JP2535963B2 - Silicon steel sheet having excellent magnetic properties and method for producing the same - Google Patents

Silicon steel sheet having excellent magnetic properties and method for producing the same

Info

Publication number
JP2535963B2
JP2535963B2 JP62262997A JP26299787A JP2535963B2 JP 2535963 B2 JP2535963 B2 JP 2535963B2 JP 62262997 A JP62262997 A JP 62262997A JP 26299787 A JP26299787 A JP 26299787A JP 2535963 B2 JP2535963 B2 JP 2535963B2
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
plate surface
plate
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62262997A
Other languages
Japanese (ja)
Other versions
JPH01108345A (en
Inventor
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62262997A priority Critical patent/JP2535963B2/en
Publication of JPH01108345A publication Critical patent/JPH01108345A/en
Application granted granted Critical
Publication of JP2535963B2 publication Critical patent/JP2535963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は板面垂直方向に〈100〉軸の高密度に集積し
た磁気特性の優れた珪素鋼板およびその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a silicon steel sheet having a high density of <100> axes and excellent in magnetic properties in a direction perpendicular to the sheet surface, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来より電動機、発電機、変圧器等の磁心には珪素鋼
板が用いられる。この珪素鋼板に要求される磁性は、交
流磁界中で磁気的なエネルギー損失(鉄損)が少ないこ
と、実用的な磁界中で磁束密度が高いこと、の2つであ
る。これらを実現するには、電気抵抗を高め、かつ磁化
容易方向であるbcc格子の〈100〉軸を使用磁界方向に集
積させるのが有効とされている。
Conventionally, silicon steel plates have been used for magnetic cores of electric motors, generators, transformers and the like. The magnetism required for this silicon steel sheet is that there is little magnetic energy loss (iron loss) in an alternating magnetic field and that the magnetic flux density is high in a practical magnetic field. In order to realize these, it is effective to increase the electric resistance and integrate the <100> axis of the bcc lattice, which is the direction of easy magnetization, in the direction of the magnetic field used.

使用磁界方向が一方向に限られている場合に最も良好
な磁気特性を示すのは、3%程度のSiを含む一方向性珪
素鋼板である。これは第2図(イ)に示すように{11
0}面が板面に平行し、〈100〉軸を圧延方向に集積させ
ていることから、圧延方向に磁界をかけて使用した場合
の磁気特性が著しく優れる。しかし、この一方向性珪素
鋼板は圧延方向以外の方向に磁化し難い。したがって電
動機、発電機等の回転機器のような、磁界が板面内の様
々な方向に作用する場合には、さしたる効果は得られな
い。
It is a unidirectional silicon steel sheet containing about 3% Si that shows the best magnetic characteristics when the magnetic field used is limited to one direction. As shown in Fig. 2 (a), this is {11
Since the {0} plane is parallel to the plate surface and the <100> axis is integrated in the rolling direction, the magnetic properties are remarkably excellent when a magnetic field is applied in the rolling direction. However, this unidirectional silicon steel sheet is hard to magnetize in a direction other than the rolling direction. Therefore, when a magnetic field acts in various directions within the plate surface, such as in a rotating device such as an electric motor or a generator, no significant effect can be obtained.

磁界が板面内の複数の方向の作用する場合に使用され
るのは、第2図(ロ)〜(ホ)に示されるような集合組
織を持つ無方向性珪素鋼板である。
What is used when the magnetic field acts in a plurality of directions within the plate surface is a non-oriented silicon steel plate having a texture as shown in FIGS. 2 (b) to (e).

無方向性珪素鋼板のなかで良好な磁気特性を示すの
は、第2図(ロ)〜(ニ)に示すように{100}面が板
面に平行し、〈100〉軸が板面垂直方向に集積したもの
である。このような集合組織を持つと、3つの互いに直
交した〈100〉軸のうち、2つまでが板面に平行するこ
とになる。そして、板面に平行する2つの〈100〉軸の
集積具合は用途によって望まれるものが異なる。
Among non-oriented silicon steel sheets, good magnetic properties are shown in Fig. 2 (b) to (d), where the {100} plane is parallel to the plate surface and the <100> axis is perpendicular to the plate surface. It is a collection of directions. With such a texture, up to two of the three mutually orthogonal <100> axes are parallel to the plate surface. The desired degree of stacking of the two <100> axes parallel to the plate surface depends on the application.

例えば板面内の互いに直交する2方向に磁界が加わる
EI型鉄心のような場合は、第2図(ロ)(ハ)に示す
{100}〈001〉、{100}〈011〉方位の集合組織のもの
が好ましく、板面内のあらゆる方向に磁界が加わるもの
の場合は、第2図(ニ)に示す{100}面内無方向集合
組織のものを使用するか、もしくは第2図(ロ)(ハ)
に示す{100}〈100〉、{100}〈011〉型集合組織のも
のを板面内で角度を変えて打ち抜いて重ねて使用するの
が好ましいと言える。
For example, magnetic fields are applied in two directions that are orthogonal to each other within the plate surface.
In the case of an EI type iron core, a texture with {100} <001> and {100} <011> orientations shown in Fig. 2 (b) and (c) is preferable, and the magnetic field can be applied in any direction within the plate surface. In the case of the addition of, use the {100} in-plane non-oriented texture shown in Fig. 2 (d), or Fig. 2 (b) (c)
It can be said that it is preferable to use the {100} <100> and {100} <011> type textures shown in (1) and (2) for punching at different angles in the plate surface and stacking them.

そして、このような板面垂直方向に〈100〉軸を持つ
無方向性珪素鋼板は、従来は凝固組織を用いる方法と、
高温焼鈍による方法の2方法で製造されている。
And, such a non-oriented silicon steel sheet having a <100> axis in the direction perpendicular to the plate surface is conventionally prepared by using a solidification structure,
It is manufactured by two methods of high temperature annealing.

凝固組織を用いる方法 鋼と凝固させると、熱流方向に〈100〉軸を持つ結晶
が成長する。板状に凝固させると、冷却面である板面に
対して熱流方向が垂直となり、この方向に〈100〉軸が
配向する。凝固組織を用いる方法は、この配向性を利用
したもので、具体的には溶湯超急冷法によるものと、イ
ンゴット柱状晶を用いるものの2つがある。
Method using solidified structure When solidified with steel, crystals with <100> axis grow in the heat flow direction. When solidified into a plate, the heat flow direction becomes perpendicular to the plate surface that is the cooling surface, and the <100> axis is oriented in this direction. The method using the solidification structure utilizes this orientation, and specifically, there are two methods, that is, the method of ultra-quenching of molten metal and the method of using ingot columnar crystals.

溶湯超急冷法によるものは、高速回転する冷却ロール
の表面に溶湯を噴出し、0.05〜0.5mm厚程度の薄板を直
接製造する方法である。この方法で6%程度のSiを含む
珪素薄帯を製造すると、板面に垂直かもしくは垂直方向
に対して20〜30°傾いた方向に長軸を持つ柱状粒組織が
得られる。
The molten metal super-quenching method is a method in which the molten metal is jetted onto the surface of a cooling roll that rotates at a high speed to directly produce a thin plate having a thickness of 0.05 to 0.5 mm. When a silicon ribbon containing about 6% of Si is manufactured by this method, a columnar grain structure having a long axis in the direction perpendicular to the plate surface or inclined by 20 to 30 ° with respect to the vertical direction is obtained.

インゴット柱状晶を利用する方法は、特殊な鋳造方法
によって製造した〔001〕繊維組織の柱状晶インゴット
を{100}面が圧延面となるように圧延し、1000℃以上
の温度で焼鈍し、{100}〈001〉集合組織の珪素鋼板を
製造するものである。
The method of using the ingot columnar crystals is to roll the columnar crystal ingot of the [001] fiber structure produced by a special casting method so that the {100} face becomes the rolling face, and anneal at a temperature of 1000 ° C. or higher. 100} <001> A silicon steel sheet with a texture is manufactured.

高温焼鈍による方法 高温焼鈍によって板面垂直方向に〈100〉軸を持った
結晶粒を成長させる方法で、次の2つが周知である。
Method by High Temperature Annealing The following two methods are well known as a method of growing crystal grains having a <100> axis in the direction perpendicular to the plate surface by high temperature annealing.

1つは、主に焼鈍雰囲気を規定する方法で、0.15mm以
下の薄珪素鋼板に対し、弱酸化性の雰囲気中で1000℃以
上の温度で焼鈍を行うものである。この焼鈍によると結
晶粒は一度板厚程度の大きさに成長した後、板面垂直方
向に〈100〉軸を持った結晶粒が表面エネルギーを駆動
力として優先的に成長する。
One is a method of mainly defining an annealing atmosphere, in which a thin silicon steel sheet of 0.15 mm or less is annealed at a temperature of 1000 ° C. or more in a weakly oxidizing atmosphere. According to this annealing, the crystal grains once grow to the size of the plate thickness, and then the crystal grains having the <100> axis in the direction perpendicular to the plate surface preferentially grow using the surface energy as a driving force.

今1つは、微量のAl等を添加した珪素鋼を0°と90°
の方向に圧延(交叉圧延)し、1150℃の温度で最終焼鈍
を行う方法である。この方法によると、{100}〈001〉
方位で結晶粒が2次再結晶により得られる。
The first one is silicon steel with a small amount of Al added at 0 ° and 90 °.
This is a method of rolling (cross rolling) in the direction of (1) and performing final annealing at a temperature of 1150 ° C. According to this method, {100} 〈001〉
The crystal grains in the orientation are obtained by secondary recrystallization.

ところが、いずれの方法も非常に問題の多いものであ
る。
However, both methods are very problematic.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

凝固組織を用いる方法のうち、溶湯超急冷法によるも
のでは、板面垂直方向の〈100〉軸密度は配向性のない
ものの高さ3〜6倍程度でしかなく、また板厚精度も低
く、電磁鋼板に必要とされる高い占積率は確保できな
い。
Among the methods using the solidification structure, in the method using the molten metal quenching method, the <100> axial density in the direction perpendicular to the plate surface is only 3 to 6 times as high as that without orientation, and the plate thickness accuracy is low. The high space factor required for electrical steel sheets cannot be secured.

インゴット柱状晶を用いる方法では、板面垂直方向に
〈100〉軸を高密度で集積させようとすると、非常に大
きな結晶粒組織となり、通常は板厚の10〜100倍の結晶
粒となる。このため静磁界中での磁気特性は良好なる
も、交流磁界中では渦電流損失が大きく、十分な低鉄損
は得られない。また、特殊な鋳造方法を用いることか
ら、工業的規模で実施するのは非常に困難といえる。
In the method using the ingot columnar crystals, if the <100> axis is densely integrated in the direction perpendicular to the plate surface, the crystal grain structure becomes extremely large, and the grain size is usually 10 to 100 times the plate thickness. Therefore, although the magnetic characteristics are good in the static magnetic field, the eddy current loss is large in the alternating magnetic field, and a sufficient low iron loss cannot be obtained. Further, since a special casting method is used, it can be said that it is very difficult to carry out on an industrial scale.

高温焼鈍による方法では、いずれの方法も、インゴッ
ト柱状晶を用いる方法と同様の問題がある。
Any of the methods using high temperature annealing has the same problem as the method using ingot columnar crystals.

すなわち、弱酸化性雰囲気で焼鈍を行うものも、交叉
圧延を行うものも、板面垂直方向の〈100〉軸の集積精
度を高めようとすると、非常に大きな結晶粒組織とな
り、交流磁界中での鉄損特性が悪化する。
That is, both in the case of annealing in a weakly oxidizing atmosphere and in the case of performing cross rolling, when trying to improve the integration accuracy of the <100> axis in the direction perpendicular to the plate surface, a very large crystal grain structure is formed and in an alternating magnetic field. Of the iron loss is deteriorated.

更に前者の弱酸化性雰囲気で焼鈍を行うものでは、0.
15mm以下という薄い板にしか適用できない制約があり、
後者の交叉圧延を行うものでは長尺の薄板には適用でき
ない制約があり、いずれも工業的方法と言えない。
Furthermore, in the former case of annealing in a weakly oxidizing atmosphere, 0.
There is a restriction that can be applied only to thin plates of 15 mm or less,
The latter method of cross rolling has restrictions that cannot be applied to a long thin plate, and neither can be said to be an industrial method.

本発明は、これらの問題点が全て解決できる結晶粒組
織の珪素鋼板およびその製造方法を提供するものであ
る。
The present invention provides a silicon steel sheet having a crystal grain structure capable of solving all of these problems and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、珪素鋼板の脱炭焼鈍が進行する過程でγ→
α変態を発生させると、板面垂直方向に〈100〉軸が高
密度で集積した低鉄損で磁束密度も高い結晶粒組織の珪
素鋼板が、高精度の板厚で板厚等の制限を受けることな
くしかも工業的規模で容易に製造できるとの知見に基づ
くものである。
The present invention is characterized in that γ →
When α-transformation occurs, a silicon steel sheet with a low iron loss and a high magnetic flux density, in which the <100> axis is densely integrated in the direction perpendicular to the sheet surface, has a highly accurate thickness and limits the thickness, etc. It is based on the finding that it can be easily manufactured on an industrial scale without receiving it.

すなわち、従来の珪素鋼板に対する最終焼鈍はα−フ
ェライト単相の温度域で行うのが通例である。これに対
してCを適量添加しオーステナイト相(γ相)の温度域
を拡大した冷間圧延珪素鋼板を、脱炭が完了したときに
α単相となる温度域で、例えば弱脱炭性雰囲気で焼鈍す
ると、この焼鈍ではCが十分に含有されていることか
ら、α+γ2相域もしくはγ単相の温度域で焼鈍が行わ
れることになる。
That is, the final annealing of the conventional silicon steel sheet is usually performed in the temperature range of the α-ferrite single phase. On the other hand, a cold-rolled silicon steel sheet in which an appropriate amount of C is added to expand the temperature range of the austenite phase (γ phase) is used in a temperature range where a single phase is formed when decarburization is completed, for example, in a weak decarburizing atmosphere. When this is annealed, the annealing is performed in the α + γ2 phase region or the γ single phase temperature region since C is sufficiently contained in this annealing.

その結果、表面から5〜50μm深さまでの領域が脱炭
され、この部分のみがα単相となる。そして、このα単
相域が深部まで到らないように保持しておくと、第1図
(イ)に示すように板面垂直方向に〈100〉軸を持つ結
晶粒のみが板面平行方向に成長する。
As a result, the region from the surface to a depth of 5 to 50 μm is decarburized, and only this portion becomes the α single phase. If the α single-phase region is held so that it does not reach the deep part, as shown in Fig. 1 (a), only the crystal grains having the <100> axis in the direction perpendicular to the plate surface are parallel to the plate surface. Grow to.

かくして、表層は板面垂直方向に〈100〉軸が強く集
積したα単相の集合組織を持つようになる。この粒成長
は表面エネルギーを駆動力としたものと推定される。こ
の段階での表層のα粒は板面平行方向に30〜300μm程
度の大きさの柱状粒となっている。
Thus, the surface layer has an α single-phase texture in which the <100> axis is strongly integrated in the direction perpendicular to the plate surface. It is presumed that this grain growth was driven by surface energy. The α particles in the surface layer at this stage are columnar particles having a size of about 30 to 300 μm in the direction parallel to the plate surface.

続いて例えば強脱炭性雰囲気中で脱炭を進行させる
と、表層のα粒が内部のα+γ2相域、もしくはγ相域
に向かって成長し、最終的には第1図(ロ)に示すよう
に両表面から内部へ向かって延びた柱状粒が板厚中心部
で衝突したα単相の柱状粒組織となる。
Subsequently, for example, when decarburization proceeds in a strong decarburizing atmosphere, the α particles in the surface layer grow toward the α + γ2 phase region or the γ phase region inside, and finally as shown in FIG. 1 (B). As described above, the columnar grains extending inward from both surfaces collide at the central portion of the plate thickness to form a single-phase columnar grain structure.

以上のように、脱炭の過程でγ→α変態を生じさせれ
ば、表面で成長した{100}集合組織が粒成長により内
部にまで受け継がれ板全体を簡単に{100}集合組織と
できる。更に粒成長の過程で板面垂直方向の〈100〉軸
の集積度も向上する。この粒成長メカニズムは本発明者
らの調査研究により判明したものである。
As described above, if the γ → α transformation occurs during the decarburization process, the {100} texture grown on the surface is passed down to the inside by grain growth, and the entire plate can be easily turned into the {100} texture. . Furthermore, the degree of integration of the <100> axis in the direction perpendicular to the plate surface also improves during the grain growth process. This grain growth mechanism has been clarified by the research conducted by the present inventors.

更に、このような高集積度の{100}集合組織におい
ては、その柱状晶が板厚の数倍以下の直径となったとき
に、渦電流損失が従来のものよりも格段に低下し、かつ
高磁束密度となることも判明した。
Further, in such a highly integrated {100} texture, when the columnar crystals have a diameter of several times or less of the plate thickness, the eddy current loss is significantly lower than that of the conventional one, and It was also found that the magnetic flux density was high.

本発明は斯かる知見に基づきなされたもので、 C≦0.01wt%、0.2≦Si≦6.5wt%を含んだ板厚0.05〜
5mmの冷間圧延珪素鋼板で、板面垂直方向に表面から内
部に向かって成長した柱状結晶粒からなり、その柱状結
晶粒の板面平行方向の平均直径が1mm以下で、板面垂直
方向の〈100〉軸の軸密度が結晶方位配向性のないもの
の8倍以上である磁気特性の優れた珪素鋼板。
The present invention has been made on the basis of such findings, and has a plate thickness of 0.05 to which C ≦ 0.01 wt% and 0.2 ≦ Si ≦ 6.5 wt% is contained.
A 5 mm cold-rolled silicon steel sheet, consisting of columnar crystal grains that grew inward from the surface in the vertical direction to the plate surface, and the average diameter of the columnar crystal grains in the parallel direction to the plate surface was 1 mm or less. A silicon steel sheet with excellent magnetic properties, in which the axial density of the <100> axis is 8 times or more that of the non-oriented crystal orientation.

0.02≦C≦1wt%、0.2≦Si≦6.5wt%を含んだ板厚0.0
5〜5mmの冷間圧延珪素鋼板をC≦0.01wt%まで脱炭焼鈍
するにあたり、まず弱脱炭雰囲気下でα+γ域またはγ
域に加熱して表層部をγ→α変態させ、次いで強脱炭雰
囲気下でα+γ域またはγ域に加熱して内部をγ→α変
態させることを特徴とする板面垂直方向に表面から内部
に向かって成長した柱状結晶粒からなり、板面垂直方向
の〈100〉軸の軸密度が結晶方位配向性のないものの8
倍以上である磁気特性の優れた珪素鋼板の製造方法を要
旨とする。
0.02 ≦ C ≦ 1wt%, 0.2 ≦ Si ≦ 6.5wt% including the plate thickness 0.0
When decarburizing and annealing a 5 to 5 mm cold rolled silicon steel sheet to C ≦ 0.01 wt%, first in the α + γ range or γ in a weak decarburizing atmosphere.
It is characterized in that the surface layer part is transformed into γ → α by heating to the zone, and then it is heated to the α + γ zone or the γ zone in a strong decarburizing atmosphere to transform the inside into γ → α. It is composed of columnar crystal grains that grow toward, and the axial density of the <100> axis in the direction perpendicular to the plate surface has no crystal orientation.
The gist is a method of manufacturing a silicon steel sheet having a magnetic property which is more than double the magnetic characteristics.

〔作用〕 以下、本発明を成分組成、板厚、結晶組織、板面垂直
方向の〈100〉軸密度、ストリップ製造方法、最終焼
鈍、表面コーティングの順で詳述し、作用を明らかにす
る。
[Operation] Hereinafter, the present invention will be described in detail in the order of component composition, plate thickness, crystal structure, <100> axial density in the direction perpendicular to the plate surface, strip manufacturing method, final annealing, and surface coating to clarify the operation.

成分組成 C:最終焼鈍において脱炭にともなうγ→α変態を利用し
た集合組織制御を行うために、最終焼鈍前の段階で0.02
%以上、好ましくは0.05%以上の含有を必要とする。上
限は脱炭時間を抑えるために1%、好ましくは0.5%以
下、さらに好ましくは0.3%以下とする。最終焼鈍後の
段階では磁気特性を劣化させないために0.01%以下、好
ましくは0.005%以下、より好ましくは0.003%以下とす
る。
Ingredient composition C: In order to control the texture utilizing the γ → α transformation that accompanies decarburization in the final annealing, 0.02 was used in the stage before the final annealing.
%, Preferably 0.05% or more. In order to suppress the decarburization time, the upper limit is 1%, preferably 0.5% or less, more preferably 0.3% or less. In the stage after the final annealing, the content is set to 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less so as not to deteriorate the magnetic properties.

Si:磁気特性、機械的性質確保のために0.2%以上、好ま
しくは1%以上の添加を必要とする。上限は脆化および
磁束密度の低下を抑えるために6.5%、好ましくは5
%、より好ましくは4%とする。
Si: Addition of 0.2% or more, preferably 1% or more is necessary to secure magnetic properties and mechanical properties. The upper limit is 6.5%, preferably 5 to suppress embrittlement and decrease in magnetic flux density.
%, And more preferably 4%.

Mn:必須元素ではないが、電気抵抗を増大させ渦電流損
失を低下させるためと、γ相温度域を拡大しγ→α変態
利用の集合組織制御を容易するために添加することが望
まれる。添加する場合は0.5%以上が好ましく、0.8%以
上がより好ましいが、いずにしても脱炭完了後850℃以
下で実質的にα−フェライト単相となる量を最大限とし
て添加する。これはMnを多量に添加すると、脱炭完了後
実質的にα−フェライト単相となる温度が低下し、焼鈍
温度を極端に低くしなければならないためである。な
お、Si量が高い場合はMnを多量に添加しうるが、磁束密
度を低下させるため5%を超えないようにする。ここで
実質的にα−フェライト単相となるとはMnS,AlN等の微
量な第二相が存在しても良いことを意味する。
Mn: It is not an essential element, but it is desirable to add it in order to increase the electrical resistance and reduce the eddy current loss, and to expand the γ phase temperature range and facilitate the texture control using the γ → α transformation. When it is added, 0.5% or more is preferable, and 0.8% or more is more preferable, but in any case, the maximum amount is that which substantially forms an α-ferrite single phase at 850 ° C. or less after decarburization is completed. This is because when a large amount of Mn is added, the temperature at which the α-ferrite single phase is substantially reduced after decarburization is completed, and the annealing temperature must be extremely lowered. If the Si content is high, a large amount of Mn can be added, but the magnetic flux density is lowered, so the content should not exceed 5%. Here, being substantially an α-ferrite single phase means that a slight amount of a second phase such as MnS or AlN may be present.

C,Si,Mn以外の成分で本発明を損なわず添加できるも
のは以下のとおりである。
The components other than C, Si and Mn that can be added without impairing the present invention are as follows.

Al≦3% W,V,Cr,Co,Ni,Mo≦1% Cu≦0.5% Nb≦0.5% N ≦0.05% S ≦0.5% Sb,Se,As≦0.05% B ≦0.005% P ≦0.5% 板厚 本発明では結晶組織的な面から板厚に上限を設ける必
要はない。しかし、板厚が厚いと内部まで脱炭するのに
長時間を要し、また渦電流損失が増大するので5mm以下
とし、好ましくは1mm以下、より好ましくは0.5mm以下で
ある。下限は十分に集積した{100}集合組織とするた
め0.05mmとし、好ましくは0.1mm以上、より好ましくは
0.15mm以上である。
Al ≦ 3% W, V, Cr, Co, Ni, Mo ≦ 1% Cu ≦ 0.5% Nb ≦ 0.5% N ≦ 0.05% S ≦ 0.5% Sb, Se, As ≦ 0.05% B ≦ 0.005% P ≦ 0.5% Plate Thickness In the present invention, it is not necessary to set an upper limit on the plate thickness in terms of crystal structure. However, if the plate thickness is thick, it takes a long time to decarburize to the inside and the eddy current loss increases, so the thickness is 5 mm or less, preferably 1 mm or less, more preferably 0.5 mm or less. The lower limit is 0.05 mm in order to have a fully accumulated {100} texture, preferably 0.1 mm or more, more preferably
It is 0.15 mm or more.

結晶組織 板の面面から内部に向かって伸びた柱状粒が板厚中心
付近で衝突した組織を基本とするが、さらに粒成長を促
進させて板厚方向に貫通した柱状粒組織であってもよ
い。ただし、低鉄損とするため柱状結晶粒の板面平行方
向の平均直径は1mm以下とし、好ましくは0.5mm以下、よ
り好ましくは0.35mm以下である。
The crystal structure is basically a structure in which columnar grains extending inward from the surface of the plate collide near the center of the plate thickness, but even if the columnar grain structure penetrates in the plate thickness direction by further promoting grain growth. Good. However, in order to obtain a low iron loss, the average diameter of the columnar crystal grains in the direction parallel to the plate surface is 1 mm or less, preferably 0.5 mm or less, and more preferably 0.35 mm or less.

板面垂直方向の〈100〉軸密度 上記結晶組織をもつことにより板面垂直方向に〈10
0〉軸が高密度で集積する。この集積度は、十分な磁気
特性確保のため、結晶方位配向性のない(ランダム)も
のに比べ8倍以上とし、好ましくは15倍乃至20倍以上で
ある。
<100> -axis density in the direction perpendicular to the plate surface
0> axis is integrated with high density. In order to secure sufficient magnetic properties, this degree of integration is 8 times or more, and preferably 15 times to 20 times or more, as compared with the case where there is no crystal orientation orientation (random).

ストリップの製造方法 圧下率10%以上、好ましくは30%以上、より好ましく
は50%以上の冷間圧延を施すものであれば製造方法は問
わない。通常は連続鋳造−熱間加工−冷間圧延の工程に
よる。この場合、加工間に1回または複数回の焼鈍をは
さむことを阻げない。連続鋳造による方法以外には、例
えば50mm以下の板厚に直径凝固させた薄スラブもしくは
溶湯超急冷法による極薄板を直径または熱間加工後に冷
間圧延する方法でもよい。なお、ここで冷間圧延とは再
結晶の生じない500℃以下の圧延をいう。
Manufacturing method of strip Any manufacturing method may be used as long as cold rolling is performed at a rolling reduction of 10% or more, preferably 30% or more, and more preferably 50% or more. Usually, it is a process of continuous casting-hot working-cold rolling. In this case, it is possible to prevent the annealing from being performed once or plural times during processing. In addition to the continuous casting method, for example, a method of cold rolling after a diameter or hot working of a thin slab diameter-solidified to a plate thickness of 50 mm or less or an ultra-thin plate by a melt quenching method may be used. Here, cold rolling refers to rolling at 500 ° C. or lower at which recrystallization does not occur.

最終焼鈍 脱炭完了後α−フェライト単相となる温度域で脱炭焼
鈍を行う。これにより脱炭の行われていない部分につい
てはα+γ2相域もしくはγ単相域の温度で焼鈍が行わ
れ、脱炭が進行する間に表層より内部に向かってγ→α
変態を生じ、板面垂直方向に〈100〉軸が強く集積した
実質的にα単相の柱状粒組織が得られる。具体的には、
焼鈍効率を高めるため、次のような焼鈍を行うのが好ま
しい。
Final annealing After completion of decarburization, decarburization annealing is performed in a temperature range where an α-ferrite single phase is formed. As a result, the part that has not been decarburized is annealed at the temperature of the α + γ2 phase region or the γ single-phase region, and while the decarburization proceeds, γ → α inward from the surface layer.
A transformation occurs and a substantially α single-phase columnar grain structure in which the <100> axis is strongly integrated in the direction perpendicular to the plate surface is obtained. In particular,
In order to increase the annealing efficiency, it is preferable to perform the following annealing.

まず、弱脱炭性の雰囲気中、例えば10-1Torr以下の真
空中もしくは露点0℃以下のH2,He,Ne,Nr,Kr,Xe,Rn,N2
の1種または2種以上の雰囲気中で、850℃以上の温度
で焼鈍し、板表面から5〜50μmの深さの領域にα単相
域を形成する。焼鈍時間は好ましくは1〜48h程度であ
る。
First, in a weakly decarburizing atmosphere, for example, in a vacuum of 10 -1 Torr or less, or H 2 , He, Ne, Nr, Kr, Xe, Rn, N 2 having a dew point of 0 ° C. or less.
In one or more atmospheres, and is annealed at a temperature of 850 ° C. or higher to form an α single-phase region in a region having a depth of 5 to 50 μm from the plate surface. The annealing time is preferably about 1 to 48 hours.

次いで、強脱炭性の雰囲気、例えば露点0℃以上のH2
中もしくは露点0℃以上のH2に不活性ガスまたはCO,CO2
を添加したガス中で、650〜900℃の温度で焼鈍し、板表
層部に形成したα単相域を板内部に向かって成長させ
る。焼鈍時間は好ましくは5min〜20h程度である。
Then, a strong decarburizing atmosphere, for example, H 2 with a dew point of 0 ° C. or more
Inert gas or CO, CO 2 in H 2 with medium or dew point 0 ℃ or more
In a gas containing 650 to 900 ° C. to grow the α single phase region formed in the surface layer portion of the plate toward the inside of the plate. The annealing time is preferably about 5 minutes to 20 hours.

なお、強脱炭の工程はC添加時にα相とセメンタイト
との混合相となる温度域で行ってもよい。
The step of strong decarburization may be performed in a temperature range where a mixed phase of α phase and cementite is added when C is added.

表面コーティング 表面には絶縁皮膜を形成することが好ましいが、この
工程は最終焼鈍後に実施してもよいし、弱脱炭性雰囲気
中での焼鈍の後に実施してもよい。後者の場合は、表面
コーティング後に強脱炭性の雰囲気中で焼鈍を行うこと
になる。
Surface coating It is preferable to form an insulating film on the surface, but this step may be performed after the final annealing or after annealing in a weak decarburizing atmosphere. In the latter case, the surface coating is followed by annealing in a strong decarburizing atmosphere.

〔実施例1〕 第1表にA〜Iで示す9種類の組成の真空溶製インゴ
ットを熱間鍛造により10mm厚の板とし、各板を3mm厚ま
で熱間圧延した後、1.0mm厚まで冷間圧延した。しかる
後、各板に最終焼鈍として真空中で870〜1150℃、30分
〜24時間の弱脱炭焼鈍を施し、引き続きH2を20%含む露
点+40℃のAr気流中で850℃、5分〜5時間の強脱炭焼
鈍を施した。
[Example 1] A vacuum-melted ingot of 9 kinds of compositions shown in Table 1 by A to I was hot forged into a plate having a thickness of 10 mm, and each plate was hot-rolled to a thickness of 3 mm, and then to a thickness of 1.0 mm. Cold rolled. After that, each plate was subjected to a final deanneal of 870 to 1150 ° C in vacuum for 30 minutes to 24 hours as a weak decarburizing anneal, followed by 850 ° C for 5 minutes in an Ar gas flow containing 20% of H 2 at a dew point of + 40 ° C. Strong decarburization annealing was performed for up to 5 hours.

最終焼鈍後のC量は全ての試料について0.003%以下
となり、組織はα単相となった。
The C content after the final annealing was 0.003% or less for all the samples, and the structure was a single phase.

そして、最終焼鈍を終えた各試料の表面から板厚の2/
5の位置においてX線回折測定を行い、{200}面反射強
度から板面垂直方向の〈100〉軸密度を配向性のないも
のの倍数で求めるとともに、断面組織のSEM観察から、
結晶粒の板面平行方向の平均粒径を求めた。結果を最終
焼鈍条件とともに第2表に示す。
Then, from the surface of each sample after the final annealing,
X-ray diffraction measurement was performed at the position of 5, and the <100> axis density in the direction perpendicular to the plate surface was obtained from the {200} plane reflection intensity by a multiple of the non-oriented one, and from the SEM observation of the cross-sectional structure,
The average grain size of the crystal grains in the direction parallel to the plate surface was obtained. The results are shown in Table 2 together with the final annealing conditions.

組成BのインゴットはC量が0.02%未満で、これを使
用する製法は本発明の範疇に入らない。他の組成A,C〜
Iのインゴットは全て本発明の製法を満足し、最終焼鈍
条件も本発明の製法を満足する。
The ingot of the composition B has a C content of less than 0.02%, and a manufacturing method using the same does not fall within the scope of the present invention. Other compositions A, C ~
All of the ingots I satisfy the manufacturing method of the present invention, and the final annealing conditions also satisfy the manufacturing method of the present invention.

組成A,C〜Iについての調査結果は、いずれの珪素鋼
板も板面垂直方向に成長したα相の柱状粒組織を有し、
しかも〈100〉軸は板面垂直方向に強く集積し、本発明
の有効性を示している。
The results of investigations on the compositions A and C to I indicate that all silicon steel sheets have a columnar grain structure of α phase grown in the direction perpendicular to the plate surface,
Moreover, the <100> axis is strongly integrated in the direction perpendicular to the plate surface, which shows the effectiveness of the present invention.

なお、第1図(イ)(ロ)に示す断面組織写真は、第
1表にFで示す組成の鋼に熱間鍛造−熱間圧延−冷間圧
延を施し製造した0.5mm厚の試料についてのものであ
る。(イ)はこの試料に真空中で950℃、9時間の弱脱
炭性焼鈍を施した後の段階、(ロ)はこの焼鈍の後、露
点が+40℃の40%H2+Ar気流中で850℃、30分間の強脱
炭性焼鈍を施した後の段階をそれぞれ×100、×50で撮
影したものである。
The photographs of the cross-sectional structures shown in FIGS. 1 (a) and (b) are about 0.5 mm thick samples produced by hot forging-hot rolling-cold rolling of steel having the composition shown by F in Table 1. belongs to. (A) The stage after this sample was subjected to weak decarburizing annealing at 950 ° C for 9 hours in vacuum, and (b) after this annealing, in a 40% H 2 + Ar stream with a dew point of + 40 ° C. These are the images taken at × 100 and × 50, respectively, after the stage of strong decarburizing annealing at 850 ° C for 30 minutes.

〔実施例2〕 第1表にIで示す組成の鋼を真空中で製造し鋳造した
インゴットを熱間鋳造にて10mm厚の板とし、この板を3m
m厚まで熱間圧延した後、1mm厚まで冷間圧延し、850
℃、5分間の中間焼鈍を経て0.1〜0.8mm厚まで冷間圧延
した。得られた各板を最終焼鈍として露点−50℃のArガ
ス雰囲気中で970℃、24時間焼鈍した後、露点+20℃の2
0%H2−Arガス気流中で750℃、30分間焼鈍した。
[Example 2] A steel having a composition shown by I in Table 1 was manufactured in a vacuum and cast, and an ingot was hot cast into a plate having a thickness of 10 mm.
After hot rolling to m thickness, cold rolling to 1mm thickness, 850
After intermediate annealing at 5 ° C. for 5 minutes, cold rolling was performed to a thickness of 0.1 to 0.8 mm. Each of the obtained plates was annealed at 970 ° C for 24 hours in an Ar gas atmosphere with a dew point of -50 ° C as the final annealing, and then dew point of + 20 ° C.
750 ° C. In 0% H 2 -Ar gas flow, and annealed for 30 minutes.

そして、最終焼鈍を終えた各試料の板面垂直方向の
〈100〉軸密度、柱状粒の板面平行方向の平均直径を実
施例1と同じ方法で求める一方、各試料より内径50mm、
外形60mmのリング状試験片を打ち抜き、各リング状試験
片に1次コイル、2次コイルを100ターンづつ巻いて磁
気特性を測定した。磁気特性の測定は5000A/mの外部磁
界をかけた場合の磁束密度(B50)と、50Hzの交流磁界
中で1.5Tまで磁化した場合の鉄損(W15/50)とについて
行った。また、比較のため0.35mm厚の市販高級無方向性
珪素鋼板(JIS S−9)に対しても同じ調査を行った。
結果を第3表に示す。
Then, the <100> axial density in the plate surface vertical direction and the average diameter of the columnar grains in the plate surface parallel direction of each sample after the final annealing were obtained by the same method as in Example 1, while the inner diameter of each sample was 50 mm,
A ring-shaped test piece having an outer diameter of 60 mm was punched out, and a primary coil and a secondary coil were wound around each ring-shaped test piece for 100 turns to measure magnetic characteristics. Measurements of magnetic properties were performed on the magnetic flux density when subjected to an external magnetic field of 5000A / m (B 50), the iron loss when magnetized to 1.5T in alternating magnetic field 50H z and (W 15/50) . For comparison, the same investigation was conducted on a 0.35 mm thick commercial high-grade non-oriented silicon steel sheet (JIS S-9).
The results are shown in Table 3.

0.1〜0.8mm厚のいずれの珪素鋼板も〈100〉軸が板面
垂直方向に強く集積し、市販の高級無方向性珪素鋼板と
比べて磁束密度が高く、鉄損も低い。このことは、本発
明が珪素鋼板の磁気特性向上に有効なばかりでなく、そ
の有効性が板厚の影響を受けないことを示すものであ
る。
In all of the 0.1 to 0.8 mm thick silicon steel sheets, the <100> axis is strongly integrated in the direction perpendicular to the sheet surface, and the magnetic flux density is higher and the iron loss is lower than the commercially available high grade non-oriented silicon steel sheet. This indicates that the present invention is not only effective in improving the magnetic properties of silicon steel sheets, but its effectiveness is not affected by the sheet thickness.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明は無方向性珪
素鋼板に優れた磁気特性を与える上、圧延率、中間焼鈍
等の組合せにより磁気特性の優れた二方向性珪素鋼板の
製造も可能にする。しかも素材面、圧延面で特殊な技法
を必要とせず、したがって実施容易で実施コストが低
い。さらに通常の冷間圧延法の採用が可能であることか
ら、板厚精度が高く鋼板を積層した状態での集積率も向
上させる。更にまた、板厚の影響も受けない。したがっ
て、工業的規模で実施するのに極めて適した産業上多大
の効果を奏する発明ということができる。
As is apparent from the above description, the present invention provides a non-oriented silicon steel sheet with excellent magnetic properties, and also enables the production of a bi-directional silicon steel sheet with excellent magnetic properties by combining a rolling ratio, intermediate annealing, etc. To do. In addition, no special technique is required for the material surface and the rolling surface, so that it is easy to implement and the implementation cost is low. Further, since the normal cold rolling method can be adopted, the plate thickness accuracy is high and the stacking rate in the state where the steel plates are laminated is also improved. Furthermore, it is not affected by the plate thickness. Therefore, it can be said that the invention has a great industrial effect, which is extremely suitable for implementation on an industrial scale.

【図面の簡単な説明】 第1図は本発明に係る珪素鋼板の断面組織写真、第2図
は各種珪素鋼板の結晶方位を示す模式図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a photograph of a sectional structure of a silicon steel sheet according to the present invention, and FIG. 2 is a schematic view showing crystal orientations of various silicon steel sheets.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C≦0.01wt%、0.2≦Si≦6.5wt%を含んだ
板厚0.05〜5mmの冷間圧延珪素鋼板で、板面垂直方向に
表面から内部に向かって成長した柱状結晶粒からなり、
その柱状結晶粒の板面平行方向の平均直径が1mm以下
で、板面垂直方向の〈100〉軸の軸密度が結晶方位配向
性のないものの8倍以上である磁気特性の優れた珪素鋼
板。
1. A cold-rolled silicon steel sheet containing C ≦ 0.01 wt% and 0.2 ≦ Si ≦ 6.5 wt% and having a plate thickness of 0.05 to 5 mm, and columnar crystal grains grown inward from the surface in the direction perpendicular to the plate surface. Consists of
A silicon steel sheet with excellent magnetic properties, in which the average diameter of the columnar crystal grains in the direction parallel to the plate surface is 1 mm or less, and the axial density of the <100> axis in the direction perpendicular to the plate surface is 8 times or more that of those without crystal orientation.
【請求項2】0.02≦C≦1wt%、0.2≦Si≦6.5wt%を含
んだ板厚0.05〜5mmの冷間圧延珪素鋼板をC≦0.01wt%
まで脱炭焼鈍するにあたり、まず弱脱炭雰囲気下でα+
γ域またはγ域に加熱して表層部をγ→α変態させ、次
いで強脱炭雰囲気下でα+γ域またはγ域に加熱して内
部をγ→α変態させることを特徴とする板面垂直方向に
表面から内部に向かって成長した柱状結晶粒からなり、
板面垂直方向の〈100〉軸の軸密度が結晶方位配向性の
ないものの8倍以上である磁気特性の優れた珪素鋼板の
製造方法。
2. A cold rolled silicon steel sheet having a thickness of 0.05 to 5 mm containing 0.02 ≦ C ≦ 1 wt% and 0.2 ≦ Si ≦ 6.5 wt% is C ≦ 0.01 wt%.
When decarburizing and annealing up to α + in a weak decarburizing atmosphere
Vertical direction of plate surface characterized by heating to γ or γ region to transform the surface layer to γ → α, and then heating to α + γ region or γ region in strong decarburizing atmosphere to transform γ → α inside Consists of columnar grains grown from the surface to the inside,
A method for producing a silicon steel sheet having excellent magnetic properties, wherein the axial density of the <100> axis in the direction perpendicular to the plate surface is 8 times or more that of the one without crystal orientation.
JP62262997A 1987-10-19 1987-10-19 Silicon steel sheet having excellent magnetic properties and method for producing the same Expired - Fee Related JP2535963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262997A JP2535963B2 (en) 1987-10-19 1987-10-19 Silicon steel sheet having excellent magnetic properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262997A JP2535963B2 (en) 1987-10-19 1987-10-19 Silicon steel sheet having excellent magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01108345A JPH01108345A (en) 1989-04-25
JP2535963B2 true JP2535963B2 (en) 1996-09-18

Family

ID=17383463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262997A Expired - Fee Related JP2535963B2 (en) 1987-10-19 1987-10-19 Silicon steel sheet having excellent magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP2535963B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078921A1 (en) * 2006-12-22 2008-07-03 Jin Kyung Sung Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured by using the same
WO2009091216A2 (en) * 2008-01-16 2009-07-23 Production method for non-oriented electrical steel sheet, and non-oriented electrical steel sheet produced thereby
WO2009091217A1 (en) * 2008-01-16 2009-07-23 Method for producing non-oriented electrical steel sheet
KR100973406B1 (en) * 2008-01-16 2010-07-30 성진경 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757887B2 (en) * 1989-05-24 1995-06-21 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with developed {100} <uvw> texture
US5807441A (en) * 1993-11-02 1998-09-15 Sumitomo Metal Industries, Ltd. Method of manufacturing a silicon steel sheet having improved magnetic characteristics
JP3480072B2 (en) * 1993-11-02 2003-12-15 住友金属工業株式会社 Method for producing silicon steel sheet with excellent magnetic properties
DE69625845T2 (en) * 1995-05-02 2003-12-24 Sumitomo Metal Ind Magnetic steel sheet with improved magnetic properties and improved punchability
CA2241824C (en) * 1996-11-01 2003-08-05 Sumitomo Metal Industries, Ltd. Bidirectional electromagnetic steel plate and method of manufacturing the same
EP0897993B1 (en) * 1997-08-15 2004-10-27 JFE Steel Corporation Electromagnetic steel sheet having excellent magnetic properties and production method thereof
JP3706765B2 (en) 1999-05-27 2005-10-19 兼次 安彦 Hot rolled electrical steel sheet having excellent magnetic properties and corrosion resistance and method for producing the same
WO2011052654A1 (en) * 2009-10-28 2011-05-05 新日本製鐵株式会社 Ferrous metal sheet and manufacturing method therefor
EP3486009B1 (en) * 2017-11-17 2024-01-17 The Swatch Group Research and Development Ltd Method for sintering an austenitic stainless steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078921A1 (en) * 2006-12-22 2008-07-03 Jin Kyung Sung Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured by using the same
CN101568652B (en) * 2006-12-22 2012-07-18 成振庆 Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured therefor
US8361243B2 (en) 2006-12-22 2013-01-29 Jin Kyung Sung Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured by using the same
WO2009091216A2 (en) * 2008-01-16 2009-07-23 Production method for non-oriented electrical steel sheet, and non-oriented electrical steel sheet produced thereby
WO2009091217A1 (en) * 2008-01-16 2009-07-23 Method for producing non-oriented electrical steel sheet
WO2009091216A3 (en) * 2008-01-16 2009-10-22 Sung Jin Kyung Production method for non-oriented electrical steel sheet, and non-oriented electrical steel sheet produced thereby
KR100973406B1 (en) * 2008-01-16 2010-07-30 성진경 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Also Published As

Publication number Publication date
JPH01108345A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
KR100956530B1 (en) Nonoriented electromagnetic steel sheet
CN111373494B (en) High permeability soft magnetic alloy and method for manufacturing high permeability soft magnetic alloy
JP2020509182A (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN103930583A (en) Anisotropic electromagnetic steel sheet and method for producing same
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
WO2019132363A1 (en) Double oriented electrical steel sheet and method for manufacturing same
JPH0651889B2 (en) Method for producing non-oriented silicon steel by ultra-high speed annealing
CN113474472B (en) Non-oriented electromagnetic steel sheet
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
JP3316854B2 (en) Bidirectional electrical steel sheet and method for manufacturing the same
EP0897993B1 (en) Electromagnetic steel sheet having excellent magnetic properties and production method thereof
JP6623533B2 (en) Fe-based metal plate
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JPH01252727A (en) Double oriented silicon steel sheet and its production
JPH0674460B2 (en) Magnetic steel sheet manufacturing method
JP2590533B2 (en) Manufacturing method of silicon steel sheet
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JP3252700B2 (en) Electrical steel sheet with excellent magnetic properties and punchability
JP3480072B2 (en) Method for producing silicon steel sheet with excellent magnetic properties
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JP2012237051A (en) Method for producing fe-based metal plate having high gathering degree of {200} plane
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees