JP3480072B2 - Method for producing silicon steel sheet with excellent magnetic properties - Google Patents

Method for producing silicon steel sheet with excellent magnetic properties

Info

Publication number
JP3480072B2
JP3480072B2 JP24940194A JP24940194A JP3480072B2 JP 3480072 B2 JP3480072 B2 JP 3480072B2 JP 24940194 A JP24940194 A JP 24940194A JP 24940194 A JP24940194 A JP 24940194A JP 3480072 B2 JP3480072 B2 JP 3480072B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
decarburization
plate
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24940194A
Other languages
Japanese (ja)
Other versions
JPH07173542A (en
Inventor
俊郎 富田
繁雄 上野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24940194A priority Critical patent/JP3480072B2/en
Priority to PCT/JP1994/001833 priority patent/WO1995012691A1/en
Publication of JPH07173542A publication Critical patent/JPH07173542A/en
Priority to US08/732,894 priority patent/US5807441A/en
Application granted granted Critical
Publication of JP3480072B2 publication Critical patent/JP3480072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、板面平行方向の{10
0}面を有する磁気特性の優れた珪素鋼板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for manufacturing a silicon steel sheet having a 0} plane and excellent magnetic properties.

【0002】[0002]

【従来の技術】従来から、電動機、発電機あるいは変圧
器などの磁心材料には珪素鋼板が用いられている。この
珪素鋼板には、交流磁界中で磁気的なエネルギー損失が
少ないこと、磁界中で磁束密度が高いことの二つの特性
が要求される。これらの特性を実現するには、電気抵抗
を高め、かつ磁化容易方向であるbcc格子の<100
>軸を使用磁界方向に集積させることが有効であるとさ
れている。
2. Description of the Related Art Conventionally, a silicon steel plate has been used as a magnetic core material for an electric motor, a generator or a transformer. This silicon steel sheet is required to have two characteristics, that is, a magnetic energy loss is small in an alternating magnetic field and a magnetic flux density is high in a magnetic field. In order to realize these characteristics, it is necessary to increase the electric resistance and <100 of the bcc lattice in the easy magnetization direction.
It is said that it is effective to integrate the> axis in the used magnetic field direction.

【0003】使用磁界方向が一方向に限られている場合
(例えば、変圧器など)に最も有効な磁気特性を示すも
のには、3%程度のSiを含む一方向性珪素鋼板がある。
A unidirectional silicon steel sheet containing about 3% of Si is one that exhibits the most effective magnetic characteristics when the magnetic field direction used is limited to one direction (for example, a transformer).

【0004】図2は、珪素鋼板の圧延方向ならびにbc
c格子の<100>軸、<110>軸および{100}
面、{110}面の集積方位差を模式的に示す図であ
る。図2(イ) に示す鋼板は、図示するように{110}
面が板面に平行し、<100>軸が圧延方向に集積して
いる一方向性珪素鋼板である。珪素鋼の容易磁化方向は
<100>軸方向であるため、この鋼板は圧延方向に磁
界をかけて使用する場合の磁気特性が著しく優れる。し
かし、この一方向性珪素鋼板は、圧延方向以外の方向に
磁化しがたい。したがって、電動機または発電機などの
回転機のように磁界が板面の種々の方向に作用する場合
には、望ましい効果は得られない。
FIG. 2 shows the rolling direction of a silicon steel sheet and bc.
<100> axis, <110> axis and {100} of c-lattice
It is a figure which shows typically the accumulation | orientation difference of a plane and {110} plane. The steel plate shown in Fig. 2 (a) is {110} as shown.
It is a unidirectional silicon steel sheet whose surface is parallel to the plate surface and whose <100> axis is integrated in the rolling direction. Since the easy magnetization direction of silicon steel is the <100> axis direction, this steel sheet has remarkably excellent magnetic properties when used by applying a magnetic field in the rolling direction. However, this unidirectional silicon steel sheet is hard to magnetize in a direction other than the rolling direction. Therefore, the desired effect cannot be obtained when the magnetic field acts in various directions on the plate surface as in a rotating machine such as an electric motor or a generator.

【0005】現在、磁界が板面の複数方向に作用する機
器に使用されるているのは、ほとんど集合組織をもたな
い無方向性珪素鋼板である。ところが、このような珪素
鋼板では、ほとんどの<100>軸が板面と平行ではな
いので、良好な磁気特性を得ることができない。
At present, it is a non-oriented silicon steel sheet having almost no texture that is used in a device in which a magnetic field acts in a plurality of directions of a plate surface. However, in such a silicon steel sheet, most of the <100> axes are not parallel to the plate surface, so that good magnetic characteristics cannot be obtained.

【0006】これらの用途において良好な磁気特性を示
すのは、図2(ロ) 〜図2(ニ) に示すように、 {100}
面が板面に平行し、<100>軸が板面垂直方向に集積
したものである。このような集合組織をもつと、互いに
直行する三つの<100>軸のうち、二つまでが板面に
平行する方向に集積したものとなる。以下、本発明で
は、これらの三種類を総称して{100}面集合組織を
有する珪素鋼板という。
In these applications, good magnetic properties are exhibited by {100} as shown in FIGS. 2 (b) to 2 (d).
The surface is parallel to the plate surface, and the <100> axis is integrated in the direction perpendicular to the plate surface. With such a texture, up to two of the three <100> axes orthogonal to each other are integrated in the direction parallel to the plate surface. Hereinafter, in the present invention, these three types are collectively referred to as a silicon steel sheet having a {100} plane texture.

【0007】この種の無方向性珪素鋼板では、板面に平
行する二つの<100>軸の集積具合にしたがってその
用途を変える。
In this type of non-oriented silicon steel sheet, its application is changed according to the degree of accumulation of two <100> axes parallel to the sheet surface.

【0008】例えば、板面内に互いに直行する方向に磁
界が加わるEI型鉄心の場合は、図2(ロ) 、図2(ハ) に
示す{100}<100>集合組織もしくは、{10
0}<110>集合組織のものが望ましい。板面内のあ
らゆる方向に磁界が加わる鉄心の場合は、図2(ニ) に示
す{100}面が板面内に無方向の集合組織のものか、
または図2(ロ) 、図2(ハ) に示す{100}面が板面内
に一方向の集合組織のものを、板面内で角度を変えて打
ち抜き、これらを重ねて使用する。
For example, in the case of an EI type iron core in which magnetic fields are applied in a direction perpendicular to each other in the plate surface, {100} <100> texture or {10} <100> shown in FIGS. 2 (b) and 2 (c).
0} <110> texture is desirable. In the case of an iron core to which a magnetic field is applied in all directions within the plate surface, whether the {100} plane shown in Fig. 2 (d) has a non-oriented texture in the plate surface,
Alternatively, a {100} plane shown in FIGS. 2B and 2C having a texture in one direction within the plate surface is punched at different angles within the plate surface, and these are stacked and used.

【0009】本発明者らは特開平1−108345号公報にお
いて、このような{100}面集合組織を工業的規模で
実現するのに適した、二段階の脱炭焼鈍を用いる珪素鋼
板の製造方法を示した。
The inventors of the present invention, in Japanese Patent Laid-Open No. 1-108345, manufacture a silicon steel sheet using two-step decarburization annealing, which is suitable for realizing such a {100} plane texture on an industrial scale. Showed how.

【0010】この製造方法は、C:0.02〜1%、Si:
0.2〜6.5 %を含み、さらに必要に応じてMn:5%以下
を少なくとも脱炭した後 850℃以下の温度で実質的にα
−フェライト単相となるように含む板厚0.05〜5mmの冷
間圧延珪素鋼板を、脱炭後実質的にα−フェライト単相
となる温度でC:0.01%以下まで脱炭し、板面垂直方向
に表面から内部に向かって成長した柱状結晶粒からな
り、板面垂直方向に<100>軸が高密度に集積した珪
素鋼板を製造するものである。「実質的にα−フェライ
ト単相となる」とは、MnS、AlNなどの微量第二相が存
在してもよいことを意味する。
In this manufacturing method, C: 0.02 to 1%, Si:
0.2 to 6.5%, and if necessary Mn: 5% or less is at least decarburized, then at a temperature of 850 ° C or less
-Cold-rolled silicon steel sheet having a plate thickness of 0.05 to 5 mm, which is included as a ferrite single phase, is decarburized to a temperature of substantially α-ferrite single phase after decarburization to C: 0.01% or less, and the plate surface is perpendicular. Direction, the silicon steel sheet is formed of columnar crystal grains that grow inward from the surface to the inside, and the <100> axis is densely integrated in the direction perpendicular to the sheet surface. “Substantially becoming an α-ferrite single phase” means that a trace amount of second phase such as MnS or AlN may be present.

【0011】この方法では、本質的に表面から5〜50μ
m の深さまでの領域に、板面垂直方向に<100>軸を
持つα−フェライト粒を生成させるための真空または弱
脱炭性雰囲気中での第一次脱炭焼鈍(例えば、均熱保持
温度:950 ℃、均熱保持時間:5時間)と、その後この
α−フェライト粒を板の中心部に向かって成長させるた
めの強脱炭性雰囲気中での第二次脱炭焼鈍(例えば、均
熱保持温度: 850℃、均熱保持時間:2時間)を施す。
In this method, essentially 5-50 μ from the surface
Primary decarburization annealing (for example, soaking and holding) in vacuum or weak decarburizing atmosphere to generate α-ferrite grains having <100> axis in the direction perpendicular to the plate surface in a region up to the depth of m. (Temperature: 950 ° C., soaking time: 5 hours), and then secondary decarburization annealing (for example, in a strong decarburizing atmosphere for growing the α-ferrite grains toward the center of the plate). Soaking and holding temperature: 850 ° C, soaking and holding time: 2 hours).

【0012】板面垂直方向に<100>軸を持つα−フ
ェライト粒を板の表面部に高密度で生成させる要因は、
次の、であるとされている。すなわち、弱脱炭性
雰囲気中でのゆるやかな脱炭とMnが添加されている場合
は脱Mnとによって、板の表面部でγ→α変態を生じせし
め、そこにα−フェライト粒だけからなる領域を生成さ
せること。さらに、そのα−フェライト粒のうち板面
垂直方向に<100>軸を持つものを、{100}面が
最も安定となる表面エネルギーによって選択的に成長さ
せること。
The factor that causes the α-ferrite grains having the <100> axis in the direction perpendicular to the plate surface to be formed at a high density on the surface of the plate is
The next is said to be. That is, when mild decarburization in a weak decarburizing atmosphere and Mn is added, deoxidation of Mn causes a γ → α transformation on the surface of the plate, which consists of only α-ferrite grains. To generate a region. Further, among the α-ferrite grains, those having a <100> axis in the direction perpendicular to the plate surface are selectively grown by the surface energy at which the {100} plane is most stable.

【0013】図4は、{100}集合組織の発達を模
式的に示した図である。上記の過程は、α−フェライ
ト単相となった表面層の{100}方位α−フェライト
結晶粒の表面エネルギーが他の方位のものに比べ小さい
ため、選択的に成長することによって生じる。
FIG. 4 is a diagram schematically showing the development of {100} plane texture. The above process is caused by selective growth because the surface energy of the {100} orientation α-ferrite crystal grains of the surface layer which is an α-ferrite single phase is smaller than that of other orientations.

【0014】この表面エネルギーによる選択的成長の駆
動力は、周囲の粒との間の表面エネルギーの差ΔEと表
面層の厚さdとの比(ΔE/d)に比例する。したがっ
て、この駆動力はα−フェライト単相となった表面層の
厚さが薄いときに大きく、焼鈍の初期のα−フェライト
単相となった表層組織が薄い時期に{100}集合組
織が発達する。つまり、{100}集合組織を発達さ
せるには焼鈍初期にすばやくこのα−フェライト単相と
なった表面層を形成し、かつ十分な時間この表層の厚さ
があまり厚くならないように脱炭や脱Mnを制御する必要
がある。またこのα−フェライト単相となった表面層と
内部との境界も明瞭でなければ、表層内の{100}結
晶粒は効率よく成長しない。
The driving force for the selective growth by the surface energy is proportional to the ratio (ΔE / d) between the surface energy difference ΔE between the surrounding grains and the surface layer thickness d. Therefore, this driving force is large when the thickness of the surface layer that has become an α-ferrite single phase is thin, and the {100} plane texture occurs when the surface layer structure that became an α-ferrite single phase at the initial stage of annealing is thin. Develop. In other words, in order to develop the {100} plane texture, the surface layer that has become this α-ferrite single phase is formed quickly in the early stage of annealing, and decarburization or decarburization is performed for a sufficient time so that the surface layer does not become too thick. It is necessary to control Mn removal. If the boundary between the surface layer and the inside of the α-ferrite single phase is not clear, the {100} crystal grains in the surface layer will not grow efficiently.

【0015】[0015]

【発明が解決しようとする課題】上記の特開平1−1083
45号公報で示した方法は、第一次脱炭焼鈍としてオープ
ンコイル法、第二次脱炭焼鈍としてオープンコイル法も
しくは連続焼鈍法を用いる。オープンコイル法では、焼
鈍中に鋼板が座屈するという品質上の問題も発生する。
特に、第一次焼鈍は多くの場合 900℃以上の高温で行う
ので、長尺のものでは座屈が激しい。連続焼鈍法では、
比較的長時間の焼鈍であるために、焼鈍炉が長くなり、
設備コストが嵩むという問題がある。このように、上記
の方法は、生産性、製造コストおよび品質の各面から効
率的ではない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 45 uses an open coil method as the primary decarburizing annealing and an open coil method or a continuous annealing method as the secondary decarburizing annealing. The open coil method also causes a quality problem that the steel plate buckles during annealing.
In particular, the primary annealing is often performed at a high temperature of 900 ° C. or higher, so that long ones buckle significantly. In the continuous annealing method,
Since the annealing is relatively long, the annealing furnace becomes long,
There is a problem that equipment costs increase. Thus, the above method is not efficient in terms of productivity, manufacturing cost and quality.

【0016】上記の焼鈍過程を一回だけの焼鈍で行うた
めの問題点は、第一次焼鈍雰囲気は非常に弱い脱炭効果
しかもたず、第二次焼鈍雰囲気として用いることができ
ないこと、また、第二次焼鈍の強脱炭性雰囲気は、鋼板
中のSiやMnを強く酸化させて表面酸化層を形成させるた
めに、これを第一次焼鈍雰囲気として用いると、{10
0}面集合組織が発達しないことにある。このように、
それぞれの焼鈍過程の目的と雰囲気が異なるため、二段
階の焼鈍方法しか採用できなかった。
The problem in performing the above-mentioned annealing process by annealing only once is that the primary annealing atmosphere has a very weak decarburizing effect and cannot be used as the secondary annealing atmosphere. In the strong decarburizing atmosphere of the secondary annealing, when Si or Mn in the steel sheet is strongly oxidized to form a surface oxide layer, if this is used as the primary annealing atmosphere, {10
The 0} plane texture does not develop. in this way,
Since the purpose and atmosphere of each annealing process are different, only a two-step annealing method can be adopted.

【0017】本発明の目的は、{100}面集合組織を
有する珪素鋼板を一回の焼鈍で製造することができる方
法を提供することにある。
An object of the present invention is to provide a method capable of producing a silicon steel sheet having a {100} plane texture by a single annealing.

【0018】[0018]

【課題を解決するための手段】本発明者らは、脱炭を促
進する物質、または脱炭を促進する物質と脱Mnを促進す
る物質とを焼鈍分離材としてコイル層間または板間に挟
み焼鈍を施すと、一回の焼鈍で、γ→α変態を生じせし
めるとともに板面に平行な{100}面を形成させ、さ
らにα−フェライト粒を板の中心部に向かって成長させ
る板面垂直方向に<100>軸を形成させることがで
き、しかも長尺の鋼板であっても座屈させずに製造する
ことができることを見出し、本発明を完成した。
DISCLOSURE OF THE INVENTION The inventors of the present invention sandwiched a material that promotes decarburization, or a material that promotes decarburization and a material that promotes deMn as an annealing separator between coil layers or between plates and anneal them. Is applied, a single annealing causes the γ → α transformation and forms a {100} plane parallel to the plate surface, and further α-ferrite grains grow toward the center of the plate The present invention has been completed based on the finding that the <100> axis can be formed in and the long steel plate can be manufactured without buckling.

【0019】本発明の要旨は次のおよびに示す珪素
鋼板の製造方法にある。
The gist of the present invention resides in the following method of manufacturing a silicon steel sheet.

【0020】重量%で、C:1%以下、Si:0.2〜6.5
%、Mn:0.05〜5.0%を含む冷間圧延珪素鋼板に、焼鈍
分離材として脱炭を促進する物質を用いて、100Torr以
下の真空中でタイトコイルまたは積層状態にて一回の脱
炭焼鈍を鋼板表面の酸化を防止して施すことを特徴とす
る磁気特性の優れた{100}面集合組織を有する珪素
鋼板の製造方法。
% By weight, C: 1% or less, Si: 0.2 to 6.5
%, Mn: 0.05 to 5.0% on a cold-rolled silicon steel sheet, using a substance that promotes decarburization as an annealing separator, decarburization annealing once in a tight coil or in a laminated state in a vacuum of 100 Torr or less. A method for producing a silicon steel sheet having a {100} plane texture with excellent magnetic properties, characterized in that the surface of the steel sheet is prevented from being oxidized .

【0021】重量%で、C:1%以下、Si:0.2〜6.5
%、Mn:0.05〜5.0%を含む冷間圧延珪素鋼板に、焼鈍
分離材として脱炭を促進する物質と脱マンガンを促進す
る物質とを用いて、100Torr以下の真空中でタイトコイ
ルまたは積層状態にて一回の脱炭焼鈍を鋼板表面の酸化
を防止して施すことを特徴とする磁気特性の優れた{1
00}面集合組織を有する珪素鋼板の製造方法。
% By weight, C: 1% or less, Si: 0.2 to 6.5
%, Mn: 0.05 to 5.0% in a cold rolled silicon steel sheet, using a substance that promotes decarburization and a substance that promotes demanganese as an annealing separator, in a tight coil or laminated state in a vacuum of 100 Torr or less. Oxidation of the steel sheet surface by decarburization annealing once
Excellent magnetic properties, characterized by subjecting to prevent the {1
A method of manufacturing a silicon steel sheet having a {00} plane texture.

【0022】[0022]

【作用】[Action]

I.焼鈍分離材料として脱炭を促進する物質を使用する
ことについて:脱炭を促進する物質を焼鈍分離材として
鋼板間に交互に挟み積層し、タイトコイル焼鈍または積
層焼鈍すると、鋼板の表面の酸化を防止しながら脱炭を
生じさせ、この過程で発生するγ→α変態によって表層
部に強い{100}面集合組織を発達させる。この脱炭
反応は実用上十分に速く、そのまま焼鈍を続けることに
よって、実用的な焼鈍時間の範囲内で{100}面集合
組織をもつ結晶を板の内部へ成長させ、板全体を{10
0}面集合組織からなるものにすることができる。
I. Regarding the use of substances that promote decarburization as annealing separation materials: When a substance that promotes decarburization is alternately sandwiched between steel sheets as an annealing separation material and laminated, and tight coil annealing or laminated annealing is performed, the surface of the steel sheet is oxidized. Decarburization occurs while preventing it, and a strong {100} plane texture develops in the surface layer due to the γ → α transformation that occurs in this process. This decarburization reaction is sufficiently fast in practice, and by continuing annealing as it is, crystals having a {100} face texture are grown inside the plate within a practical annealing time, and the entire plate is {10}.
It can be composed of a 0} plane texture.

【0023】この脱炭を促進させる物質として、例え
ば、Siの酸化物(SiO2)が挙げられる。
Examples of the substance that promotes the decarburization include Si oxide (SiO 2 ).

【0024】SiO2を焼鈍分離材として用いる場合の脱炭
促進作用は、次の機構によると考えられる。
The decarburization promoting action when SiO 2 is used as the annealing separator is considered to be due to the following mechanism.

【0025】Siの酸化物は、室温では安定であるが、温
度が1000℃程度になると不安定になり、下記式により
分解反応が起こり、酸素を発生する。
The Si oxide is stable at room temperature, but becomes unstable at a temperature of about 1000 ° C., and a decomposition reaction occurs according to the following formula to generate oxygen.

【0026】 SiO2→SiO +O ・・・・・・・・・・・・・ この酸素が下記式により鋼板中の炭素と反応し、一酸
化炭素となる結果、脱炭が生じる。
SiO 2 → SiO + O ..... This oxygen reacts with carbon in the steel sheet according to the following formula to form carbon monoxide, resulting in decarburization.

【0027】 O +C(鋼板中)→CO(ガス) ・・・・・・ 本発明者らの実験によれば、式の脱炭反応は、酸化物
と鋼板の接触点において強く起こっているようである。
そして、式により生成された酸素は、酸素ガス( O2 )
に変わった後に鋼板中の炭素と反応するのではなく、
式に示すように酸素( O ) の状態のままで、直接接触し
た鋼板表面の炭素と反応しているようである。すなわ
ち、上記、の反応は、固体反応の性格が強い。
O + C (in the steel plate) → CO (gas) ... According to the experiments by the inventors, the decarburization reaction of the formula seems to occur strongly at the contact point between the oxide and the steel plate. Is.
Then, the oxygen generated by the formula is oxygen gas (O 2 ).
Instead of reacting with the carbon in the steel sheet after changing to
As shown in the equation, it seems that it is reacting with the carbon on the surface of the steel sheet in direct contact with the oxygen (O 2) state. That is, the above reaction has a strong solid reaction character.

【0028】上記のような作用を有する物質には、他に
Cr2O3、FeO 、Na2CO3などの高温の適切な雰囲気下で比
較的不安定な酸化物がある。すなわち、焼鈍温度で分解
して酸素を発生し、脱炭を促進させる物質またはこれら
を含む物質である。これらは二種以上を混合して用いる
こともできる。一種もしくは二種以上を混合し、さらに
高温で安定な無機物、例えばAl2O3 などの安定な酸化
物、BNやSiCなどの安定な窒化物または炭化物を混合
してもよい。
In addition to the substances having the above-mentioned actions,
There are relatively unstable oxides such as Cr 2 O 3 , FeO, and Na 2 CO 3 under suitable atmosphere at high temperature. That is, it is a substance that decomposes at the annealing temperature to generate oxygen and promotes decarburization, or a substance containing these substances. These may be used as a mixture of two or more. One kind or two or more kinds may be mixed, and further, an inorganic substance stable at high temperature, for example, a stable oxide such as Al 2 O 3 or a stable nitride or carbide such as BN or SiC may be mixed.

【0029】しかし、Na2CO3はSiO2に比べて不安定であ
り、高温で分解速度が速いため、多量の酸素を発生し、
鋼板中のSi、Mnを酸化させ、鋼板の表面酸化を引き起こ
す。
However, Na 2 CO 3 is more unstable than SiO 2 and has a high decomposition rate at high temperatures, so a large amount of oxygen is generated,
It oxidizes Si and Mn in the steel sheet, causing surface oxidation of the steel sheet.

【0030】したがって、Na2CO3は単独使用をさける
か、または混合量を制限しなければならない。
Therefore, Na 2 CO 3 should be avoided alone or the amount of the mixture should be limited.

【0031】最も望ましいのは、SiO2を含むものであ
る。SiO2はその分解温度や酸素発生量の面から、鋼板の
表面酸化を発生させることなく脱炭を促進させるので、
{100}面集合組織の発達を促進する最適な物質であ
る。
Most preferably, it contains SiO 2 . Since SiO 2 promotes decarburization without causing surface oxidation of the steel sheet in terms of its decomposition temperature and oxygen generation amount,
It is an optimal substance that promotes the development of {100} plane texture.

【0032】脱炭促進材から発生する酸素( O ) は、鋼
板中のMnを酸化させ表面性状を劣化させる。従って、Mn
を含有する鋼板の場合には脱Mnを促進する材料を脱炭促
進材と併用すると、γ安定化元素であるMnが鋼板表層部
から減少するのでγ→α変態を促進させるとともに、Mn
の酸化も抑制する。また、酸化されないMnは鋼板の表面
を活性化させ、上記式による脱炭反応を促進させる。
さらに、脱Mnを施して表面でのγ→α変態を促進させる
こともできる。
Oxygen (O) generated from the decarburization accelerator oxidizes Mn in the steel sheet and deteriorates the surface properties. Therefore, Mn
In the case of a steel sheet containing Mn, if a material that promotes Mn removal is used in combination with a decarburization accelerator, Mn, which is a γ-stabilizing element, decreases from the surface layer of the steel sheet, so that the γ → α transformation is promoted and Mn
Also suppresses the oxidation of. In addition, Mn that is not oxidized activates the surface of the steel sheet and accelerates the decarburization reaction according to the above formula.
Furthermore, Mn can be removed to accelerate the γ → α transformation on the surface.

【0033】脱炭を促進する物質を含む焼鈍分離材の形
態は特に問わない。この形態は、板または粉末であって
もよいし、それらの繊維状のものまたは繊維からなるシ
ート状のもの、もしくはそのシート中に粉末を混入させ
たものとしてもよい。最も望ましいのは、繊維状のもの
または繊維からなるシート状のものである。この理由
は、粉末のようにコイル層間からの脱落や表面の多量の
吸着酸素がなく、しかも繊維間に存在する空隙のため
に、前記の反応によって生じた一酸化炭素がコイル外に
排出されやすくなること、およびその空隙中にMnが昇華
して表面でのγ→α変態が促進されることである。これ
らは、コイル層間や板間に挟むことも容易である。
The form of the annealing separator containing a substance that promotes decarburization is not particularly limited. This form may be a plate or a powder, a fibrous form thereof, a sheet-like form of the fibers, or a mixture of the powder and the sheet. Most desirable is a fibrous material or a fibrous sheet material. The reason for this is that carbon monoxide generated by the above reaction is easily discharged out of the coil due to the fact that there is no drop off from the coil layers and a large amount of adsorbed oxygen on the surface like powder, and because of the voids that exist between the fibers. And that Mn sublimes in the voids to promote the γ → α transformation on the surface. These can be easily sandwiched between coil layers or between plates.

【0034】II.焼鈍分離材料として脱炭を促進する物
質と脱Mnを促進する物質とを併用することについて: 鋼板中にMnが含まれると、焼鈍中にMnが板表面から昇華
し、これが表層でのγ→α変態を促進し、{100}
集合組織の発達を促すことについて述べた。さらにMnの
昇華(脱Mn)に着目した研究を行い、焼鈍分離材として
脱Mnを促進する物質と脱炭を促進する物質とを併用する
ことで{100}集合組織 をより容易に形成し、か
つ集積度の大きなものとすることができることを見出し
た。ここでは、単純な試験結果について説明する。
II. Regarding the combined use of a substance that promotes decarburization and a substance that promotes Mn removal as an annealing separation material: When Mn is contained in the steel sheet, Mn sublimes from the surface of the sheet during annealing, which results in γ in the surface layer → It has been described that the α transformation is promoted and the development of {100} plane texture is promoted. Furthermore, we conducted a study focusing on the sublimation (de-Mn) of Mn, and by combining a substance that promotes de-Mn and a substance that promotes de-carburization as an annealing separator, a {100} plane texture can be formed more easily. It has been found that the degree of integration can be large. Here, a simple test result will be described.

【0035】図3は、焼鈍試験中の積層体の構成を示す
図である。1は積層体、2は試板、3は脱Mn促進材、4
は脱炭促進材である。積層体1は試板2(Mn含有珪素鋼
板)と脱Mn促進用鋼板3(Mn含有なし、即ち脱Mnを促進
する物質)とを脱炭促進材4を焼鈍分離材として交互に
積層し、構成した。これを真空焼鈍すると (例えば、10
00℃、12h) 試板から昇華したMnが矢印しのごとく脱炭
促進材を通過して脱Mn促進用鋼板で吸収される。このよ
うな反応は、焼鈍後の脱Mn促進用鋼板に多量のMnが存在
すること、または脱Mn促進用鋼板を用いず脱炭促進材の
みを用いて焼鈍した場合よりも試板の脱Mn量が多いこと
から確かめられている。
FIG. 3 is a diagram showing the structure of the laminate during the annealing test. 1 is a laminated body, 2 is a trial plate, 3 is a de-Mn accelerator, 4
Is a decarburization accelerator. The laminate 1 is obtained by alternately stacking a trial plate 2 (Mn-containing silicon steel plate) and a de-Mn accelerating steel plate 3 (Mn-free, that is, a substance accelerating de-Mn) with a decarburization accelerator 4 as an annealing separator. Configured. If this is vacuum annealed (for example, 10
(00 ° C, 12h) Mn sublimated from the sample plate passes through the decarburizing accelerator as indicated by the arrow and is absorbed by the deprotonating Mn promoting steel plate. Such a reaction is that a large amount of Mn is present in the steel plate for promoting Mn removal after annealing, or the Mn removal of the trial plate is more than that in the case of annealing using only the decarburization promoting material without using the Mn promotion steel plate. Confirmed from the large amount.

【0036】このように脱Mnを促進することは、前述し
た{100}集合組織を形成する第1段階(表層でγ
→α変態を生じさせ、表層内で表面エネルギーによる
{100}結晶粒の選択的成長によって、{100}
集合組織を横方向に発達させる)の効果を助長するもの
である。
In this way, promoting Mn removal is the first step (γ on the surface layer) that forms the {100} plane texture described above.
→ The α transformation is generated, and the {100} crystal grains are selectively grown in the surface layer by the surface energy to promote the {100} plane texture to develop laterally).

【0037】脱Mnを促進する物質はMnを含まない鉄基合
金、もしくは珪素鋼板のMn含有量よりも少ないMn(好ま
しくは珪素鋼板のMn含有量の 1/2以下)を含む鉄基合金
やMnを吸収する酸化物(たとえば、Mnと複合化合物を形
成する酸化物、TiO2)等である。何れにしても、焼鈍中
に鋼板から昇華するMnを吸収する物質であり、脱炭反応
や鋼板の表面エネルギー状態に悪影響を及ぼさないもの
であればよい。形状は、粉末状、繊維状、板状等のもの
でよく、特に問わない。鉄基合金の組成成分は、Mn含有
量を珪素鋼板のMn含有量の1/2 以下とし、その他の成分
を等しくするのが好ましい。
The substance that promotes Mn removal is an iron-based alloy containing no Mn, or an iron-based alloy containing Mn (preferably 1/2 or less of the Mn content of the silicon steel sheet) smaller than the Mn content of the silicon steel sheet, An oxide that absorbs Mn (for example, an oxide that forms a complex compound with Mn, TiO 2 ) or the like. In any case, any substance that absorbs Mn sublimated from the steel sheet during annealing and does not adversely affect the decarburization reaction and the surface energy state of the steel sheet may be used. The shape may be powdery, fibrous, plate-like or the like and is not particularly limited. As for the composition component of the iron-based alloy, it is preferable that the Mn content is 1/2 or less of the Mn content of the silicon steel sheet, and the other components are equal.

【0038】脱Mnを促進する酸化物のTiOは鋼板から
昇華するMnと複合酸化物(TiMnO)を形成し、Mnを吸収
する。この脱Mnを促進する酸化物は、脱炭促進用の焼鈍
分離材に混ぜて用いることができ、鉄基合金板よりも効
果的な脱炭焼鈍が可能となる。脱炭促進材と脱Mn促進材
とを併用して焼鈍した場合の{100}集合組織生成
機構について説明する。
TiO 2, which is an oxide that promotes Mn removal, forms a complex oxide (TiMnO 2 ) with Mn that sublimes from the steel sheet, and absorbs Mn. The oxide that promotes Mn removal can be mixed with an annealing separator for promoting decarburization, and decarburization annealing can be performed more effectively than an iron-based alloy sheet. The {100} plane texture generation mechanism in the case of annealing using both the decarburization promoting material and the Mn depromoting material will be described.

【0039】図5は、鋼板を焼鈍したとき拡散によるC
とMnとの濃度分布を示す模式図であり、Cは脱炭のみを
行った場合、Mnは脱Mnを行った場合の濃度分布を示して
いる。1000℃近傍で焼鈍を行い脱炭だけが進行すると、
このような炭素濃度分布が形成されるが、炭素の拡散速
度は非常に大きいため、表面と内部との炭素濃度の差が
少なくα−フェライト単相となった表面組織は形成され
ない、もしくは形成されても表層組織(α−フェライト
単相となった組織)と内部の組織(α+γ組織もしくは
γ組織)との境界は不明瞭となり、表層組織の厚さも厚
くなり{100}集合組織を十分に発達させることが
できない。
FIG. 5 shows C due to diffusion when the steel sheet is annealed.
3 is a schematic diagram showing the concentration distributions of Mn and Mn, where C is the concentration distribution when only decarburization is performed and Mn is the concentration distribution when Mn is removed. If annealing is performed near 1000 ° C and only decarburization proceeds,
Although such a carbon concentration distribution is formed, since the diffusion rate of carbon is very large, the difference in the carbon concentration between the surface and the inside is small, and the surface structure of α-ferrite single phase is not formed or is formed. However, the boundary between the surface layer structure (structure that became α-ferrite single phase) and the internal structure (α + γ structure or γ structure) became unclear, and the thickness of the surface layer structure was thick enough to provide a {100} plane texture. Cannot be developed.

【0040】一方、Mnの拡散速度は図5に示すように炭
素のそれよりもはるかに小さく、脱Mnによって表面近傍
に大きな濃度勾配を持った(低Mnの表面層と高Mnの内部
の境界が明確な)低Mn領域を形成し得る。
On the other hand, the diffusion rate of Mn is much smaller than that of carbon, as shown in FIG. 5, and a large concentration gradient was generated in the vicinity of the surface due to Mn removal (the boundary between the surface layer of low Mn and the interior of high Mn). Clear Mn region can be formed.

【0041】脱Mn促進材を使用した焼鈍によるMn含有量
の低下は、その領域の炭素の化学ポテンシャルを増加さ
せ、結果として、その領域(低Mnの表面層)の炭素を高
Mnの領域 (板内部) へと拡散させ、その領域でγ→α変
態を生じさせ、その領域をα−フェライト単相化する。
脱Mnによって形成される表面層は、Mnの拡散速度が小さ
いため長時間の焼鈍によってもあまり厚くならない (10
00℃、12hの焼鈍でも100μm程度) 。したがって、脱
炭促進材と脱Mn促進材とを併用して焼鈍 (1000℃、12
h)すると、初期に脱Mnによって極表層部 (20μmから
70μm程度) にα−フェライト単相の表面層が形成さ
れ、後に脱炭が十分進むとこの表層部が内部へと成長す
る。明確なα−フェライト単相の表面組織を薄い状態に
保持することにより、{100}結晶粒の表面エネルギ
ーによる成長が生じ、{100}集合組織が強く発達
するのである。
The decrease in Mn content due to the annealing using the de-Mn accelerator promotes the chemical potential of carbon in the region, and as a result, the carbon in the region (surface layer of low Mn) becomes high in carbon.
Mn is diffused into the region (inside the plate), γ → α transformation occurs in that region, and that region is made into α-ferrite single phase.
The surface layer formed by de-Mn does not become so thick even after long-time annealing because the diffusion rate of Mn is low (10
(Approximately 100 μm even when annealed at 00 ° C for 12 hours). Therefore, the annealing (1000 ° C, 12
h) Then, due to Mn removal in the initial stage, the surface layer (from 20 μm)
A surface layer of α-ferrite single phase is formed in about 70 μm), and when decarburization progresses sufficiently later, this surface layer portion grows inward. By keeping the surface texture of the clear α-ferrite single phase in a thin state, the {100} crystal grains grow by the surface energy and the {100} plane texture is strongly developed.

【0042】珪素鋼板と焼鈍分離材とを重ねて焼鈍した
場合、珪素鋼板の中央部と端部とで脱Mn量の差が発生
し、磁気特性を不安定にすることがあったが、脱Mn促進
材を使用することによって軽減できる。
When a silicon steel sheet and an annealing separator are stacked and annealed, a difference in Mn removal amount occurs between the central portion and the end portion of the silicon steel sheet, which may make the magnetic characteristics unstable. It can be reduced by using Mn accelerator.

【0043】図6および図7は、実施例で得られたMnの
異なる材料を脱炭促進材と脱Mn促進材とを併用して焼鈍
した場合の顕微鏡組織の模写図である。
FIG. 6 and FIG. 7 are micrographs of the microstructures obtained when the materials having different Mn values obtained in the examples were annealed by using both the decarburizing accelerator and the Mn accelerator.

【0044】図6の(a) から(e) は、Mnを0.92%含有す
る珪素鋼板(鋼種F)の焼鈍時間による顕微鏡組織の変
化を示すものである。脱Mnの効果によって焼鈍時間が1
時間以内((a) および(b) )では鋼板の表面近傍に明瞭
なα−フェライト単相の領域が存在する。そして焼鈍時
間が長くなる(3時間、(c))と表面層の結晶粒が内部へと
柱状粒の形で急速に成長し、両表面から成長した柱状粒
が板厚の中央部で衝突したような組織となる。さらに焼
鈍時間が長くなる(6時間乃至12時間、(d) 、(e))と粒成
長が進展することがわかる。
FIGS. 6 (a) to 6 (e) show changes in the microstructure of a silicon steel sheet containing 0.92% Mn (steel type F) depending on the annealing time. Annealing time is 1 due to the effect of removing Mn
Within the time ((a) and (b)), there is a clear α-ferrite single phase region near the surface of the steel sheet. When the annealing time became longer (3 hours, (c)), the crystal grains of the surface layer rapidly grew in the form of columnar grains, and the columnar grains grown from both surfaces collided in the central part of the plate thickness. It becomes such an organization. Further, it can be seen that the grain growth progresses as the annealing time becomes longer (6 to 12 hours, (d) and (e)).

【0045】図7の(a) から(e) は、Mnを含有しない珪
素鋼板(鋼種O-M )の焼鈍時間による顕微鏡組織の変化
を示すものである。Mnを含有しない鋼では脱Mnの効果が
ないため、明瞭な表面層は形成されず、板厚全体にわた
って脱炭が均一に進行し、粒成長も板表面近傍と内部で
ほぼ同様に生じている。
FIGS. 7 (a) to 7 (e) show changes in the microstructure of a silicon steel sheet containing no Mn (steel type OM) depending on the annealing time. In Mn-free steel, there is no Mn removal effect, so a clear surface layer is not formed, decarburization progresses uniformly throughout the plate thickness, and grain growth occurs almost in the vicinity of the plate surface and inside. .

【0046】III.焼鈍について:焼鈍分離材として脱炭
や脱Mnを促進する物質を適応する冷延鋼板は、コイル状
に巻かれたもの、または切断された板状のもののいずれ
でもよい。前者の場合がタイトコイル焼鈍、後者の場合
が積層焼鈍に、それぞれ相当する。
III. Annealing: The cold-rolled steel sheet to which a material that promotes decarburization and Mn removal is applied as an annealing separator may be either a coiled sheet or a cut sheet. The former case corresponds to tight coil annealing, and the latter case corresponds to laminated annealing.

【0047】冷間圧延鋼板がコイル状であって実操業で
シート状の焼鈍分離材を用いる場合は、冷延鋼板に重ね
てコイル状に巻く方法がよい。また、冷延鋼板に酸化物
粉末を塗布する場合は、巻取り装置で巻き取る前に塗布
することができる。このような形態の焼鈍分離剤を用い
るタイトコイル焼鈍によって、座屈のない長尺鋼板を製
造することができる。
When the cold-rolled steel sheet has a coil shape and a sheet-shaped annealed separation material is used in actual operation, a method of stacking it on a cold-rolled steel sheet and winding it in a coil shape is preferable. When the oxide powder is applied to the cold-rolled steel sheet, it can be applied before being wound by the winding device. By the tight coil annealing using the annealing separator having such a form, it is possible to manufacture a long steel plate without buckling.

【0048】焼鈍雰囲気は、100Torr以下の真空中とす
る。より好ましいのは1Torr以下の真空中である。雰囲
気圧力が100Torrを超えると、所望の酸素分離反応、脱
炭反応および集積度の高い{100}面集合組織が生じ
にくい。
The annealing atmosphere is a vacuum of 100 Torr or less.
It More preferred is a vacuum of 1 Torr or less. When the atmospheric pressure exceeds 100 Torr, the desired oxygen separation reaction, decarburization reaction, and {100} plane texture with a high degree of integration are less likely to occur.

【0049】保持温度は1300℃以下が望ましい。1300℃
を超える焼鈍温度は工業的に実現するのが困難である。
好ましいのは、集積度の高い{100}面集合組織を得
るために、850 ℃以上のα+γ二相共存温度域またはγ
相温度域である。
The holding temperature is preferably 1300 ° C. or lower. 1300 ° C
Annealing temperatures above 10 are difficult to achieve industrially.
In order to obtain a highly-integrated {100} plane texture, it is preferable to use the α + γ two-phase coexistence temperature range of 850 ℃ or higher or γ
It is the phase temperature range.

【0050】焼鈍のための均熱保持時間は、30分〜100
時間の範囲がよい。30分未満では脱炭または脱Mnが不十
分となる。一方、100 時間を超えると生産性が悪化す
る。
The soaking time for annealing is 30 minutes to 100
Good time range. If it is less than 30 minutes, decarburization or Mn removal is insufficient. On the other hand, productivity exceeds 100 hours.

【0051】IV.本発明方法の素材となる冷間圧延珪素
鋼板の化学組成を、前記のように定めた理由を説明す
る。
IV. The reason why the chemical composition of the cold-rolled silicon steel sheet which is the raw material of the method of the present invention is determined as described above will be explained.

【0052】C:脱炭焼鈍において、脱炭所要時間を抑
制し、さらに脱炭にともなうγ→α変態を利用した集合
組織制御を行うためには、C含有量は脱炭焼鈍前の素材
鋼板で1%以下とする必要がある。このCの含有量は少
ない程よく、C含有量の好ましい上限は 0.5%、より好
ましいのは 0.2%である。また、脱炭の効果を奏するた
めには0.01%以上とするのが好ましい。このようにし
て、焼鈍後の段階でのC含有量は、磁気特性を劣化させ
ないために0.01%未満、好ましくは 0.005%以下、より
好ましくは 0.003%以下とするのがよい。残存するC
は、α−フェライト中にセメンタイトとして析出し、磁
気特性を劣化させるからである。
C: In decarburization annealing, in order to suppress the time required for decarburization and to control the texture utilizing the γ → α transformation accompanying decarburization, the C content is the raw steel sheet before decarburization annealing. Therefore, it must be 1% or less. The lower the C content, the better. The preferable upper limit of the C content is 0.5%, and more preferable is 0.2%. Further, in order to exert the effect of decarburization, it is preferably set to 0.01% or more. Thus, the C content in the stage after annealing should be less than 0.01%, preferably 0.005% or less, and more preferably 0.003% or less in order not to deteriorate the magnetic properties. Remaining C
Is because it precipitates as cementite in α-ferrite and deteriorates the magnetic characteristics.

【0053】Si:磁気特性および機械的性質を確保する
ために、 0.2%以上のSi含有量が必要である。好ましい
のは1%以上である。一方、Si含有量の上限は、脆化お
よび磁束密度の低下を抑えるために 6.5%とした。好ま
しいのは5%以下、より好ましいのは4%以下である。
Si: A Si content of 0.2% or more is required to secure magnetic properties and mechanical properties. 1% or more is preferable. On the other hand, the upper limit of the Si content was set to 6.5% in order to suppress embrittlement and decrease in magnetic flux density. It is preferably 5% or less, more preferably 4% or less.

【0054】Mn: 電気抵抗を増大させて渦電流損失を低下させる効果、γ
相温度域を拡大してγ→α変態を利用する集合組織の制
御を容易にする効果、{100}集合組織を発達させ
る効果および焼鈍時に鋼板表面を活性化させて脱炭を促
進する効果を有する元素であるので、0.05%以上添加す
る必要がある。好ましくは 0.3%以上、より好ましくは
0.5%以上である。いずれにしても、脱炭完了後 850℃
以下の温度で実質的にα−フェライト単相となる量を最
大限として含有させるのが望ましい。これは、Mnを多量
に含有させると脱炭完了後実質的にα−フェライト単相
となる温度が低下し、焼鈍温度を極端に低くしなければ
ならなくなるためである。ここで、「実質的にα−フェ
ライト単相となる」とは、前記と同様にMnS、AlNなど
の微量第二相が存在してもよいことを意味する。
Mn: Effect of increasing electrical resistance to reduce eddy current loss, γ
Effect of facilitating control of texture using γ → α transformation by expanding phase temperature range, effect of developing {100} plane texture, and effect of activating the steel sheet surface during annealing to promote decarburization Therefore, it is necessary to add 0.05% or more. Preferably 0.3% or more, more preferably
It is 0.5% or more. In any case, 850 ℃ after decarburization is completed
It is desirable to contain the maximum amount of the α-ferrite single phase at the following temperatures. This is because if Mn is contained in a large amount, the temperature at which the α-ferrite single phase is substantially reduced after decarburization is completed, and the annealing temperature must be extremely lowered. Here, "substantially becomes an α-ferrite single phase" means that a trace amount of second phase such as MnS or AlN may be present as in the above.

【0055】なお、Si含有量が高い場合はMnも高くでき
るが、磁束密度を低下させるためにMn含有量は5%を超
えないようにするのがよい。
When the Si content is high, Mn can be increased, but it is preferable that the Mn content does not exceed 5% in order to reduce the magnetic flux density.

【0056】上記以外の元素で本発明の効果を損なわず
に含有させうるものは、例えば次のとおりである。
Elements other than the above which can be contained without impairing the effects of the present invention are as follows.

【0057】Al: 0.5%以下、W、V、Cr、Co、Ni、M
o:おのおの1%以下、Cu: 0.5%以下、Nb: 0.5%以
下、N: 0.05 %以下、S: 0.5%以下、Sb、Se、As:
おのおの0.05%以下、B: 0.005%以下、P: 0.5%以
下このような素材鋼板組成を脱炭促進材、脱炭促進材と
脱Mn促進材とからなる焼鈍分離材をコイルの層間または
板間に挟み、タイト状態で脱炭焼鈍を施すと、次の (a)
〜(c) の作用効果を得ることができる。
Al: 0.5% or less, W, V, Cr, Co, Ni, M
o: 1% or less for each, Cu: 0.5% or less, Nb: 0.5% or less, N: 0.05% or less, S: 0.5% or less, Sb, Se, As:
Each is 0.05% or less, B: 0.005% or less, P: 0.5% or less. Such a material steel sheet composition is a decarburization accelerator, and an annealing separator composed of a decarburization accelerator and a Mn accelerator is used between coil layers or between sheets. Sandwiched between the two and decarburized and annealed in a tight state, the following (a)
The action and effect of (c) can be obtained.

【0058】(a) 供給される酸素は、焼鈍分離材を兼ね
た酸素発生物質のみであるから、過剰な酸素が供給され
ないように、焼鈍分離材の密度を選択することができ
る。ここで焼鈍分離材の密度とは、単位面積当たりの質
量で示し、シート状の場合には厚さに比例する。また、
酸素発生量は焼鈍温度によって変化するので、この温度
によっても制御することができる。このような制御され
た焼鈍分離材の充填と酸素供給により、鋼板表面の酸化
を十分防止することができる。
(A) Since the oxygen to be supplied is only the oxygen generating substance which also serves as the annealing separator, the density of the annealing separator can be selected so that the excess oxygen is not supplied. Here, the density of the annealed separator is represented by the mass per unit area, and in the case of a sheet, it is proportional to the thickness. Also,
Since the oxygen generation amount changes depending on the annealing temperature, it can also be controlled by this temperature. Oxidation of the steel sheet surface can be sufficiently prevented by such controlled filling of the annealing separator and supply of oxygen.

【0059】特に、脱炭促進材がSiO2等の酸化物である
場合には、酸素量が増加するとSiO2の分解は起こらな
い。すなわち、前記式の酸素分解反応は停止または逆
方向に進行し、酸素量の増加が停止または逆に減少する
ことになる。この反応によって鋼板中のSiが酸化されな
いように自動制御される。Mnについても、Mnの酸化ポテ
ンシャルがSiのそれと非常に近いので、Mnも酸化されな
い効果がある。
[0059] Particularly, when decarburization promoting material is an oxide such as SiO 2, the decomposition of the SiO 2 when the oxygen content increases does not occur. That is, the oxygen decomposition reaction of the above formula stops or progresses in the opposite direction, and the increase in oxygen amount stops or conversely decreases. This reaction automatically controls Si in the steel sheet so that it is not oxidized. As for Mn, since the oxidation potential of Mn is very close to that of Si, Mn is also not oxidized.

【0060】このような酸化の限界域における酸素量が
制御されることによって、SiやMnの酸化が起こらない酸
素供給条件での十分な脱炭が進行する。
By controlling the amount of oxygen in such a limit region of oxidation, sufficient decarburization proceeds under oxygen supply conditions in which oxidation of Si and Mn does not occur.

【0061】(b) 前述のように、脱炭反応が固体反応の
性格を有しているために、オープンコイル焼鈍の場合の
ようなガスと鋼板中の炭素との反応と異なり、低酸素供
給条件下においても、速い脱炭速度が維持される。
(B) As described above, since the decarburizing reaction has the character of a solid reaction, unlike the reaction between gas and carbon in the steel sheet as in the case of open coil annealing, low oxygen supply is required. A high decarburization rate is maintained even under the conditions.

【0062】(c) 上記(a) 、(b) によって、脱炭反応は
実用上問題ない程度に速く進み、二段階焼鈍の必要性が
なくなる。
(C) By the above (a) and (b), the decarburization reaction proceeds so fast that there is no practical problem, and the need for two-step annealing is eliminated.

【0063】珪素鋼板の製造は、通常は連続鋳造−熱間
加工−冷間圧延の工程による。
The production of a silicon steel sheet is usually carried out by the steps of continuous casting-hot working-cold rolling.

【0064】連続鋳造による方法以外には、例えば50mm
以下の板厚に直接凝固させた薄スラブもしくは溶湯超急
冷法による極薄板を直接または熱間加工後に冷間圧延す
る方法でもよい。
Other than the method of continuous casting, for example, 50 mm
A method of cold rolling directly or after hot working of a thin slab directly solidified to the following plate thickness or an ultrathin plate by a melt quenching method may be used.

【0065】冷間圧延については、圧下率10%以上の冷
間圧延を施すものであれば圧延方法は問わない。好まし
い圧下率は30%以上、より好ましい圧下率は50%以上で
ある。この場合、熱間加工以降の加工間に1回または複
数回の焼鈍をはさむことを阻げない。なお、ここで冷間
圧延とは再結晶の生じない500 ℃以下での圧延をいう。
The cold rolling may be performed by any rolling method as long as cold rolling with a reduction rate of 10% or more is performed. A preferable rolling reduction is 30% or more, and a more preferable rolling reduction is 50% or more. In this case, it is possible to prevent the annealing from being performed once or a plurality of times during the hot working and subsequent workings. Here, cold rolling means rolling at 500 ° C. or lower at which recrystallization does not occur.

【0066】冷間圧延後の板厚は5mm以下とするのがよ
い。板厚が5mmを超えると内部まで脱炭するのに長時間
を要し、また渦電流損失が増大する。好ましいのは1mm
以下、より好ましいのは0.5mm 以下である。一方、板厚
の下限は特に限定されず、冷間圧延で製造可能な厚さで
あればよい。
The plate thickness after cold rolling is preferably 5 mm or less. If the plate thickness exceeds 5 mm, it takes a long time to decarburize the inside, and eddy current loss increases. 1mm is preferable
Hereafter, it is more preferably 0.5 mm or less. On the other hand, the lower limit of the plate thickness is not particularly limited as long as it can be manufactured by cold rolling.

【0067】[0067]

【実施例】【Example】

〔実施例1〕真空鋳造して得た表1に示す9種類の化学
組成のインゴットを熱間鍛造して10mm厚さの鋼板とし、
さらに各鋼板を3mm厚さまで熱間圧延した後、1mm厚さ
まで冷間圧延した。これらの冷間圧延鋼板から250mm 角
の試板を各々5枚切り出して、タイトコイル焼鈍をシミ
ュレートするための供試材とした。
[Example 1] Ingots of nine kinds of chemical compositions shown in Table 1 obtained by vacuum casting were hot forged into a steel plate having a thickness of 10 mm,
Further, each steel sheet was hot-rolled to a thickness of 3 mm and then cold-rolled to a thickness of 1 mm. Five 250 mm square test plates were cut out from each of these cold-rolled steel plates, and used as test materials for simulating tight coil annealing.

【0068】集合組織制御のため、各5枚の試板の間に
焼鈍分離材として48重量%Al2O3 −51重量%SiO2系の繊
維状の脱炭促進材を、0.02g/cm2 の密度で挟み積層し、
10-2Torr の真空中で表2に示す 925〜1100℃、3〜72
時間の条件で脱炭焼鈍を実施した。
To control the texture, 48% by weight of Al 2 O 3 -51% by weight of SiO 2 fibrous decarburizing accelerator was added as an annealing separator between each of 5 trial plates at 0.02 g / cm 2 . Sandwiched by density, laminated,
Shown in Table 2 in vacuum of 10 -2 Torr 925 ~ 1100 ℃, 3 ~ 72
Decarburization annealing was carried out under the condition of time.

【0069】(集合組織の測定)脱炭焼鈍を終えた各試
板の表面から板厚の2/5の位置において、X線積分強
度測定を行い、{200}面反射の積分強度から板面垂
直方向の<100>軸密度を、配向性のない試料に対す
る倍数で求めた。また、後述の表5のO-M 鋼を脱Mn促進
材とし、前記図3に示すように脱炭促進材を介して交互
に積層し、同様の測定を行った。この結果は表2中に
( )内に示した。比較のため、市販の0.5mm 厚さの高
級無方向性珪素鋼板(JIS S-9) に対しても同じ測定を行
った。
(Measurement of Texture) X-ray integrated intensity measurement was carried out at a position of 2/5 of the plate thickness from the surface of each sample plate after decarburization annealing, and the plate surface was obtained from the integrated intensity of {200} plane reflection. The <100> axial density in the vertical direction was determined as a multiple of the sample having no orientation. In addition, OM steel in Table 5 described later was used as a de-Mn accelerator, and as shown in FIG. 3, the decarburization accelerators were alternately laminated and the same measurement was performed. The results are shown in parentheses in Table 2. For comparison, the same measurement was performed on a commercially available high-grade non-oriented silicon steel sheet (JIS S-9) with a thickness of 0.5 mm.

【0070】(脱炭焼鈍後のCおよびMn含有量の分析)
脱炭焼鈍後の各試板中の炭素含有量およびMn含有量を分
析した。
(Analysis of C and Mn contents after decarburization annealing)
The carbon content and Mn content in each sample plate after decarburization annealing were analyzed.

【0071】それらの結果を表2に示す。The results are shown in Table 2.

【0072】[0072]

【表1】 [Table 1]

【0073】[0073]

【表2】 [Table 2]

【0074】表2から、本発明の製造方法による鋼板で
は、一回の脱炭焼鈍を用いるにもかかわらず、強い{1
00}面集合組織が形成されていることがわかる。
From Table 2, it can be seen that the steel sheet produced by the manufacturing method of the present invention has a strong {1
It can be seen that the 00} plane texture is formed.

【0075】〔実施例2〕表1に示すI鋼の3mm厚さの
熱延鋼板を冷間圧延して0.35mm厚さの鋼板とし、得られ
た鋼板から200mm 角の試板を切り出した。各5枚の試板
の間に焼鈍分離材として表3に示すような脱炭促進材を
挟み積層し、積層体に0.1kg/cm2 の面圧を加え1Torr
の真空中で、1050℃×24時間の脱炭焼鈍を実施した。
Example 2 A 3 mm-thick hot-rolled steel sheet of I steel shown in Table 1 was cold-rolled to a 0.35 mm-thick steel sheet, and a 200 mm square trial plate was cut out from the obtained steel sheet. A decarburization accelerator as shown in Table 3 was sandwiched between the five test plates and laminated, and a surface pressure of 0.1 kg / cm 2 was applied to the laminated body to 1 Torr.
Decarburization annealing was performed at 1,050 ° C. for 24 hours in the vacuum.

【0076】(磁気特性の測定)脱炭焼鈍を終えた各試
板から内径33mm、外径45mmのリング状試験片を10枚打ち
抜き、窒素ガス中の 800℃で30分間保持し、打ち抜き歪
みを除去した。この10枚のリング状試験片を積層し、こ
れに一次コイル、二次コイルを100 ターンづつ巻いて磁
気特性を測定した。5000A/mの外部磁界を(一次コイル
に)印加したときの磁束密度 (B50) と、50Hz の交番
磁界中で 1.5T(テスラ)の磁束密度まで磁化した場合
の鉄損 (W15/50)とを求めた。比較のため、市販の0.35
mm厚さの高級無方向性珪素鋼板(JIS S-9) に対しても同
じ測定を行った。これらの結果を表3に併記して示す。
(Measurement of Magnetic Properties) Ten ring-shaped test pieces each having an inner diameter of 33 mm and an outer diameter of 45 mm were punched out from each of the test plates that had been decarburized and annealed, and the punched strain was maintained at 800 ° C. for 30 minutes in nitrogen gas. Removed. The 10 ring-shaped test pieces were laminated, and a primary coil and a secondary coil were wound around this for 100 turns to measure magnetic characteristics. Magnetic flux density (B 50 ) when an external magnetic field of 5000 A / m is applied (to the primary coil) and iron loss (W 15/50 ) when magnetized to a magnetic flux density of 1.5 T (Tesla) in an alternating magnetic field of 50 Hz. ) And asked. Commercially available 0.35 for comparison
The same measurement was performed on a high-grade non-oriented silicon steel sheet (JIS S-9) with a thickness of mm. The results are also shown in Table 3.

【0077】[0077]

【表3】 [Table 3]

【0078】表3から明らかなように、脱炭促進作用を
有しないAl2O3 のみを焼鈍分離材として用いた場合以外
では、一回の焼鈍により炭素量が低下し、優れた磁気特
性が得られている。
As is clear from Table 3, except for the case where only Al 2 O 3 having no decarburization promoting action was used as the annealing separator, the amount of carbon was reduced by one annealing and excellent magnetic properties were obtained. Has been obtained.

【0079】〔実施例3〕表1に示すG鋼の4mm厚さの
熱延鋼板を冷間圧延して2mm厚さとし、次いで900 ℃で
3分間の中間焼鈍を施した後、冷間圧延して0.35mm厚さ
の鋼板とし、得られた鋼板から200mm 角の試板を切り出
した。
Example 3 A 4 mm thick hot rolled steel sheet of G steel shown in Table 1 was cold rolled to a thickness of 2 mm, then subjected to intermediate annealing at 900 ° C. for 3 minutes and then cold rolled. As a steel plate having a thickness of 0.35 mm, a 200 mm square test plate was cut out from the obtained steel plate.

【0080】各5枚の試板の間に、焼鈍分離材として70
重量%Al2O3 −29重量%SiO2系の繊維状の脱炭促進材を
5mg/cm2の密度で挟み積層し、積層体には0.1kg/cm2
面圧を加え、表4に示す種々の真空雰囲気下で 925〜11
00℃、6〜72時間の脱炭焼鈍を実施した。
Between each of the five trial plates, 70
Wt% Al 2 O 3 -29 wt% SiO 2 -based fibrous decarburization accelerator is sandwiched at a density of 5 mg / cm 2 and laminated, and a surface pressure of 0.1 kg / cm 2 is applied to the laminate, and Table 4 Under various vacuum atmospheres shown in
Decarburization annealing was performed at 00 ° C for 6 to 72 hours.

【0081】脱炭焼鈍を終えた試板について、実施例2
と同じ評価試験を実施した。これらの結果を表4に併記
して示す。
Example 2 was carried out on the test plate which had been decarburized and annealed.
The same evaluation test as above was performed. The results are also shown in Table 4.

【0082】[0082]

【表4】 [Table 4]

【0083】表4から明らかなように、本発明の方法で
は、一回の焼鈍により炭素量が低下し、優れた磁気特性
が得られていることがわかる。
As is clear from Table 4, in the method of the present invention, the amount of carbon is reduced by one annealing, and excellent magnetic characteristics are obtained.

【0084】〔実施例4〕表1に示すB鋼を0.35mm厚さ
まで冷間圧延した鋼板から、実施例2と同じ200mm 角の
試板を切り出した。各5枚の試板の間に焼鈍分離材とし
て、50重量%Al2O3 −50重量%SiO2系の繊維状の脱炭促
進材を25mg/cm2の密度で挟み、実施例2と同様の方法で
975℃、約20時間の条件で脱炭焼鈍を施した。この脱炭
焼鈍中の試板について、炭素およびMnの分析を行った図
1は、炭素およびMnの含有量に及ぼす焼鈍時間の影響を
示す図である。図示するように、本発明の方法では、脱
炭および脱Mnが効率よく行われていることがわかる。
Example 4 The same 200 mm square sample plate as in Example 2 was cut out from the steel plate obtained by cold rolling the B steel shown in Table 1 to a thickness of 0.35 mm. As an annealing separator, fibrous decarburization accelerator of 50 wt% Al 2 O 3 -50 wt% SiO 2 system was sandwiched between each of 5 test plates at a density of 25 mg / cm 2 , and the same procedure as in Example 2 was performed. By the way
Decarburization annealing was performed at 975 ° C for about 20 hours. The carbon and Mn analysis was performed on the sample plate during the decarburization annealing, and FIG. 1 is a diagram showing the influence of the annealing time on the carbon and Mn contents. As shown in the figure, it can be seen that decarburization and Mn removal are efficiently performed in the method of the present invention.

【0085】〔実施例5〕真空鋳造して得た表5に示す
18種類の化学組成のインゴットを熱間鍛造して50mm厚さ
の鋼板とし、さらに各鋼板を3mm厚さまで熱間圧延した
後、0.35mm厚さまで冷間圧延した。鋼種記号のあとにH
を付した鋼は炭素を含有しない鋼であり、、Hを付さな
い鋼と炭素含有量以外はほぼ同じ組成とし、また鋼O-M
はMnを含有しない鋼であり、脱Mn促進用鋼板として用い
た。
Example 5 Shown in Table 5 obtained by vacuum casting.
Ingots of 18 different chemical compositions were hot-forged into a steel plate having a thickness of 50 mm, each steel sheet was hot-rolled to a thickness of 3 mm, and then cold-rolled to a thickness of 0.35 mm. H after the steel type symbol
Steels marked with are carbon-free steels and have almost the same composition as steels without H except for the carbon content.
Is a steel containing no Mn and was used as a steel sheet for promoting Mn removal.

【0086】[0086]

【表5】 [Table 5]

【0087】これらの冷間圧延鋼板から400 mm角の試板
を各々5枚切り出して、タイトコイル焼鈍をシミュレー
トするための供試材とした。
From each of these cold-rolled steel sheets, five 400 mm square test sheets were cut out to obtain test materials for simulating tight coil annealing.

【0088】集合組織制御のため、各5枚の試板の間に
焼鈍分離材として48重量%Al2O3 −51重量%SiO2系の繊
維状の脱炭促進材を0.02g/cm2 の密度で挟み積層し、10
-3Torr の真空中で 950〜1150℃、 0.5〜72時間の条件
で脱炭焼鈍を実施した。
In order to control the texture, 48% by weight of Al 2 O 3 -51% by weight of SiO 2 -based fibrous decarburization accelerator was added as an annealing separator between each of 5 test plates at a density of 0.02 g / cm 2 . Sandwich and stack, 10
Decarburization annealing was carried out in a vacuum of -3 Torr at 950 to 1150 ° C for 0.5 to 72 hours.

【0089】この繊維状の脱炭促進材の組成は、ムライ
トと呼ばれる酸化物の組成に近く、X線回析から大部分
が非晶質、もしくはムライトの結晶構造を持っているこ
とがわかっている。焼鈍分離材として使用した後は、ほ
とんどの場合、ムライトと少量のクリストバライトが混
在したものになった。
The composition of the fibrous decarburization promoter is close to that of an oxide called mullite, and it was found from X-ray diffraction that most of the composition had an amorphous or mullite crystal structure. There is. After use as an annealing separator, it was almost always a mixture of mullite and a small amount of cristobalite.

【0090】脱Mnの効果を知るため、各試板と脱炭促進
材の積層体(脱Mn材なし)、および図3に示すような各
試板、脱炭促進材および脱Mn促進用鋼板(O-M) の積層体
の2種の積層体に対し、焼鈍を行った。
In order to know the effect of de-Mn, a laminated body of each sample plate and decarburization accelerator (without de-Mn material), and each sample plate, decarburization accelerator and de-Mn acceleration steel plate as shown in FIG. Annealing was performed on two types of laminates of the (OM) laminate.

【0091】脱炭焼鈍を終えた400mm 角試料の中心部の
100mm角の部分から切り出した各試板について、表面か
ら板厚の2/5 の位置においてX線積分強度測定を行い、
{200}面積分強度から<100>軸密度を配向性の
ない試料に対する倍数で求めた。また、実施例1および
実施例2と同様な方法で炭素含有量、Mn含有量および磁
気特性を求めた。比較のため、市販の0.35mm厚の高級無
方向性珪素鋼板(JIS S-9、S-20))に対しても同じ評価を
行った。
The center portion of the 400 mm square sample that had been decarburized and annealed
For each test plate cut out from a 100 mm square part, X-ray integrated intensity measurement was performed at the position of 2/5 of the plate thickness from the surface,
The <100> axial density was calculated from the {200} area intensity as a multiple of the sample having no orientation. Further, the carbon content, the Mn content and the magnetic properties were determined by the same method as in Examples 1 and 2. For comparison, the same evaluation was performed on a commercially available high-grade non-oriented silicon steel sheet (JIS S-9, S-20) having a thickness of 0.35 mm.

【0092】これらの結果を表6に示す。表6中( )
内には脱Mn促進用鋼板を使用しない場合の値を示す。
The results are shown in Table 6. In Table 6 ()
The values inside are the values when no steel sheet for promoting Mn removal is used.

【0093】表6で発明例と示したJからTまでの鋼
は、同表に示す条件で脱炭焼鈍した場合、Mnを含有しな
い O-M鋼、炭素を含有しない J−H鋼からS−H 鋼に比べ
{200}積分強度の倍率とB50が高く、W
15/50 が低くなっており、{100}集合組織
が強く発達し、優れた磁気特性が得られることがわか
る。
The steels from J to T shown as invention examples in Table 6 are Mn-free OM steel and carbon-free JH steel to SH when decarburized and annealed under the conditions shown in the same table. Higher {200} integral strength and higher B 50 than steel
15/50 is low, and the {100} plane texture is strongly developed and excellent magnetic properties can be obtained.

【0094】[0094]

【表6】 [Table 6]

【0095】脱Mn促進材を併用した場合は、それを併用
しない場合に比べ各試板のMn含有量が低下しており、脱
Mn促進材とした鋼板(O-M) に吸収されていることがわか
る。
When the Mn accelerating agent was used in combination, the Mn content of each test plate was lower than that in the case where it was not used together.
It can be seen that the steel sheet (OM) used as the Mn promoter is absorbed.

【0096】これによっても{200}積分強度の倍率
とB50が高く、W15/50 が低くなっており、
{100}集合組織が強く発達し、優れた磁気特性が
得られることがわかる。
Also by this, the magnification of {200} integrated intensity and B 50 are high, and W 15/50 is low,
It can be seen that the {100} plane texture is strongly developed and excellent magnetic properties are obtained.

【0097】また、参考例で示した高Si含有鋼と同等も
しくはそれ以上の磁気特性が得られていることがわか
る。
Further, it can be seen that magnetic characteristics equivalent to or higher than those of the high Si content steel shown in the reference example are obtained.

【0098】表6から、本発明の製造方法による鋼板で
は、一回の脱炭焼鈍を用いるにもかかわらず、強い{1
00}面集合組織が形成されていることがわかる。
From Table 6, it can be seen that the steel sheet produced by the production method of the present invention has a strong {1
It can be seen that the 00} plane texture is formed.

【0099】〔実施例6〕表5の鋼種Oで示す組成の3
mm厚さの熱間圧延鋼板を、種々の板厚さ( 0.15〜0.5 m
m) に冷間圧延して得られた鋼板から 400mm角の板を切
り出し、脱Mn促進材としてTiO2粉末を使用する試験を行
った。これらの試板を、70重量%Al2O3 −30重量%SiO2
系の繊維状の脱炭促進材に粒径10〜50μmのTiO2粉末を
種々の量添加したものを 0.01g/cm2の密度で挟み積層
し、積層体には 0.2kg/cm2の面圧をかけ、10-1Torr の
真空中で、1050℃で6時間均熱する焼鈍を行った。な
お、昇温速度は1℃/minであった。実施例5と同様な方
法で<100>軸密度、炭素およびMnの含有量を分析し
た。その結果を表7に示す。
[Example 6] 3 of composition shown by steel type O in Table 5
mm hot-rolled steel sheets with various thicknesses (0.15-0.5 m
A 400 mm square plate was cut out from the steel plate obtained by cold rolling to m), and a test was performed using TiO 2 powder as a Mn removal promoting material. 70% by weight Al 2 O 3 -30% by weight SiO 2
A variety of TiO 2 powders with a particle size of 10 to 50 μm added to a fibrous decarburization accelerator of the system, sandwiched at a density of 0.01 g / cm 2 and laminated, with a surface of 0.2 kg / cm 2 on the laminate. Annealing was carried out by applying pressure and soaking at 1050 ° C. for 6 hours in a vacuum of 10 −1 Torr. The heating rate was 1 ° C / min. In the same manner as in Example 5, <100> axial density, carbon and Mn contents were analyzed. The results are shown in Table 7.

【0100】[0100]

【表7】 [Table 7]

【0101】表7から明らかなように、TiO2粉末の使用
によっても脱Mnが促進され、{100}面集合組織も強
く発達することがわかる。
As is clear from Table 7, the use of TiO 2 powder also promotes de-Mn removal and strongly develops the {100} plane texture.

【0102】〔実施例7〕表7にNo.3で示す焼鈍後の試
料について、集合組織と板面内での磁気異方性を調べ
た。
[Example 7] The texture and in-plane magnetic anisotropy of the annealed samples shown in Table 3 No. 3 were examined.

【0103】図8は、強い{100}<052>集合組
織の形成を示す{110}極点図であり、表7にNo.3で
示す焼鈍後の試料の集合組織をCo−Kα線によるα−Fe
の 110反射を用いて測定したものである。<110>軸
密度は板面垂直方向から45°傾斜した8方向で非常に大
きく、この材料は強い{100}集合組織をもってい
ること、さらに{100}集合組織は{100}<0
52>型の面内異方性を持っていることがわかる。
FIG. 8 is a {110} pole figure showing the formation of a strong {100} <052> texture, and the texture of the annealed sample shown in Table 7 No. 3 is α by Co-Kα ray. −Fe
It is measured by using 110 reflections. The <110> axial density is very large in 8 directions inclined by 45 ° from the plate vertical direction, and this material has a strong {100} plane texture, and the {100} plane texture is {100} <0.
It can be seen that it has a 52> type in-plane anisotropy.

【0104】図9は、材料の圧延方向と磁束密度および
鉄損値との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the rolling direction of the material and the magnetic flux density and iron loss value.

【0105】表7に3で示す焼鈍後の材料から幅3cm、
長さ10cmの短冊状試料を、長手方向が種々の圧延方向と
なるように切り出した。その試料について1000A/mの磁
化力における磁束密度(B10)と鉄損値(W15/50 )を
単板磁化測定装置により測定した。図9から{100}
<052>型の集合組織面内異方性を反映し、圧延方向
から45°傾いた方向の磁束密度が最も大きく、同じ方向
で鉄損値も小さいことがわかる。しかし、この面内磁気
異方性の絶対値は市販の無方向性珪素鋼板とほぼ同程度
のものであり、電動機等の鉄心材料に好適なものであ
る。一回冷間圧延法ではこの型({100}<052>
型)の面内異方性が発生しやすく、中間焼鈍を挟んだ二
回もしくは複数回の冷延後焼鈍すると{100}<00
1>型の面内異方性が発現しやすい。
A width of 3 cm from the material after annealing shown in 3 in Table 7,
A strip-shaped sample having a length of 10 cm was cut so that the longitudinal direction was various rolling directions. The magnetic flux density (B 10 ) and iron loss value (W 15/50 ) of the sample at a magnetizing force of 1000 A / m were measured by a single-plate magnetization measuring device. From Figure 9 {100}
Reflecting the <052> type texture in-plane anisotropy, it can be seen that the magnetic flux density in the direction inclined by 45 ° from the rolling direction is the largest and the iron loss value is also small in the same direction. However, the absolute value of this in-plane magnetic anisotropy is about the same as that of commercially available non-oriented silicon steel sheets, and is suitable for iron core materials for electric motors and the like. In the single cold rolling method, this type ({100} <052>
In-plane anisotropy of (type) is likely to occur, and when annealed after two or more cold rollings with intermediate annealing sandwiched, {100} <00
1> type in-plane anisotropy is likely to appear.

【0106】〔実施例8〕表5の鋼種Nで示す組成の真
空溶製インゴットを熱間鍛造により30mm厚さの板とし、
各板を3mm厚まで熱間圧延した後に、窒素ガス中で 900
℃において3分間焼鈍した後、 0.5mmの板厚まで冷間圧
延した。タイトコイル焼鈍をシュミレートするために、
冷間圧延板から 400mm角の試板を切り出し、焼鈍分離材
として20重量%Al2O3 −80重量%SiO2系の繊維状の脱炭
促進材を 0.005g/cm2 の密度で充填し、さらに5μmか
ら 100μmの直径のSiO2と同TiO2粉末をそれぞれ3mg/c
m2の密度で試板の間に挟み積層し、積層体には 0.2kg/c
m2の面圧をかけた。
[Embodiment 8] A vacuum-melted ingot having a composition shown by the steel type N in Table 5 was hot forged into a plate having a thickness of 30 mm.
After hot rolling each plate to a thickness of 3 mm, 900 mm in nitrogen gas
After annealing at 0 ° C for 3 minutes, it was cold-rolled to a plate thickness of 0.5 mm. To simulate tight coil annealing,
A 400 mm square sample plate was cut out from the cold-rolled plate and filled with 20% by weight Al 2 O 3 -80% by weight SiO 2 -based fibrous decarburization accelerator as an annealing separator at a density of 0.005 g / cm 2. , And 3 mg / c of SiO 2 and TiO 2 powder having a diameter of 5 μm to 100 μm respectively.
It is sandwiched between test plates at a density of m 2 and laminated, and 0.2 kg / c
A surface pressure of m 2 was applied.

【0107】焼鈍は10-2Torr の真空中で、1000℃にお
いて10時間均熱し、昇温速度は1℃/minとした。焼鈍を
終えた各試板の表面から板厚の 2/5の位置においてX線
積分強度測定を行い、{200}面積分強度を配向性の
ない試料に対する倍数で求め、<100>軸密度を判定
した。また、焼鈍後の各試板中の炭素およびMnの含有量
を分析するとともに、各試板から内径33mm、外径45mmの
リング状試験片を10枚打ち抜き、窒素ガス中の 800℃で
30分間保持し、打ち抜き歪みを除去した。
The annealing was soaked in a vacuum of 10 -2 Torr at 1000 ° C for 10 hours, and the temperature rising rate was 1 ° C / min. X-ray integral strength measurement was performed at the position of 2/5 of the plate thickness from the surface of each annealed sample plate, and the strength for the {200} area was obtained as a multiple of the sample without orientation, and the <100> axial density was calculated. It was judged. In addition, the carbon and Mn contents in each annealed sample plate were analyzed, and 10 ring-shaped test pieces with an inner diameter of 33 mm and an outer diameter of 45 mm were punched out from each sample plate at 800 ° C in nitrogen gas.
It was held for 30 minutes to remove punching distortion.

【0108】10枚のリング状試験片を積層し、これに一
次コイル、二次コイルを 100ターンづつ巻き、1000A/m
および5000A/mの外部磁界を印加したときの磁束密度
(B10およびB50) と、50Hz の交番磁界中で1T(テ
スラ)および1.5 Tの磁束密度まで磁化した場合の鉄損
(W10/50 およびW15/50 )とを測定した。試料の磁化
曲線を比較材(市販無方向性電磁鋼板S-9)のそれととも
に図10に、他の磁気特性と前述の諸分析の結果を表8に
示す。
Ten ring-shaped test pieces were laminated, and a primary coil and a secondary coil were wound around each by 100 turns, and 1000 A / m
And magnetic flux density when an external magnetic field of 5000 A / m is applied
(B 10 and B 50 ) and iron loss (W 10/50 and W 15/50 ) when magnetized to a magnetic flux density of 1 T (tesla) and 1.5 T in an alternating magnetic field of 50 Hz were measured. The magnetization curve of the sample is shown in FIG. 10 together with that of the comparative material (commercial non-oriented electrical steel sheet S-9), and other magnetic properties and the results of the above-mentioned various analyzes are shown in Table 8.

【0109】[0109]

【表8】 [Table 8]

【0110】本発明の方法によって、優れた磁気特性が
得られることがわかる。
It can be seen that excellent magnetic properties can be obtained by the method of the present invention.

【0111】[0111]

【発明の効果】本発明の方法によれば、一回のタイトコ
イル焼鈍または積層焼鈍により、磁気特性の優れた{1
00}面集積度の高い珪素鋼板を効率的に製造すること
ができる。焼鈍を焼鈍分離材を用いるタイトコイル焼鈍
または積層焼鈍で施すので、鋼板の座屈もなくなり、長
尺材の製造も可能となる。
EFFECTS OF THE INVENTION According to the method of the present invention, one-time tight coil annealing or laminated annealing provides excellent magnetic properties {1.
A silicon steel sheet having a high degree of {00} plane integration can be efficiently manufactured. Since the annealing is performed by the tight coil annealing or the laminated annealing using the annealing separation material, the buckling of the steel sheet is eliminated and the long material can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法による鋼板の焼鈍後の炭素および
Mnの含有量に及ぼす焼鈍時間の影響を示す図である。
1 shows carbon and annealed steel sheet according to the method of the invention and
It is a figure which shows the influence of the annealing time which acts on the content of Mn.

【図2】方向性および無方向性珪素鋼板の結晶方位の差
を模式的に示す図である。
FIG. 2 is a diagram schematically showing a difference in crystal orientation between a grain-oriented and a non-oriented silicon steel sheet.

【図3】脱炭促進材、脱Mn促進材を挟みタイト焼鈍を再
現した積層体を示す図である。
FIG. 3 is a diagram showing a laminate in which tight annealing is reproduced with a decarburization promoting material and a deMn promoting material sandwiched therebetween.

【図4】脱炭促進材、脱Mn促進材を使用して焼鈍した場
合の{100}集合組織の生成を説明する図である。
FIG. 4 is a diagram for explaining generation of {100} plane texture when annealed using a decarburization accelerator and a Mn accelerator.

【図5】焼鈍によるCとMnの拡散状態を示す図である。FIG. 5 is a diagram showing a diffusion state of C and Mn by annealing.

【図6】焼鈍中の結晶粒の成長を比較して示す図であ
る。
FIG. 6 is a diagram showing a comparison of crystal grain growth during annealing.

【図7】焼鈍中の結晶粒の成長を比較して示す図であ
る。
FIG. 7 is a diagram showing a comparison of crystal grain growth during annealing.

【図8】先鋭な{100}<052>集合組織の形成を
示す{100}極点図である。
FIG. 8 is a {100} pole figure showing the formation of a sharp {100} <052> texture.

【図9】磁束密度と鉄損の面内異方性を示す図である。FIG. 9 is a diagram showing in-plane anisotropy of magnetic flux density and iron loss.

【図10】磁化力と磁束密度との関係を示す図である。FIG. 10 is a diagram showing the relationship between magnetizing force and magnetic flux density.

【符号の説明】[Explanation of symbols]

1.積層体 2.試板(珪素鋼板)
3.脱Mn促進材 4.脱炭促進材
1. Laminate 2. Trial plate (silicon steel plate)
3. De-Mn promoting material 4. Decarburization accelerator

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 - 38/60 H01F 1/16 - 1/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00-38/60 H01F 1/16-1/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:1%以下、Si:0.2〜6.5
%、Mn:0.05〜5.0%を含む冷間圧延珪素鋼板に、焼鈍
分離材として脱炭を促進する物質を用いて、100Torr以
下の真空中でタイトコイルまたは積層状態にて一回の脱
炭焼鈍を鋼板表面の酸化を防止して施すことを特徴とす
る磁気特性の優れた{100}面集合組織を有する珪素
鋼板の製造方法。
1. By weight%, C: 1% or less, Si: 0.2 to 6.5
%, Mn: 0.05 to 5.0% on a cold-rolled silicon steel sheet, using a substance that promotes decarburization as an annealing separator, decarburization annealing once in a tight coil or in a laminated state in a vacuum of 100 Torr or less. A method for producing a silicon steel sheet having a {100} plane texture with excellent magnetic properties, characterized in that the surface of the steel sheet is prevented from being oxidized .
【請求項2】重量%で、C:1%以下、Si:0.2〜6.5
%、Mn:0.05〜5.0%を含む冷間圧延珪素鋼板に、焼鈍
分離材として脱炭を促進する物質と脱マンガンを促進す
る物質とを用いて、100Torr以下の真空中でタイトコイ
ルまたは積層状態にて一回の脱炭焼鈍を鋼板表面の酸化
を防止して施すことを特徴とする磁気特性の優れた{1
00}面集合組織を有する珪素鋼板の製造方法。
2. By weight%, C: 1% or less, Si: 0.2 to 6.5
%, Mn: 0.05 to 5.0% in a cold rolled silicon steel sheet, using a substance that promotes decarburization and a substance that promotes demanganization as an annealing separator, and in a tight coil or laminated state in a vacuum of 100 Torr or less. Oxidation of the steel sheet surface by decarburization annealing once
Excellent magnetic properties, characterized by subjecting to prevent the {1
A method of manufacturing a silicon steel sheet having a {00} plane texture.
JP24940194A 1993-11-02 1994-10-14 Method for producing silicon steel sheet with excellent magnetic properties Expired - Lifetime JP3480072B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24940194A JP3480072B2 (en) 1993-11-02 1994-10-14 Method for producing silicon steel sheet with excellent magnetic properties
PCT/JP1994/001833 WO1995012691A1 (en) 1993-11-02 1994-10-31 Manufacture of silicon steel plate having excellent magnetic characteristic
US08/732,894 US5807441A (en) 1993-11-02 1996-10-17 Method of manufacturing a silicon steel sheet having improved magnetic characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-274373 1993-11-02
JP27437393 1993-11-02
JP24940194A JP3480072B2 (en) 1993-11-02 1994-10-14 Method for producing silicon steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH07173542A JPH07173542A (en) 1995-07-11
JP3480072B2 true JP3480072B2 (en) 2003-12-15

Family

ID=26539267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24940194A Expired - Lifetime JP3480072B2 (en) 1993-11-02 1994-10-14 Method for producing silicon steel sheet with excellent magnetic properties

Country Status (2)

Country Link
JP (1) JP3480072B2 (en)
WO (1) WO1995012691A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2175401C (en) * 1995-05-02 1999-08-31 Toshiro Tomida Magnetic steel sheet having excellent magnetic characteristics and blanking performance
CA2241824C (en) * 1996-11-01 2003-08-05 Sumitomo Metal Industries, Ltd. Bidirectional electromagnetic steel plate and method of manufacturing the same
TW476790B (en) 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
MX366630B (en) 2011-04-27 2019-07-17 Nippon Steel Corp Star Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME.
RS63177B1 (en) 2016-08-05 2022-06-30 Nippon Steel Corp Non-oriented electrical steel sheet, production method for non-oriented electrical steel sheet, and production method for motor core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51942B2 (en) * 1971-09-02 1976-01-12
JPS552751A (en) * 1978-06-21 1980-01-10 Nippon Steel Corp Manufacture of one-way type electromagnetic steel sheet
JPS59205420A (en) * 1983-05-02 1984-11-21 Kawasaki Steel Corp Manufacture of unidirectional silicon steel sheet
JP2535963B2 (en) * 1987-10-19 1996-09-18 住友金属工業株式会社 Silicon steel sheet having excellent magnetic properties and method for producing the same
JPH02274844A (en) * 1989-04-18 1990-11-09 Sumitomo Metal Ind Ltd Silicon steel sheet excellent in magnetic property and its production

Also Published As

Publication number Publication date
JPH07173542A (en) 1995-07-11
WO1995012691A1 (en) 1995-05-11

Similar Documents

Publication Publication Date Title
EP0741191B1 (en) A magnetic steel sheet having excellent magnetic characteristics and blanking performance
KR850001253B1 (en) Method of process for electro-nagnetic steels
JPH0651889B2 (en) Method for producing non-oriented silicon steel by ultra-high speed annealing
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
KR101376507B1 (en) METHOD OF MANUFACTURING Fe-Co BASED ALLOY SHEET WITH TEXTURE STRUCTURE AND SOFT MAGNETIC STEEL SHEET MANUFACTURED BY THE SAME
JP3480072B2 (en) Method for producing silicon steel sheet with excellent magnetic properties
EP0906963B1 (en) Bidirectional electromagnetic steel plate and method of manufacturing the same
US5807441A (en) Method of manufacturing a silicon steel sheet having improved magnetic characteristics
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JP3252700B2 (en) Electrical steel sheet with excellent magnetic properties and punchability
JP2590533B2 (en) Manufacturing method of silicon steel sheet
JP3870625B2 (en) Manufacturing method of bi-directional electrical steel sheet
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JPH076046B2 (en) Method for producing Ni-Fe alloy plate having excellent magnetic properties
JP4595217B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP4300661B2 (en) Method for producing bi-directional silicon steel sheet with excellent magnetic properties
JPH034606B2 (en)
JPH04202644A (en) Silicon steel sheet and its production
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
JP2004084034A (en) Method for producing bi-directional magnetic steel sheet
JPH0733549B2 (en) Method for manufacturing bidirectional silicon steel sheet
JPH0651897B2 (en) Semi-process electrical steel sheet
JPH05320768A (en) Production of silicon steel sheet excellent in magnetic property
JPH05304014A (en) Fe-co soft magnetic material with excellent soft magnetic property and soft magnetic electric part assembled body
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9