JPS59205420A - Manufacture of unidirectional silicon steel sheet - Google Patents

Manufacture of unidirectional silicon steel sheet

Info

Publication number
JPS59205420A
JPS59205420A JP7788583A JP7788583A JPS59205420A JP S59205420 A JPS59205420 A JP S59205420A JP 7788583 A JP7788583 A JP 7788583A JP 7788583 A JP7788583 A JP 7788583A JP S59205420 A JPS59205420 A JP S59205420A
Authority
JP
Japan
Prior art keywords
annealing
decarburization
steel sheet
silicon steel
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7788583A
Other languages
Japanese (ja)
Inventor
「しし」戸 浩
Hiroshi Shishido
Yoshiaki Iida
飯田 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7788583A priority Critical patent/JPS59205420A/en
Publication of JPS59205420A publication Critical patent/JPS59205420A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To save energy and to reduce process period in manufacture by a method in which the stock of an unidirectional electromagnetic steel sheet containing specified amount of Si is made into the finished sheet by way of hot roll and cold roll and decarburization annealing and secondary recrystallization annealing are achieved in one process, while coating the finished sheet with an annealing separation reagent. CONSTITUTION:After the stock of an unidirectional silicon steel sheet containing 2-4wt% Si is hot-rolled and then is cold rolled, a finally finished sheet with specified thickness is obtained. This finally finished sheet is coated with an annealing separation reagent and decarburization and secondary recrystallization are successively carried out, while carrying out said decarburization annealing and secondary recrystallization annealing in one process. Thus, the unidirectional silicon steel sheet is obtained. As the annealing separation reagent, the material containing one or more kinds of carbonate or silicate family compounds of alkali metal or alkali earth metal by 1-50% and residual MgO, is used.

Description

【発明の詳細な説明】 この発明は一方向性珪素鋼板の製造方法に関し、時にそ
の製造工程中で必須とされる脱炭焼鈍に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing grain-oriented silicon steel sheets, and relates to decarburization annealing, which is sometimes essential in the manufacturing process.

周知のように一方向性珪素鋼板は、変圧器やその他各種
電気機器に使用されるものであって、電磁特性が優れて
いることが要求される。すなわち、磁化特性として、励
磁電流が11000Vのときの磁束密度B10値が高い
ことと、鉄損特性として磁束密度1.7 T (テスラ
)、周波数50 Hzのときの鉄損値W1715゜が低
いことが重要である。最近では一方向性珪素鋼板の製造
技術の進歩により、B 値が1.89 T以上、Wlい
。値が1.05W淘以0 下の優れた特性の一方向性珪素鋼板が製造されるに至っ
ている。
As is well known, unidirectional silicon steel sheets are used in transformers and various other electrical devices, and are required to have excellent electromagnetic properties. That is, as a magnetization characteristic, the magnetic flux density B10 value is high when the excitation current is 11000V, and as an iron loss characteristic, the iron loss value W1715° is low when the magnetic flux density is 1.7 T (Tesla) and the frequency is 50 Hz. is important. Recently, due to advances in manufacturing technology for unidirectional silicon steel sheets, the B value has increased to 1.89 T or more, Wl. Unidirectional silicon steel sheets with excellent properties having a value of 1.05W or less have been manufactured.

従来のこのような一方向性珪素鋼板の製造方法としては
、Si4チ以下、C0,06%以下を含み、かつ小量の
インヒビター形成元素、例えばS、Se。
The conventional method for manufacturing such a unidirectional silicon steel sheet includes Si4H or less, C0.06% or less, and a small amount of inhibitor-forming elements such as S and Se.

あるいは必要に応じてAs 、 sb 、 Te 、 
Bi等を含有する公知組成の一方向性珪素鋼板用素材を
熱間圧延し、必要に応じてノルマライジング・焼鈍を行
った後、1回の冷間圧延もしくは中間焼鈍を挾む2回以
上の冷間圧延によって最終仕上厚の冷延鋼板を得、引続
き脱炭焼鈍を施した後、マグネシア(MgO)を主体と
する焼鈍分離剤を鋼板表面に塗布して最終仕上焼鈍を行
う方法が一般的である。
Or As, sb, Te, as necessary
A unidirectional silicon steel sheet material with a known composition containing Bi etc. is hot rolled, normalized and annealed as necessary, and then cold rolled once or twice or more with intermediate annealing in between. A common method is to obtain a cold-rolled steel plate with the final finish thickness by cold rolling, then decarburize it, and then apply an annealing separator mainly composed of magnesia (MgO) to the steel plate surface for final finish annealing. It is.

ところで一方向性珪素鋼板の磁気特性を向上させるため
には、所謂ゴス方位と称される(110)〔001〕方
位の集積を高度に図る必要があり、そのため一般には前
述のような脱炭焼鈍後の最終仕上焼鈍によって(110
’ ) (001]方位の2次再結晶を充分に発達させ
ることが行なわれている。そしてこのように最終仕上焼
鈍において(110)[001)方位の2次再結晶の核
生成、発達を充分に行なわせるためには、不適切な方位
・の1次再結晶粒の成長を抑制するだめのMnSやMn
Se等のインヒビターとしての析出分散相が適切に分散
していること、および(110)(001’:1方位の
2次再結晶の核生成に適した1次再結晶集合組織が形成
されていることが不可欠である。適切な1次再結晶集合
組織を形成しておくために、従来は前述のごとく最終仕
上冷延板について脱炭焼鈍を独立した工程として施して
いた。この脱炭焼鈍の冶金学的意味は、最終仕上焼鈍後
は不用であってしかも2次再結晶にとって有害な不純物
である炭素を、鋼板中から除去し、かつ前述のように適
切な1次再結晶集合組織を得ることにある。
By the way, in order to improve the magnetic properties of unidirectional silicon steel sheets, it is necessary to achieve a high degree of accumulation of the so-called Goss orientation (110) [001] orientation, and for this purpose, decarburization annealing as described above is generally performed. After final finish annealing (110
) The secondary recrystallization of the (001] orientation is sufficiently developed.In this way, the nucleation and development of the secondary recrystallization of the (110)[001] orientation is sufficiently promoted in the final finish annealing. In order to achieve this, it is necessary to add MnS or Mn to suppress the growth of primary recrystallized grains with inappropriate orientation.
The precipitated dispersed phase as an inhibitor of Se, etc. is appropriately dispersed, and a primary recrystallization texture suitable for nucleation of secondary recrystallization in the (110)(001':1 orientation) is formed. In order to form an appropriate primary recrystallization texture, decarburization annealing was conventionally performed on the final finished cold-rolled sheet as an independent process as described above. The metallurgical meaning is to remove carbon, which is an impurity that is unnecessary after final annealing and is harmful to secondary recrystallization, from the steel sheet, and to obtain an appropriate primary recrystallization texture as described above. There is a particular thing.

このようにして脱炭焼鈍を施した後、焼鈍分離剤を塗布
し、改めて最終仕上焼鈍を施すことにより(110)〔
001〕方位の2次再結晶粒を充分に発達させて、磁気
特性の優れた一方向性珪素鋼板が得られていた。
After performing decarburization annealing in this way, an annealing separator is applied and final finish annealing is performed again (110) [
A unidirectional silicon steel sheet with excellent magnetic properties was obtained by sufficiently developing secondary recrystallized grains in the 001] orientation.

ところで上述のような従来方法では、冷間圧延後の熱処
理として脱炭焼鈍と最終仕上焼鈍との2工程を必要とす
るため、エネルギー消費量が嵩み、一方向性珪素鋼板の
コストアンプの大きな原因となっておシ、また冷間圧延
後の工程時間が長く、生産性を阻害する一因となってい
た。
However, the conventional method described above requires two steps of decarburization annealing and final finish annealing as heat treatment after cold rolling, which increases energy consumption and increases the cost of unidirectional silicon steel sheets. In addition, the process time after cold rolling was long, which was one of the causes of hindering productivity.

しかるに脱炭焼鈍は前述のように(140)(001)
方位の2次再結晶の発達に最適な1次再結晶集合組織を
形成させかつ2次再結晶に有害な炭素を除去しておくだ
めのものであるから、少くとも2次再結晶を開始するま
でに完了しておけば良いものであシ、このことからすれ
ば、脱炭焼鈍は最終仕上焼鈍に先立つ別工程として処理
する必要性は少ないものと考えられる。この点に着目し
て本発明者等が種々実験・検討を重ねた結果、最終仕上
焼鈍過程において、少くとも2次再結晶を開始する温度
よりも低温域で充分に脱炭させかつ適切な1次再結晶集
合組織を生成させ、引続いて2次再結晶を完了させるこ
とが実際に可能であることを知見した。すなわち、一連
の珪素鏑処理工程中において脱炭焼鈍を独立した工程と
して処理しなくても、最終仕出焼鈍の1工程によって、
(11,0) [001)方位の2次再結晶の発達に必
要な1次再結晶集合組織の生成と脱炭、およびその後の
2次再結晶の成長を充分に完了させ、なおかつ1200
℃附近の高温に保持することによって不純物を純化させ
ることが可能であることを見出し、この発明をなすに至
ったのである。
However, as mentioned above, decarburization annealing is (140) (001)
Since it is necessary to form a primary recrystallization texture that is optimal for the development of secondary recrystallization of orientation and to remove carbon harmful to secondary recrystallization, at least start secondary recrystallization. From this, it is considered that there is little need to perform decarburization annealing as a separate process prior to final finish annealing. Focusing on this point, the inventors conducted various experiments and studies, and found that in the final annealing process, sufficient decarburization is achieved at least in a lower temperature range than the temperature at which secondary recrystallization begins, and an appropriate It has been found that it is indeed possible to generate a secondary recrystallization texture and subsequently complete the secondary recrystallization. In other words, even if decarburization annealing is not performed as an independent step in a series of silicon treatment steps, one step of final annealing can
The generation and decarburization of the primary recrystallization texture necessary for the development of the secondary recrystallization of the (11,0) [001) orientation, and the subsequent growth of the secondary recrystallization are sufficiently completed, and the 1200
They discovered that it is possible to purify impurities by maintaining the temperature at a high temperature around 0.degree. C., leading to the creation of this invention.

したがってこの発明の一方向性珪素鋼板の製造方法は、
Siを2〜4%含有する一方向性珪素鋼用素材に熱間圧
延および冷間圧延を施して所定厚の最終仕上板とした後
、その最終仕上板に焼鈍分離剤を塗布し、次いで脱炭焼
鈍と2次再結晶焼鈍を一工程で行って脱炭および2次再
結晶を連続的に行わせることを特徴とするもの・である
Therefore, the method for manufacturing a unidirectional silicon steel sheet of the present invention is as follows:
A unidirectional silicon steel material containing 2 to 4% Si is hot-rolled and cold-rolled to form a final finished plate of a predetermined thickness, then an annealing separator is applied to the final finished plate, and then desorption is performed. It is characterized in that charcoal annealing and secondary recrystallization annealing are performed in one step, and decarburization and secondary recrystallization are performed continuously.

以下この発明の方法をさらに詳細に説明する。The method of the present invention will be explained in more detail below.

この発明の方法で使、用される鋼素材としては、公知の
製鋼法、例えば転炉、電気炉、平炉等で溶製してなる溶
鋼を公知の連続鋳造法あるいは造塊−分塊圧延法によっ
てスラブとしだものを用いれば良い。ここで鋼素材の成
分は、Siを2〜4チ含有し、そのほかインヒビター形
成元素として、少量のMn 、 SもしくはSe等を含
有するものであれば良い。具体的には、C006%以1
’、Si2〜4チ、Mn 0.01〜0.1%、酸可溶
A70.005 %以下を含有し、so、oi〜010
チおよびSO,OO5〜0.050チのいずれか1種ま
たは2種以上を含み、さらに必要に応じてAs 0.0
1〜010%、sb o、 o i〜0.10多あるい
はBi 、 Pb。
The steel material to be used in the method of the present invention may be obtained by using a known steel manufacturing method, such as a converter, an electric furnace, an open hearth, etc., to produce molten steel using a known continuous casting method or an ingot-blowing rolling method. Depending on the situation, you can use slabs and shiramono. Here, the steel material may contain 2 to 4 Si and a small amount of Mn, S, Se, etc. as an inhibitor-forming element. Specifically, C006% or more1
', contains 2-4% of Si, 0.01-0.1% of Mn, 70.005% or less of acid-soluble A,
and any one or more of SO, OO5 to 0.050, and if necessary, As 0.0
1~0.10%, sbo, oi~0.10 or Bi, Pb.

P 、 Sn 、 Zr等(7)0.005〜0.10
%を14もしくは2種以上含有し、残部Feなる組成と
することが望ましい。
P, Sn, Zr, etc. (7) 0.005-0.10
It is desirable that the composition contains 14% or 2 or more kinds of Fe, and the balance is Fe.

上述のような素材スラブに対しては、1400℃程度以
丁でかつ望ましくは1250℃以上の温度に加熱し、公
知の方法によシ熱間圧延を施して熱延板とし、必要に応
じてノルマライジング焼鈍を施す。そして中間焼鈍を挾
む2回以上の冷間圧延、もしくは1回の冷間圧延によっ
て、0.35〜(115trrm程度の最終仕上板厚と
する。この時点での鋼板(最終仕上冷延板)の炭素量は
通常は少くとも0020〜0.050%程度存在する。
The above-mentioned material slab is heated to a temperature of about 1400°C, preferably 1250°C or higher, and hot-rolled by a known method to form a hot-rolled plate, and as needed. Perform normalizing annealing. Then, by cold rolling two or more times with intermediate annealing in between, or by cold rolling once, the final finished plate thickness is about 0.35 to (115 trrm).The steel plate at this point (final finished cold rolled plate) The amount of carbon usually exists at least about 0.020 to 0.050%.

このような最終仕上冷延板に対しては、独立の脱炭焼鈍
を行うことなく、直接焼鈍分離剤を塗布した後、最終仕
上焼鈍を施す。この最終仕上焼鈍の工程中において脱炭
および適切な1次再結晶集合組織の形成と、2次再結晶
および最終的な純化が行なわれる。すなわち、最終仕上
焼鈍における昇温過程の比較的低温で鋼板各層間が酸化
性雰囲気となって800℃前後で脱炭と1次再結晶が起
り、その後連続的に850℃以上の温度で2次再結晶粒
が急速に発達し、最終的に1200℃程度で純化が鈍と
を一連続の工程で行なわせる場合に充分な脱炭を行なわ
せるためには、その前に塗布する焼鈍分離剤として従来
一般に使用されているMgOだけでは不充分であり、M
gOを主体としてアルカリ金属もしくはアルカリ土類金
属の炭酸塩の1種または2種以上を配合したもの、ある
いは同じ(MgOを主体とし珪酸塩化合物の1種または
2種以上を配合したもの、さらにはMgOを主体として
これに1種または2種以上のアルカリ金属もしくはアル
カリ土類金属の炭酸塩と1種または2棟以上の珪酸塩系
化合物を複合添加したものを焼鈍分離剤として使用する
ことが望ましい。ここで炭酸塩としては前述のようにア
ルカリ金属もしくはアルカリ土類金属、すなわちLi 
、 K 、 Na 、 Rb 、 Cs 、 Mg 。
Such a final cold-rolled sheet is not subjected to independent decarburization annealing, but is directly coated with an annealing separator and then subjected to final annealing. During this final final annealing step, decarburization and formation of a suitable primary recrystallization texture, secondary recrystallization and final purification are performed. In other words, at a relatively low temperature during the heating process in final annealing, an oxidizing atmosphere is created between each layer of the steel sheet, and decarburization and primary recrystallization occur at around 800°C, followed by secondary recrystallization at a temperature of 850°C or higher. In order to achieve sufficient decarburization in a continuous process where recrystallized grains develop rapidly and eventually become sluggish at about 1200°C, it is necessary to use an annealing separator to be applied beforehand. MgO, which has been commonly used in the past, is insufficient, and MgO
Those containing gO as a main ingredient and containing one or more carbonates of alkali metals or alkaline earth metals, or the same (mainly containing MgO and containing one or two or more silicate compounds) It is desirable to use MgO as an annealing separator, with the combined addition of one or more alkali metal or alkaline earth metal carbonates and one or more silicate compounds. As mentioned above, the carbonate is an alkali metal or an alkaline earth metal, that is, Li.
, K, Na, Rb, Cs, Mg.

Ca 、 Sr’、 Ba等の炭酸塩を用いることがで
き、具体的にはBaCO3,CaC0,、K2CO2,
ti2co3゜Rb2CO3,C3CO3等が使用され
る。一方珪酸塩系化合物としては、蛇紋岩、タルク、カ
オリン、ベントナイト、酸性白土、活性白土等を用いる
ことができる。ここで前述のような炭酸塩まだは珪酸塩
系化合物の配合量が1%未満ではその配合効果、すなわ
ち脱炭促進効果が不充分であり、また50チを超えれば
配合による効果がそれ以上向上しないばかりでなく、不
経済となるから、これらを配合する場合の配合量は総量
で1〜50%の範囲とし、残部をMgOとすることが望
ましい。
Carbonates such as Ca, Sr', and Ba can be used, specifically BaCO3, CaC0, K2CO2,
ti2co3°Rb2CO3, C3CO3, etc. are used. On the other hand, as the silicate compound, serpentine, talc, kaolin, bentonite, acid clay, activated clay, etc. can be used. Here, if the blending amount of the carbonate or silicate compound as mentioned above is less than 1%, the blending effect, that is, the decarburization promoting effect, is insufficient, and if it exceeds 50%, the blending effect will further improve. Not only is this not effective, but it is also uneconomical, so it is desirable that the total amount of these components be in the range of 1 to 50%, with the remainder being MgO.

上述のような焼鈍分離剤は、これを通常は水に水和懸濁
させ、冷間圧延によって最終板厚に仕上げた冷延板表面
に塗布して最終仕上焼鈍に付すのであるが、この最終仕
上焼鈍における昇温速度もしくは昇温時間は、脱炭に影
響を及ぼすから充分な注意を払う必要がある。第1図に
、極端な例として、脱炭を行うだめに2次再結晶温度よ
)低温域の種々の温度で24時間保持した後、2次再結
晶および純化のために1200℃で5時間保持した場合
の低温域保持温度と鋼中炭素量との関係を種々の焼鈍分
離剤について示す。第1図から、保持温度が750℃以
上になれば鋼中残留炭素量が増加する傾向を示すことが
明らかである。このことから、脱炭のために特に脱炭の
ために長時間保持するよpもむしろ室温から連続的に1
200℃程度に昇温した方が鋼中残留炭素量が少くなる
ことが窺われる。そして本発明者等の詳細な実験によれ
ば、50°Vhr以下の昇温速度であれば、最終仕上焼
鈍における昇温過程で充分に脱炭させ得ることが判明し
た。但し5°c/hrよりも遅ければ昇温所要時間が長
くなって経済的不利を招き、50’C/hrより速けれ
ば脱炭が不充分となる可能性がある。したがって仕上焼
鈍の昇温過程の昇温速度は5〜50 ’IC/hrの範
囲内とすることが望ましい。
The annealing separator mentioned above is usually hydrated and suspended in water and applied to the surface of a cold-rolled sheet that has been cold-rolled to the final thickness and subjected to final annealing. It is necessary to pay sufficient attention to the temperature increase rate or temperature increase time during final annealing as it affects decarburization. In Figure 1, as an extreme example, after being held for 24 hours at various temperatures in the low temperature range (beyond the secondary recrystallization temperature in order to perform decarburization), it was held at 1200°C for 5 hours for secondary recrystallization and purification. The relationship between the holding temperature in the low temperature range and the carbon content in the steel is shown for various annealing separators. It is clear from FIG. 1 that the amount of residual carbon in the steel tends to increase when the holding temperature is 750° C. or higher. For this reason, it is better to hold the water for a long period of time especially for decarburization, rather than holding it continuously for a long time from room temperature.
It can be seen that the amount of residual carbon in the steel decreases when the temperature is raised to about 200°C. According to detailed experiments conducted by the present inventors, it has been found that a temperature increase rate of 50° Vhr or less can sufficiently decarburize the steel during the temperature increase process in final finish annealing. However, if it is slower than 5°C/hr, the time required to raise the temperature becomes longer, resulting in an economic disadvantage, and if it is faster than 50'C/hr, decarburization may be insufficient. Therefore, it is desirable that the temperature increase rate in the temperature increase process of final annealing be within the range of 5 to 50' IC/hr.

第2図には、MgOを主体とする焼鈍分離剤に配合され
るアルカリ土類金属炭酸塩としてのB a C03の配
合量(但しMgOの量に対するBaCO3t )を植種
変化させ、各焼鈍分離剤を塗布した冷延鋼板を1180
℃まで約100°c/hrの昇畠速度で露点=50℃の
水素雰囲気中において昇温し、1180℃で5時間保持
した場合の製品の磁気特性(磁束密度B、。および鉄損
W1715゜)を示す。第2図から、B aCO5のM
gOに対する配合量が1%以上(焼鈍分離削総量に対す
るB a CO5量1チ以上とほぼ同じ)で磁気特性の
向上が認められることが明らかである。また第;3図は
、Mg090%と種々の珪酸塩系化合qyIJ10%を
配合した焼鈍分離剤を用いて第2図の場合と同様に処理
した製品の磁気特性を示す。
Figure 2 shows that the amount of B a C03 (BaCO3t relative to the amount of MgO) blended as an alkaline earth metal carbonate in an annealing separator mainly composed of MgO is varied, and each annealing separator Cold rolled steel plate coated with 1180
The magnetic properties of the product (magnetic flux density B, and iron loss W1715° ) is shown. From Figure 2, M of B aCO5
It is clear that the magnetic properties are improved when the amount of gO is 1% or more (approximately the same as the amount of B a CO5 of 1 or more with respect to the total amount of annealing and separation). Further, FIG. 3 shows the magnetic properties of a product treated in the same manner as in FIG. 2 using an annealing separator containing 090% Mg and 10% qyIJ of various silicate compounds.

第3図から、珪酸塩系化合物をMgOに配合した焼鈍分
離剤を用いた場合にも、MgO単独の場合と比較して製
品の磁気特性が優れていることが明らかである。さらに
第4図には、K2CO3をO〜50チ(但しMgO着に
対する割合)添加した焼鈍分離剤を用いて前記同様な最
終仕上焼鈍を行った場合の製品板のマクロ組織を示す。
From FIG. 3, it is clear that even when an annealing separator containing a silicate-based compound mixed with MgO is used, the magnetic properties of the product are superior to those using MgO alone. Further, FIG. 4 shows the macrostructure of a product sheet obtained when the same final annealing as described above was performed using an annealing separator to which 0 to 50 g of K2CO3 (however, the ratio to the MgO deposit) was added.

第4図から、MgOに対し1慢以上のに2CO3を添加
した場合には、2次丹結晶が充分に完了することが明ら
かである。
From FIG. 4, it is clear that when 2CO3 is added to MgO in an amount of 1 or more, secondary red crystals are sufficiently completed.

以上のようにアルカリ金属もしくはアルカリ土類金属の
炭酸塩、まだは珪酸塩系化合物をMgOに混合した焼鈍
分離剤を使用することによって、焼鈍の昇温過程で脱炭
が促進される理由の詳細は未だ明確ではないが、次のよ
うに考えられる。すなわち、上述のような炭酸塩、ある
いは珪酸塩系化Li2Co3が618℃、Cs C05
が610℃、蛇紋岩が500〜700℃といずれの場合
も800℃以下の温度であシ、そのため昇温過程の2次
再結晶開始前に分解してコイルもしくは板の層間部にお
いて層間雰囲気を酸化性にする。脱炭は周知のように鋼
板の表層の酸化性雰囲気による炭素と酸素との化合によ
ってなされるものであり、酸化性の雰囲気の確保が必要
であることが知られている。したがって上述のような炭
酸塩や珪酸塩系化合物を使用した場合も、酸化性雰囲気
の生成によp脱炭が促進されるものと思われる。
As mentioned above, the details of why decarburization is promoted in the temperature rising process of annealing by using an annealing separator containing MgO mixed with an alkali metal or alkaline earth metal carbonate or silicate compound. Although it is not yet clear, it can be considered as follows. That is, the above-mentioned carbonate or silicate Li2Co3 is heated at 618°C, Cs C05
In both cases, the temperature is below 800°C, 610°C for serpentinite, and 500 to 700°C for serpentinite. Therefore, it decomposes before the start of secondary recrystallization in the heating process and creates an interlayer atmosphere in the interlayer part of the coil or plate. Make it oxidizing. As is well known, decarburization is achieved by the combination of carbon and oxygen in an oxidizing atmosphere on the surface of a steel sheet, and it is known that it is necessary to ensure an oxidizing atmosphere. Therefore, even when carbonate or silicate compounds such as those mentioned above are used, p-decarburization is thought to be promoted by the generation of an oxidizing atmosphere.

なお最終冷延仕上板厚が035閣を越えれば、最終仕上
焼鈍における昇温過程での脱炭が不充分となる可能性が
あるから、最終冷延仕上板厚は0.351m以下とする
ことが望ましい。但し薄過ぎれば鉄損が劣化するから、
少くともo、1rTcIn以上の板厚が望ましく、結局
最終仕上板厚は0.1〜0.35瓢の範囲内とすること
が望ましい。
If the final cold-rolled finished plate thickness exceeds 0.35m, decarburization during the temperature raising process in final final annealing may be insufficient, so the final cold-rolled finished plate thickness should be 0.351m or less. is desirable. However, if it is too thin, iron loss will deteriorate, so
It is desirable that the plate thickness be at least 0.1rTcIn or more, and it is desirable that the final finished plate thickness be within the range of 0.1 to 0.35 mm.

以下に実施例に基いて説明する。This will be explained below based on examples.

実施例I C0,034%、Si3.00%、Mn0.06%。Example I C0,034%, Si3.00%, Mn0.06%.

Se O,020% 、 Sb 0.030 %を含有
し残部実質的にFeよりなる一方向性珪素鋼板用素材を
3.0關厚に熱間圧延し、酸洗して酸化スケールを除去
した後、第1目間間圧延を施し、950℃で5分間の中
間焼鈍を悔した後第2目間間圧延により0、27 m厚
の冷延鋼板を得た。その冷延側板の表面に、MgOにB
 a CO3を0〜30 % < MgO量に対する割
合)混合させた焼鈍分離剤を塗布し、18.20C/h
rの昇温速度で1180℃に昇温しでさらに1180℃
で5時間水素中で保持する最終仕上焼鈍を行なった。得
られた一方向性珪素鋼板の磁気特性を調べた結果を、B
 a C05添加量に対応して第1表に示す。
After hot rolling a unidirectional silicon steel sheet material containing 0.020% SeO, 0.030% Sb and the remainder substantially Fe to a thickness of 3.0 mm, and removing oxide scale by pickling. A cold-rolled steel plate having a thickness of 0.27 m was obtained by performing a first inter-mesh rolling, and after an intermediate annealing at 950° C. for 5 minutes, a second inter-mesh rolling was performed. On the surface of the cold-rolled side plate, B is added to MgO.
a Apply an annealing separator mixed with 0 to 30% CO3 (ratio to the amount of MgO) and heat at 18.20C/h.
Raise the temperature to 1180℃ at a heating rate of r, and further increase the temperature to 1180℃
A final finish annealing was performed by holding in hydrogen for 5 hours. The results of investigating the magnetic properties of the obtained unidirectional silicon steel sheet are shown in B.
a Table 1 shows the amount of C05 added.

第1表 実施例2 CO,030%、Si2.90チ、 %n 0.07係
Table 1 Example 2 CO, 030%, Si 2.90%, %n 0.07.

□ Se 0.020%、SbO,030%を含有し残部実
質的にFeよシなる一方向性珪素銅版用素材の鋳塊を熱
間圧延し、第1目間間圧延後、980℃で5分間中間焼
鈍して第2回冷間圧延により0.30 ran厚に仕上
げた。その冷延板の表面に、MgOにCa CO5をO
〜30 % (MgO喰に対する割合)混合した焼鈍分
離剤の水和液を塗布し、30 ′C/hrの昇温速度で
1200℃まで昇温し引続き1200℃で51埼間保持
する最終仕上焼鈍を露点−60’Cの乾燥水素中で行な
った。得られた一方向性珪素鋼板の磁気特性を焼鈍分離
剤におけるMgO量に対するC a COs 計に対応
して第2表に示す。
□ An ingot of a unidirectional silicon copper plate material containing 0.020% Se, 030% SbO, and the remainder being essentially Fe was hot rolled, and after the first inter-rolling, it was rolled at 980°C for 50 minutes. It was intermediately annealed for a minute and then cold rolled a second time to a thickness of 0.30 ran. On the surface of the cold-rolled plate, CaCO5 was added to MgO.
~30% (ratio to MgO content) A mixed annealing separator hydration solution is applied, the temperature is raised to 1200°C at a heating rate of 30'C/hr, and the final finish annealing is continued by holding at 1200°C for 51 days. was carried out in dry hydrogen at a dew point of -60'C. The magnetic properties of the obtained unidirectional silicon steel sheets are shown in Table 2 in correspondence with the amount of MgO in the annealing separator and the C a COs meter.

第2表 実施例3 C0,035%、Si3.5%、 Mn 0.060%
Table 2 Example 3 C0,035%, Si3.5%, Mn 0.060%
.

SeU、019%、SbO,025%を含有し残部実質
的にFeよシなる一方向性珪素鋼板用素材を熱間圧延し
て2.71111厚の熱延板とした。次いでノルマライ
ジング焼鈍を施した後第1目間間圧延を施し、950“
Cて5分間中間焼鈍を行った後、第2冷冷間圧延にて最
終仕上板厚0.18mとした。その冷延板表面に、Mg
Oに蛇紋岩をO〜30チ(MgOtに対する割合)混合
(7た焼鈍分離剤を塗布し、5’C/brの昇温速度で
1200℃まで昇温し引続き1200℃で5時間保持す
る最終仕上焼鈍を行った。但しその最終仕上焼鈍におけ
る雰囲気は、400℃まではArとし、400℃以上を
乾燥水素中にて行った。得られた一方向性珪素鋼板の磁
気特性を焼鈍分離剤中におけるMgO量に対する蛇紋岩
量に対応して第3表に示す。
A unidirectional silicon steel sheet material containing 0.19% of SeU and 0.25% of SbO, with the remainder being substantially Fe, was hot-rolled into a hot-rolled sheet with a thickness of 2.71111 mm. Next, normalizing annealing was performed, followed by first intermetal rolling, resulting in a 950"
After performing intermediate annealing for 5 minutes at C, the final finished plate thickness was made 0.18 m by second cold rolling. On the surface of the cold-rolled plate, Mg
Mix O to 30% of serpentinite (ratio to MgOt) and apply an annealing separator, raise the temperature to 1200°C at a heating rate of 5'C/br, and then hold at 1200°C for 5 hours. Final annealing was performed. However, the atmosphere for final annealing was Ar up to 400°C, and in dry hydrogen above 400°C. Table 3 shows the relationship between the amount of serpentine and the amount of MgO.

第3表 上述の各実施例から、焼鈍分離剤としてMgOに1%程
度以上のBaCO3* CaCO5、あるいは蛇紋岩を
混合した・焼鈍分離剤を用いることによって、脱炭焼鈍
を独立した一工程として行わずに最終仕上焼鈍の昇温過
程で行っても優れた磁気特性が得られることが明らかで
ある。なお各実施例においては、従来の脱炭焼鈍を独立
した一工程として行う場合と比較して、冷延工程後のエ
ネルギーコストにして20〜30チ程度低減し、また冷
延工程後の工程所要時間が10〜30時間程度短縮され
ることが確認された。
Table 3 From each of the above examples, decarburization annealing is performed as an independent step by using an annealing separator that is a mixture of MgO with about 1% or more BaCO3*CaCO5 or serpentinite as an annealing separator. It is clear that excellent magnetic properties can be obtained even if the annealing is performed during the temperature raising process of final finish annealing. In addition, in each example, compared to the case where conventional decarburization annealing is performed as an independent process, the energy cost after the cold rolling process is reduced by about 20 to 30 inches, and the process required after the cold rolling process is reduced. It was confirmed that the time was reduced by about 10 to 30 hours.

以上の説明で明らかなように、この発明の方法によれば
、従来、冷間圧延後焼鈍分離剤塗布前に独立した一工程
として行っていた脱炭のための処理工程が不要となシ、
そのためエネルギーコストが従来よシも格段に低減され
、しかも冷延工程後の工程時間が従来よりも大幅電短縮
されて生産性が向上する等、種々の効果が得られる。
As is clear from the above description, the method of the present invention eliminates the need for the decarburization process, which was conventionally performed as an independent process before applying an annealing separator after cold rolling.
Therefore, various effects can be obtained, such as the energy cost being significantly reduced compared to the conventional method, and the process time after the cold rolling process being significantly reduced compared to the conventional method, thereby improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、 (B)は最終仕上焼鈍における低温
域保持温度と最終製品における鍋中残留炭素量との関係
を、Ar雰囲気保持およびH2雰囲気保持の場合につき
各種焼鈍分離剤について示す図、第2図■。 (B)は焼鈍分離剤としてMgOにB a C05を混
合した場合のこの発明の方法による製品の磁気特性をM
gO量に対するB aCO5量に相関させて示す図、第
3図(4)、(B)は焼鈍分離剤としてMg090 %
と珪酸塩系化合物10チとを混合したものを用いた場合
のこの発明の方法による製品の磁気特性分布を各化合物
に対応して示す図、第4図囚〜(ト)は焼鈍分離剤とし
てMgOに0〜50チのに2C03を添加した場合のこ
の発明の方法による最終仕上焼鈍後の製品のマクロ組織
を示す金属組織写真である。 出願人 川崎製鉄株式会社 代理人 弁理士豊田武人 (ほか1名) 第2図 BeLoQaf    (KgOtt二11するtiL
 ’A C第3図 (A) (各IO%十MyO’?O%) 手   続   補   正   @  (方式)昭和
58年9月8日 特許庁長官  若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第77885号 2、発明の名称 一方向性珪素鋼板の製造方法 3、補正をする者 事件との関係 特許出願人 住 所  兵庫県神戸市中央区北本町通1丁目1番28
@名称 (125)川崎製鉄株式会社 4、代理人 住  所  東京都港区三田3丁目4番18号5、補正
命令の日付 昭和58年8月30日〈発送日) 7、補正の内容 (1)明細書筒17頁終行に記載された[第1図(A)
、(B)は」を「第1図は」と訂正する。 (2)明m書第18頁第10行目に記載された[第4図
(A)〜(F)は」をr第4図はJと訂正する。 11
Figures 1 (A) and (B) are diagrams showing the relationship between the low-temperature holding temperature in the final finish annealing and the amount of residual carbon in the pot in the final product for various annealing separators in the case of maintaining an Ar atmosphere and maintaining an H2 atmosphere. , Figure 2■. (B) shows the magnetic properties of the product produced by the method of this invention when MgO is mixed with B a C05 as an annealing separator.
Figures 3 (4) and (B), which show the correlation between the amount of BaCO5 and the amount of gO, show that Mg090% is used as an annealing separator.
A diagram showing the magnetic property distribution of a product produced by the method of the present invention using a mixture of 1 and 10 silicate compounds, corresponding to each compound. It is a metal structure photograph showing the macrostructure of a product after final finish annealing by the method of the present invention when 0 to 50 g of 2C03 is added to MgO. Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Takehito Toyota (and one other person) Figure 2 BeLoQaf (KgOtt211sutiL
'A C Figure 3 (A) (Each IO% 10MyO'?O%) Procedure Amendment @ (Method) September 8, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of the case 1982 Patent Application No. 77885 2, Title of invention: Method for manufacturing unidirectional silicon steel sheet 3, Relationship with the amended case Patent applicant address: 1-1-28 Kitahonmachi-dori, Chuo-ku, Kobe, Hyogo Prefecture
@ Name (125) Kawasaki Steel Co., Ltd. 4, Agent address: 3-4-18-5, Mita, Minato-ku, Tokyo, Date of amendment order: August 30, 1980 (shipment date) 7. Contents of amendment (1) ) Written on the last line of page 17 of the specification cylinder [Figure 1 (A)
, (B)" should be corrected as "Fig. 1 is." (2) [Figures 4 (A) to (F)] written in Book M, page 18, line 10 is corrected to ``J'' in Figure 4. 11

Claims (2)

【特許請求の範囲】[Claims] (1)  Siを2〜4チ(重量%、以下同じ)含有す
る一方向性′電磁鋼板用素材に熱間圧延および冷間圧延
を施して所定厚の最終仕上板とした後、その最終仕上板
に焼鈍分離剤を塗布し、次いで脱炭焼鈍と2次再結晶焼
鈍とを一工程で行って脱炭と2次再結晶を連続的に行な
わせることを特徴とする一方向性珪素鋼板の製造方法。
(1) After hot rolling and cold rolling a unidirectional electrical steel sheet material containing 2 to 4 Ti (wt%, same hereinafter) of Si to a final finished plate of a predetermined thickness, the final finishing process is performed. A unidirectional silicon steel sheet characterized in that an annealing separator is applied to the sheet, and then decarburization annealing and secondary recrystallization annealing are performed in one step so that decarburization and secondary recrystallization are performed continuously. Production method.
(2)  前記焼鈍分離剤として、アルカリ金属もしく
はアルカリ土類金属の炭酸塩、または珪酸塩系化合物の
1種または2種以上を1〜50チ含有しかつ残部MgO
よりなるものを用いることを特徴とする特許請求の範囲
第1項記載の一方向性珪素鋼板の製造方法。
(2) The annealing separator contains 1 to 50 of one or more of carbonates of alkali metals or alkaline earth metals, or silicate compounds, and the balance is MgO.
2. A method for producing a grain-oriented silicon steel sheet according to claim 1, characterized in that a material comprising:
JP7788583A 1983-05-02 1983-05-02 Manufacture of unidirectional silicon steel sheet Pending JPS59205420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7788583A JPS59205420A (en) 1983-05-02 1983-05-02 Manufacture of unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7788583A JPS59205420A (en) 1983-05-02 1983-05-02 Manufacture of unidirectional silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS59205420A true JPS59205420A (en) 1984-11-21

Family

ID=13646522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7788583A Pending JPS59205420A (en) 1983-05-02 1983-05-02 Manufacture of unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS59205420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222489A (en) * 1992-02-06 1993-08-31 Nippon Steel Corp Grain oriented silicon steel sheet having superior workability, high magnetic flux density and super low core loss and its manufacture
WO1995012691A1 (en) * 1993-11-02 1995-05-11 Sumitomo Metal Industries, Ltd. Manufacture of silicon steel plate having excellent magnetic characteristic
US5807441A (en) * 1993-11-02 1998-09-15 Sumitomo Metal Industries, Ltd. Method of manufacturing a silicon steel sheet having improved magnetic characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143718A (en) * 1978-04-28 1979-11-09 Kawasaki Steel Co Formation of insulating layer of directional silicon steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143718A (en) * 1978-04-28 1979-11-09 Kawasaki Steel Co Formation of insulating layer of directional silicon steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222489A (en) * 1992-02-06 1993-08-31 Nippon Steel Corp Grain oriented silicon steel sheet having superior workability, high magnetic flux density and super low core loss and its manufacture
WO1995012691A1 (en) * 1993-11-02 1995-05-11 Sumitomo Metal Industries, Ltd. Manufacture of silicon steel plate having excellent magnetic characteristic
US5807441A (en) * 1993-11-02 1998-09-15 Sumitomo Metal Industries, Ltd. Method of manufacturing a silicon steel sheet having improved magnetic characteristics

Similar Documents

Publication Publication Date Title
RU2126452C1 (en) Method of producing electrical-sheet steel
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JPH10500454A (en) Method of manufacturing grain-oriented electrical steel sheet for transformer
KR20160063244A (en) Annealing separating agent composition for base coating free electrical steel sheet, and method for manufacturing base coating free electrical steel sheet using the same
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPS6160895B2 (en)
JPS59205420A (en) Manufacture of unidirectional silicon steel sheet
JPS5836048B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
GB2095287A (en) Method for producing grain- oriented silicon steel
JPS6253572B2 (en)
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP6011586B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02305921A (en) Production of grain-oriented steel sheet having excellent magnetic characteristic
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet
KR20030053746A (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
JPS62140401A (en) Manufacture of uni-directional silicon steel plate