JP2016151063A - Nonoriented magnetic steel sheet and production method therefor - Google Patents
Nonoriented magnetic steel sheet and production method therefor Download PDFInfo
- Publication number
- JP2016151063A JP2016151063A JP2015030882A JP2015030882A JP2016151063A JP 2016151063 A JP2016151063 A JP 2016151063A JP 2015030882 A JP2015030882 A JP 2015030882A JP 2015030882 A JP2015030882 A JP 2015030882A JP 2016151063 A JP2016151063 A JP 2016151063A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- hot
- less
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、無方向性電磁鋼板およびその製造方法に関する。より詳しくは、本発明は、ハイブリッド自動車、電気自動車、燃料電池自動車に搭載される駆動モータや、二輪車および家庭用コージェネレーションシステムに搭載される小型発電機など、高いエネルギー効率と小型・高出力化を同時に要求される電気機器の鉄心の素材に好適な無方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet and a method for producing the same. More specifically, the present invention provides high energy efficiency, small size, and high output, such as a drive motor mounted on a hybrid vehicle, an electric vehicle, and a fuel cell vehicle, and a small generator mounted on a motorcycle and a home cogeneration system. The present invention relates to a non-oriented electrical steel sheet suitable for a material for an iron core of an electrical device and a method for manufacturing the same.
近年の地球環境問題の高まりから、電気機器においては小型、高出力、高エネルギー効率が要求され、鉄心材料である無方向性電磁鋼板には低鉄損と高磁束密度の高位両立が強く求められている。 Due to the recent increase in global environmental problems, electrical equipment is required to be small, high power, and high energy efficiency, and non-oriented electrical steel sheets, which are core materials, are strongly required to have both low iron loss and high magnetic flux density. ing.
従来、鉄損低減手段としてはSiやAlの含有量の増加、高純度化、板厚の薄手化が採用されてきた。鉄損低減手段の中でも、高周波域での鉄損を最も効果的に低減する手段は板厚の薄手化であり、ハイブリッド自動車や電気自動車の駆動モータに代表される低鉄損への要求の強い用途には、板厚が0.35mm以下の薄手無方向性電磁鋼板が使用されている。 Conventionally, as a means for reducing iron loss, an increase in the content of Si or Al, a higher purity, and a thinner plate thickness have been employed. Among the means for reducing iron loss, the most effective way to reduce iron loss in the high frequency range is to reduce the thickness of the plate, and there is a strong demand for low iron loss typified by drive motors for hybrid and electric vehicles. A thin non-oriented electrical steel sheet having a thickness of 0.35 mm or less is used for applications.
また、高磁束密度化手段としては再結晶集合組織制御が採用されてきた。再結晶集合組織制御の基本は、板面内に磁化容易軸を含まない{111}面を減じ、板面内に磁化容易軸を含む{110}面や{100}面を増加させることであり、板面内に二方向の磁化容易軸を有する{100}<001>方位や磁化容易軸が板面内で一方向に揃った{110}<001>方位の集積度増加については、いわゆる二方向性電磁鋼板や一方向性電磁鋼板の分野のみならず、無方向性電磁鋼板の分野においても盛んに検討がなされている。 Further, recrystallization texture control has been adopted as means for increasing the magnetic flux density. The basis of recrystallization texture control is to reduce the {111} plane that does not include the easy axis in the plate surface and increase the {110} plane and {100} plane that include the easy axis in the plate surface. Regarding the increase in the degree of integration of the {100} <001> orientation having two easy magnetization axes in the plate surface and the {110} <001> orientation in which the easy magnetization axes are aligned in one direction within the plate surface, two methods are used. Active investigations have been made not only in the field of grain-oriented electrical steel sheets and unidirectional electrical steel sheets, but also in the field of non-oriented electrical steel sheets.
例えば、無方向性電磁鋼板において{100}<001>方位や{110}<001>方位の集積度を増加させる技術としては、次のような手法が提案されている。
特許文献1および特許文献2には特殊な熱間圧延条件により集積させた{510}<001>方位を活用して{100}<001>方位を発達させる方法が、特許文献3には熱間圧延にて{100}<001>方位に集積させる方法が、それぞれ提案されている。特許文献4にはAl:0.02質量%以下で{100}<001>方位に集積した鋼板が提案されている。
以上は比較的特殊な条件によって再結晶集合組織を制御する例であるが、その他、特許文献5にはPを含有する無方向性電磁鋼板において{100}<001>方位を発達させる方法が提案されている。また、特許文献6にはSn、Sbを単独もしくは複合で含有させた鋼を熱延板焼鈍により結晶粒径を300〜2000μmとして磁束密度を向上する技術が提案されている。板厚薄手化による高周波用無方向性電磁鋼板としては、特許文献7にSn、Sbの少なくとも一方を含有し、板厚が0.1〜0.3mmの無方向性電磁鋼板が提案されている。
For example, as a technique for increasing the degree of integration of {100} <001> orientation and {110} <001> orientation in a non-oriented electrical steel sheet, the following method has been proposed.
Patent Document 1 and Patent Document 2 describe a method of developing {100} <001> orientation by utilizing {510} <001> orientation accumulated under special hot rolling conditions, and Patent Document 3 describes hot processing. A method of accumulating in the {100} <001> orientation by rolling has been proposed. Patent Document 4 proposes a steel plate in which Al: 0.02% by mass or less and accumulated in the {100} <001> orientation.
The above is an example in which the recrystallized texture is controlled under relatively special conditions. In addition, Patent Document 5 proposes a method of developing the {100} <001> orientation in a non-oriented electrical steel sheet containing P. Has been. Patent Document 6 proposes a technique for improving the magnetic flux density by making steel containing Sn or Sb alone or in combination by annealing a hot-rolled sheet to a crystal grain size of 300 to 2000 μm. As a high-frequency non-oriented electrical steel sheet by reducing the thickness, Patent Document 7 proposes a non-oriented electrical steel sheet containing at least one of Sn and Sb and having a thickness of 0.1 to 0.3 mm.
上述したように、無方向性電磁鋼板の再結晶集合組織制御については従来から様々な検討がなされてきた。しかしながら、低鉄損化を目的とした板厚薄手化には冷延圧下率の増加が必要であり、冷延圧下率の増加にともない磁気特性向上に好ましくない方位が発達するため、低鉄損化を目的とした板厚薄手化と高磁束密度化を目的とした再結晶集合組織制御との両立は困難であった。このため低鉄損と高磁束密度とを高い次元で両立させるという要請には十分に応えられてはいなかった。また、特殊な条件による再結晶集合組織の制御はコスト増加につながり、実用的ではなかった。 As described above, various studies have been made on the recrystallization texture control of non-oriented electrical steel sheets. However, reducing the sheet thickness for the purpose of reducing iron loss requires an increase in the cold rolling reduction ratio, and with the increase in the cold rolling reduction ratio, an unfavorable orientation is developed for improving magnetic properties. Therefore, it is difficult to achieve both the reduction in thickness and the recrystallization texture control aiming at high magnetic flux density. For this reason, the request | requirement of making low iron loss and high magnetic flux density compatible on a high dimension was not fully satisfied. Moreover, the control of the recrystallized texture under special conditions led to an increase in cost and was not practical.
すなわち、特許文献1〜特許文献3に記載された無方向性電磁鋼板は、その実施例に記載されるとおり、熱間圧延での仕上げ厚を0.8mmとするものであり、設備負荷が多大であるばかりか生産性が著しく低下する。このため、実操業に適用するのは容易ではない。 That is, the non-oriented electrical steel sheet described in Patent Documents 1 to 3 has a hot-rolling finish thickness of 0.8 mm as described in the examples, and has a large equipment load. In addition, productivity is significantly reduced. For this reason, it is not easy to apply to actual operation.
特許文献4に記載された無方向性電磁鋼板は、一方向性電磁鋼板と同様に二次再結晶焼鈍によって得られる鋼板であり、通常の無方向性電磁鋼板と比較して大幅な製造コスト増加は否めない。 The non-oriented electrical steel sheet described in Patent Document 4 is a steel sheet obtained by secondary recrystallization annealing in the same manner as the unidirectional electrical steel sheet, and a significant increase in production cost compared to a normal non-oriented electrical steel sheet. I cannot deny.
特許文献5に記載された無方向性電磁鋼板は特殊な工程が必須なものではないが、Pを多量に含有するため、低鉄損化を目的としてSi含有量を増加させた鋼や、高磁束密度化を目的として冷間圧延前の粒径を粗大化させた場合には、冷間圧延時の割れ発生が懸念され、低鉄損と高磁束密度を高位両立させるためには改善の余地がある。また、中間焼鈍を挟む二回の冷間圧延で所望の板厚に仕上げる方法には冷間圧延時の割れを抑制する効果もあるものの、工程増加に起因するコスト増加が懸念される。 Although the non-oriented electrical steel sheet described in Patent Document 5 does not require a special process, it contains a large amount of P. Therefore, steel with an increased Si content for the purpose of reducing iron loss, If the grain size before cold rolling is increased for the purpose of increasing the magnetic flux density, there is concern about cracking during cold rolling, and there is room for improvement in order to achieve both high iron loss and high magnetic flux density. There is. Moreover, although the method of finishing to a desired sheet thickness by two cold rollings with intermediate annealing interposed therebetween has an effect of suppressing cracks during cold rolling, there is a concern about an increase in cost due to an increase in processes.
特許文献6に記載された技術は冷間圧延前の結晶粒径粗大化により高磁束密度化する技術であるが、低鉄損化を目的とした板厚薄手材に適用する際には冷間圧延での割れ発生が懸念される。特許文献7に記載された技術は表層の窒化抑制により鉄損低減を図るものであるが、磁束密度の観点からは改善の余地がある。 The technique described in Patent Document 6 is a technique for increasing the magnetic flux density by increasing the crystal grain size before cold rolling, but when applied to a thin plate material for the purpose of reducing iron loss, There is concern about the occurrence of cracks in rolling. The technique described in Patent Document 7 is intended to reduce iron loss by suppressing nitridation of the surface layer, but there is room for improvement from the viewpoint of magnetic flux density.
本発明は、上記実情に鑑みてなされたものであり、その課題はPおよびSnによる高磁束密度化の効果を最大限に享受し、かつ懸念される冷間圧延時の割れを抑制することで、特殊な工程を経ることなく低鉄損と高磁束密度を高位両立した無方向性電磁鋼板およびその製造方法を提供することにある。 This invention is made | formed in view of the said situation, The subject enjoys the effect of the high magnetic flux density increase by P and Sn to the maximum, and suppresses the crack at the time of cold rolling to be worried about. Another object of the present invention is to provide a non-oriented electrical steel sheet that achieves both low iron loss and high magnetic flux density at a high level without passing through a special process, and a method for producing the same.
本発明者らは、まず無方向性電磁鋼板の磁束密度、とりわけ板厚薄手材での磁束密度を高める方法について鋭意研究を行った。その結果、適量のPを含有させることで磁束密度が増加するとの知見を得た。また、PとSnを複合的に含有させることで、さらに磁束密度が増加するとの結果を得た。しかしながら、Pの含有量によっては冷間圧延時の割れが誘発される点、PとSnとを複合的に含有させた場合には更に冷間圧延時の割れが懸念される点について、これらを抑制するために検討をすすめた。その結果、適量のMoを含有させることにより、PおよびSnによる高磁束密度化の効果を享受し、かつ冷間圧延時の割れを抑制できることを見いだした。このような新知見に基づく本発明の要旨は以下の通りである。 The inventors of the present invention first conducted intensive research on a method for increasing the magnetic flux density of a non-oriented electrical steel sheet, particularly a magnetic flux density in a thin plate material. As a result, it has been found that the magnetic flux density is increased by containing an appropriate amount of P. Moreover, the result that a magnetic flux density further increased by containing P and Sn in a composite was obtained. However, depending on the P content, cracks during cold rolling are induced, and when P and Sn are combined, there are concerns about cracks during cold rolling. We studied to suppress it. As a result, it has been found that by containing an appropriate amount of Mo, the effect of increasing the magnetic flux density by P and Sn can be enjoyed and cracking during cold rolling can be suppressed. The gist of the present invention based on such new findings is as follows.
すなわち、本発明は、質量%で、Si:1.7%以上3.5%以下、Al:0.1%以上2.0%以下およびMn:0.08%以上1.5%未満を下記式(1)を満足する範囲で含有し、さらに、P:0.03%超0.15%以下、Sn:0.03%以上0.15%以下、C:0.005%以下、S:0.0040%以下、N:0.005%以下およびMo:0.002%以上0.2%以下を含有し、残部がFeおよび不純物からなり、仕上焼鈍後の板厚1/4位置にて、結晶方位分布関数におけるφ2=0°断面のφ1=20°、Φ=15°の強度が5以上であることを特徴とする無方向性電磁鋼板を提供する。
Si+2×Al−Mn≧2.0 (1)
(ここで、Si、AlおよびMnは、各元素の含有量(単位:質量%)を示す。)
That is, the present invention includes, in mass%, Si: 1.7% to 3.5%, Al: 0.1% to 2.0%, and Mn: 0.08% to less than 1.5%. It contains in the range which satisfies Formula (1), Furthermore, P: more than 0.03% 0.15% or less, Sn: 0.03% or more and 0.15% or less, C: 0.005% or less, S: 0.0040% or less, N: 0.005% or less, and Mo: 0.002% or more and 0.2% or less, with the balance being Fe and impurities, at a thickness of 1/4 position after finish annealing The non-oriented electrical steel sheet is characterized in that the strength of φ1 = 20 ° and φ = 15 ° of φ2 = 0 ° section in the crystal orientation distribution function is 5 or more.
Si + 2 × Al-Mn ≧ 2.0 (1)
(Here, Si, Al, and Mn indicate the content (unit: mass%) of each element.)
本発明においては、鋼組成が適正化されている、とりわけMoを適正量含有しているため、PおよびSnによる高磁束密度化効果を享受しつつ、かつ冷間圧延時の割れを抑制することができる。 In the present invention, since the steel composition is optimized, especially containing an appropriate amount of Mo, the effect of increasing the magnetic flux density by P and Sn is enjoyed, and cracking during cold rolling is suppressed. Can do.
また、本発明の無方向性電磁鋼板は、板厚が0.10〜0.25mmであることが好ましい。板厚薄手化により鉄損が減少するとともに、本発明の効果により冷延圧下率の高い薄手材でも磁束密度が高まるため、低鉄損と高磁束密度が両立されるためである。 The non-oriented electrical steel sheet of the present invention preferably has a thickness of 0.10 to 0.25 mm. This is because the iron loss is reduced by reducing the plate thickness, and the magnetic flux density is increased even by a thin material having a high cold rolling reduction ratio due to the effect of the present invention, so that both low iron loss and high magnetic flux density are achieved.
本発明はまた、上述した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に焼鈍を施す熱延板焼鈍工程と、上記熱延板焼鈍工程により得られた鋼板に冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程とを有する無方向性電磁鋼板の製造方法において、熱延板焼鈍を950℃以上1050℃以下で10秒以上3分以下保持し、冷間圧延での合計圧下率を88%以上96%以下とし、仕上げ焼鈍を950℃以上1050℃以下で10秒以上120秒以下施すことを特徴とする無方向性電磁鋼板の製造方法を提供する。 The present invention also includes a hot rolling process in which hot rolling is performed on a steel ingot or steel slab having the above-described steel composition, and a hot rolled sheet annealing process in which the hot rolled steel sheet obtained by the hot rolling process is annealed. And a cold rolling process in which cold rolling is performed on the steel sheet obtained by the hot rolled sheet annealing process, and a finish annealing process in which finish annealing is performed on the cold rolled steel sheet obtained by the cold rolling process. In the method of manufacturing grain-oriented electrical steel sheet, hot-rolled sheet annealing is maintained at 950 ° C. or higher and 1050 ° C. or lower for 10 seconds or longer and 3 minutes or shorter, and the total rolling reduction in cold rolling is 88% or higher and 96% or lower, and finish annealing is performed. Provided is a method for producing a non-oriented electrical steel sheet, which is performed at 950 ° C. to 1050 ° C. for 10 seconds to 120 seconds.
本発明はまた、上述した無方向性電磁鋼板の製造方法において、熱延板焼鈍を950℃以上1050℃以下で10秒以上3分以下保持した後に、800℃以上920℃以下で10秒以上2分以下保持する連続焼鈍で実施することを特徴とする無方向性電磁鋼板の製造方法を提供する。 The present invention also relates to the above-described method for producing a non-oriented electrical steel sheet, wherein hot-rolled sheet annealing is maintained at 950 ° C. or higher and 1050 ° C. or lower for 10 seconds or longer and 3 minutes or shorter, and then at 800 ° C. or higher and 920 ° C. or lower for 10 seconds or longer 2 The present invention provides a method for producing a non-oriented electrical steel sheet, which is carried out by continuous annealing that is maintained for a minute or less.
本発明はまた、上述した無方向性電磁鋼板の製造方法において、冷間圧延での仕上げ板厚を0.10〜0.25mmとすることを特徴とする無方向性電磁鋼板の製造方法を提供する。 The present invention also provides a method for producing a non-oriented electrical steel sheet, characterized in that, in the above-described method for producing a non-oriented electrical steel sheet, a finish plate thickness in cold rolling is set to 0.10 to 0.25 mm. To do.
本発明においては、PおよびPとSnによる高磁束密度化効果を享受しつつ、冷間圧延時の破断を抑制できることから、低鉄損と高磁束密度を高位両立した無方向性電磁鋼板を得ることができるという効果を奏する。 In the present invention, it is possible to suppress breakage during cold rolling while enjoying the effect of increasing the magnetic flux density due to P and P and Sn, so that a non-oriented electrical steel sheet that achieves both low iron loss and high magnetic flux density at a high level is obtained. There is an effect that can be.
本発明者らは、無方向性電磁鋼板の磁束密度を高める方法について鋭意研究を行った結果、適量のPを含有させることで磁束密度が増加するとの知見を得た。また、PとSnを複合的に含有させることで、さらに磁束密度が増加するとの結果を得るとともに、その効果は板厚薄手材の方が大きいとの知見を得た。しかしながら、P、Snの含有量によっては、複合的に含有させた場合に冷間圧延時の割れが誘発されるため、これを抑制するために検討を進めた。その結果、適量のMoを含有させることにより、PおよびSnによる高磁束密度化の効果を享受し、かつ冷間圧延時の割れを抑制できることを見いだした。以下、実験結果に基づいてその詳細を説明する。 As a result of intensive studies on a method for increasing the magnetic flux density of a non-oriented electrical steel sheet, the present inventors have found that the magnetic flux density is increased by containing an appropriate amount of P. Moreover, the result that the magnetic flux density was further increased by including P and Sn in a composite manner was obtained, and the knowledge that the effect of the thin plate material was greater was obtained. However, depending on the contents of P and Sn, cracks during cold rolling are induced when they are contained in a complex manner. Therefore, studies were made to suppress this. As a result, it has been found that by containing an appropriate amount of Mo, the effect of increasing the magnetic flux density by P and Sn can be enjoyed and cracking during cold rolling can be suppressed. Hereinafter, the details will be described based on the experimental results.
真空溶解炉にて、質量%でSi:2.5%、Al:1.1%、Mn:0.2%を基本成分とし、Pを0.01〜0.12%の範囲で含有する鋼A〜E、およびPを0.01〜0.12%含有しSnを0.05%含有する鋼F〜Jを作製した。このときC量は0.002〜0.003%、S量は0.002〜0.003%、N量は0.0015〜0.002%、Moは0.002〜0.005%の範囲であった。各鋼を熱間圧延により板厚2.0mmに仕上げた後、1000℃で90秒間保持する熱延板焼鈍を施し、冷間圧延により板厚:0.15mmに仕上げた。その後、1000℃で15秒間保持する仕上げ焼鈍を施し、55mm角の単板試験片にて圧延方向と圧延直角方向の磁束密度B50を測定し、その平均値で評価した。 Steel containing, as a basic component, Si: 2.5%, Al: 1.1%, Mn: 0.2% in a vacuum melting furnace, and P in a range of 0.01 to 0.12% Steels F to J containing 0.01 to 0.12% of A to E and P and 0.05% of Sn were produced. At this time, the C amount is 0.002 to 0.003%, the S amount is 0.002 to 0.003%, the N amount is 0.0015 to 0.002%, and Mo is in the range of 0.002 to 0.005%. Met. Each steel was finished to a plate thickness of 2.0 mm by hot rolling, and then subjected to hot-rolled plate annealing held at 1000 ° C. for 90 seconds, and finished to a plate thickness: 0.15 mm by cold rolling. Then, the finish annealing which hold | maintains at 1000 degreeC for 15 second was given, the magnetic flux density B50 of a rolling direction and a rolling orthogonal direction was measured with the 55 mm square single-sheet test piece, and it evaluated by the average value.
図1に示すように、磁束密度はP含有量の増加にともない向上するが、PとSnを複合的に含有させることにより、磁束密度がさらに向上すると判明した。PとSnを複合的に含有させることにより磁束密度が向上した理由は明確でないが、SnもPと同様に粒界偏析傾向の強い元素であるため、冷間圧延前の粒界偏析により粒界での変形拘束力が変化することで不均一変形が助長され、磁気特性向上に好ましい方位の再結晶が促進されたものと推察している。さらに、粒内に固溶するPおよびSnも上記不均一変形へ寄与するとともに、PとSnではその機構が異なると推察され、複合添加によって単独の添加を上回る効果が得られたと考えられる。 As shown in FIG. 1, the magnetic flux density is improved as the P content is increased, but it has been found that the magnetic flux density is further improved by containing P and Sn in a composite manner. The reason why the magnetic flux density is improved by compounding P and Sn is not clear, but Sn is also an element having a strong tendency to segregate at the grain boundaries as in the case of P. Therefore, grain boundaries are segregated by grain boundary segregation before cold rolling. It is presumed that non-uniform deformation is promoted by changing the deformation restraining force at, and recrystallization in a preferred orientation is promoted for improving magnetic properties. Further, P and Sn dissolved in the grains also contribute to the non-uniform deformation, and it is presumed that the mechanism is different between P and Sn, and it is considered that an effect exceeding the single addition was obtained by the composite addition.
さらに、前述の鋼F〜Jの熱延板焼鈍後の鋼板を、冷間圧延により板厚:0.15〜0.35mmに仕上げ、1000℃で15秒間保持する仕上げ焼鈍を施し、55mm角の単板試験片にて圧延方向から22.5°ごとに磁束密度B50を測定し、その平均値で磁束密度を評価した。 Furthermore, the steel sheet after hot-rolled sheet annealing of the steels F to J described above is finished to a thickness of 0.15 to 0.35 mm by cold rolling, and finish annealing is performed for 15 seconds at 1000 ° C. The magnetic flux density B50 was measured every 22.5 ° from the rolling direction with a single plate test piece, and the magnetic flux density was evaluated by the average value.
図2に示すように、磁束密度はP含有量の増加にともない向上し、その効果は冷延圧下率の高い板厚薄手材の方が大きい。図1に示す圧延方向、圧延直角方向の磁束密度の平均値のみならず、22.5°ごとの磁束密度の平均値、すなわち板面内の平均の磁束密度がP含有量の増加にともない向上する理由は{100}面に近い方位が発達することと対応しており、本願発明者らが鋭意調査した結果、仕上げ焼鈍後にφ2=0°断面のφ1=20°、Φ=15°であらわされる方位の発達が確認された。 As shown in FIG. 2, the magnetic flux density is improved as the P content is increased, and the effect is greater in the case of a thin sheet material having a high cold rolling reduction ratio. In addition to the average value of the magnetic flux density in the rolling direction and the direction perpendicular to the rolling shown in FIG. 1, the average value of the magnetic flux density every 22.5 °, that is, the average magnetic flux density in the plate surface is improved as the P content increases. The reason for this corresponds to the development of an orientation close to the {100} plane, and as a result of intensive investigations by the inventors of the present invention, it is shown that φ1 = 20 ° and φ = 15 ° of the φ2 = 0 ° cross section after finish annealing. The development of the orientation was confirmed.
次に、真空溶解炉にて、質量%でSi:2.0%、Al:0.8%、Mn:0.2%、Sn:0.05%を基本成分とし、Mo含有量が0.002%未満、P含有量が0.01%の鋼L、Mo含有量が0.002%未満、P含有量が0.14%の鋼M、Mo含有量が0.1%、P含有量が0.14%の鋼Nを作製した。このときC含有量は0.002〜0.003%、S含有量は0.002〜0.003%、N含有量は0.0015〜0.002%の範囲であった。各鋼を熱間圧延により板厚2.0mmに仕上げた後、1000℃で90秒間保持する熱延板焼鈍を施した。その後、冷間圧延性を評価するため、シャルピー衝撃試験に供した。結果を図3に示す。 Next, in a vacuum melting furnace, Si: 2.0%, Al: 0.8%, Mn: 0.2%, Sn: 0.05% are contained as basic components in mass%, and the Mo content is 0.00. Steel L with less than 002%, P content 0.01%, Mo content less than 0.002%, Steel M with P content 0.14%, Mo content 0.1%, P content Produced 0.14% of steel N. At this time, the C content was 0.002 to 0.003%, the S content was 0.002 to 0.003%, and the N content was 0.0015 to 0.002%. Each steel was finished to a thickness of 2.0 mm by hot rolling, and then subjected to hot rolling annealing at 1000 ° C. for 90 seconds. Then, in order to evaluate cold rolling property, it used for the Charpy impact test. The results are shown in FIG.
図3に示すように、遷移温度はP含有量の増加にともない上昇するが、Moを含有させることにより低下する。すなわち、P含有量の増加およびP,Snを複合的に含有させることによる脆化はMoにより緩和され、冷間圧延時の破断が抑制されると判明した。さらに、Pを含有する鋼、およびP、Snを複合的に含有する鋼の磁気特性におよぼすMoの影響を調査した結果、過度にMoを含有させた場合にはP、Snによる磁束密度向上の効果が小さくなることを知見した。この理由は明確でないが、Moによって粒界の結合力が変化した結果、再結晶集合組織に及ぼす粒界偏析したPおよびSnの影響が弱まり、磁気特性向上に好ましい再結晶集合組織が得られなかったものと推察される。これらの結果から、Mo含有量を適正範囲に制御することで、PおよびSnによる高磁束密度化の効果を享受し、かつ冷間圧延時の割れが抑制されることを知見した。さらに、Mo含有量を適正範囲に制御した鋼では、熱延板焼鈍を適正条件で実施することで高磁束密度化の効果が高まるとともに冷間圧延時の割れも抑制されることを知見し、本発明を完成したのである。 As shown in FIG. 3, the transition temperature rises as the P content increases, but decreases as Mo is contained. That is, it has been found that the increase in the P content and embrittlement due to the combined inclusion of P and Sn are alleviated by Mo, and the fracture during cold rolling is suppressed. Furthermore, as a result of investigating the influence of Mo on the magnetic properties of steel containing P, and steel containing P and Sn in combination, when Mo is excessively contained, the magnetic flux density is improved by P and Sn. It was found that the effect was reduced. Although the reason for this is not clear, the effect of P and Sn segregated at the grain boundary on the recrystallized texture is weakened as a result of the change in the grain boundary bonding force by Mo, and a recrystallized texture preferable for improving magnetic properties cannot be obtained. Inferred. From these results, it was found that by controlling the Mo content in an appropriate range, the effect of increasing the magnetic flux density by P and Sn was enjoyed and cracking during cold rolling was suppressed. Furthermore, in steel with the Mo content controlled to an appropriate range, it is found that by performing hot-rolled sheet annealing under appropriate conditions, the effect of increasing the magnetic flux density is enhanced and cracking during cold rolling is also suppressed. The present invention has been completed.
以下、このような新知見に基づく本発明の無方向性電磁鋼板およびその製造方法について詳細に説明する。 Hereinafter, the non-oriented electrical steel sheet of the present invention based on such new knowledge and the manufacturing method thereof will be described in detail.
A.無方向性電磁鋼板
本発明の無方向性電磁鋼板は、質量%で、Si:1.7%以上3.5%以下、Al:0.1%以上2.0%以下およびMn:0.08%以上1.5%未満を上記式(1)を満足する範囲で含有し、さらに、P:0.03%超0.15%以下、Sn:0.15%以下、C:0.005%以下、S:0.0040%以下、N:0.005%以下およびMo:0.002%以上0.2%以下を含有し、残部がFeおよび不純物からなり、仕上焼鈍後の板厚1/4位置にて、φ2=0°断面のφ1=20°、Φ=15°の強度が5以上であることを特徴とする無方向性電磁鋼板を特徴とするものである。
A. Non-oriented electrical steel sheet The non-oriented electrical steel sheet of the present invention is, in mass%, Si: 1.7% to 3.5%, Al: 0.1% to 2.0%, and Mn: 0.08. % And less than 1.5% in a range satisfying the above formula (1), P: more than 0.03% 0.15% or less, Sn: 0.15% or less, C: 0.005% Hereinafter, S: 0.0040% or less, N: 0.005% or less and Mo: 0.002% or more and 0.2% or less, with the balance being Fe and impurities, the thickness 1 / after finish annealing The non-oriented electrical steel sheet is characterized in that the strength of φ1 = 20 ° and φ = 15 ° in the φ2 = 0 ° cross section at 5 positions is 5 or more.
以下、本発明の無方向性電磁鋼板における各構成について詳細に説明する。 Hereafter, each structure in the non-oriented electrical steel sheet of this invention is demonstrated in detail.
1.化学組成
(1)Si、Al、Mn
Si、AlおよびMnは、電気抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。しかしながら、過剰に含有させると磁束密度の低下が著しくなる。さらに、Siは過剰に含有させると後述するMoの効果をもってしても冷間圧延時に破断するおそれがある。また、Mnは過剰に含有させるとオーステナイト変態を生じて磁気特性の確保が困難になる。それぞれの元素の上限はこれらの観点から定め、Si含有量は3.5%以下、Al含有量は2.0%以下、Mn含有量は1.5%未満とする。
Si含有量の下限は、電気抵抗を増加させて所望の鉄損レベルを確保する観点から1.7%以上とする。Al含有量は、0.1%未満では微細な窒化物により磁壁の移動が阻害されるとともに、粒成長が阻害されて磁気特性が劣化する場合がある。したがって、Al含有量は0.1%以上とする。Mn含有量は、0.08%未満では硫化物が微細化することにより磁壁の移動が阻害されるとともに、粒成長が阻害されて磁気特性が劣化する場合がある。したがって、Mn含有量は0.08%以上とする。
1. Chemical composition (1) Si, Al, Mn
Si, Al, and Mn have the effect of increasing the electrical resistance, so they are included for reducing iron loss. However, when it is excessively contained, the magnetic flux density is remarkably lowered. Furthermore, if Si is contained excessively, even if it has the effect of Mo described later, there is a possibility of breaking during cold rolling. Further, if Mn is contained excessively, austenite transformation occurs and it becomes difficult to ensure magnetic properties. The upper limit of each element is determined from these viewpoints, and the Si content is 3.5% or less, the Al content is 2.0% or less, and the Mn content is less than 1.5%.
The lower limit of the Si content is set to 1.7% or more from the viewpoint of increasing the electric resistance and securing a desired iron loss level. If the Al content is less than 0.1%, the movement of the domain wall is inhibited by fine nitride, and the grain growth may be inhibited to deteriorate the magnetic characteristics. Therefore, the Al content is 0.1% or more. When the Mn content is less than 0.08%, the movement of the domain wall is inhibited due to the refinement of the sulfide, and the grain growth is inhibited and the magnetic characteristics may be deteriorated. Therefore, the Mn content is 0.08% or more.
ここで、フェライト−オーステナイト変態を有する鋼の場合、仕上焼鈍をフェライト域焼鈍とするために焼鈍温度が制約され、その結果、所望の鉄損レベルを確保することが困難な場合がある。そこで、フェライト−オーステナイト変態に対する指標としてSi+2×Al−Mnを採用し、変態を有しない鋼とするために、下記式(1)を満足させることとする。
Si+2×Al−Mn≧2.0 (1)
ここで、Si、AlおよびMnは、各元素の含有量(単位:質量%)を示す。
Here, in the case of steel having a ferrite-austenite transformation, the annealing temperature is restricted in order to make the finish annealing a ferrite region annealing, and as a result, it may be difficult to ensure a desired iron loss level. Therefore, Si + 2 × Al—Mn is adopted as an index for the ferrite-austenite transformation, and the following formula (1) is satisfied in order to obtain a steel having no transformation.
Si + 2 × Al-Mn ≧ 2.0 (1)
Here, Si, Al, and Mn indicate the content (unit: mass%) of each element.
(2)P
Pは、磁気特性、とりわけ磁束密度を向上させる効果を有しており、本発明において極めて重要な元素である。明確な高磁束密度化効果を得る観点から、P含有量は0.03%超とする。一方、P含有量が0.15%超では、後述するMoの効果をもってしても冷間圧延時に破断を生じる可能性がある。したがって、P含有量は0.15%以下とする。
(2) P
P has an effect of improving magnetic properties, particularly magnetic flux density, and is an extremely important element in the present invention. From the viewpoint of obtaining a clear effect of increasing the magnetic flux density, the P content is more than 0.03%. On the other hand, if the P content exceeds 0.15%, there is a possibility that breakage may occur during cold rolling even with the effect of Mo described later. Therefore, the P content is 0.15% or less.
(3)C
Cは、不純物として含有され、含有量が0.005%を超えると微細な炭化物が析出して磁気特性が劣化する。したがって、C含有量は0.005%以下とする。
(3) C
C is contained as an impurity, and when the content exceeds 0.005%, fine carbides are precipitated and the magnetic properties are deteriorated. Therefore, the C content is 0.005% or less.
(4)S
Sは、多量に含有すると硫化物が多数析出し磁気特性が劣化する。そのため上限値を0.004%とする。好ましくは0.002%以下がよい。
(4) S
When S is contained in a large amount, a large amount of sulfide precipitates and the magnetic properties deteriorate. Therefore, the upper limit is set to 0.004%. Preferably it is 0.002% or less.
(5)N
Nは、不純物として含有され、多量に含有すると窒化物の増加により磁気特性が劣化する。そのため上限値を0.005%とする。
(5) N
N is contained as an impurity, and when it is contained in a large amount, the magnetic properties deteriorate due to an increase in nitride. Therefore, the upper limit is set to 0.005%.
(6)Mo
Moは、PおよびP,Snを複合的に含有させた場合における冷間圧延性の低下、すなわち冷間圧延時の割れ発生を抑制する効果を有する。しかしながら、0.2%以上含有させると高磁束密度化効果が小さくなる。また、析出物を形成して磁気特性に悪影響を及ぼす場合もある。Mo含有量の範囲はこれらの観点から定まり、0.002%以上0.2%とする。好ましい上限は0.1%である。
(6) Mo
Mo has an effect of suppressing a decrease in cold rollability when P, P, and Sn are combined, that is, cracking during cold rolling. However, when the content is 0.2% or more, the effect of increasing the magnetic flux density is reduced. In addition, precipitates may be formed to adversely affect the magnetic properties. The range of the Mo content is determined from these viewpoints and is set to 0.002% or more and 0.2%. A preferable upper limit is 0.1%.
(7)Sn
SnはPと複合的に含有させることにより磁束密度を向上させる効果を有する。但し、過度に含有させると粒成長性が低下するおそれがある。熱延板焼鈍を箱焼鈍型で実施する場合、Sn含有量の増大に起因する熱延板焼鈍時の粒成長性低下が顕著であるが、本発明の好ましい熱延板焼鈍条件ではその影響は小さく、Sn含有量はより多くまで許容される。この観点から、含有量は0.15%以下とする。含有量の下限は磁束密度を向上させる観点から定まり、0.03%以上、好ましくは0.04%以上である。
(7) Sn
Sn has the effect of improving the magnetic flux density by being combined with P. However, if it is excessively contained, the grain growth property may be lowered. When hot-rolled sheet annealing is performed in a box-annealing mold, the grain growth drop during hot-rolled sheet annealing due to an increase in Sn content is significant, but the effect is favorable under the preferred hot-rolled sheet annealing conditions of the present invention. Small, Sn content is allowed up to more. In this respect, the content is made 0.15% or less. The lower limit of the content is determined from the viewpoint of improving the magnetic flux density, and is 0.03% or more, preferably 0.04% or more.
(8)残部
残部はFeおよび不純物である。不純物のうち粒成長性に悪影響を及ぼすTi、V、Nb、Zrは極力低減することが望ましく、それぞれ0.01%以下が好ましい。また、硫化物の形態制御による磁気特性改善を目的としてCa、Mg、REMからなる群から選択される少なくとも1種を含有させてもよい。ここでREMとは、原子番号57〜71の15元素、ならびに、ScおよびYの2元素の合計17元素をさす。これらの元素を含有させる場合には、各元素の含有量はCa:0.03%以下、Mg:0.02%以下、REM:0.1%以下が好ましい。上記効果を確実に得るためには、各元素の含有量をCa:0.0001%以上、Mg:0.0001%以上、REM:0.0001%以上とすることが好ましい。また、本発明では冷間圧延性の向上が重要であるため、圧延母材の表面性状を変化させるCuについては、0.15%以下が好ましい。
(8) Remainder The remainder is Fe and impurities. Of impurities, Ti, V, Nb, and Zr, which adversely affect grain growth, are desirably reduced as much as possible, and each is preferably 0.01% or less. Moreover, you may contain at least 1 sort (s) selected from the group which consists of Ca, Mg, and REM for the purpose of the magnetic characteristic improvement by the form control of sulfide. Here, REM refers to a total of 17 elements of 15 elements having atomic numbers 57 to 71 and 2 elements of Sc and Y. When these elements are contained, the content of each element is preferably Ca: 0.03% or less, Mg: 0.02% or less, and REM: 0.1% or less. In order to reliably obtain the above effects, the content of each element is preferably set to Ca: 0.0001% or more, Mg: 0.0001% or more, and REM: 0.0001% or more. Further, in the present invention, since it is important to improve the cold rolling property, 0.15% or less is preferable for Cu that changes the surface properties of the rolling base material.
2.集合組織
板厚薄手材の磁束密度を向上する観点から、{111}面の低減のみならず{100}面あるいはそれに近い方位を発達させることが重要である。本発明の無方向性電磁鋼板では、磁束密度を向上させる方位として結晶方位分布関数(ODF)におけるφ2=0°断面のφ1=20°、Φ=15°の方位の発達が特徴であり、磁束密度を向上させる観点から、その強度(ランダム強度比)を5以上とする。好ましくは6以上である。ODFはX線回折法によって得られた極点図から解析されるものであり、{110}、{200}、{211}および{310}極点図を用いればよい。極点図を測定する位置は板厚の1/4位置とする。当該の方位が発達する理由は明確でないが、冷間圧延前の粒界に偏析したP,Snによって粒界での変形拘束力が変化することで不均一変形が助長された結果、仕上げ焼鈍の際に発達するものと推察される。
2. Texture From the viewpoint of improving the magnetic flux density of the thin plate material, it is important to develop not only the {111} plane but also the {100} plane or an orientation close thereto. The non-oriented electrical steel sheet of the present invention is characterized by the development of the orientation of φ1 = 20 ° and φ = 15 ° of the φ2 = 0 ° section in the crystal orientation distribution function (ODF) as the orientation for improving the magnetic flux density. From the viewpoint of improving the density, the strength (random strength ratio) is set to 5 or more. Preferably it is 6 or more. The ODF is analyzed from the pole figure obtained by the X-ray diffraction method, and {110}, {200}, {211} and {310} pole figures may be used. The position at which the pole figure is measured is a 1/4 position of the plate thickness. The reason why the orientation develops is not clear, but as a result of nonuniform deformation being promoted by the deformation restraint force at the grain boundary being changed by P and Sn segregated at the grain boundary before cold rolling, It is presumed that it develops when
3.板厚
板厚薄手化により鉄損が減少するとともに、本発明の効果により冷延圧下率が高く磁束密度が下がりやすい板厚薄手材であっても磁束密度が高まる。そのため、低鉄損と高磁束密度を両立する観点から、板厚は0.10〜0.25mmが好ましい。
3. Sheet Thickness While reducing the sheet thickness, the iron loss is reduced, and the effect of the present invention increases the magnetic flux density even in the case of a sheet-thin material that has a high cold rolling reduction ratio and tends to decrease the magnetic flux density. Therefore, from the standpoint of achieving both low iron loss and high magnetic flux density, the plate thickness is preferably 0.10 to 0.25 mm.
B.無方向性電磁鋼板の製造方法
次に、本発明の無方向性電磁鋼板の製造方法について説明する。本発明の無方向性電磁鋼板の製造方法は、上述した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に焼鈍を施す熱延板焼鈍工程と、上記熱延板焼鈍工程により得られた鋼板に冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程とを有する無方向性電磁鋼板の製造方法において、熱延板焼鈍を950℃以上1050℃以下で10秒以上3分以下保持し、冷間圧延での合計圧下率を88%以上96%以下とし、仕上げ焼鈍を950℃以上1050℃以下で10秒間以上120秒間以下施すことを特徴とするものである。
B. Next, a method for producing a non-oriented electrical steel sheet according to the present invention will be described. The method for producing a non-oriented electrical steel sheet according to the present invention includes a hot rolling process in which hot rolling is performed on a steel ingot or steel slab having the steel composition described above, and a hot rolled steel sheet obtained by the hot rolling process. Hot-rolled sheet annealing process for annealing, cold-rolling process for cold-rolling the steel sheet obtained by the hot-rolled sheet annealing process, and finish annealing for the cold-rolled steel sheet obtained by the cold-rolling process In the manufacturing method of a non-oriented electrical steel sheet having a finish annealing step to be applied, hot-rolled sheet annealing is maintained at 950 ° C. or higher and 1050 ° C. or lower for 10 seconds or longer and 3 minutes or shorter, and the total rolling reduction in cold rolling is 88% or higher. 96% or less, and finish annealing is performed at 950 ° C. or more and 1050 ° C. or less for 10 seconds or more and 120 seconds or less.
本発明によれば、所定の鋼組成を有する鋼塊または鋼片を用い、熱延板焼鈍条件、冷間圧延条件、仕上げ焼鈍条件を所定の範囲としているため磁気特性の優れた無方向性電磁鋼板を冷間圧延時に破断を引き起こすことなく製造できる。 According to the present invention, a steel ingot or steel slab having a predetermined steel composition is used, and the hot rolled sheet annealing conditions, the cold rolling conditions, and the finish annealing conditions are in a predetermined range. A steel sheet can be produced without causing breakage during cold rolling.
以下、本発明に係る無方向性電磁鋼板の製造方法における各工程について説明する。 Hereinafter, each process in the manufacturing method of the non-oriented electrical steel sheet according to the present invention will be described.
(1)熱間圧延工程
本発明における熱間圧延工程は、上述した鋼組成を備える鋼塊または鋼片(以下、「スラブ」ともいう。)に熱間圧延を施す工程である。なお、鋼塊または鋼片の鋼組成については、上述した「A.無方向性電磁鋼板」の項に記載したものと同様であるので、ここでの説明は省略する。
(1) Hot rolling process The hot rolling process in this invention is a process of hot-rolling the steel ingot or steel slab (henceforth "slab") provided with the steel composition mentioned above. In addition, about the steel composition of a steel ingot or a steel piece, since it is the same as that of what was described in the term of the "A. non-oriented electrical steel sheet" mentioned above, description here is abbreviate | omitted.
本工程においては、上述した組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、加熱炉に装入して熱間圧延を施す。この際、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。スラブ加熱温度は特に限定されるものではないが、コストおよび熱間圧延性の観点から1000〜1300℃とすることが好ましい。より好ましくは1050〜1250℃である。また、熱間圧延の各種条件は特に限定されるものではなく、例えば仕上げ温度が700〜950℃、巻き取り温度が750℃以下など、一般的な条件に従って行えばよい。熱間圧延の仕上げ厚は生産性の観点から1.8mm以上2.8mm以下が好ましい。仕上げ厚が1.8mm未満では熱間圧延および酸洗の能率が著しく劣化するためである。また、後述する好ましい冷延圧下率を確保する観点からも、上記の仕上げ厚が好ましい。 In this step, the steel having the above-described composition is made into a slab by a general method such as a continuous casting method or a method of rolling a steel ingot, and is charged in a heating furnace and subjected to hot rolling. At this time, when the slab temperature is high, hot rolling may be performed without charging the heating furnace. The slab heating temperature is not particularly limited, but is preferably 1000 to 1300 ° C. from the viewpoint of cost and hot rolling properties. More preferably, it is 1050-1250 degreeC. Moreover, various conditions of hot rolling are not specifically limited, For example, what is necessary is just to perform according to general conditions, such as finishing temperature 700-950 degreeC and coiling temperature 750 degrees C or less. The finished thickness of hot rolling is preferably 1.8 mm or more and 2.8 mm or less from the viewpoint of productivity. This is because when the finished thickness is less than 1.8 mm, the efficiency of hot rolling and pickling is significantly deteriorated. Moreover, said finishing thickness is preferable also from a viewpoint of ensuring the preferable cold rolling reduction rate mentioned later.
(2)熱延板焼鈍工程
本発明においては、上記熱間圧延工程により得られた熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行う。熱延板焼鈍工程を行うことにより、磁気特性が向上するからである。熱延板焼鈍は、950℃以上1050℃以下で10秒間以上3分間以下保持する連続焼鈍にて実施する。熱延板焼鈍温度が上述の範囲を超えると設備への負荷が大きくなり、熱延板焼鈍時間が上述の範囲を超えると生産性の劣化を招く。熱延板焼鈍温度および熱延板焼鈍時間が上述の範囲を下回ると磁気特性向上の効果が小さい。熱延板焼鈍工程では、950℃以上1050℃以下で10秒以上3分以下保持した後に、800℃以上920℃以下で10秒以上2分以下保持することが好ましい。これにより磁束密度向上の効果が高まるからである。この理由は明確でないが、冷却中に当該温度域へ保持することでP、Snの粒界への偏析が進行し、引き続く冷間圧延、仕上げ焼鈍後に好ましい集合組織が発達すると推察される。これらを一連の焼鈍として実施することで、生産性を損なうことなく、薄手材の磁束密度を向上させることができる。偏析を進行させる観点からは箱焼鈍型の熱延板焼鈍が有利であるが、生産性に劣る。さらに、冷間圧延性向上のために含有させたMoが長時間保持する箱焼鈍型熱延板焼鈍中に析出物を形成し、冷間圧延性向上の効果が減少するばかりか磁気特性の劣化を引き起こす。本発明では、連続焼鈍型の熱延板焼鈍が箱焼鈍型の熱延板焼鈍と比較してPの粒界偏析の進行が軽微なことに起因すると推察される磁束密度向上効果の差を、PとSnを複合的に含有させることによって改善しており、この複合効果の発現には粒界のみならず粒内に固溶したP、Snも重要である。Moによる冷間圧延性向上の効果を享受しつつ、かつP,Snによる複合的な磁束密度向上の効果を得るため、上述の二段階の熱延板焼鈍を実施することが好ましい。
(2) Hot-rolled sheet annealing process In this invention, the hot-rolled sheet annealing process which performs hot-rolled sheet annealing to the hot-rolled steel plate obtained by the said hot-rolling process is performed. This is because the magnetic properties are improved by performing the hot-rolled sheet annealing step. Hot-rolled sheet annealing is performed by continuous annealing at 950 ° C. or higher and 1050 ° C. or lower for 10 seconds or longer and 3 minutes or shorter. When the hot-rolled sheet annealing temperature exceeds the above-described range, the load on the equipment becomes large, and when the hot-rolled sheet annealing time exceeds the above-mentioned range, productivity is deteriorated. When the hot-rolled sheet annealing temperature and the hot-rolled sheet annealing time are less than the above range, the effect of improving the magnetic properties is small. In the hot-rolled sheet annealing step, it is preferable to hold at 950 ° C. or higher and 1050 ° C. or lower for 10 seconds or longer and 3 minutes or shorter, and then hold at 800 ° C. or higher and 920 ° C. or lower for 10 seconds or longer and 2 minutes or shorter. This is because the effect of improving the magnetic flux density is increased. Although the reason for this is not clear, it is presumed that the segregation of P and Sn to the grain boundaries proceeds by maintaining the temperature range during cooling, and a preferable texture develops after subsequent cold rolling and finish annealing. By implementing these as a series of annealing, the magnetic flux density of a thin material can be improved without impairing productivity. From the viewpoint of advancing segregation, box annealing type hot-rolled sheet annealing is advantageous, but productivity is inferior. In addition, precipitates are formed during box annealing-type hot-rolled sheet annealing that Mo contained for improving cold-rollability is maintained for a long time, and the effect of improving cold-rollability is reduced as well as deterioration of magnetic properties. cause. In the present invention, the difference in the effect of improving the magnetic flux density, which is presumed to be caused by the progress of the grain boundary segregation of P in the continuous annealing type hot rolled sheet annealing compared with the box annealing type hot rolled sheet annealing, P and Sn are improved by containing P and Sn in a composite manner, and P and Sn dissolved in the grains as well as the grain boundaries are important for the expression of the composite effect. In order to obtain the effect of improving the cold rolling property by Mo and obtaining the effect of improving the composite magnetic flux density by P and Sn, it is preferable to perform the above-described two-stage hot-rolled sheet annealing.
(3)冷間圧延工程
本発明における冷間圧延工程は、上記熱延板焼鈍工程により得られた鋼板に中間焼鈍をはさむことなく一回の冷間圧延を施す工程である。本工程において、合計圧下率を88%以上96%以下とし、鋼板を所定の板厚に仕上げる。好ましくは90%以上である。上記条件で圧延を実施することで、本発明の条件を備えた鋼板では仕上げ焼鈍後に磁気特性向上に好ましい前述の集合組織が効果的に発達する。
(3) Cold rolling process The cold rolling process in the present invention is a process in which the steel sheet obtained by the hot-rolled sheet annealing process is subjected to a single cold rolling without intermediate annealing. In this step, the total rolling reduction is set to 88% or more and 96% or less, and the steel sheet is finished to a predetermined thickness. Preferably it is 90% or more. By carrying out rolling under the above conditions, the above-mentioned texture preferable for improving magnetic properties is effectively developed after finish annealing in the steel sheet having the conditions of the present invention.
(4)仕上げ焼鈍工程
本発明における仕上げ焼鈍工程では、上述した冷間圧延工程により得られた冷間圧延鋼板を950℃以上1050℃以下で10秒間以上120秒間以下の焼鈍を施す。仕上焼鈍における焼鈍温度(以下、「仕上焼鈍温度」ともいう。)が950℃未満であったり、仕上焼鈍における焼鈍時間(以下、「仕上焼鈍時間」ともいう。)が10秒間未満であったりすると、所望の鉄損の確保が困難な場合があるからである。また、仕上焼鈍温度が1050℃を超えると設備への負荷が大きくなり、仕上焼鈍時間が120秒間を超えると生産性の劣化を招くからである。
(4) Finish annealing process In the finish annealing process in this invention, the cold rolled steel plate obtained by the cold rolling process mentioned above is annealed at 950 degreeC or more and 1050 degrees C or less for 10 seconds or more and 120 seconds or less. When the annealing temperature in finish annealing (hereinafter also referred to as “finish annealing temperature”) is less than 950 ° C., or the annealing time in finish annealing (hereinafter also referred to as “finish annealing time”) is less than 10 seconds. This is because it may be difficult to ensure the desired iron loss. Further, when the finish annealing temperature exceeds 1050 ° C., the load on the equipment increases, and when the finish annealing time exceeds 120 seconds, the productivity is deteriorated.
(5)その他
本発明においては、上記仕上げ焼鈍工程後に絶縁コーティングを施すコーティング工程を行うことが好ましい。絶縁コーティングの種類は特に限定されるものではなく、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁コーティングを施せばよい。無機成分としては重クロム酸−ホウ酸系、リン酸系、シリカ系などが使用でき、有機成分としては一般的なアクリル系、アクリルスチレン系、アクリルシリコン系、シリコン系、ポリエステル系、エポキシ系、フッ素系の樹脂が使用できる。塗装性を考慮するとエマルジョンタイプの樹脂がよい。また、加熱・加圧することにより接着能を発揮するコーティングを施してもよい。接着能を有するコーティングとしては、アクリル系、フエノール系、エポキシ系、メラミン系などがよい。
(5) Others In the present invention, it is preferable to perform a coating process for applying an insulating coating after the finish annealing process. The type of insulating coating is not particularly limited, and it is only necessary to apply an insulating coating made of only an organic component, only an inorganic component, or an organic-inorganic composite. Dichromic acid-boric acid-based, phosphoric acid-based, silica-based, etc. can be used as inorganic components, and organic components such as general acrylic-based, acrylic styrene-based, acrylic silicon-based, silicon-based, polyester-based, epoxy-based, Fluorine resin can be used. In consideration of paintability, an emulsion type resin is preferable. Moreover, you may give the coating which exhibits adhesiveness by heating and pressurizing. As the coating having adhesiveness, acrylic, phenol, epoxy, melamine, and the like are preferable.
なお、本発明により製造される無方向性電磁鋼板については、上述した「A.無方向性電磁鋼板」の項に記載したものと同様であるので、ここでの説明は省略する。
本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The non-oriented electrical steel sheet manufactured according to the present invention is the same as that described in the above-mentioned section “A. Non-oriented electrical steel sheet”, and thus the description thereof is omitted here.
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
以下、実施例および比較例を例示して、本発明を具体的に説明する。
[実施例1]
下記表1に示す化学成分の鋼を溶製し、熱間圧延にて板厚2.0mmに仕上げた。その後、1000℃で40秒間保持した後に800℃で60秒保持する連続焼鈍型の熱延板焼鈍を施し、冷間圧延にて板厚0.15mmに仕上げた。その後、1000℃で30秒間保持する仕上げ焼鈍を施した。得られた無方向性電磁鋼板を55mm角の単板試験片に打ち抜き、単板磁気測定器にて磁束密度B50と鉄損W10/800(800Hzにて1.0Tに磁化した場合の鉄損)を測定するとともに、板厚1/4位置にてX線回折法により{110}、{200}、{211}および{310}極点図を測定し、ODFからφ2=0°断面のφ1=20°、Φ=15°の集積度(強度)を評価した。結果を表1に示す。下線は本発明で規定する範囲外を示す。
Hereinafter, the present invention will be described specifically by way of examples and comparative examples.
[Example 1]
Steels having chemical components shown in Table 1 below were melted and finished to a thickness of 2.0 mm by hot rolling. Subsequently, continuous annealing-type hot-rolled sheet annealing was performed, which was held at 1000 ° C. for 40 seconds and then held at 800 ° C. for 60 seconds, and finished to a sheet thickness of 0.15 mm by cold rolling. Then, the finish annealing which hold | maintains at 1000 degreeC for 30 second was given. The obtained non-oriented electrical steel sheet was punched into a 55 mm square single plate test piece, and the magnetic flux density B 50 and iron loss W 10/800 (iron when magnetized to 1.0 T at 800 Hz by a single plate magnetometer) Loss), and {110}, {200}, {211} and {310} pole figures are measured by X-ray diffractometry at a thickness of 1/4, and φ1 of φ2 = 0 ° cross section from ODF The degree of integration (intensity) at 20 ° and Φ = 15 ° was evaluated. The results are shown in Table 1. The underline indicates outside the range defined in the present invention.
鋼番号1はSi含有量が本発明で限定する下限値を外れているばかりか上記式(1)を満たさず、特に鉄損が劣っていた。鋼番号2は、Si、Mn、Mo含有量が本発明で限定する範囲を外れており、特にSi含有量が本発明で限定する上限値を外れているため冷間圧延時に破断した。鋼番号3は、Mn含有量が本発明で限定する上限値を外れているばかりか上記式(1)を満たさず、磁束密度、鉄損とも劣っていた。鋼番号4はAl含有量が本発明で限定する下限値を外れているばかりか上記式(1)を満たさず、磁束密度、鉄損とも劣っていた。鋼番号5は、Al含有量が本発明で限定する上限値を外れているため磁束密度が低かった。鋼番号6は、S含有量が、鋼番号7はN含有量が、それぞれ本発明で限定する上限値を外れているため、磁束密度、鉄損とも劣っていた。鋼番号8は、P含有量が本発明で限定する上限値を外れているため冷間圧延時に破断した。鋼番号9はMo含有量が本発明で限定する上限値を外れているため磁束密度、鉄損とも劣っていた。鋼番号10はP含有量が本発明で限定する下限値を外れているため磁束密度が低かった。
これらに対して、本発明で限定する条件を満足する鋼番号11〜16および鋼番号17〜22は磁気特性向上に好ましい集合組織が発達しており、同等のSi、Mn、Al含有量を有する鋼番号10と比較して鉄損、磁束密度とも優れていた。鋼番11〜16および鋼番号17〜22を比較すると、Sn含有量が好ましい範囲の鋼番号17〜22の方が磁束密度に優れていた。
Steel number 1 not only satisfied the above formula (1), but also had an inferior iron loss, as well as the Si content not exceeding the lower limit defined in the present invention. Steel No. 2 broke during cold rolling because the Si, Mn, and Mo contents deviated from the range limited by the present invention, and in particular, the Si content deviated from the upper limit defined by the present invention. Steel number 3 not only satisfied the above formula (1) but also inferior in magnetic flux density and iron loss, as well as the Mn content not exceeding the upper limit defined in the present invention. Steel No. 4 not only exceeded the lower limit value defined by the present invention for the Al content, but also did not satisfy the above formula (1), and was inferior in both magnetic flux density and iron loss. Steel No. 5 had a low magnetic flux density because the Al content deviated from the upper limit defined in the present invention. Steel No. 6 was inferior in both the magnetic flux density and iron loss because the S content in Steel No. 7 and the N content in Steel No. 7 deviated from the upper limits defined in the present invention. Steel number 8 broke during cold rolling because the P content deviated from the upper limit defined in the present invention. Steel No. 9 was inferior in both magnetic flux density and iron loss because the Mo content deviated from the upper limit defined in the present invention. Steel No. 10 had a low magnetic flux density because the P content was outside the lower limit defined in the present invention.
On the other hand, Steel Nos. 11 to 16 and Steel Nos. 17 to 22 satisfying the conditions limited in the present invention have developed favorable textures for improving magnetic properties, and have equivalent Si, Mn, and Al contents. Compared with Steel No. 10, both iron loss and magnetic flux density were excellent. When steel numbers 11-16 and steel numbers 17-22 were compared, the direction of steel numbers 17-22 of the range with preferable Sn content was excellent in the magnetic flux density.
[実施例2]
表1の鋼番号10と19の熱延板(板厚2.0mm)に対し、(A)1000℃で40秒間保持する熱延板焼鈍、(B)1000℃で40秒間保持した後に800℃で60秒保持する連続焼鈍型の熱延板焼鈍、(C)900℃で40秒間保持する熱延板焼鈍、(D)950℃で5秒保持する熱延板焼鈍のいずれかを施し、冷間圧延にて板厚0.15〜0.30mmに仕上げた。その後、1000℃で30秒間保持する仕上げ焼鈍を施した。試験番号2-15については900℃で10秒保持する仕上げ焼鈍、試験番号2-16については950℃で5秒保持する仕上げ焼鈍を施した。得られた無方向性電磁鋼板を55mm角の単板試験片に打ち抜き、単板磁気測定器にて磁束密度B50と鉄損W10/800(800Hzにて1.0Tに磁化した場合の鉄損)を測定するとともに、板厚1/4位置にてX線回折法により{110}、{200}、{211}および{310}極点図を測定し、ODFからφ2=0°断面のφ1=20°、Φ=15°の集積度を評価した。結果を表2に示す。
[Example 2]
Steel No. 10 of Table 1 and to 19 of the hot-rolled sheet (sheet thickness 2.0 mm), (A) hot-rolled sheet annealing for holding at 1000 ° C. for 40 seconds, 800 ° C. after holding for 40 seconds at 1000 ° C. (B) (C) Hot-rolled sheet annealing held at 900 ° C. for 40 seconds, (D) Hot-rolled sheet annealing held at 950 ° C. for 5 seconds, and cooled. Finished to a sheet thickness of 0.15 to 0.30 mm by hot rolling. Then, the finish annealing which hold | maintains at 1000 degreeC for 30 second was given. For test number 2-15, finish annealing was held at 900 ° C. for 10 seconds, and for test number 2-16, finish annealing was held at 950 ° C. for 5 seconds. The obtained non-oriented electrical steel sheet was punched into a 55 mm square single plate test piece, and the magnetic flux density B 50 and iron loss W 10/800 (iron when magnetized to 1.0 T at 800 Hz by a single plate magnetometer) Loss), and {110}, {200}, {211} and {310} pole figures are measured by X-ray diffractometry at a thickness of 1/4, and φ1 of φ2 = 0 ° cross section from ODF = 20 °, Φ = 15 ° integration degree was evaluated. The results are shown in Table 2.
鋼番号10を用いた試験番号2-1〜2-6は、鋼組成が本発明の限定範囲外であり、磁気特性向上に好ましい方位への集積度も弱いため磁束密度、鉄損ともに劣っていた。これに対し鋼組成が本発明の限定を満足する鋼番号19を用いた試験番号2-7〜2-12は、板厚によらず試験番号2-1〜2-6よりも優れた磁気特性を有しており、とりわけ冷延圧下率の高い板厚薄手材にて効果が顕著であった。また、熱延板焼鈍条件を本発明の好ましい条件にて実施した試験番号2-10〜2-12では、さらに磁気特性に優れていた。一方、熱延板焼鈍時の温度、保持時間が本発明の好ましい範囲を外れる試験番号2-13,14および仕上げ焼鈍時の温度、保持時間が本発明の好ましい範囲を外れる試験番号2-15,16は所望の集合組織が得られなかった。 Test numbers 2-1 to 2-6 using steel number 10 are inferior in both magnetic flux density and iron loss because the steel composition is outside the limited range of the present invention and the degree of integration in a preferred orientation for improving magnetic properties is weak. It was. On the other hand, test numbers 2-7 to 2-12 using steel number 19 whose steel composition satisfies the limitation of the present invention are superior in magnetic properties to test numbers 2-1 to 2-6 regardless of the plate thickness. In particular, the effect was remarkable in a thin plate material having a high cold rolling reduction ratio. Moreover, in the test numbers 2-10 to 2-12 which implemented the hot-rolled sheet annealing conditions on the preferable conditions of this invention, it was further excellent in the magnetic characteristic. On the other hand, the test number 2-13, 14 when the temperature during the hot-rolled sheet annealing and the holding time are out of the preferred range of the present invention and the test number 2-15 when the temperature during the finish annealing and the holding time are out of the preferable range of the present invention. As for 16, the desired texture was not obtained.
Claims (5)
Si+2×Al−Mn≧2.0 (1)
(ここで、Si、AlおよびMnは、各元素の含有量(単位:質量%)を示す。) By mass%, Si: 1.7% to 3.5%, Al: 0.1% to 2.0% and Mn: 0.08% to less than 1.5% satisfy the following formula (1) In addition, P: more than 0.03% 0.15% or less, Sn: 0.03% to 0.15%, C: 0.005% or less, S: 0.0040% or less, N: 0.005% or less and Mo: 0.002% or more and 0.2% or less, with the balance being Fe and impurities, in the crystal orientation distribution function at the 1/4 thickness position after finish annealing A non-oriented electrical steel sheet characterized by a strength of φ1 = 20 ° and φ = 15 ° of a φ2 = 0 ° cross section being 5 or more.
Si + 2 × Al-Mn ≧ 2.0 (1)
(Here, Si, Al, and Mn indicate the content (unit: mass%) of each element.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015030882A JP6476979B2 (en) | 2015-02-19 | 2015-02-19 | Non-oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015030882A JP6476979B2 (en) | 2015-02-19 | 2015-02-19 | Non-oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016151063A true JP2016151063A (en) | 2016-08-22 |
JP6476979B2 JP6476979B2 (en) | 2019-03-06 |
Family
ID=56696194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015030882A Active JP6476979B2 (en) | 2015-02-19 | 2015-02-19 | Non-oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6476979B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106059A (en) * | 2015-12-08 | 2017-06-15 | 新日鐵住金株式会社 | Nonoriented magnetic steel sheet and production method therefor |
JP2018012854A (en) * | 2016-07-20 | 2018-01-25 | 新日鐵住金株式会社 | Nonoriented silicon steel sheet and method for producing the same |
WO2018221126A1 (en) * | 2017-05-31 | 2018-12-06 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and production method therefor |
CN111471927A (en) * | 2020-04-27 | 2020-07-31 | 马鞍山钢铁股份有限公司 | High-magnetic-induction non-oriented silicon steel for automobile generator and preparation method thereof |
JPWO2022210864A1 (en) * | 2021-03-31 | 2022-10-06 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001049340A (en) * | 1999-08-10 | 2001-02-20 | Nippon Steel Corp | Production of nonoriented silicon steel sheet good in magnetic flux density and iron loss and its production |
JP2001123252A (en) * | 1999-10-27 | 2001-05-08 | Nippon Steel Corp | Nonoriented silicon steel sheet for motor-driven power steering motor core and producing method therefor |
JP2013010982A (en) * | 2011-06-28 | 2013-01-17 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
WO2013046661A1 (en) * | 2011-09-27 | 2013-04-04 | Jfeスチール株式会社 | Non-grain-oriented magnetic steel sheet |
JP2014162939A (en) * | 2013-02-22 | 2014-09-08 | Jfe Steel Corp | Hot-rolled steel sheet for producing nonoriented silicon steel sheet, and method for producing the same |
US20140373340A1 (en) * | 2011-09-16 | 2014-12-25 | Voestalpine Stahl Gmbh | Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof |
-
2015
- 2015-02-19 JP JP2015030882A patent/JP6476979B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001049340A (en) * | 1999-08-10 | 2001-02-20 | Nippon Steel Corp | Production of nonoriented silicon steel sheet good in magnetic flux density and iron loss and its production |
JP2001123252A (en) * | 1999-10-27 | 2001-05-08 | Nippon Steel Corp | Nonoriented silicon steel sheet for motor-driven power steering motor core and producing method therefor |
JP2013010982A (en) * | 2011-06-28 | 2013-01-17 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
US20140373340A1 (en) * | 2011-09-16 | 2014-12-25 | Voestalpine Stahl Gmbh | Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof |
WO2013046661A1 (en) * | 2011-09-27 | 2013-04-04 | Jfeスチール株式会社 | Non-grain-oriented magnetic steel sheet |
JP2014162939A (en) * | 2013-02-22 | 2014-09-08 | Jfe Steel Corp | Hot-rolled steel sheet for producing nonoriented silicon steel sheet, and method for producing the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106059A (en) * | 2015-12-08 | 2017-06-15 | 新日鐵住金株式会社 | Nonoriented magnetic steel sheet and production method therefor |
JP2018012854A (en) * | 2016-07-20 | 2018-01-25 | 新日鐵住金株式会社 | Nonoriented silicon steel sheet and method for producing the same |
WO2018221126A1 (en) * | 2017-05-31 | 2018-12-06 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and production method therefor |
JP2018204052A (en) * | 2017-05-31 | 2018-12-27 | Jfeスチール株式会社 | Nonoriented electromagnetic steel sheet and manufacturing method therefor |
TWI665313B (en) * | 2017-05-31 | 2019-07-11 | 日商杰富意鋼鐵股份有限公司 | Non-oriented electromagnetic steel plate and manufacturing method thereof |
US11404189B2 (en) | 2017-05-31 | 2022-08-02 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method for manufacturing the same |
CN111471927B (en) * | 2020-04-27 | 2022-03-25 | 马鞍山钢铁股份有限公司 | High-magnetic-induction non-oriented silicon steel for automobile generator and preparation method thereof |
CN111471927A (en) * | 2020-04-27 | 2020-07-31 | 马鞍山钢铁股份有限公司 | High-magnetic-induction non-oriented silicon steel for automobile generator and preparation method thereof |
JPWO2022210864A1 (en) * | 2021-03-31 | 2022-10-06 | ||
WO2022210864A1 (en) * | 2021-03-31 | 2022-10-06 | 日本製鉄株式会社 | Non-oriented electromagnetic steel sheet, production method for non-oriented electromagnetic steel sheet, electric motor, and production method for electric motor |
JP7231115B2 (en) | 2021-03-31 | 2023-03-01 | 日本製鉄株式会社 | Non-oriented electrical steel sheet, method for manufacturing non-oriented electrical steel sheet, electric motor, and method for manufacturing electric motor |
CN117157420A (en) * | 2021-03-31 | 2023-12-01 | 日本制铁株式会社 | Non-oriented electromagnetic steel sheet, method for producing non-oriented electromagnetic steel sheet, motor, and method for producing motor |
US12119706B2 (en) | 2021-03-31 | 2024-10-15 | Nippon Steel Corporation | Non-oriented electrical steel sheet, production method for non-oriented electrical steel sheet, electric motor and production method for electric motor |
Also Published As
Publication number | Publication date |
---|---|
JP6476979B2 (en) | 2019-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4586669B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
JP6651759B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6226072B2 (en) | Electrical steel sheet | |
JP4779474B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP5712863B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP5601078B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
CN103052722B (en) | Process for producing non-oriented electromagnetic steel sheet | |
JP5825494B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6451832B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6476979B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2010121150A (en) | Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same | |
JP6828292B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP6319465B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2012036459A (en) | Non-oriented magnetic steel sheet and production method therefor | |
KR20170026552A (en) | Non-oriented electromagnetic steel sheet having excellent magnetic characteristics | |
JP5716811B2 (en) | Method for producing non-oriented electrical steel sheet | |
TWI641702B (en) | Non-oriented electromagnetic steel sheet with excellent recyclability | |
JP5824965B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP6638359B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5671872B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6575269B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5712862B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP4506664B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP5333415B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP4853392B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190121 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6476979 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |