JPH05304014A - Fe-co soft magnetic material with excellent soft magnetic property and soft magnetic electric part assembled body - Google Patents

Fe-co soft magnetic material with excellent soft magnetic property and soft magnetic electric part assembled body

Info

Publication number
JPH05304014A
JPH05304014A JP3332109A JP33210991A JPH05304014A JP H05304014 A JPH05304014 A JP H05304014A JP 3332109 A JP3332109 A JP 3332109A JP 33210991 A JP33210991 A JP 33210991A JP H05304014 A JPH05304014 A JP H05304014A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
tension
soft
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3332109A
Other languages
Japanese (ja)
Other versions
JP2941534B2 (en
Inventor
Hodaka Honma
穂高 本間
Yasuo Okazaki
靖雄 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3332109A priority Critical patent/JP2941534B2/en
Publication of JPH05304014A publication Critical patent/JPH05304014A/en
Application granted granted Critical
Publication of JP2941534B2 publication Critical patent/JP2941534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve characteristics of Fe-Co soft magnetic material having very high saturation magnetic flux density. CONSTITUTION:The title Fe-Co soft magnetic material has very high saturation magnetic flux density, but its soft magnetic characteristics is not so high. The soft magnetic property of the material is remarkably improved by adding tensile force. By applying this information to technical development, an assembled body of an Fe-Co soft magnetic material, having excellent soft magnetic property, and a soft magnetic electric part is accomplished using the method in which a tensile film is formed on the surface of a steel plate, a toroidal coil is formed in a tensile-stress applied toroidal coil and face-pressure is applied. As a result, the Fe-Co soft magnetic material and soft magnetic electric part assembled body, having very high magnetic flux density and excellent soft magnetic characteristics, cafe obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転機等磁気力を利用
したアクチュエータのコア等に用いられるところの、大
きな磁束密度を有するFe−Co系軟磁性材料及び軟磁
性電気部品に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe--Co type soft magnetic material and a soft magnetic electric component having a large magnetic flux density, which are used for a core of an actuator utilizing magnetic force such as a rotating machine.

【0002】[0002]

【従来の技術】FeとCoの合金は、軟磁性材料とし
て、回転機等の電気的なアクチュエータのコア等に用い
られる。従来より知られるように、FeとCoの合金
は、金属系材料のなかで最も大きな飽和磁化を持ち、そ
の最大値はCo30%付近で2.45Tである。また、
室温では若干小さくなり、Co40%付近で最大にな
る。このように大きな磁化を持つために、この合金を組
み込んだアクチュエータは強力な磁化力を得ることがで
きる。Fe−Co合金は、730℃以下の時Fe:Co
=1:1付近で、B2型規則相が出現することが知られ
ている。Bozorothらは、Fe−Co合金の透磁
率を調べ、組成比1:1近傍で透磁率が極めて大きくな
ることを見いだした。現在はこの組成に加工、成形性を
良好ならしめるために、V,Cr等を添加した合金が実
用に供されている。
2. Description of the Related Art An alloy of Fe and Co is used as a soft magnetic material for a core of an electric actuator of a rotating machine or the like. As is conventionally known, an alloy of Fe and Co has the largest saturation magnetization among metal-based materials, and its maximum value is 2.45T near 30% Co. Also,
It becomes slightly smaller at room temperature, and becomes maximum around 40% Co. Due to such a large magnetization, the actuator incorporating this alloy can obtain a strong magnetizing force. The Fe-Co alloy is Fe: Co at 730 ° C or lower.
It is known that a B2 type ordered phase appears near = 1: 1. Bozoroth et al. Examined the magnetic permeability of the Fe—Co alloy and found that the magnetic permeability became extremely large in the vicinity of the composition ratio of 1: 1. At present, alloys containing V, Cr, etc. added to this composition are put into practical use in order to improve workability and formability.

【0003】ところで、現在、Fe系合金よりなる軟磁
性材料には、Fe−Si,Fe−Ni,Fe−Si−A
l,純鉄系,アモルファス等がある。Fe系材料の特長
は、磁束密度が高く、大きな磁気力を得られることであ
る。Feの飽和磁束密度が2.15Tで、他の材料もだ
いたい1.0〜2.0Tの間にある。その中で、2.4
Tと言う値を持つFe−Coが抜きんでている。ところ
が、軟磁気特性を比較すると、最大透磁率が、Fe−N
i系で400000程度、Fe−Si−Alで2500
00、アモルファスで200000程度であるのに対
し、Fe−Co合金は15000程度で、他材料より劣
る。そのため、大きな飽和磁束密度を十分に生かすため
に、大きな励磁力を必要としているのが現状である。
By the way, at present, Fe-Si, Fe-Ni and Fe-Si-A are used as soft magnetic materials made of Fe alloys.
1, pure iron, amorphous, etc. Fe-based materials are characterized by high magnetic flux density and large magnetic force. The saturation magnetic flux density of Fe is 2.15T, and other materials are in the range of about 1.0 to 2.0T. Among them, 2.4
Fe-Co having a value of T is outstanding. However, comparing the soft magnetic characteristics, the maximum magnetic permeability is Fe-N.
i-system is about 400000, Fe-Si-Al is 2500
00, amorphous and about 200,000, whereas Fe-Co alloy is about 15,000, which is inferior to other materials. Therefore, in order to make full use of the large saturation magnetic flux density, a large excitation force is required at present.

【0004】近年、情報通信機器の発達にともなってア
クチュエータの小型化が重要課題となってきている。そ
のために、磁束密度の高い軟磁性材料へのニーズが高ま
ってきている。このような情勢の中でFe−Co合金は
極めて有望な材料であり、その軟磁気特性の向上は、今
後の軟磁性材料開発の中で重要なポイントとなるのであ
る。
In recent years, miniaturization of actuators has become an important issue with the development of information communication equipment. Therefore, there is an increasing need for a soft magnetic material having a high magnetic flux density. Under such circumstances, the Fe—Co alloy is an extremely promising material, and improvement of its soft magnetic properties will be an important point in future soft magnetic material development.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
に非常に強力な磁気力を得ることができるFe−Co系
軟磁性合金の、軟磁気特性を向上させ、そしてその特長
を十分利用し、新たな機器開発の可能性を広げることが
できるFe−Co系軟磁性材料を提供することを目的と
するものであり、さらにこの軟磁性材料を用いた電気部
品組立体を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention improves the soft magnetic characteristics of the Fe--Co type soft magnetic alloy capable of obtaining a very strong magnetic force as described above, and makes full use of its characteristics. However, it is an object of the present invention to provide an Fe—Co based soft magnetic material capable of expanding the possibility of developing new equipment, and further to provide an electrical component assembly using this soft magnetic material. To aim.

【0006】[0006]

【課題を解決するための手段】本発明は、Fe−Co合
金の軟磁気特性を向上させるために行った一連の実験よ
り得られた知見を基になされたものであり、その要旨と
するところは、組成比でCo30〜70wt%を含むFe
−Co系軟磁性材料に、磁化方向に張力を付与するか、
もしくは電気部品として組立ての状態で、前記張力を付
与することによって、著しく軟磁性を改善したFe−C
o系軟磁性材料または電気部品組立体にある。
The present invention is based on the findings obtained from a series of experiments carried out to improve the soft magnetic properties of Fe-Co alloys, and the gist thereof is as follows. Is Fe containing 30 to 70 wt% Co in terms of composition ratio.
-Tension is applied to the Co-based soft magnetic material in the magnetization direction,
Alternatively, Fe-C having remarkably improved soft magnetism by applying the tension in an assembled state as an electric component
o-based soft magnetic material or electrical component assembly.

【0007】以下本発明を実施例に基づいて具体的に説
明する。まず成分であるが、Co量が30%未満、或い
は70%を超えると、十分な軟磁気特性が得られず、ま
た、本発明を適用しても十分な効果が得られなかったの
で、このように限定した。また、軟磁気特性は良好な成
分、金属相が得られているときは、室温で非常に脆く、
加工、成形が困難となるが、この場合、V,Cr,C,
Si,Alの一種または二種以上を添加することにより
これが改善され、それらの添加量が4wt%以下の時本発
明の効果は損なわれなかった。4wt%を超えて添加する
と、合金中にγ相等異相が析出し、軟磁性が損なわれ
た。
The present invention will be specifically described below based on examples. First, regarding the component, if the Co content is less than 30% or exceeds 70%, sufficient soft magnetic properties cannot be obtained, and even if the present invention is applied, sufficient effect cannot be obtained. So limited. Also, soft magnetic properties are very brittle at room temperature when a good component, metallic phase, is obtained,
It becomes difficult to process and mold, but in this case, V, Cr, C,
This was improved by adding one or more of Si and Al, and the effect of the present invention was not impaired when the amount of addition of Si or Al was 4 wt% or less. When added in excess of 4 wt%, a heterogeneous phase such as γ phase was precipitated in the alloy and the soft magnetism was impaired.

【0008】次に張力の効果について説明する。本発明
者らは、冷延後焼鈍したFe−Co合金の板を、交流励
磁した際、試料のばたつき(振動)が、他材料、特に珪
素鋼板と較べて極めて大きいことに気づいた。試料のば
たつきが大きいと精度の良い測定が行えないので、試料
をベニヤ板で押さえながら測定を行ったところ、押える
力の入れ具合によって、特性が大きく変化することを発
見した。そこで今度は、試料にさまざまな応力を加えて
軟磁気特性を測定した。その結果磁化方向に張力を加え
ることによって、軟磁気特性が飛躍的に向上することを
知見した。
Next, the effect of tension will be described. The present inventors have found that when the Fe—Co alloy plate annealed after cold rolling was subjected to AC excitation, the fluttering (vibration) of the sample was extremely large as compared with other materials, particularly silicon steel plate. Since accurate measurement cannot be performed if the sample flutters significantly, we found that the characteristics greatly changed depending on how much pressing force was applied when the measurement was performed while holding the sample with the plywood plate. Therefore, this time, the soft magnetic characteristics were measured by applying various stresses to the sample. As a result, they have found that the soft magnetic characteristics are dramatically improved by applying tension in the magnetization direction.

【0009】図1に、本発明者らが知見した張力の効果
を示す。即ち図1は印加張力と軟磁気特性の関係を示す
ものであって、(a)図には鉄損値、(b)図には直流
での最大透磁率、(c)図には磁化力1エルステッド
(Oe)での磁束密度、(d)図には磁化力0.1Oeでの
磁束密度を示す。実験に供した試料は、真空溶解によっ
てFe49wt%、Co49wt%、V2wt%のインゴット
を作成し、熱間圧延を行って板厚2mmにした後、焼き入
れ処理を行って良加工材を得た。この材料を冷間圧延に
よって板厚0.2mmにした後、H2 雰囲気中で焼鈍し
た。このとき焼き入れ時の加熱時間を1〜180分の間
で変化させた。試料の両端を小形クランプではさんで荷
重をかけ、張力を0.5kgf/mm2 加えることによって直
流最大透磁率が2〜3倍(図1(b))、保磁力が半分
以下にまで変化する。また、交流特性も格段に向上し、
鉄損はW17/50 で、2.0w/kgが、1.0w/kgまで減少
し、方向性電磁鋼板並になる。B8 は2.1Tから2.
2Tまで向上する。また、磁化力1Oeでの磁束密度は、
1.5Tから1.9T程度にまで向上し、方向性電磁鋼
板並の磁気エネルギーが、1/10の磁化力で得られる
ことになる。
FIG. 1 shows the effect of tension found by the present inventors. That is, FIG. 1 shows the relationship between the applied tension and the soft magnetic characteristics. Fig. 1 (a) shows the iron loss value, Fig. 1 (b) shows the maximum magnetic permeability at direct current, and Fig. 1 (c) shows the magnetizing force. The magnetic flux density at 1 Oersted (Oe) and the magnetic flux density at a magnetizing force of 0.1 Oe are shown in (d). The sample used in the experiment was made into an ingot of Fe49 wt%, Co49 wt%, and V2 wt% by vacuum melting, hot rolled to a plate thickness of 2 mm, and then subjected to quenching treatment to obtain a good processed material. This material was cold rolled to a plate thickness of 0.2 mm and then annealed in an H 2 atmosphere. At this time, the heating time during quenching was changed between 1 and 180 minutes. By applying a load between both ends of the sample with a small clamp and applying a tension of 0.5 kgf / mm 2, the maximum DC permeability is 2-3 times (Fig. 1 (b)), and the coercive force changes to less than half. .. In addition, the AC characteristics are also significantly improved,
The iron loss is W 17/50 , 2.0w / kg is reduced to 1.0w / kg, which is comparable to grain oriented electrical steel. B 8 from 2 to 2.1T.
Improves to 2T. The magnetic flux density at a magnetizing force of 1 Oe is
The magnetic energy is improved from 1.5 T to about 1.9 T, and magnetic energy comparable to that of grain-oriented electrical steel sheet can be obtained with a magnetizing force of 1/10.

【0010】印加張力の範囲は0.1〜80kgf/mm2
した。わずかでも張力を印加すれば軟磁性は向上する
が、図1(b)より最大透磁率の向上が顕著になって、
実用上でも効果が得られるようになるのは0.1kgf/mm
2 以上の時である。2kgf/mm2張力を印加すると、本発
明の効果は飽和するが、これ以上の張力を印加しても、
弾性限以下であれば効果が損なわれることはない。本材
料の弾性限は、引張り試験の結果80kgf/mm2 であっ
た。従って、印加張力の上限は、80kgf/mm2 とする。
The applied tension range was 0.1 to 80 kgf / mm 2 . If a slight amount of tension is applied, the soft magnetism is improved, but the improvement of the maximum magnetic permeability becomes remarkable from Fig. 1 (b).
It is 0.1kgf / mm that the effect can be obtained even in practical use.
It is time of 2 or more. When 2 kgf / mm 2 tension is applied, the effect of the present invention is saturated, but even if a higher tension is applied,
If the elastic limit is not exceeded, the effect will not be impaired. The elastic limit of this material was 80 kgf / mm 2 as a result of the tensile test. Therefore, the upper limit of applied tension is 80 kgf / mm 2 .

【0011】鋼板に張力を印加することで軟磁性が向上
することは、従来より方向性電磁鋼板で知られていた。
しかしこれは方向性電磁鋼板特有の集合組織に対して、
鉄損特性を向上させるものであって、例えば張力被膜を
有することで、方向性電磁鋼板の磁束密度は劣化する。
また方向性電磁鋼板の場合、このような効果は圧延方
向、即ち結晶粒の(110)〔001〕方位が集積して
いる方向について顕著に認められているが、Fe−Co
系軟磁性材料の場合は、集合組織に関係なく、鋼板面内
の全方位について同等に認められた。即ち本発明の効果
は、方向性電磁鋼板で得られている効果とは異質のもの
であることが分かる。
It has been conventionally known that grain-oriented electrical steel sheets improve soft magnetism by applying tension to the steel sheets.
However, this is due to the texture unique to grain-oriented electrical steel,
The magnetic flux density of the grain-oriented electrical steel sheet is deteriorated by improving the iron loss characteristic by, for example, providing the tensile coating.
Further, in the case of grain-oriented electrical steel sheet, such an effect is remarkably recognized in the rolling direction, that is, in the direction in which the (110) [001] orientation of the crystal grains is accumulated.
In the case of soft magnetic material, it was recognized in all directions in the plane of the steel sheet regardless of the texture. That is, it is understood that the effect of the present invention is different from the effect obtained with the grain-oriented electrical steel sheet.

【0012】この知見を、技術開発に結び付けるため
に、本発明者らは、いくつかの方法を試みた。詳細は実
施例の項で述べるが、その一例を示す。図2に示すよう
に、Fe:49wt%、Co:49wt%、V:2wt%の成
分を持つ合金を溶製し、外径45mm、内径33mm、厚さ
5mmのリング1を鋳造により作成した。このリングを8
50℃に加熱して熱膨張させた後、外周方向に長さ5m
m、深さ3mmの切り欠き3を持つ外径33.05mm、厚
さ5mmの円盤2を室温のままはめ込んだ。この試料を大
気中で徐冷し、円盤の切り欠きの中に励磁コイル4と2
次コイル5をまいて、小形トランスを作成した。その時
の最大透磁率は10000であった。リング試料の中に
円盤をはめ込まずに同じ熱処理を行った時の最大透磁率
は、5500であった。この効果はいわゆる焼きばめに
よってリングの円周方向に与えられた張力が、本発明の
効果を発現したものである。このように、鋼板状試料だ
けでなくブロック状試料においても本発明の効果は確認
されている。なお、この時用いた材料の弾性定数は15
00kgf/mm2 であったので、印加された張力は、2.3
kgf/mm2 程度ということになる。
[0012] In order to link this knowledge to technological development, the present inventors have tried several methods. Details will be described in the section of Examples, but an example thereof will be shown. As shown in FIG. 2, an alloy having the components of Fe: 49 wt%, Co: 49 wt% and V: 2 wt% was melted, and a ring 1 having an outer diameter of 45 mm, an inner diameter of 33 mm and a thickness of 5 mm was formed by casting. This ring is 8
After heating to 50 ° C for thermal expansion, the length is 5m in the outer peripheral direction.
A disk 2 having an outer diameter of 33.05 mm and a thickness of 5 mm having a notch 3 with a depth of 3 mm and a depth of 3 mm was fitted at room temperature. This sample was gradually cooled in the atmosphere, and the exciting coils 4 and 2 were placed in the notches of the disk.
The next coil 5 was sprinkled to make a small transformer. The maximum magnetic permeability at that time was 10,000. The maximum magnetic permeability was 5500 when the same heat treatment was performed without fitting the disk into the ring sample. This effect is that the tension applied in the circumferential direction of the ring by so-called shrink fitting expresses the effect of the present invention. As described above, the effect of the present invention is confirmed not only in the steel plate-shaped sample but also in the block-shaped sample. The elastic constant of the material used at this time was 15
Since it was 00 kgf / mm 2 , the applied tension was 2.3.
It is about kgf / mm 2 .

【0013】[0013]

【実施例】【Example】

[実施例1]Fe:49wt%、Co:49wt%、Cr:
3%からなり、冷間圧延法によって得られた板厚0.1
mmの鋼板の表面に、小さなSiO2 の粒子を分散させた
燐酸塩を塗布し、800℃の温度で焼き付けた。この鋼
板から、内径20mm、外径40mmのリング試料を打ち抜
き、20枚積層してリングコアを作成した。このコアに
1次巻き線と2次巻き線を施して簡易トランスを作り、
鉄損を測定した。また、スパッタ法により、表面にTi
Nをコーティングした鋼板からも同様のトランスを作成
した。比較材として、表面に何もつけなかった鋼板でも
測定を行った。結果を表1に示す。
[Example 1] Fe: 49 wt%, Co: 49 wt%, Cr:
3%, plate thickness 0.1 obtained by cold rolling method
A phosphate having small SiO 2 particles dispersed therein was applied to the surface of a steel plate having a size of mm and baked at a temperature of 800 ° C. A ring sample having an inner diameter of 20 mm and an outer diameter of 40 mm was punched out from this steel sheet, and 20 sheets were laminated to form a ring core. Make a simple transformer by applying primary winding and secondary winding to this core,
The iron loss was measured. In addition, the surface of Ti
A similar transformer was made from a steel sheet coated with N. As a comparative material, the measurement was also performed on a steel sheet having nothing on the surface. The results are shown in Table 1.

【0014】[0014]

【表1】 鋼板表面に張力被膜を付着させると、鋼板には面張力が
かかる。これをリング状に加工すると張力はリングの円
周方向、即ち磁化の方向に付与されることになる。表中
本発明に相当する2試料の片面を酸洗し、被膜を除去す
ると、鋼板は被膜を除去した面側に反るのが観察され
た。これは、上記2試料に、被膜張力が付与されている
ことを意味する。反り具合と鋼板の弾性定数から被膜張
力を計算し、表中に合わせて示した。このようにして張
力の効果を有するFe−Co軟磁性鋼板を得ることがで
きた。
[Table 1] When the tension film is attached to the surface of the steel sheet, surface tension is applied to the steel sheet. When this is processed into a ring shape, the tension is applied in the circumferential direction of the ring, that is, the direction of magnetization. In the table, when one surface of two samples corresponding to the present invention was pickled and the coating film was removed, it was observed that the steel sheet warped to the surface side where the coating film was removed. This means that the film tension is applied to the above two samples. The coating tension was calculated from the degree of warpage and the elastic constant of the steel sheet, and the results are also shown in the table. In this way, the Fe-Co soft magnetic steel sheet having the effect of tension could be obtained.

【0015】[実施例2]Fe:40%、Co:58
%、C:0.5%の成分を持ち、冷間圧延法によって得
られた、板厚0.3mmの鋼帯を、幅10mmにスリット
し、外径50mm、肉厚2mm、長さ10mmの非磁性ステン
レスパイプに、張力を加えながら巻き付け、巻き厚20
mmになった時点で端部をスポット溶接し、トロイダルコ
アを作成した。また、鋼帯を脱炭焼鈍し、C:0.05
%とした素材も用いて同様のコアの作成した。表2に、
巻き取り張力を各種に変えたときの直流最大透磁率と、
磁化力1Oeのときの磁束密度を示す。表に示した通り、
張力が付与された材料をコアに用いると、特性が各段に
良くなることがわかる。また、張力は2.0kgf/mm2
ほぼ飽和している。
[Example 2] Fe: 40%, Co: 58
%, C: 0.5%, obtained by the cold rolling method, a steel strip with a plate thickness of 0.3 mm is slit into a width of 10 mm, and an outer diameter of 50 mm, a wall thickness of 2 mm, and a length of 10 mm. Winding while applying tension to a non-magnetic stainless pipe, winding thickness 20
The end portion was spot-welded when the thickness became mm, and a toroidal core was prepared. Further, the steel strip is decarburized and annealed, and C: 0.05.
A similar core was created by using the material defined as%. In Table 2,
Maximum DC permeability when changing the winding tension to various values,
The magnetic flux density when the magnetizing force is 1 Oe is shown. As shown in the table,
It can be seen that the use of a tensioned material for the core improves the properties in each step. The tension is almost saturated at 2.0 kgf / mm 2 .

【0016】[0016]

【表2】 [実施例3]実施例2と同様のコアを、それぞれV:2
%、V:5%、Si:1%、Al:2%含んだ鋼板につ
いて作成した。この時の特性を表3に示す。
[Table 2] [Embodiment 3] The cores similar to those in Embodiment 2 are respectively V: 2.
%, V: 5%, Si: 1%, Al: 2%. The characteristics at this time are shown in Table 3.

【0017】[0017]

【表3】 [実施例4]磁性焼鈍を施したFe:49wt%、Co:
49wt%、V:2wt%、板厚0.2mmの鋼帯を図3に示
すElコア6に加工した。このコア6を、図4に示すよ
うに、コア6と同形に加工した上下の押え板(非磁性ス
テンレス鋼板)7,8に挟んで、四隅をボルト9で締め
付けて、面圧がかかった状態でトランスを作成した。こ
のときの面圧力と鉄損の測定結果を表4に示す。面圧を
かけると鉄損特性が良好になることがわかる。板厚方向
に圧力をかけると、弾性の法則により、板面方向には張
力成分が生じ、この結果、本発明で得られた効果が発現
することになる。
[Table 3] [Example 4] Magnetically annealed Fe: 49 wt%, Co:
A steel strip of 49 wt%, V: 2 wt% and a plate thickness of 0.2 mm was processed into an El core 6 shown in FIG. As shown in FIG. 4, the core 6 is sandwiched between upper and lower holding plates (non-magnetic stainless steel plates) 7 and 8 which are processed to have the same shape as the core 6, and four corners are tightened with bolts 9 so that surface pressure is applied. I made a transformer in. Table 4 shows the measurement results of the surface pressure and the iron loss at this time. It can be seen that iron loss characteristics are improved by applying surface pressure. When pressure is applied in the plate thickness direction, a tension component is generated in the plate surface direction due to the law of elasticity, and as a result, the effect obtained by the present invention is exhibited.

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【発明の効果】以上のように本発明により、磁束密度が
極めて高く、かつ軟磁気特性の良好なFe−Co系材料
を提供することができる。その結果、これまでになく、
極めて高性能な電気的アクチュエータを製造することが
可能となる。
As described above, according to the present invention, it is possible to provide an Fe-Co material having an extremely high magnetic flux density and good soft magnetic characteristics. As a result, like never before
It becomes possible to manufacture an extremely high-performance electric actuator.

【図面の簡単な説明】[Brief description of drawings]

【図1】印加張力と、軟磁気特性の関係を示すものであ
って、それぞれ張力と(a)は鉄損(W17/50 )、
(b)は直流での最大透磁率(B8 )、(c)は直流で
の磁束密度(磁化力1Oe)、(d)は直流での磁束密度
(磁化力0.1Oe)との関係を示す図である。
FIG. 1 shows the relationship between applied tension and soft magnetic characteristics, where tension and (a) are iron loss (W 17/50 ),
(B) shows the relationship with the maximum magnetic permeability (B 8 ) at DC, (c) the magnetic flux density at DC (magnetizing force 1 Oe), and (d) the magnetic flux density at DC (magnetizing force 0.1 Oe). FIG.

【図2】リングコアの焼きばめ方法を示す図である。FIG. 2 is a diagram showing a shrink fitting method of a ring core.

【図3】Elコアの形状図である。FIG. 3 is a shape view of an El core.

【図4】Elコアの締め付け方法を示す図である。FIG. 4 is a diagram showing a method of tightening an El core.

【符号の説明】[Explanation of symbols]

1 Fe−Co合金リング 2 焼ばめ用円盤 3 切り欠き部 4 1次巻線 5 2次巻線 6 コア 7,8 押え板 9 ボルト 1 Fe-Co alloy ring 2 Disc for shrink fit 3 Notch 4 Primary winding 5 Secondary winding 6 Core 7,8 Holding plate 9 Bolt

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 組成比でCo30〜70wt%を含むFe
−Co系軟磁性材料に、磁化方向に張力を付与したこと
を特徴とする軟磁性の良好なFe−Co系軟磁性材料。
1. Fe containing 30 to 70 wt% Co in terms of composition ratio
A Fe—Co soft magnetic material having good soft magnetism, which is characterized in that a tension is applied in the magnetization direction to a —Co soft magnetic material.
【請求項2】 V,Cr,C,Si,Alの一種または
二種以上を0.01〜4%を含むFe−Co系軟磁性材
料であることを特徴とする請求項1記載の軟磁性の良好
なFe−Co系軟磁性材料。
2. The soft magnetic material according to claim 1, wherein the soft magnetic material is an Fe—Co soft magnetic material containing 0.01 to 4% of one or more of V, Cr, C, Si and Al. Fe-Co based soft magnetic material having good properties.
【請求項3】 張力付与手段が鋼板表面の張力被膜であ
ることを特徴とする請求項1記載の軟磁性の良好なFe
−Co系軟磁性材料。
3. The Fe having good soft magnetism according to claim 1, wherein the tension applying means is a tension film on the surface of the steel sheet.
-Co based soft magnetic material.
【請求項4】 張力が0.1〜80kgf/mm2 であること
を特徴とする請求項1記載の軟磁性の良好なFe−Co
系軟磁性材料。
4. The Fe—Co having good soft magnetism according to claim 1, wherein the tension is 0.1 to 80 kgf / mm 2.
Soft magnetic material.
【請求項5】 組成比でCo30〜70wt%を含むFe
−Co系軟磁性材料を、磁化方向に張力付与状態に組立
てたことを特徴とする軟磁性の良好なFe−Co系軟磁
性電気部品組立体。
5. Fe containing 30 to 70 wt% Co in terms of composition ratio
An Fe-Co soft magnetic electrical component assembly having good soft magnetism, characterized in that a -Co soft magnetic material is assembled in a state where tension is applied in the magnetization direction.
【請求項6】 V,Cr,C,Si,Alの一種または
二種以上を0.01〜4%を含むFe−Co系軟磁性材
料であることを特徴とする請求項5記載の軟磁性の良好
なFe−Co系軟磁性電気部品組立体。
6. The soft magnetic material according to claim 5, which is a Fe—Co soft magnetic material containing 0.01 to 4% of one or more of V, Cr, C, Si and Al. Fe-Co based soft magnetic electric component assembly having excellent properties.
【請求項7】 張力付与手段が焼嵌め或いは張力下での
巻付け等組立体として付与されることを特徴とする請求
項5記載の軟磁性の良好なFe−Co系軟磁性電気部品
組立体。
7. The Fe—Co based soft magnetic electrical component assembly with good soft magnetism according to claim 5, wherein the tension applying means is applied as an assembly such as shrink fitting or winding under tension. ..
【請求項8】 張力が0.1〜80kgf/mm2 であること
を特徴とする請求項5記載の軟磁性の良好なFe−Co
系軟磁性電気部品組立体。
8. The Fe—Co having good soft magnetism according to claim 5, wherein the tension is 0.1 to 80 kgf / mm 2.
Soft magnetic electrical component assembly.
JP3332109A 1991-12-16 1991-12-16 Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly Expired - Fee Related JP2941534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332109A JP2941534B2 (en) 1991-12-16 1991-12-16 Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332109A JP2941534B2 (en) 1991-12-16 1991-12-16 Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly

Publications (2)

Publication Number Publication Date
JPH05304014A true JPH05304014A (en) 1993-11-16
JP2941534B2 JP2941534B2 (en) 1999-08-25

Family

ID=18251256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332109A Expired - Fee Related JP2941534B2 (en) 1991-12-16 1991-12-16 Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly

Country Status (1)

Country Link
JP (1) JP2941534B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309238B2 (en) * 2005-12-26 2012-11-13 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
WO2021182518A1 (en) * 2020-03-10 2021-09-16 日立金属株式会社 METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY ROD, AND Fe-Co-BASED ALLOY ROD
WO2023195226A1 (en) * 2022-04-06 2023-10-12 株式会社日立製作所 Soft magnetic iron alloy plate, production method for said soft magnetic iron alloy plate, and iron core and rotary electrical machine using said soft magnetic iron alloy plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309238B2 (en) * 2005-12-26 2012-11-13 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
WO2021182518A1 (en) * 2020-03-10 2021-09-16 日立金属株式会社 METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY ROD, AND Fe-Co-BASED ALLOY ROD
CN115279926A (en) * 2020-03-10 2022-11-01 日立金属株式会社 Method for producing Fe-Co alloy bar and Fe-Co alloy bar
WO2023195226A1 (en) * 2022-04-06 2023-10-12 株式会社日立製作所 Soft magnetic iron alloy plate, production method for said soft magnetic iron alloy plate, and iron core and rotary electrical machine using said soft magnetic iron alloy plate

Also Published As

Publication number Publication date
JP2941534B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
Littmann Iron and silicon-iron alloys
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JP7181083B2 (en) FeCo alloy, FeSi alloy or Fe sheet or strip and method for producing same, magnetic transformer core produced from said sheet or strip, and transformer comprising same
Lyudkovsky et al. Nonoriented electrical steels
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
US6744342B2 (en) High performance bulk metal magnetic component
Luborsky et al. The role of amorphous materials in the magnetics industry
Luborsky Perspective on application of amorphous alloys in magnetic devices
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
TW200400274A (en) Fe-based amorphous metal alloy having a linear BH loop
CA1145162A (en) Iron-boron silicon ternary amorphous alloys
JP2941534B2 (en) Fe-Co based soft magnetic material having good soft magnetism and soft magnetic electric component assembly
US3144363A (en) Process for producing oriented silicon steel and the product thereof
Dietrich Magnetically soft materials
JP2007056303A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
JP5131747B2 (en) Manufacturing method of bi-directional electrical steel sheet
Miyazaki et al. Magnetic properties of rapidly quenched Fe—Si alloys
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
Kohler Production and Properties of Grain‐Oriented Commercially Pure Iron
Alloys Special-Purpose Materials
US3158516A (en) Method for producing alloy bodies having improved magnetic properties
JP2639290B2 (en) Manufacturing method of non-oriented electrical steel sheet for rotating machines
JP3019705B2 (en) Heat treatment method of silicon steel sheet in magnetic field
JP3019656B2 (en) Heat treatment method of high silicon steel sheet in magnetic field
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees