JP2007056303A - Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic - Google Patents

Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic Download PDF

Info

Publication number
JP2007056303A
JP2007056303A JP2005242440A JP2005242440A JP2007056303A JP 2007056303 A JP2007056303 A JP 2007056303A JP 2005242440 A JP2005242440 A JP 2005242440A JP 2005242440 A JP2005242440 A JP 2005242440A JP 2007056303 A JP2007056303 A JP 2007056303A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
hot
magnetic properties
lap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005242440A
Other languages
Japanese (ja)
Inventor
Takeshi Imamura
猛 今村
Kunihiro Senda
邦浩 千田
Kazumichi Sashi
一道 佐志
Takashi Terajima
敬 寺島
Takeshi Omura
健 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005242440A priority Critical patent/JP2007056303A/en
Publication of JP2007056303A publication Critical patent/JP2007056303A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a non-oriented silicon steel sheet excellent in a magnetic flux density. <P>SOLUTION: When the non-oriented silicon steel sheet is produced, a part or all processes for cold-rolling before a finish annealing are performed in a pack rolling. by which two or more steel sheets are laminated. In this case, the pack rolling is performed in conditions of ≥200°C rolling temperature and ≥30% rolling reduction ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、変圧器や回転機の鉄心材料としての用途に供して好適な無方向性電磁鋼板の製造方法に関し、特にその冷延圧延に際し、鋼板を2枚以上積層して圧延するいわゆる重ね圧延を利用することによって、磁束密度の一層の向上を図ろうとするものである。   The present invention relates to a method for producing a non-oriented electrical steel sheet suitable for use as an iron core material for a transformer or a rotary machine, and in particular, so-called lap rolling in which two or more steel sheets are stacked and rolled during cold rolling. By using this, the magnetic flux density is further improved.

近年、環境問題が大きな注目を集めており、省エネルギーの観点から変圧器やモータの特性および効率の向上が急務となっている。電磁鋼板は、モータや変圧器等の鉄心として広く用いられており、電磁鋼板の磁気特性向上は省エネルギーに大きく寄与すると考えられる。   In recent years, environmental problems have attracted a great deal of attention, and from the viewpoint of energy saving, improvement of characteristics and efficiency of transformers and motors has become an urgent task. Electrical steel sheets are widely used as iron cores for motors, transformers, and the like, and it is considered that the improvement in magnetic properties of the electrical steel sheets greatly contributes to energy saving.

電磁鋼板の磁気特性は、鋼板の集合組織の影響を強く受ける。例えば、方向性電磁鋼板では、磁化容易軸である<100>軸を圧延方向に揃えることによって、圧延方向における磁気特性の向上を図っている。一方、無方向性電磁鋼板では、鋼板板面に平行に{100}面を集積させることによって、板面内での磁気特性を優れたものとしている。
電磁鋼板における主要な磁気特性は、鉄損と磁束密度であり、このうち磁束密度は鋼板の集合組織で決定されるといっても過言ではない。
The magnetic properties of the electrical steel sheet are strongly influenced by the texture of the steel sheet. For example, in a grain-oriented electrical steel sheet, the magnetic properties in the rolling direction are improved by aligning the <100> axis, which is the easy axis of magnetization, with the rolling direction. On the other hand, non-oriented electrical steel sheets have excellent magnetic properties in the plate surface by accumulating {100} planes parallel to the steel plate surface.
It is no exaggeration to say that the main magnetic characteristics of the electrical steel sheet are iron loss and magnetic flux density, and the magnetic flux density is determined by the texture of the steel sheet.

鋼板の磁束密度を改善する手法としては、特許文献1や特許文献2に開示されているような、熱延板の結晶粒径を粗大化する方法、また特許文献3に開示されているような、SbやSnといった元素を微量添加することによって仕上焼鈍板の集合組織を改善する方法が知られている。
また、特許文献4には、0.03〜0.2 %のPを含有する鋼に、Sn,Sb,CuおよびNiのうちから選んだ1種または2種以上を同時に少量づつ含有させ、かつ熱延板の焼鈍とその後の冷却条件、もしくは熱延仕上温度とその後の冷却条件を制御することによって、磁束密度が高く鉄損の低い鋼板を得る方法を提案している。しかしながら、これらの技術を併用しても、磁束密度の向上代は十分とは言い難かった。
As a method for improving the magnetic flux density of the steel sheet, a method of coarsening the crystal grain size of the hot-rolled sheet as disclosed in Patent Document 1 or Patent Document 2, or a technique disclosed in Patent Document 3 is disclosed. There is known a method for improving the texture of a finish-annealed plate by adding a trace amount of elements such as Sb and Sn.
Patent Document 4 discloses that steel containing 0.03 to 0.2% P contains one or more selected from Sn, Sb, Cu and Ni in small amounts at the same time, and A method of obtaining a steel sheet having a high magnetic flux density and a low iron loss by controlling the annealing and subsequent cooling conditions, or the hot rolling finishing temperature and the subsequent cooling conditions is proposed. However, even if these techniques are used in combination, it is difficult to say that the allowance for improving the magnetic flux density is sufficient.

特開昭56−98420号公報JP-A-56-98420 特開平3−211258号公報JP-A-3-211258 特公昭57−59293号公報Japanese Patent Publication No.57-59293 特開平6−271996号公報JP-A-6-271996

良好な磁気特性を得るための無方向性電磁鋼板の製造方法としては、現行の製造方法はほぼ最適化されており、一般的な製造条件の改良だけでは、これ以上飛躍的に無方向性電磁鋼板の磁束密度を向上させることは困難であった。   The current manufacturing method is almost optimized as a manufacturing method for non-oriented electrical steel sheets to obtain good magnetic properties. By simply improving general manufacturing conditions, non-directional electromagnetic steel sheets can be dramatically improved. It was difficult to improve the magnetic flux density of the steel sheet.

本発明は、上記の現状に鑑み開発されたもので、冷間圧延工程に、鋼板を積層した状態で圧延するいわゆる重ね圧延を活用することによって、磁束密度の一層の向上を可能ならしめた無方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and the cold rolling process uses a so-called lap rolling in which steel sheets are stacked in a laminated state, thereby further improving the magnetic flux density. It aims at proposing the advantageous manufacturing method of a grain-oriented electrical steel sheet.

すなわち、本発明は、無方向性電磁鋼板を製造するに当たり、仕上焼鈍前の冷間圧延の一部または全ての工程を、鋼板を2枚以上積層した重ね圧延により行うものとし、その際、圧延温度:200℃以上、圧下率:30%以上の条件で重ね圧延を行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法である。   That is, in producing the non-oriented electrical steel sheet, the present invention is to perform part or all of the cold rolling process before finish annealing by lap rolling in which two or more steel sheets are laminated. It is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized by performing lap rolling under conditions of temperature: 200 ° C. or higher and rolling reduction: 30% or more.

本発明によれば、無方向性電磁鋼板の冷間圧延を、所定条件下での重ね圧延で行うことにより、磁束密度に優れた無方向性電磁鋼板を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet excellent in magnetic flux density can be obtained by performing cold rolling of the non-oriented electrical steel sheet by lap rolling under a predetermined condition.

以下、本発明を具体的に説明する。
まず、本発明の基礎となった実験結果について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
<実験1>
Si:2.74%、Mn:0.16%およびAl:0.30%を含有する鋼片を、熱間圧延により1.6 mm厚の熱延板とし、ついで1000℃で60秒の熱延板焼鈍後、冷間圧延により0.20〜1.4 mmの厚さに仕上げた。その後、脱脂処理を施したのち、同じ板厚の鋼板同士を2枚重ね、200℃の温度で冷間圧延を行い、0.35mmの板厚に仕上げた。その後、920℃で10秒の仕上焼鈍を施した。
かくして得られたサンプルの磁気測定を行った。
Hereinafter, the present invention will be specifically described.
First, the experimental results on which the present invention is based will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
<Experiment 1>
A steel slab containing Si: 2.74%, Mn: 0.16% and Al: 0.30% was hot rolled into a 1.6 mm thick hot rolled sheet, and then annealed at 1000 ° C for 60 seconds, followed by cold rolling. To a thickness of 0.20-1.4 mm. Thereafter, after degreasing treatment, two steel plates having the same thickness were stacked and cold-rolled at a temperature of 200 ° C. to obtain a thickness of 0.35 mm. Thereafter, finish annealing was performed at 920 ° C. for 10 seconds.
The sample thus obtained was magnetically measured.

図1に、重ね圧延における圧下率と鋼板の磁気特性B50(磁化力:5000 A/mで磁化したときの磁束密度)との関係について調べた結果を示す。
同図に示したとおり、重ね圧延における圧下率が30%以上の範囲でB50が大幅に向上することが分かる。
FIG. 1 shows the results of examining the relationship between the rolling reduction in lap rolling and the magnetic properties B 50 of the steel sheet (magnetizing force: magnetic flux density when magnetized at 5000 A / m).
As shown in the figure, it can be seen that B 50 is significantly improved when the rolling reduction in the lap rolling is 30% or more.

上記したように、冷間圧延を重ね圧延とすることによって磁気特性が向上する理由は、まだ明確に解明されたわけではないが、発明者らは次のように推測している。
鋼板を重ねて圧延を行うと、重ねた部分はその境界を越えてまで変形しないことから、この部分は変形に拘束が生じていると考えられる。この拘束により、通常の圧延とは異なる変形モードとなり、この部分での圧延組織の変化もしくは再結晶核生成の違いが、仕上焼鈍後に最終磁気特性に有利な再結晶集合組織を導いたものと推測される。この点、重ね圧延の圧下率が30%未満の場合は、この効果が重ねた部分の極近傍のみにしか発揮されず、その結果全体としての磁気特性にはほとんど変化が無かったものと考えられる。
As described above, the reason why the magnetic properties are improved by using the cold rolling as the lap rolling has not yet been clearly clarified, but the inventors speculate as follows.
When rolling with steel sheets stacked, the overlapped portion does not deform until it exceeds the boundary, and it is considered that this portion is constrained in deformation. Due to this constraint, the deformation mode is different from that of normal rolling, and the change in the rolling structure or recrystallization nucleation at this part is presumed to have led to a recrystallization texture that is advantageous to the final magnetic properties after finish annealing. Is done. In this respect, when the rolling reduction of the lap rolling is less than 30%, this effect is exhibited only in the very vicinity of the overlapped portion, and as a result, it is considered that there is almost no change in the magnetic characteristics as a whole. .

以下、本発明の製造方法について具体的に説明する。
本発明で対象とする無方向性電磁鋼板の成分組成については、特に制限はなく、従来から公知の成分系いずれもが適合する。
所定の成分組成に調整した溶鋼を、通常の造塊法、連続鋳造法等でスラブとする。その他、100 mm以下の厚さの薄鋳片を直接鋳造法により製造してもよい。
スラブは、通常の方法で加熱したのち熱間圧延するが、鋳造後加熱せずに直ちに熱延してもよい。薄鋳片の場合は、熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Hereinafter, the production method of the present invention will be specifically described.
There is no restriction | limiting in particular about the component composition of the non-oriented electrical steel sheet made into object by this invention, All the conventionally well-known component systems are suitable.
The molten steel adjusted to a predetermined component composition is made into a slab by a normal ingot-making method, a continuous casting method or the like. In addition, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method.
The slab is heated by a normal method and then hot-rolled, but may be hot-rolled immediately without being heated after casting. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the subsequent process may be performed as it is.

ついで、必要に応じて熱延板焼鈍を施す。良好な磁気特性を得るためには、この熱延板焼鈍を施すことが望ましい。熱延板焼鈍温度は、800℃以上 1100℃以下とするのが好適である。熱延板焼鈍温度が800℃未満では、熱延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になる。一方、1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎることため、整粒の一次再結晶組織を実現する上で不利である。   Then, hot-rolled sheet annealing is performed as necessary. In order to obtain good magnetic properties, it is desirable to perform this hot-rolled sheet annealing. The hot-rolled sheet annealing temperature is preferably 800 ° C. or higher and 1100 ° C. or lower. When the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a primary recrystallized structure of sized particles. On the other hand, when the temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is too coarse, which is disadvantageous for realizing a primary recrystallized structure of sized particles.

熱延板焼鈍後、必要に応じて中間焼鈍を挟む1回以上の冷間圧延を施す。
本発明では、この冷間圧延工程が重要で、鋼板を2枚以上積層した重ね圧延により冷間圧延を行う必要がある。また、その際の圧下率は30%以上とする必要がある。というのは、圧下率が30%に満たないと、前掲図1に示したように、満足いくほどの磁気特性B50の向上が達成されないからである。
なお、この重ね圧延は、冷間圧延の全ての工程をわたっても、また一部の工程であってもかまわない。また、重ね圧延は、1パスで目標の圧下率まで圧下しても、多パスにより目標の圧下率としてもいずれでも良い。
After hot-rolled sheet annealing, at least one cold rolling is performed with intermediate annealing as necessary.
In the present invention, this cold rolling process is important, and it is necessary to perform cold rolling by lap rolling in which two or more steel plates are laminated. In addition, the rolling reduction at that time needs to be 30% or more. This is because, if the rolling reduction is less than 30%, the satisfactory improvement in the magnetic property B 50 is not achieved as shown in FIG.
In addition, this lap rolling may pass through all the processes of cold rolling, and may be a one part process. In addition, the lap rolling may be reduced to a target reduction rate in one pass or may be set as a target reduction rate by multiple passes.

さらに、本発明では、上記の重ね圧延における圧延温度を、200℃以上とする必要がある。というのは、重ね圧延における圧延温度が200℃に満たないと、やはり満足いくほどの磁気特性の向上が期待できないからである。なお、圧延温度の上限については、700℃程度とするのが好適である。というのと、圧延温度が700℃を超えると、圧延中に再結晶が発現するいわゆる動的再結晶が起こり、集合組織が大幅に変化して磁気特性が劣化するおそれがあるからである   Furthermore, in the present invention, the rolling temperature in the above lap rolling needs to be 200 ° C. or higher. This is because if the rolling temperature in the lap rolling is less than 200 ° C., a satisfactory improvement in magnetic properties cannot be expected. The upper limit of the rolling temperature is preferably about 700 ° C. This is because when the rolling temperature exceeds 700 ° C., so-called dynamic recrystallization occurs, and recrystallization occurs during rolling, and the texture may change drastically and the magnetic properties may deteriorate.

上記の重ね圧延に際しては、鋼板を重ねる前に、脱脂や酸洗処理を行って、鋼板同士が密着する面を清浄に保つことが望ましい。この密着面には、接着剤やセパレータ等の異材を塗布もしくは挿入してもよい。鋼板同士を重ねる際には、単に接触させるだけでもよいが、圧延中に2枚の板がずれるおそれがある場合には、圧延前に部分的に溶接したり、部分的に溶剤を使用して接着してもよい。
また、冷間圧延途中で100〜400℃の範囲での時効処理を1回または複数回行うことは、磁気特性を良好にさせる上で有効である。
In the above lap rolling, it is desirable to keep the surface where the steel plates are in close contact with each other by degreasing and pickling before the steel plates are stacked. You may apply | coat or insert different materials, such as an adhesive agent and a separator, in this contact surface. When stacking steel plates, they may simply be brought into contact, but if there is a risk that the two plates will be misaligned during rolling, they may be partially welded before rolling or partially using a solvent. It may be glued.
In addition, it is effective for improving the magnetic properties to perform the aging treatment in the range of 100 to 400 ° C. once or a plurality of times during the cold rolling.

重ね圧延後の鋼板は、重ねたまま1枚の鋼板として扱う。その上でも、上述した重ね圧延における圧延温度を200℃以上とすることが必要であり、またパス回数を少なく(望ましくは1パス)かつ圧下率を高くする(望ましくは50%以上)ことが、鋼板の密着性を向上させる上で好適である。
また、重ねたままの鋼板を、再度複数枚重ねて同様の圧延を行ってもかまわない。この場合は、複数回の重ね圧延のうち、少なくとも1回、圧下率が30%以上の条件を満たしていればよい。
The steel sheet after lap rolling is handled as a single steel sheet while being stacked. In addition, it is necessary to set the rolling temperature in the above-described lap rolling to 200 ° C. or higher, and to reduce the number of passes (preferably one pass) and increase the rolling reduction (preferably 50% or more), It is suitable for improving the adhesion of the steel plate.
Further, a plurality of stacked steel plates may be stacked again to perform similar rolling. In this case, it is only necessary to satisfy the condition that the rolling reduction is 30% or more at least once among the multiple lap rollings.

その後、必要に応じて脱脂や酸洗処理を行ったのち、仕上焼鈍を施す。この仕上焼鈍は、脱炭を必要とする場合には雰囲気を湿潤雰囲気とするが、脱炭を必要としない場合には乾燥雰囲気であっても良い。
また、得られた積層鋼板をさらに積層して使用する場合には、鉄損を低減するために積層鋼板の表面に絶縁コーティングを施すことが有利である。この際、良好な打抜き性を確保するためには、樹脂を含有する有機コーティングが望ましく、一方溶接性を重視する場合には半有機や無機コーティングを適用することが望ましい。
Then, after performing degreasing and pickling treatment as needed, finish annealing is performed. In this finish annealing, when decarburization is required, the atmosphere is a wet atmosphere, but when decarburization is not required, a dry atmosphere may be used.
Further, when the obtained laminated steel sheet is further laminated and used, it is advantageous to apply an insulating coating to the surface of the laminated steel sheet in order to reduce iron loss. In this case, in order to ensure good punchability, an organic coating containing a resin is desirable. On the other hand, when emphasis is placed on weldability, it is desirable to apply a semi-organic or inorganic coating.

実施例1
Si:2.74%、Mn:0.16%およびAl:0.30%を含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延により2.0 mm厚の熱延板とし、950℃で30秒の熱延板焼鈍後、冷間圧延により0.3〜1.8 mmの厚さに仕上げた。ついで、脱脂および酸洗処理を行った後、同じ板厚の鋼板同士を2枚重ねて250℃の温度で冷間圧延を行い、0.50mmの板厚に仕上げた。その後、乾燥窒素雰囲気中にて、900℃,10秒の仕上焼鈍を施した。
かくして得られた無方向性電磁鋼板の磁気特性を測定した結果を、表1に示す。
Example 1
A steel slab containing Si: 2.74%, Mn: 0.16% and Al: 0.30%, with the balance being Fe and inevitable impurities, was hot rolled into a 2.0 mm thick hot-rolled sheet at 30 ° C at 30 ° C. After hot-rolled sheet annealing for 2 seconds, it was finished to a thickness of 0.3 to 1.8 mm by cold rolling. Subsequently, after degreasing and pickling treatment, two steel plates having the same thickness were stacked and cold-rolled at a temperature of 250 ° C. to finish a thickness of 0.50 mm. Thereafter, finish annealing was performed at 900 ° C. for 10 seconds in a dry nitrogen atmosphere.
Table 1 shows the results of measuring the magnetic properties of the non-oriented electrical steel sheet thus obtained.

Figure 2007056303
Figure 2007056303

同表から明らかなように、本発明に従い、圧下率:30%以上(圧延温度:250℃)の条件で製造した無方向性電磁鋼板はいずれも、良好な磁気特性を得られることが分かる。   As is clear from the table, it can be seen that any non-oriented electrical steel sheet produced under the rolling reduction of 30% or more (rolling temperature: 250 ° C.) according to the present invention can obtain good magnetic properties.

実施例2
Si:0.11%、Mn:0.23%およびP:0.079%を含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延により1.6 mm厚の熱延板としたのち、冷間圧延により0.2〜1.0mmの厚さに仕上げた。ついで、脱脂および酸洗処理を行った後、同じ板厚の鋼板同士を3枚重ねて、表2に示す圧下率および圧延温度で冷間圧延を行い、0.50mmの板厚とした。その後。乾燥窒素雰囲気中にて、800℃,10秒の仕上焼鈍を施した。
かくして得られた無方向性電磁鋼板の磁気特性を測定した結果を、表2に併記する。
Example 2
A steel slab containing Si: 0.11%, Mn: 0.23% and P: 0.079%, with the balance being Fe and inevitable impurities, was hot rolled into a 1.6 mm thick hot rolled sheet, Finished by rolling to a thickness of 0.2-1.0 mm. Next, after degreasing and pickling treatment, three steel plates having the same thickness were stacked and cold rolled at the rolling reduction and rolling temperature shown in Table 2 to obtain a thickness of 0.50 mm. afterwards. In a dry nitrogen atmosphere, finish annealing was performed at 800 ° C. for 10 seconds.
The results of measuring the magnetic properties of the non-oriented electrical steel sheet thus obtained are also shown in Table 2.

Figure 2007056303
Figure 2007056303

同表から明らかなように、本発明に従い、圧延温度:200℃以上、圧下率:30%以上の条件で製造した無方向性電磁鋼板はいずれも、良好な磁気特性を得られることが分かる。   As is apparent from the table, it can be seen that any non-oriented electrical steel sheet produced under the conditions of rolling temperature: 200 ° C. or higher and rolling reduction: 30% or more according to the present invention can obtain good magnetic properties.

実施例3
Si:1.82%、Mn:0.22%およびAl:0.33%を含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延により2.0mm厚の熱延板とし、1000℃で25秒の熱延板焼鈍後、冷間圧延により0.20〜1.4mmの厚さに仕上げた。ついで、脱脂および酸洗処理を行った後、同じ板厚の鋼板同士を2枚重ねて200℃の温度で冷間圧延を行い、表3に示す板厚とした。ついで、得られた鋼板を再度同じ板厚同士で2枚重ねて400℃の温度で冷間圧延を行い、0.50mmの板厚とした。その後、湿潤窒素水素混合雰囲気中にて、900℃,60秒の仕上焼鈍を施した。
かくして得られた無方向性電磁鋼板の磁気特性を測定した結果を、表3に併記する。
Example 3
A steel slab containing Si: 1.82%, Mn: 0.22%, and Al: 0.33%, the balance being Fe and inevitable impurities, was hot rolled into a 2.0 mm thick hot-rolled sheet at 25 ° C at 1000 ° C. After hot-rolled sheet annealing for 2 seconds, it was finished to a thickness of 0.20 to 1.4 mm by cold rolling. Next, after degreasing and pickling treatment, two steel plates having the same thickness were stacked and cold-rolled at a temperature of 200 ° C. to obtain the thicknesses shown in Table 3. Then, the obtained steel plates were again stacked with the same thickness, and cold-rolled at a temperature of 400 ° C. to obtain a thickness of 0.50 mm. Then, finish annealing was performed at 900 ° C. for 60 seconds in a wet nitrogen-hydrogen mixed atmosphere.
The results of measuring the magnetic properties of the non-oriented electrical steel sheet thus obtained are also shown in Table 3.

Figure 2007056303
Figure 2007056303

同表から明らかなように、本発明に従う条件で製造した無方向性電磁鋼板はいずれも、良好な磁気特性を得られることが分かる。   As is apparent from the table, it can be seen that any non-oriented electrical steel sheet manufactured under the conditions according to the present invention can obtain good magnetic properties.

重ね圧延における圧下率と鋼板の磁気特性B50との関係を示す図である。It is a diagram showing a relationship between magnetic properties B 50 of rolling reduction and the steel sheet in superimposed rolling.

Claims (1)

無方向性電磁鋼板を製造するに当たり、仕上焼鈍前の冷間圧延の一部または全ての工程を、鋼板を2枚以上積層した重ね圧延により行うものとし、その際、圧延温度:200℃以上、圧下率:30%以上の条件で重ね圧延を行うことを特徴とする磁気特性に優れた無方向性電磁鋼板の製造方法。   In producing non-oriented electrical steel sheets, some or all of the cold rolling process before finish annealing is performed by lap rolling in which two or more steel sheets are laminated. At that time, rolling temperature: 200 ° C. or more, Rolling ratio: A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized by performing lap rolling under a condition of 30% or more.
JP2005242440A 2005-08-24 2005-08-24 Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic Pending JP2007056303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242440A JP2007056303A (en) 2005-08-24 2005-08-24 Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242440A JP2007056303A (en) 2005-08-24 2005-08-24 Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic

Publications (1)

Publication Number Publication Date
JP2007056303A true JP2007056303A (en) 2007-03-08

Family

ID=37920035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242440A Pending JP2007056303A (en) 2005-08-24 2005-08-24 Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic

Country Status (1)

Country Link
JP (1) JP2007056303A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779879A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Production method for cold-rolled non-oriented electrical steel thin belt
CN105779880A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Production method for cold-rolled high-grade non-oriented electrical steel thin belt
CN105779878A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Production method for intermediate-frequency cold-rolled non-oriented thin silicon steel belt
CN111069287A (en) * 2019-12-25 2020-04-28 北京科技大学 High-silicon steel plate strip and preparation method thereof
WO2023234632A1 (en) * 2022-05-31 2023-12-07 현대제철 주식회사 Non-oriented electrical steel sheet and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131917A (en) * 1983-12-20 1985-07-13 Kawasaki Steel Corp Manufacture of silicon steel sheet
JP2002003944A (en) * 2000-06-16 2002-01-09 Kawasaki Steel Corp Method for manufacturing nonoriented silicon steel sheet having excellent magnetic property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131917A (en) * 1983-12-20 1985-07-13 Kawasaki Steel Corp Manufacture of silicon steel sheet
JP2002003944A (en) * 2000-06-16 2002-01-09 Kawasaki Steel Corp Method for manufacturing nonoriented silicon steel sheet having excellent magnetic property

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779879A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Production method for cold-rolled non-oriented electrical steel thin belt
CN105779880A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Production method for cold-rolled high-grade non-oriented electrical steel thin belt
CN105779878A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Production method for intermediate-frequency cold-rolled non-oriented thin silicon steel belt
CN111069287A (en) * 2019-12-25 2020-04-28 北京科技大学 High-silicon steel plate strip and preparation method thereof
WO2023234632A1 (en) * 2022-05-31 2023-12-07 현대제철 주식회사 Non-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP6176181B2 (en) Laminated electrical steel sheet and manufacturing method thereof
JP5896112B2 (en) Oriented electrical steel sheet, method of manufacturing the same, and transformer
WO2016027565A1 (en) Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
TWI532854B (en) Nonoriented electromagnetic steel sheet with excellent magnetic property
JP2012046806A (en) Method for manufacturing non-oriented electromagnetic steel sheet
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
WO2017022360A1 (en) Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
JP6319465B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2014092102A1 (en) Oriented electromagnetic steel sheet
WO2013024894A1 (en) Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
JP4265166B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP2007056303A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
TWI641702B (en) Non-oriented electromagnetic steel sheet with excellent recyclability
JP2016151063A (en) Nonoriented magnetic steel sheet and production method therefor
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
KR102427606B1 (en) Grain-oriented electrical steel sheet
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
CN107429307B (en) The manufacturing method of one-way electromagnetic steel plate
JP4241226B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723