grains inevitably become coarser than 11. Moreover, in this method, the (100>axis density in the direction perpendicular to the plate surface is at most 3 to 7 times that of a random one without crystal orientation, and therefore the magnetic properties are also insufficient.

またHzSを含有した雰囲気中で同様の加熱−冷却を行
ってN OO)軸密度を向上させる方法も知られている
が、1100〜1200℃の高温からの冷却のため結晶
粒は2〜3fi程度に大きくなる問題点がある。
A method is also known in which similar heating and cooling is performed in an atmosphere containing HzS to improve the NOO) axis density, but because of the cooling from a high temperature of 1100 to 1200°C, the crystal grain size is about 2 to 3 fi. There is a growing problem.

本発明は結晶粒組織の改良により、これらの問題点が全
て解決できる珪素鋼板、なかでも特に(1001<00
1>、flool <011>(7)集合組織をもつ二
方向性珪素鋼板およびその製造方法を提供するものであ
る。
The present invention provides a silicon steel sheet that can solve all of these problems by improving the grain structure, especially (1001<00
1>, flool <011> (7) A bidirectional silicon steel sheet having a texture and a method for manufacturing the same are provided.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、珪素鋼板の脱炭焼鈍が進行する過程でγ−α
変態を発生させると、板面垂直方向に<100>軸が高
密度で集積した低鉄…で磁束密度も高い結晶粒組織の珪
素鋼板が、高精度の板厚で板厚等の制限を受けることな
くしかも工業的規模で容易に製造できるとの知見に基づ
くものである。
In the present invention, in the process of decarburization annealing of silicon steel sheets, γ-α
When transformation occurs, a silicon steel plate with a low-iron crystal grain structure with a high concentration of <100> axes in the direction perpendicular to the plate surface and a high magnetic flux density is subject to restrictions such as plate thickness due to high precision plate thickness. This is based on the knowledge that it can be easily produced on an industrial scale without any problems.

すなわち、従来の珪素鋼板に対する最終焼鈍はα単相の
温度域で行うのが通例である。これに対しCを適量添加
しオーステナイト相(γ相)の温度域を拡大した冷間圧
延珪素鋼板を、脱炭が完了したときにα単相となる85
0〜1100℃程度の温度域で、例えば非酸化性の弱脱
炭性雰囲気である真空中で焼鈍すると、この焼鈍ではC
が十分に含有されていることから、α+γ混合相もしく
はT単相の温度域で焼鈍が行われることになる。
That is, the final annealing of conventional silicon steel sheets is usually performed in the α single phase temperature range. On the other hand, cold-rolled silicon steel sheets with an appropriate amount of C added to expand the temperature range of the austenitic phase (γ phase) become α single phase when decarburization is completed.
When annealing is performed in a temperature range of about 0 to 1100°C, for example in a vacuum, which is a non-oxidizing and weakly decarburizing atmosphere, this annealing reduces carbon
Since it contains a sufficient amount of , annealing is performed in the temperature range of α + γ mixed phase or T single phase.

その結果、表面から5〜100μm深さまでの領域が脱
炭され、この部分のみがα単相となり、内部は微細なα
+T混合m織もしくはγ単相Mi織となる0例えばα+
T2相温度域での焼鈍の場合は、第1図の組織略図の(
イ)に示すように、表面のα単相領域の粒は板面垂直方
向に中心軸をもつ柱状粒となる。
As a result, the region from the surface to a depth of 5 to 100 μm is decarburized, only this part becomes a single α phase, and the inside is a fine α
+T mixed m weave or γ single phase Mi weave 0 e.g. α+
In the case of annealing in the T2 phase temperature range, (
As shown in b), the grains in the α single-phase region on the surface become columnar grains with the central axis perpendicular to the plate surface.

このような表面の脱炭層は、弱脱炭性の雰囲気下ではゆ
るやかにしか内部へ成長せず、その間に表面のα柱状粒
のうちの板面垂直方向にり100)軸を持つ結晶粒のみ
が板面平行方向に成長する。
Such a decarburized layer on the surface grows inward only slowly in a weakly decarburized atmosphere, and during this period only the crystal grains of the α columnar grains on the surface that have 100) axes in the direction perpendicular to the plate surface. grows parallel to the plate surface.

かくして、表層は板面垂直方向にN OO)軸が強く集
積したα単相の集合組織を持つようになる。この粒成長
は表面エネルギーを駆動力としたものと推定される。こ
の段階での表層のα粒は板面平行方向に30〜300μ
m程度の大きさの柱状粒となっている。
As a result, the surface layer has a single α-phase texture in which the NOO) axis is strongly integrated in the direction perpendicular to the plate surface. It is presumed that this grain growth is driven by surface energy. At this stage, the α grains in the surface layer are 30 to 300μ in the direction parallel to the plate surface.
They are columnar grains with a size of about m.

続いて例えば強脱炭性雰囲気中で脱炭を進行させると、
表層のα粒が内部のα+γ2相域、もしくはT単相域に
向かって成長し、最終的には第1図(ロ)に示すように
両表面から内部へ向かって延びた柱状粒が板厚中心部で
衝突したα単相の柱状粒&Il織となる。
Then, for example, if decarburization is allowed to proceed in a strongly decarburizing atmosphere,
The α grains in the surface layer grow toward the α + γ two-phase region or the T single-phase region inside, and finally, as shown in Figure 1 (b), columnar grains extending from both surfaces toward the inside become thicker than the plate. The α single-phase columnar grains and Il weave collided in the center.

以上のように、脱炭の過程でT−α変態を生じさせれば
、表面で成長した+1001集合&lImが粒成長によ
り内部にまで受は継がれ板全体を簡単に[100)集合
mmとできる。更に粒成長の過程で板面垂直方向のHO
O>軸の集積度も向上する。
As described above, if T-α transformation is caused in the decarburization process, the +1001 set &lIm grown on the surface will be propagated to the inside by grain growth, and the entire plate can easily be made into [100) set mm. . Furthermore, in the process of grain growth, HO in the direction perpendicular to the plate surface
The degree of integration of the O> axis also improves.

また、脱炭焼鈍前の熱間圧延および冷間圧延は、板面垂
直方向にHOO)軸が集積する度合に対しては、はとん
ど影響を与えない、しかし板面に平行するH OO)軸
の集積に対しては、これらの圧延、特に冷間圧延が太き
(影響し、これを制御することにより +1001  
<001>方位あるいは+1001  <011>方位
の集合組織を得ることができる。脱炭焼鈍前の冷間圧延
によって(1001<001>方位あるいは(1001
<011>方位の集積が得られるのは、冷間圧延率が特
定の範囲で+1001集合組織の核となる粒のN OO
>の軸が、圧延方向に対して特定の方向に集積するため
と考えられる。
In addition, hot rolling and cold rolling before decarburization annealing have little effect on the degree of accumulation of HOO) axes in the direction perpendicular to the plate surface, but HOO axes parallel to the plate surface. ) For the accumulation of shafts, these rollings, especially cold rolling, have a thick effect (by controlling this, +1001
Textures in <001> orientation or +1001 <011> orientation can be obtained. By cold rolling before decarburization annealing, (1001<001> orientation or (1001
The accumulation of <011> orientation is obtained when the cold rolling rate is in a certain range and the NOO of the grains that form the core of the +1001 texture is obtained.
This is thought to be because the axes of > are concentrated in a specific direction with respect to the rolling direction.

以上のような粒成長メカニズムは本発明者らの調査研究
により判明したものである。
The grain growth mechanism described above was discovered through research conducted by the present inventors.

更に、このような高集積度の+1001集合組織におい
ては、その柱状晶が板厚の数倍以下の直径となったとき
に、渦電流損失が従来のものよりも格段に低下し、かつ
高磁束密度となることも判明した。
Furthermore, in such a highly integrated +1001 texture, when the columnar crystals have a diameter of several times the plate thickness or less, eddy current loss is significantly lower than that of conventional ones, and high magnetic flux is generated. It was also found that the density

本発明の二方向性珪素鋼板およびその製造方法は斯かる
知見に基づき開発されたものである。
The bidirectional silicon steel sheet and method for manufacturing the same of the present invention were developed based on this knowledge.

すなわち、本発明の二方向性珪素鋼板はC≦O1Q 1
wt%、0.2≦Si≦6.5 w t%を含んだ板厚
0.05〜5flの冷間圧延珪素m仮で、板面垂直方向
に表面から内部に向かって成長した柱状結晶粒からなり
、その柱状結晶粒の板面平行方向の平均直径カ月寵以下
で、+1001  <001>方位または+1001 
 <011>方位に強く集積した集合組織をもつもので
ある。
That is, the bidirectional silicon steel sheet of the present invention satisfies C≦O1Q 1
Columnar crystal grains grown from the surface to the inside in the direction perpendicular to the plate surface, made of cold-rolled silicon with a plate thickness of 0.05 to 5 fl, containing wt%, 0.2≦Si≦6.5 wt%. The average diameter of the columnar crystal grains in the direction parallel to the plate surface is less than +1001 <001> orientation or +1001
It has a texture that is strongly concentrated in the <011> direction.

また、本発明の2方向性珪素鋼板製造方法は0゜02≦
C≦1wt%、0.2≦Si≦6.5 w t%を含ん
だ珪素鋼板に対し、(1001<(101>集合組織を
得るためには中間焼鈍を挟む2回以上の冷間圧延を初回
圧延の圧延率10%以上、最終圧延の圧延率40〜75
%で行い、(1001<01、H集合組織を得るために
は1回または中間焼鈍を挟む2回以上の冷間圧延を最終
圧延の圧延率80%以上で行うことにより、板厚O,O
S〜5flの冷間圧延珪素鋼板を製造し、しかる後この
冷間圧延珪素鋼板を脱炭後実質的にα単相となる温度で
C≦0.01wt%まで脱炭焼鈍するものである。
In addition, the method for manufacturing bidirectional silicon steel sheet of the present invention is 0°02≦
For a silicon steel sheet containing C≦1wt% and 0.2≦Si≦6.5wt%, cold rolling is performed two or more times with intermediate annealing in order to obtain a (1001<(101>) texture. The rolling ratio of the first rolling is 10% or more, and the rolling ratio of the final rolling is 40 to 75.
(1001<01, in order to obtain the H texture, the plate thickness O,
A cold-rolled silicon steel plate of S~5 fl is produced, and then this cold-rolled silicon steel plate is decarburized and annealed to C≦0.01wt% at a temperature at which it becomes substantially α single phase after decarburization.

〔作  用〕[For production]

以下、本発明を成分組成、製品板厚、結晶組織、板面垂
直方向の<100)軸密度、冷間圧延鋼板製造方法、最
終焼鈍、表面コーティングの順で詳述し、作用を明らか
にする。
Hereinafter, the present invention will be explained in detail in the order of component composition, product sheet thickness, crystal structure, <100) axial density in the direction perpendicular to the sheet surface, cold rolled steel sheet manufacturing method, final annealing, and surface coating, and the effects will be clarified. .

○ 成分組成 成分のなかではγ−α変態、磁気特性に影響を与えるC
、S l、Mn、klが重要である。
○ Among the constituent components, C affects the γ-α transformation and magnetic properties.
, S l, Mn, kl are important.

C:最終焼鈍において脱炭にともなうγ−α変態を利用
した集合Ml織制御を行うために、最終焼鈍前の段階で
0.02wt%以上、好ましくは0.05wt%以上の
含有を必要とする。上限は脱炭時間を抑えるために1w
t%、好ましくは0.5 w t%以下、さらに好まし
くはQ、 3 w t%以下とする。
C: In order to control the aggregated Ml texture using the γ-α transformation accompanying decarburization in the final annealing, it is necessary to contain 0.02 wt% or more, preferably 0.05 wt% or more in the stage before the final annealing. . The upper limit is 1w to suppress decarburization time.
t%, preferably 0.5 wt% or less, more preferably Q, 3 wt% or less.

最終焼鈍後の段階では磁気特性を劣化させないために0
.01wt%以下、好ましくは0.005wt%以下、
より好ましくは0.003wt%以下とする。
At the stage after the final annealing, 0
.. 01 wt% or less, preferably 0.005 wt% or less,
More preferably, it is 0.003 wt% or less.

5ill気特性、機械的性質確保のために0.2 wt
%以上、好ましくは0.5 w t%以上、より好まし
くは1wt%以上の含有とする。上限は脆化および磁束
密度の低下を抑えるために6.5 w t%、好ましく
は5wt%、より好ましくは4wt%とする。T−α変
態に対しては、31は後述するMnとは逆に脱炭完了後
実質的にα単相となる上限温度を上昇させる。
0.2 wt to ensure 5ill characteristics and mechanical properties
% or more, preferably 0.5 wt% or more, more preferably 1 wt% or more. The upper limit is set to 6.5 wt%, preferably 5 wt%, and more preferably 4 wt% to suppress embrittlement and decrease in magnetic flux density. For T-α transformation, 31 increases the upper limit temperature at which the α-single phase becomes substantially after completion of decarburization, contrary to Mn, which will be described later.

Mrz電気抵抗を増大させ渦電流損失を低下させるため
と、γ相温度域を拡大しT−α変態利用の集合&I織制
御を容易にするために添加することが望まれる。添加す
る場合はQ、 5 w t%以上が好ましく、0.8w
t%以上がより好ましいが、いずれにしてもαおよびT
2相からα単相になる変態温度が脱炭完了後850℃以
上となる量を最大限として添加する。これはMnを多量
に添加すると、脱炭完了後実質的にα単相となる上限温
度が低下し、焼鈍温度を掘端に低くしなければならない
ためである。なお、5illが高い場合はMnを多量に
添加しうるが、磁束密度を低下させるため5wt%を超
えないようにする。実質的にα単相となるとはMnS、
AJN等の微量な第二相が存在しても良いことを意味す
る。
It is desirable to add it in order to increase Mrz electrical resistance and reduce eddy current loss, and to expand the γ phase temperature range and facilitate collective & I weave control using T-α transformation. When added, Q is preferably 5 wt% or more, and 0.8 wt% or more.
More preferably t% or more, but in any case α and T
The maximum amount added is such that the transformation temperature from two phases to α single phase becomes 850° C. or higher after completion of decarburization. This is because when a large amount of Mn is added, the upper limit temperature at which α becomes substantially single phase after decarburization is completed is lowered, and the annealing temperature must be lowered to the bottom. Note that if 5ill is high, a large amount of Mn can be added, but it should not exceed 5wt% in order to reduce the magnetic flux density. Substantially α single phase means MnS,
This means that a trace amount of second phase such as AJN may be present.

A1:電気抵抗を増大させ、渦電流損失を低下させるた
めに添加することが望まれる。また、製鋼段階で鋼中の
酸素を低減する脱酸材として添加してもよい。しかし、
多量に添加すると脆化を生じさせ、磁束密度も低下する
ので3wt%以下とする。γ−α変態に対しては、Sl
と同様、脱炭完了後実質的にα単相となる上限温度を上
昇させる。
A1: Desired to be added to increase electrical resistance and reduce eddy current loss. Further, it may be added as a deoxidizing agent to reduce oxygen in steel during the steel manufacturing stage. but,
Adding a large amount causes embrittlement and lowers the magnetic flux density, so the content should be 3 wt% or less. For the γ-α transformation, Sl
Similarly, the upper limit temperature at which α becomes substantially single phase after decarburization is completed is increased.

C,Si、Mn以外の成分で本発明を損なわず添加でき
るものは以下のとおりである。なお、NはCと同様の作
用を生じるので、積極的に添加してもよい。
Components other than C, Si, and Mn that can be added without impairing the present invention are as follows. Note that since N produces the same effect as C, it may be actively added.

A153wt% W、V、Cr、Co、Nl、Mo≦1wt%Cu≦0.
5 w t% NbS2.5 w t% N ≦o、oswt% S ≦0.5 w t% Sb、Se、As≦0.05wt% B 50.005wt% P ≦0.5 v t% O製品板厚 本発明では結晶&1IVIi的な面から製品板厚に上限
を設ける必要はない、しかし、製品板厚が厚いと内部ま
で脱炭するのに長時間を要し、また渦電流損失が増大す
るので5tl以下とし、好ましくはl鶴以下、より好ま
しくは0.5鰭以下である。下限は十分に集積した(1
001集合&11織とするため0.05mとし、好まし
くは0.1 we以上、より好ましくは0.15mm以
上である。
A153wt% W, V, Cr, Co, Nl, Mo≦1wt%Cu≦0.
5 w t% NbS2.5 w t% N ≦o, oswt% S ≦0.5 w t% Sb, Se, As≦0.05 wt% B 50.005 wt% P ≦0.5 v t% O product board Thickness In the present invention, there is no need to set an upper limit on the thickness of the product plate from the standpoint of crystallization and IVIi. However, if the product plate thickness is thick, it will take a long time to decarburize to the inside, and eddy current loss will increase. The size should be 5 tl or less, preferably 1 crane or less, more preferably 0.5 fin or less. The lower limit is sufficiently accumulated (1
The length is set to 0.05 m for 001 set & 11 weave, preferably 0.1 we or more, more preferably 0.15 mm or more.

O結晶&II織 板の表面から内部に向かって伸びた柱状粒が板厚中心付
近で衝突した&lI織を基本とするが、さらに粒成長を
促進させて板厚方向に貫通した柱状粒&1lvetであ
ってもよい、ただし、低鉄損とするため柱状結晶粒の板
面平行方向の平均直径は1mm以下とし、好ましくは0
.5顛以下、より好ましくは0゜35t*以下である。
It is based on the &lI weave in which columnar grains extending from the surface of the O-crystal &II weave sheet towards the inside collide near the center of the sheet thickness, but it also has columnar grains &lvet that penetrate in the thickness direction by further promoting grain growth. However, in order to achieve low iron loss, the average diameter of the columnar crystal grains in the direction parallel to the plate surface should be 1 mm or less, and preferably 0.
.. It is 5 times or less, more preferably 0°35t* or less.

0 板面垂直方向のN OO>軸密度 通常、珪素鋼板における板面垂直方向への(100〉軸
の配向度を調べるには、x1回折測定によりX線の散乱
ベクトルが板面垂直方向に一致するような条件下で+2
00+反反射骨強度を求め、これを結晶方位配向性のな
い試料についての値の倍数で表示する。この値は下記の
場合を除いて実際の板面垂直方向の(100>軸密度と
ほぼ一致する。
0 N OO in the direction perpendicular to the plate surface +2 under such conditions.
00+ anti-reflection bone strength is determined and expressed as a multiple of the value for the sample without crystal orientation orientation. This value almost matches the actual (100>axis density) in the direction perpendicular to the plate surface, except in the following cases.

(1)  結晶粒が0,1m以上の大きさで、X線の照
射領域に十分な個数の結晶粒がない場合。
(1) When crystal grains have a size of 0.1 m or more and there are not a sufficient number of crystal grains in the X-ray irradiation area.

(2)板面垂直方向への<100’>軸の集積が非常に
強い場合これは一般に配向性のないものの10倍以上の
場合である。
(2) When the concentration of <100'> axes in the direction perpendicular to the plate surface is very strong, this is generally 10 times or more of the case where there is no orientation.

本発明においては、(11、(2)の例外を排除するた
め、板面垂直方向から±5°以内に<100>軸を持つ
結晶粒の全体に対する比率を配向性のない場合の比率で
割った値を板面垂直方向の<100〉軸密度として定義
する。この値は集積度が小さい場合、Xiによる測定に
ほぼ一致する。
In the present invention, in order to eliminate the exception of (11, (2)), the ratio of crystal grains having <100> axes within ±5° from the perpendicular direction to the plate surface to the total is divided by the ratio in the case of no orientation. This value is defined as the <100> axial density in the direction perpendicular to the plate surface.This value almost agrees with the measurement by Xi when the degree of integration is small.

実験上ではS EM (Scanning [1lec
tron Micro−3cope)による結晶粒組織
の観察に、F、 CP (tEIe−ctron Ch
annellng Pattern)による結晶方位解
析を併用して、200〜300個程度の結晶粒の方位を
調べ、板面垂直方向の<100>軸密度を求めることに
なる。
In experiments, SEM (Scanning [1lec
F, CP (tEIe-ctron Ch
The orientation of approximately 200 to 300 crystal grains is investigated using crystal orientation analysis based on the annelling pattern), and the <100> axis density in the direction perpendicular to the plate surface is determined.

本発明に係る珪素鋼板においては、前記の如き板面から
内部に向かって伸びた結晶組織をもっことにより、板面
垂直方向に<1.00>軸が高密度で集積する。この密
度は、十分な磁気特性確保のため、上で定義した値で表
わして5以上が好ましく、より好ましくは8以上、更に
好ましくは15乃至20以上である。
In the silicon steel sheet according to the present invention, by having the crystal structure extending inward from the sheet surface as described above, <1.00> axes are concentrated at high density in the direction perpendicular to the sheet surface. In order to ensure sufficient magnetic properties, this density is preferably 5 or more, more preferably 8 or more, and even more preferably 15 to 20 or more, expressed as the value defined above.

○ 冷間圧延鋼板の製造方法 脱炭焼鈍前の冷間圧延は、板面垂直方向のく100〉軸
の集積には実質的に影響を与えないが、板面平行方向の
N OO>軸の集積には大きな影響を与え、これを制御
することにより +1001<Q O1)方位あるいは
+1001  <011>方位の集合&fl織をもつい
わゆる二方向性珪素鋼板が製造できる。
○ Manufacturing method for cold-rolled steel sheets Cold rolling before decarburization annealing does not substantially affect the accumulation of N OO > axes in the direction perpendicular to the sheet surface, but It has a great effect on the accumulation, and by controlling it, a so-called bidirectional silicon steel plate having an aggregate &fl weave with +1001<Q O1) orientation or +1001 <011> orientation can be manufactured.

11001  <001>方位の集合m織を付与するに
は、中間焼鈍を挟んだ2回以上の冷間圧延を初回圧延に
おける圧延率10%以上、最終圧延における圧延率40
〜75%で行う、こうすることにより板面平行方向で<
100>軸が圧延方向と圧延方向に対して90゛の方向
の二方向に強く偏位した集合組織を得ることができるの
である。初回圧延における圧延率が10%未満では板面
平行方向の<100>軸を上述の二方向に強く偏位させ
ることができない、また最終圧延における圧延率が40
%未満および75%超えではやはり二方向に強く偏位さ
せられない。
11001 In order to provide a set m weave with <001> orientation, cold rolling is performed two or more times with intermediate annealing at a rolling rate of 10% or more in the first rolling and a rolling rate of 40% in the final rolling.
~75%, by doing this, < in the direction parallel to the plate surface.
It is possible to obtain a texture in which the 100> axis is strongly deviated in two directions: the rolling direction and the direction 90° with respect to the rolling direction. If the rolling ratio in the first rolling is less than 10%, the <100> axis in the direction parallel to the plate surface cannot be strongly deviated in the above two directions, and if the rolling ratio in the final rolling is 40%.
If it is less than % or more than 75%, strong deviation in two directions cannot be achieved.

+1001  <Oll>方位の集合組織を付与するに
は、1回または中間焼鈍をはさんだ2回以上の冷間圧延
を最終圧延における圧延率80%以上で行う、こうする
ことにより板面平行方向でく100)軸を圧延方向に対
して45°の方向に強く偏位させることができる。最終
圧延における圧延率が80%未満ではこの方向への<1
00>軸の偏位が弱(なる、2回以上の冷間圧延を行う
場合、最終圧延以外の圧延はこの&llI織形成に強く
影響しないので、圧延率制御により最終板厚を調節でき
る。
+1001 To impart a <Oll> oriented texture, cold rolling is performed once or twice or more with intermediate annealing at a rolling reduction of 80% or more in the final rolling. 100) The axis can be strongly deviated in the direction of 45° with respect to the rolling direction. If the rolling ratio in the final rolling is less than 80%, <1 in this direction
00> The deviation of the axis is weak (i.e., when cold rolling is performed two or more times, rolling other than the final rolling does not strongly affect the formation of this &llI texture, so the final plate thickness can be adjusted by controlling the rolling rate.

中間焼鈍については再結晶を生じさせる必要性から60
0℃以上とする。上限は工業的実施の観点から1200
℃を限度とし、好ましい範囲は700〜1000℃であ
る。
For intermediate annealing, 60% due to the need to cause recrystallization.
The temperature shall be 0°C or higher. The upper limit is 1200 from the point of view of industrial implementation.
The preferred range is 700 to 1000°C.

冷間圧延鋼板の製造は、通常は連続鋳造−熱間圧延−冷
間圧延の工程によるが、連続鋳造にょる方法以外には、
例えば50龍以下の板厚に直接凝固させた薄スラブもし
くは溶湯趙急冷法による極薄板を直接または熱間圧延後
に冷間圧延する方法でもよい、なお、冷間圧延とは再結
晶の生じない500℃以下の圧延をいうものである。
The production of cold rolled steel sheets usually involves the process of continuous casting - hot rolling - cold rolling, but there are other methods other than continuous casting.
For example, a method may be used in which a thin slab directly solidified to a thickness of 50 mm or less or an ultra-thin plate by the molten metal quenching method is directly or hot rolled and then cold rolled. This refers to rolling at temperatures below ℃.

○ 最終焼鈍 脱炭前にαとγの2相部合もしくはγ単相であり、かつ
脱炭完了後α単相となる温度域で脱炭焼鈍を行う、これ
により脱炭の行われていない部分についてはα+γ2相
域もしくはγ単相域の温度で焼鈍が行われ、表面から脱
炭が進行する間に表層より内部に向かってγ−α変態を
生じ、板面垂直方向にN OO>軸が強く集積した実質
的にα単相の柱状粒組織が得られる。具体的には、焼鈍
効率等を高めるため、次のような焼鈍を行うのが好まし
い。
○ Before final annealing and decarburization, decarburization annealing is performed in a temperature range where the product is a two-phase portion of α and γ or a single γ phase, and becomes a single phase after decarburization, thereby preventing decarburization. The part is annealed at a temperature in the α + γ two-phase region or the γ single-phase region, and while decarburization progresses from the surface, a γ-α transformation occurs from the surface layer toward the inside, and N OO > axis in the direction perpendicular to the sheet surface. A substantially single-phase columnar grain structure in which α is strongly accumulated is obtained. Specifically, in order to improve the annealing efficiency etc., it is preferable to perform the following annealing.

まず、弱脱炭性でかつ非酸化性もしくは弱酸化性の雰囲
気中、例えばITo r r以下の真空中もしくは露点
が一20℃に満たない低い温度のHl、 He、 Ne
、 Nr、 Kr、 Xe、 Rn、 Ntの1種また
は214以上の雰囲気中で、800℃以上の温度で焼鈍
し、板表面から5〜100μmの深さの領域にα単相域
を形成する。焼鈍時間は好ましくは1〜48h程度であ
る。この焼鈍を強脱炭性雰囲気あるいは酸化性雰囲気で
行った場合は脱炭は生じても板面垂直方向に<100>
軸が集積しない。
First, in a weakly decarburizing and non-oxidizing or weakly oxidizing atmosphere, for example, in a vacuum of ITorr or less, or at a low temperature with a dew point of less than -20°C, Hl, He, Ne is used.
, Nr, Kr, Xe, Rn, and Nt or in an atmosphere of 214 or more at a temperature of 800° C. or higher to form an α single phase region in a region at a depth of 5 to 100 μm from the plate surface. The annealing time is preferably about 1 to 48 hours. If this annealing is performed in a strongly decarburizing atmosphere or an oxidizing atmosphere, even if decarburization occurs, the direction perpendicular to the plate surface is <100>
Axis does not accumulate.

次いで、強脱炭性の雰囲気、例えば露点−20℃以上の
H2中もしくは露点〜20℃以上のH2に不活性ガスま
たはco、co、を添加したガス中で、650〜900
℃の温度で焼鈍し、板表層部に形成したα単相域を板内
部に向かって成長させる。焼鈍時間は好ましくは5m1
n〜20h程度である0強脱炭性雰囲気での焼鈍を行わ
ず、弱脱炭性雰囲気での焼鈍をそのまま続けた場合は、
板厚が厚いと長時間を要するという問題がある。
Next, in a strongly decarburizing atmosphere, for example, in H2 with a dew point of -20°C or higher, or in a gas prepared by adding an inert gas or co, co, to H2 with a dew point of -20°C or higher, 650 to 900
The plate is annealed at a temperature of °C, and the α single phase region formed on the surface layer of the plate is allowed to grow toward the inside of the plate. Annealing time is preferably 5m1
If annealing in a weak decarburizing atmosphere is continued without annealing in a 0 strong decarburizing atmosphere for about 20 hours,
If the board is thick, there is a problem in that it takes a long time.

しかし脱炭に要する時間は板厚に強く依存するため、板
厚の薄い0.2fi厚以下のものでは弱脱炭性雰囲気で
の焼鈍を続けても、さほどの時間を要しない。
However, the time required for decarburization strongly depends on the plate thickness, so if the plate thickness is 0.2 fi or less, it does not take much time even if annealing is continued in a weakly decarburizing atmosphere.

なお、強脱炭の工程はC添加時にα相とセメンタイトと
の混合相となる温度域で行ってもよい。
Note that the strong decarburization step may be performed in a temperature range where a mixed phase of α phase and cementite is formed when C is added.

O表面コーティング 表面には絶縁皮膜を形成することが好ましいが、この工
程は最終焼鈍後に実施してもよいし、弱脱炭性雰囲気中
での焼鈍の後に実施してもよい、後者の場合は、表面コ
ーテイング後に強脱炭性の雰囲気中で焼鈍を行うことに
なる。
Although it is preferable to form an insulating film on the surface of the O surface coating, this step may be performed after final annealing or after annealing in a weak decarburizing atmosphere. After surface coating, annealing is performed in a strongly decarburizing atmosphere.

〔実施例1〕 +l O01<OO1)方位の集合組織をもつ二方向性
珪素鋼板についての例である。
[Example 1] This is an example of a bidirectional silicon steel plate having a +l O01<OO1) orientation texture.

第1表にA〜■で示す9種類の組成の真空溶製インゴッ
トを熱間鍛造により10削厚の板とし、各板を5R厚ま
で熱間圧延した後、冷間圧延(圧延率50%)、中間焼
鈍(850℃)、冷間圧延(圧延率60%)により1.
0t[の板とした。しかる後、各仮に最終焼鈍として1
0−’To r rの真空中で870〜1150℃、3
0分〜24時間の弱脱炭焼鈍を施し、引き続きH工を2
0vo 1%含む露点+40℃のAr気流中で850℃
、5分〜5時間の強脱炭焼鈍を施した。
Vacuum melted ingots with nine types of compositions shown in Table 1 as A to ), intermediate annealing (850°C), and cold rolling (rolling ratio 60%).
A plate of 0t[ was used. After that, each tentatively 1 as the final annealing.
870-1150℃ in a vacuum of 0-'Torr, 3
Weak decarburization annealing was performed for 0 minutes to 24 hours, followed by H process 2.
850°C in an Ar flow with a dew point of +40°C containing 0vo 1%
, strong decarburization annealing was performed for 5 minutes to 5 hours.

最終焼鈍後のCMは全ての試料について0.003wt
%以下となった。
CM after final annealing is 0.003wt for all samples
% or less.

そして、最終焼鈍を終えた各試料の表面から板厚の21
5の位置において前述したようにECP法によって各試
料について300個の結晶粒の結晶方位を解析し、板面
垂直方向の<100>軸密度を配向性のないものの倍数
で求めるとともに、断面組織の光学顕微鏡観察から、結
晶粒の板面平行方向の平均粒径を求めた。また圧延方向
に対する<100>軸の配向性を調べるため、1000
A / mの外部磁界を付与したときの磁束密a B 
+。
After the final annealing, the plate thickness was 21 mm from the surface of each sample.
As described above, the crystal orientation of 300 crystal grains in each sample was analyzed using the ECP method at position 5, and the <100> axis density in the direction perpendicular to the plate surface was determined as a multiple of that without orientation. The average grain size of the crystal grains in the direction parallel to the plate surface was determined from optical microscopic observation. In addition, in order to examine the orientation of the <100> axis with respect to the rolling direction,
Magnetic flux density a B when an external magnetic field of A/m is applied
+.

を圧延方向について測定した。参考のため配向性をほと
んど有しないものについても同様の測定を行った。結果
を最終焼鈍条件とともに第2表に示す。
was measured in the rolling direction. For reference, similar measurements were also performed on a sample with almost no orientation. The results are shown in Table 2 together with the final annealing conditions.

組成りのインゴットはC量が0.02wt%未満で、こ
れを使用する製法は本発明の範晴に入らない、他の組成
A、C〜1のインゴットは全て本発明の製法を満足し、
最終焼鈍条件も本発明の製法を満足する。
The ingot with the composition has a C content of less than 0.02 wt%, and the manufacturing method using this does not fall within the scope of the present invention, and the ingots with other compositions A, C to 1 all satisfy the manufacturing method of the present invention,
The final annealing conditions also satisfy the manufacturing method of the present invention.

組成A、C−1についての調査結果は、いずれの珪素鋼
板も板面垂直方向に成長したα相の柱状粒組織を有し、
しかも<100>軸は板面垂直方向に強く集積し、板面
平行方向においてもB1゜の値が大きいことから<I 
OO>軸が圧延方向に強く集積していることがわかる。
The investigation results for compositions A and C-1 show that both silicon steel sheets have an α-phase columnar grain structure grown in the direction perpendicular to the sheet surface;
Moreover, the <100> axis is strongly concentrated in the direction perpendicular to the plate surface, and the value of B1° is large even in the direction parallel to the plate surface, so <I
It can be seen that the OO> axis is strongly concentrated in the rolling direction.

なお、第2図(イ)(ロ)に示す断面組織写真は、第1
表にFで示す組成の鋼に熱間鍛造−熱間圧延−冷間圧延
を施し製造した0、5mm17の試料についてのもので
ある。(イ)はこの試料に真空中で950℃、9時間の
弱脱炭性焼鈍を施した後の段階、(ロ)はこの焼鈍の後
、露点が+40℃の4Qvo1%H!+Ar気流中で8
50℃、30分間の強脱炭性焼鈍を施した後の段階をそ
れぞれ×100、×50で1最影したものである。
Note that the cross-sectional structure photographs shown in Figures 2 (a) and (b) are
This is a sample of 0.5 mm17 manufactured by hot forging, hot rolling, and cold rolling of steel having the composition shown in the table. (a) is the stage after this sample has been subjected to weak decarburization annealing at 950°C in vacuum for 9 hours, and (b) is the stage after this annealing, with a dew point of +40°C and 4Qvo1%H! +8 in Ar air flow
The stage after strong decarburization annealing at 50° C. for 30 minutes is shown at ×100 and ×50, respectively.

〔実施例2〕 [1001<001>方位への集積度に及ぼす冷間圧延
の影響を調べるため、第1表に■で示す組成の鋼を真空
中で溶製し鋳造したインゴットを熱間鍛造により10f
l厚の板とし、この板を1200℃の温度に加熱し熱間
圧延にて4〜1.0fl厚の板とした後、30〜80%
の範囲の種々の圧延率で第1段目の冷間圧延を行い、更
に825℃の温度で3分間中間焼鈍した後、30〜80
%の範囲の種々の圧延率で第2段目の冷間圧延を行って
0.5mm厚の板とした。
[Example 2] [In order to investigate the effect of cold rolling on the degree of accumulation in the 1001<001> orientation, an ingot made by melting and casting steel with the composition shown in Table 1 in a vacuum was hot forged. by 10f
After heating this plate to a temperature of 1200°C and hot rolling it into a plate with a thickness of 4 to 1.0 fl, 30 to 80%
After performing the first stage cold rolling at various rolling rates in the range of 30 to 80
A second stage cold rolling was carried out at various rolling ratios in the range of 0.5 mm thick.

得られた各板を電解脱脂により表面清浄化し、コイルに
巻きとり、眉間にA1.01を主成分とする剥離材を充
填した後、最終焼鈍として1O−47orrの真空中で
950℃にて5時間焼鈍を行い、引き続きコイルを巻き
もどして露点+10℃の20VOI%H,−Ntガス気
流中で825℃、2時間の焼鈍を行った。
The surface of each plate obtained was cleaned by electrolytic degreasing, wound into a coil, and a release material mainly composed of A1.01 was filled between the eyebrows, followed by final annealing at 950°C in a vacuum of 1O-47orr for 55 minutes. After time annealing, the coil was subsequently unwound and annealed at 825°C for 2 hours in a 20VOI% H, -Nt gas stream with a dew point of +10°C.

得られた試料について、板面平行方向におけるN 00
)軸の集積度を調査するために、圧延方向に100OA
/mの磁界を付与したときの磁束密度B1゜を測定した
。また50H2の交番磁界中で1.57まで磁化したと
きの鉄損W、、、、。も測定した。
Regarding the obtained sample, N 00 in the direction parallel to the plate surface
) 100OA in the rolling direction to investigate the degree of axle accumulation.
The magnetic flux density B1° was measured when a magnetic field of /m was applied. Also, the iron loss W when magnetized to 1.57 in an alternating magnetic field of 50H2. was also measured.

結果を第3表および第3図に示す、また、第4図は一部
の試料について集合&I!織を調べるため表面から板厚
の215の深さまで研磨によって削除しその面について
X線回折により測定した(200)極点図である。
The results are shown in Table 3 and Figure 3, and Figure 4 shows the set &I! This is a (200) pole figure obtained by removing the surface by polishing to a depth of 215 of the plate thickness and measuring the surface by X-ray diffraction in order to examine the texture.

これらの結果から明らかなように、初回圧延における圧
延率が10%以上で、かつ最終圧延における圧延率が4
0〜75%のとき、B1゜は1.70以上に達している
。第3表および第4図の結果から板面平行方向において
は<100>軸が圧延方向に強く集積し、板面に(10
01が平行で圧延方向に<001>軸が集合した&l1
mが得られていることがわかる。また、このような集合
組織の形成により鉄損値も低下することがわかる。
As is clear from these results, when the rolling ratio in the first rolling is 10% or more and the rolling ratio in the final rolling is 4%,
When it is 0 to 75%, B1° reaches 1.70 or more. From the results in Table 3 and Figure 4, in the direction parallel to the plate surface, <100> axes are strongly concentrated in the rolling direction, and (100>
&l1 where 01 is parallel and <001> axes gather in the rolling direction
It can be seen that m is obtained. It is also seen that the iron loss value also decreases due to the formation of such a texture.

第  3  表 〔実施例3〕 (1001<011>方位の集合&[l織をもつ二方向
性珪素鋼板についての例である。
Table 3 [Example 3] (This is an example of a bidirectional silicon steel plate having a set of 1001<011> orientations &[l weave.

第4表にA−Jで示す10種類の組成の真空溶製インゴ
ットを熱間鍛造により15mm厚の板とし、各板を5m
m厚まで熱間圧延した後、冷間圧延(圧延率86%)で
0.7鶴厚の板とした。しかる後、各仮に最終焼鈍とし
て10−”w l O−’T o r rの真空中で8
70〜1150℃、lO分〜24時間の弱脱炭焼鈍を施
し、引き続きH!を20VOI%含む露点+10℃のN
1気流中で825℃、5分〜10時間の強脱炭焼鈍を施
した。
Vacuum melted ingots with 10 different compositions shown as A-J in Table 4 were hot forged into 15 mm thick plates, and each plate was 5 m thick.
After hot rolling to a thickness of m, cold rolling (rolling ratio of 86%) was performed to obtain a plate having a thickness of 0.7 mm. Thereafter, each temporary annealing was performed in a vacuum of 10-"w l O-'T o r r as a final annealing.
Weak decarburization annealing is performed at 70 to 1150°C for 10 minutes to 24 hours, followed by H! N with dew point +10℃ containing 20VOI%
Strong decarburization annealing was performed at 825° C. for 5 minutes to 10 hours in one air flow.

最終焼鈍後のC量は全ての試料について0.003wt
%以下となった。
The amount of C after final annealing is 0.003wt for all samples.
% or less.

そして、最終焼鈍を終えた各試料の表面から板厚の21
5の位置において前述したように、ECP法により各試
料毎に300個の結晶粒の結晶方位を測定し、板面垂直
方向の<100>軸密度を配向性のないものの倍数で求
めるとともに、断面組織の光学顕微鏡観察から結晶粒の
板面平行方向の平均粒径を求めた。また圧延方向に対し
て45゛の方向へのH00)軸の配向性を調べるため1
000A/mの外部磁界を付与したときの磁束密度B、
。を前記45°の方向について測定した。
After the final annealing, the plate thickness was 21 mm from the surface of each sample.
As mentioned above at position 5, the crystal orientation of 300 crystal grains was measured for each sample using the ECP method, and the <100> axis density in the direction perpendicular to the plate surface was determined as a multiple of that without orientation. The average grain size of the crystal grains in the direction parallel to the plate surface was determined from optical microscopic observation of the structure. In addition, in order to examine the orientation of the H00) axis in the direction of 45° with respect to the rolling direction, 1
Magnetic flux density B when applying an external magnetic field of 000 A/m,
. was measured in the 45° direction.

参考のため配向性をほとんど有しないものについても同
様の測定を行った。結果を最終焼鈍条件とともに第5表
に示す。
For reference, similar measurements were also performed on a sample with almost no orientation. The results are shown in Table 5 along with the final annealing conditions.

組成JのインゴットはC量が0.02wt%未満で、こ
れを使用する製法は本発明の範晴に入らない、他の組成
A−1のインゴットは全て本発明の製法を満足し、最終
焼鈍条件も本発明の製法を満足する。
The ingot of composition J has a C content of less than 0.02 wt%, and the manufacturing method using it does not fall within the scope of the present invention.All other ingots of composition A-1 satisfy the manufacturing method of the present invention, and the final annealing is The conditions also satisfy the manufacturing method of the present invention.

組成A〜■についての調査結果は、いずれの珪素鋼板も
板面垂直方向に成長したα相の柱状粒組織を有し、しか
もH00>軸は板面垂直方向に強く集積し、板面平行方
向においても<100>軸が圧延方向に対し45°の方
向に強く集積しでいる。
The investigation results for compositions A to ■ show that all silicon steel sheets have a columnar grain structure of α phase that grows in the direction perpendicular to the sheet surface, and the H00> axis is strongly concentrated in the direction perpendicular to the sheet surface, and Also, the <100> axes are strongly concentrated in the direction of 45° to the rolling direction.

〔実施例4〕 +1001  <011>方位への集積度に及ぼす冷間
圧延の影響を調べるため、第1表にEで示す組成の鋼を
真空中で溶製し鋳造したインゴットを熱間鍛造により1
0fl厚の板とし、この板を1200〜900℃の温度
範囲で1.O〜0.5mm厚の板に熱間圧延した後、7
0〜90%の範囲の種々の圧延率で冷間圧延を行ってo
、3n厚の板とした。
[Example 4] +1001 In order to investigate the influence of cold rolling on the degree of accumulation in the <011> orientation, an ingot produced by melting and casting steel with the composition shown in Table 1 as E in a vacuum was hot forged. 1
A plate with a thickness of 0fl is used, and the plate is heated in a temperature range of 1200 to 900°C. After hot rolling into a plate with a thickness of O ~ 0.5 mm, 7
Cold rolling was carried out at various rolling ratios ranging from 0 to 90%.
, a plate with a thickness of 3n.

得られた各板を0.1uのA l z ○、絹粉末て1
8層程度両面研磨し、引続き電解脱脂して表面を清浄し
た後、最終焼鈍として露点−55℃のA「ガス中で97
5℃にて5時間焼鈍を行い、引き続き露点+5℃の5Q
vO1%Hz  N!ガス気流中で800℃、2時間の
焼鈍を行った。
Each plate obtained was coated with 0.1 u of Al z ○ and silk powder.
After polishing both sides of about 8 layers and cleaning the surface by electrolytic degreasing, final annealing was performed in a 97° C.
Annealed at 5℃ for 5 hours, followed by 5Q at dew point +5℃
vO1%Hz N! Annealing was performed at 800° C. for 2 hours in a gas stream.

得られた試料について、板面平行方向における<ioo
>軸の集積度を調査するために、圧延方向に対して45
°偏位した方向に100OA/mの磁界を付与したとき
の磁束密度B、。を圧延方向に対して45°の方向につ
いて測定した。また50Hzの交番磁界中で1.5Tま
で磁化したときの鉄損W 、 !、、。も測定した。
Regarding the obtained sample, <ioo in the direction parallel to the plate surface
>45 in the rolling direction to investigate the degree of axle accumulation.
Magnetic flux density B when a magnetic field of 100 OA/m is applied in the direction of deviation. was measured in the direction of 45° with respect to the rolling direction. Also, the iron loss W when magnetized to 1.5T in a 50Hz alternating magnetic field, ! ,,. was also measured.

結果を第6表および第5図に示す、また、第6図は一部
の試料について集合組織を調べるため表面から板厚の2
15の深さの位置にてX線回折により測定した(200
1極点図である。
The results are shown in Table 6 and FIG.
Measured by X-ray diffraction at a depth of 15 (200
It is a one pole figure.

これらの結果から明らかなように、冷間圧延における圧
延率が80%以上のとき、B、。は1.70以上に達す
る。このことから、板面平行方向においては<100>
軸が圧延方向に対して45°の方向に強く集積し、集積
密度の高い(1001<011>集合&lt織が得られ
ていることがわかる。
As is clear from these results, when the rolling reduction in cold rolling is 80% or more, B. reaches 1.70 or more. From this, in the direction parallel to the plate surface, <100>
It can be seen that the axes are strongly stacked in the direction of 45° with respect to the rolling direction, resulting in a high stacking density (1001<011> set &lt; weave).

また、このような集合組織の形成により鉄損値も低下す
ることがわかる。
It is also seen that the iron loss value also decreases due to the formation of such a texture.

第  6  表 〔発明の効果〕 以上の説明から明らかなように、本発明は軟磁気特性に
優れた二方向性珪素鋼板を提供する。しかも素材面、圧
延面で特殊な技法を必要とせず、したがって実施容易で
実施コストが低い、さらに通常の冷間圧延法の採用が可
能であることから、板厚精度が高く鋼板を81層した状
態での集積率も向上する。また、脱炭を利用することか
ら、脱炭前の段階で鋼板が十分なCを含む。このため、
磁気特性確保のためにSlを添加してもT−α変態の受
ける影響は少なく、磁気特性は一層優れるものとなる。
Table 6 [Effects of the Invention] As is clear from the above description, the present invention provides a bidirectional silicon steel sheet with excellent soft magnetic properties. In addition, no special techniques are required in terms of material or rolling, so it is easy to implement and has low implementation costs.Furthermore, it is possible to use the normal cold rolling method, so the steel plate is made of 81 layers with high plate thickness accuracy. The accumulation rate in the state also improves. Furthermore, since decarburization is used, the steel sheet contains sufficient C before decarburization. For this reason,
Even if Sl is added to ensure magnetic properties, the T-α transformation is less affected and the magnetic properties are even better.

したがって、本発明は二方向性珪素鋼板の特性改善およ
び工業的規模での実施による製造コスト低減を実現し、
産業上多大の効果を奏するものである。
Therefore, the present invention improves the properties of bidirectional silicon steel sheets and reduces manufacturing costs by implementing them on an industrial scale,
This has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る珪素鋼板の組織略図、第2図は同
じく断面組織写真、第3図および第5図は同じく冷間圧
延率と磁束密度との関係を示す図表、第4図および第6
図は同じ<(2001極点図、第7図は各種珪素鋼板の
結晶方位を示す模式図である。 第  1  図 (イ) ζ〉  2 )ζ; (イ) (ロ) 第3図 第2段目の圧延率(〃) 第  4 図
FIG. 1 is a schematic diagram of the structure of a silicon steel sheet according to the present invention, FIG. 2 is a photograph of the cross-sectional structure, FIGS. 3 and 5 are charts showing the relationship between cold rolling reduction and magnetic flux density, and FIGS. 6th
The figure is the same <(2001 pole figure, Figure 7 is a schematic diagram showing the crystal orientation of various silicon steel plates. Figure 1 (A) ζ> 2 ) ζ; (A) (B) Figure 3, second stage Rolling ratio (〃) Fig. 4

Claims (1)

【特許請求の範囲】 1、C≦0.01wt%、0.2≦Si≦6.5wt%
を含んだ板厚0.05〜5mmの冷間圧延珪素鋼板で、
板面垂直方向に表面から内部に向かって成長した柱状結
晶粒からなり、その柱状結晶粒の板面平行方向の平均直
径が1mm以下で、板面に{100}面が平行で圧延方
向に〈001〉軸が強く集積した集合組織をもつ軟磁気
特性に優れた二方向性珪素鋼板。 2、C≦0.01wt%、0.2≦Si≦6.5wt%
を含んだ板厚0.05〜5mmの冷間圧延珪素鋼板で、
板面垂直方向に表面から内部に向かって成長した柱状結
晶粒からなり、その柱状結晶粒の板面平行方向の平均直
径が1mm以下で、板面に{100}面が平行で圧延方
向に〈011〉軸が強く集積した集合組織をもつ軟磁気
特性に優れた二方向性珪素鋼板。 3、0.02≦C≦1wt%、0.2≦Si≦6.5w
t%を含んだ珪素鋼板に対して、中間焼純を挟む2回以
上の冷間圧延を初回圧延の圧延率10%以上、最終圧延
の圧延率40〜75%で行うことにより、板厚0.05
〜5mmの冷間圧延珪素鋼板を製造し、しかる後、この
冷間圧延珪素鋼板を脱炭後実質的にαフェライト単相と
なる温度でC≦0.01wt%まで脱炭焼鈍することを
特徴とする特許請求の範囲第1項の記載の軟磁気特性に
優れた二方向性珪素鋼板の製造方法。 4、0.02≦C≦1wt%、0.2≦Si≦6.5w
t%を含んだ珪素鋼板に対して、1回または中間焼鈍を
挟む2回以上の冷間圧延を最終圧延の圧延率80%以上
で行うことにより、板厚0.05〜5mmの冷間圧延珪
素鋼板を製造し、しかる後、この冷間圧延珪素鋼板を脱
炭後実質的にαフェライト単相となる温度でC≦0.0
1wt%まで脱炭焼鈍することを特徴とする特許請求の
範囲第2項に記載の軟磁気特性に優れた二方向性珪素鋼
板の製造方法。 5、脱炭焼鈍として非酸化性または弱酸化性の雰囲気中
で、かつαフェライトとオーステナイトの二相混合もし
くはオーステナイト単相となる温度で、弱脱炭焼鈍を行
うことを特徴とする特許請求の範囲第3項または第4項
に記載の軟磁気特性に優れた二方向性珪素鋼板の製造方
法。 6、弱脱炭焼鈍で板表面から5〜100μmの領域がα
フェライト単相となるまで脱炭を行い、引き続き表層の
αフェライト粒が少なくとも板厚中央部で衝突するまで
強脱炭焼鈍を行うことを特徴とする特許請求の範囲第5
項に記載の軟磁気特性に優れた二方向性珪素鋼板の製造
方法。
[Claims] 1. C≦0.01wt%, 0.2≦Si≦6.5wt%
A cold-rolled silicon steel plate with a thickness of 0.05 to 5 mm containing
Consisting of columnar crystal grains that grow from the surface to the inside in the direction perpendicular to the plate surface, the average diameter of the columnar crystal grains in the direction parallel to the plate surface is 1 mm or less, the {100} plane is parallel to the plate surface, and 001〉A bidirectional silicon steel sheet with excellent soft magnetic properties and a texture in which the axes are strongly integrated. 2, C≦0.01wt%, 0.2≦Si≦6.5wt%
A cold-rolled silicon steel plate with a thickness of 0.05 to 5 mm containing
Consisting of columnar crystal grains that grow from the surface to the inside in the direction perpendicular to the plate surface, the average diameter of the columnar crystal grains in the direction parallel to the plate surface is 1 mm or less, the {100} plane is parallel to the plate surface, and 011〉A bidirectional silicon steel sheet with excellent soft magnetic properties and a texture in which the axes are strongly integrated. 3, 0.02≦C≦1wt%, 0.2≦Si≦6.5w
A silicon steel plate containing t% is cold rolled two or more times with intermediate annealing at a rolling rate of 10% or more for the first rolling and 40 to 75% for the final rolling to achieve a plate thickness of 0. .05
A cold rolled silicon steel plate of ~5 mm is produced, and then this cold rolled silicon steel plate is decarburized and annealed to C≦0.01wt% at a temperature at which it becomes substantially α-ferrite single phase after decarburization. A method for manufacturing a bidirectional silicon steel sheet having excellent soft magnetic properties as set forth in claim 1. 4, 0.02≦C≦1wt%, 0.2≦Si≦6.5w
By performing cold rolling once or twice or more with intermediate annealing at a rolling rate of 80% or more in the final rolling, a silicon steel plate containing t% can be cold rolled to a thickness of 0.05 to 5 mm. A silicon steel plate is produced, and then the cold rolled silicon steel plate is heated to C≦0.0 at a temperature at which it becomes substantially α-ferrite single phase after decarburization.
The method for producing a bidirectional silicon steel sheet with excellent soft magnetic properties according to claim 2, characterized in that decarburization annealing is performed to 1 wt%. 5. A patent claim characterized in that weak decarburization annealing is performed in a non-oxidizing or weakly oxidizing atmosphere at a temperature at which a two-phase mixture of α-ferrite and austenite or a single phase of austenite is obtained. A method for producing a bidirectional silicon steel sheet having excellent soft magnetic properties according to item 3 or 4. 6. Due to weak decarburization annealing, the area of 5 to 100 μm from the plate surface has α
Claim 5, characterized in that decarburization is performed until a single phase of ferrite is obtained, and then strong decarburization annealing is performed until α-ferrite grains in the surface layer collide at least in the center of the plate thickness.
A method for producing a bidirectional silicon steel sheet with excellent soft magnetic properties as described in 2.
JP8016588A 1988-03-30 1988-03-30 Double oriented silicon steel sheet and its production Pending JPH01252727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016588A JPH01252727A (en) 1988-03-30 1988-03-30 Double oriented silicon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016588A JPH01252727A (en) 1988-03-30 1988-03-30 Double oriented silicon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH01252727A true JPH01252727A (en) 1989-10-09

Family

ID=13710708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016588A Pending JPH01252727A (en) 1988-03-30 1988-03-30 Double oriented silicon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH01252727A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267246A (en) * 1989-04-05 1990-11-01 Nkk Corp High silicon steel sheet having superior iron loss characteristic and its production
JPH04165050A (en) * 1990-10-25 1992-06-10 Nippon Steel Corp High-si grain-oriented electrical steel sheet excellent in bendability
WO1998020179A1 (en) * 1996-11-01 1998-05-14 Sumitomo Metal Industries, Ltd. Bidirectional electromagnetic steel plate and method of manufacturing the same
WO2009093827A3 (en) * 2008-01-25 2009-10-22 Sung Jin Kyung Manufacturing method of doubly oriented electrical steel sheets and doubly oriented electrical steel sheets which are manufactured using the same
WO2012147922A1 (en) 2011-04-27 2012-11-01 新日本製鐵株式会社 Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
US8911565B2 (en) 2009-10-28 2014-12-16 Nippon Steel & Sumitomo Metal Corporation Fe-based metal plate and method of manufacturing the same
JP2016153521A (en) * 2015-02-20 2016-08-25 公立大学法人兵庫県立大学 Iron plate and manufacturing method therefor
JP2018135556A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018141206A (en) * 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267246A (en) * 1989-04-05 1990-11-01 Nkk Corp High silicon steel sheet having superior iron loss characteristic and its production
JPH04165050A (en) * 1990-10-25 1992-06-10 Nippon Steel Corp High-si grain-oriented electrical steel sheet excellent in bendability
WO1998020179A1 (en) * 1996-11-01 1998-05-14 Sumitomo Metal Industries, Ltd. Bidirectional electromagnetic steel plate and method of manufacturing the same
US5948180A (en) * 1996-11-01 1999-09-07 Sumitomo Metal Industries, Ltd. Doubly oriented magnetic steel sheet and method for manufacturing the same
WO2009093827A3 (en) * 2008-01-25 2009-10-22 Sung Jin Kyung Manufacturing method of doubly oriented electrical steel sheets and doubly oriented electrical steel sheets which are manufactured using the same
US8911565B2 (en) 2009-10-28 2014-12-16 Nippon Steel & Sumitomo Metal Corporation Fe-based metal plate and method of manufacturing the same
US9679687B2 (en) 2009-10-28 2017-06-13 Nippon Steel & Sumitomo Metal Corporation Fe-based metal plate and method of manufacturing the same
WO2012147922A1 (en) 2011-04-27 2012-11-01 新日本製鐵株式会社 Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
US9267194B2 (en) 2011-04-27 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Fe-based metal sheet and manufacturing method thereof
US9856549B2 (en) 2011-04-27 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Fe-based metal sheet and manufacturing method thereof
JP2016153521A (en) * 2015-02-20 2016-08-25 公立大学法人兵庫県立大学 Iron plate and manufacturing method therefor
JP2018135556A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018141206A (en) * 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same

Similar Documents

Publication Publication Date Title
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
WO2010084888A1 (en) Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2017145462A (en) Electromagnetic steel sheet, and method for producing the same
JPH01242757A (en) Alloy for low-frequency transformer and low-frequency transformer using said alloy
KR101463368B1 (en) Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JPH01252727A (en) Double oriented silicon steel sheet and its production
JP3316854B2 (en) Bidirectional electrical steel sheet and method for manufacturing the same
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
US6416592B2 (en) Electromagnetic steel sheet having excellent magnetic properties and production method thereof
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JP2590533B2 (en) Manufacturing method of silicon steel sheet
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP2021155812A (en) Manufacturing method of electrical steel sheet with {100}texture
JPH0651897B2 (en) Semi-process electrical steel sheet
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JPH04202644A (en) Silicon steel sheet and its production
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
US6858095B2 (en) Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
JP2000336464A (en) Hot rolled silicon steel sheet excellent in magnetic property and corrosion resistance and its production
JPH0826396B2 (en) Magnetic steel sheet manufacturing method
JPH0733549B2 (en) Method for manufacturing bidirectional silicon steel sheet