JP6176181B2 - Laminated electrical steel sheet and manufacturing method thereof - Google Patents

Laminated electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6176181B2
JP6176181B2 JP2014088510A JP2014088510A JP6176181B2 JP 6176181 B2 JP6176181 B2 JP 6176181B2 JP 2014088510 A JP2014088510 A JP 2014088510A JP 2014088510 A JP2014088510 A JP 2014088510A JP 6176181 B2 JP6176181 B2 JP 6176181B2
Authority
JP
Japan
Prior art keywords
less
electrical steel
steel sheet
laminated
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088510A
Other languages
Japanese (ja)
Other versions
JP2015206092A (en
Inventor
智幸 大久保
智幸 大久保
尾田 善彦
善彦 尾田
新司 小関
新司 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014088510A priority Critical patent/JP6176181B2/en
Publication of JP2015206092A publication Critical patent/JP2015206092A/en
Application granted granted Critical
Publication of JP6176181B2 publication Critical patent/JP6176181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、無方向性電磁鋼板を積層・接着して製造される積層電磁鋼板およびその製造方法に関するものである。   The present invention relates to a laminated electrical steel sheet produced by laminating and bonding non-oriented electrical steel sheets and a method for producing the same.

無方向性電磁鋼板は、EV、HEV用モーターを始めとする小型高速回転モーターや、小型高効率トランスに用いられる材料である。これら電気機器に用いられる鉄芯は、機器の小型化、高効率化の観点から、数百Hz乃至数kHzの高周波域で使用されるため、高周波特性に優れることが不可欠となる。具体的には、周波数の増加にともなう鉄損の急激な増加が問題となり、鉄芯材料としては高周波域での鉄損特性に優れることが第一に重要となる。   The non-oriented electrical steel sheet is a material used for small high-speed rotating motors such as EV and HEV motors and small high-efficiency transformers. Since iron cores used in these electric devices are used in a high frequency range of several hundred Hz to several kHz from the viewpoint of downsizing and high efficiency of the devices, it is essential to have excellent high frequency characteristics. Specifically, a rapid increase in iron loss with an increase in frequency becomes a problem, and it is first important that the iron core material has excellent iron loss characteristics in a high frequency region.

こうした背景のもと、無方向性電磁鋼板の板厚を薄くして渦流損を低減することで、高周波鉄損に優れた材料を提供する技術が、例えば、特許文献1に開示されている。
ところが、このような薄手無方向性電磁鋼板では、高周波鉄損を効果的に低減できるものの、鉄心製造の生産性が低下するという問題が残っていた。すなわち、ユーザーが、薄手無方向性電磁鋼板である積み厚の鉄芯を製造しようとする場合、必然的に打ち抜き工数と積層組み工数の増加をもたらしてしまうのである。
Under such a background, for example, Patent Document 1 discloses a technique for providing a material excellent in high-frequency iron loss by reducing the eddy current loss by reducing the thickness of the non-oriented electrical steel sheet.
However, in such a thin non-oriented electrical steel sheet, although high-frequency iron loss can be effectively reduced, there remains a problem that productivity of iron core production is lowered. That is, when a user tries to manufacture a thick iron core, which is a thin non-oriented electrical steel sheet, inevitably increases the number of punching steps and the number of laminated assembling steps.

こうした問題を回避するためには、鋼板メーカー側で、予め数枚の薄手無方向性電磁鋼板を接着して積層一体化してしまう方法が有効であり、このような方法を電磁鋼板に応用した技術が、例えば特許文献2に開示されている。   In order to avoid such problems, it is effective on the steel sheet manufacturer's side to bond several thin non-oriented electrical steel sheets in advance and integrate them together. Technology that applies such methods to electrical steel sheets However, it is disclosed in Patent Document 2, for example.

特開平3−223445号公報JP-A-3-223445 特開平7−201551号公報JP-A-7-201551

しかしながら、特許文献2で提案された方法は、一旦、薄手無方向性電磁鋼板を製造したのち、積層・接着して積層鋼板とすることを想定している。このような方法には、以下のような課題がある。   However, the method proposed in Patent Document 2 assumes that a thin non-oriented electrical steel sheet is once manufactured and then laminated and bonded to form a laminated steel sheet. Such a method has the following problems.

第一に、薄手無方向性電磁鋼板を製造する際、板厚を薄くすると、それに伴ってコイル長が長くなってしまうため、圧延・焼鈍に多大な時間がかかる結果、製造コストが高くなってしまうというものである。   First, when manufacturing a thin non-oriented electrical steel sheet, if the plate thickness is reduced, the coil length is increased accordingly, and as a result, it takes a lot of time for rolling and annealing, resulting in an increase in manufacturing cost. It is a thing that ends up.

第二に、薄手無方向性電磁鋼板を積層・接着する工程を、新たに追加する必要があり、やはり製造コストが高くなってしまうというものである。   Secondly, it is necessary to newly add a process of laminating and adhering thin non-oriented electrical steel sheets, which also increases the manufacturing cost.

すなわち、特許文献2に記載された技術で製造された積層鋼板は、製造コストが高くなる要因を含むため、安価に提供することができないという課題が有る。
なお、特許文献2には、薄手無方向性電磁鋼板の製造工程途中で鋼板を接着する方法も記載されているが、実施例にはこのような方法は記載されておらず、実施可能な程度には開示されていない。
That is, the laminated steel plate manufactured by the technique described in Patent Document 2 has a problem that it cannot be provided at low cost because it includes a factor that increases the manufacturing cost.
In addition, Patent Document 2 also describes a method of bonding steel plates during the manufacturing process of a thin non-oriented electrical steel sheet, but such a method is not described in the examples and can be implemented. Is not disclosed.

本発明は、上記した現状に鑑み開発されたもので、安定して高い鉄損特性を有する積層電磁鋼板を、コストの高いプロセスを用いることなく、効率よく得ることのできる製造方法と共に提案することを目的とする。   The present invention was developed in view of the above-mentioned present situation, and proposes a laminated electrical steel sheet having a stable and high iron loss characteristic together with a manufacturing method that can be obtained efficiently without using a costly process. With the goal.

発明者らは、上記課題を解決するための手段として、仕上焼鈍前に耐熱性や、絶縁性の高い接着剤で鋼板を積層・接着することを着想し、鋭意検討した結果、接着剤の成分等に、上記課題を解決するための種々の知見が認められた。
本発明は、上記知見に基づき、さらに検討を重ねて成されたものである。
As a means for solving the above problems, the inventors conceived of laminating and adhering steel plates with an adhesive having high heat resistance and insulation before finish annealing, and as a result of earnest studies, the components of the adhesive The various knowledge for solving the said subject was recognized.
The present invention has been made based on the above findings and further studies.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.05%以下、Si:7.0%以下、Al:3.0%以下、Mn:3.0%以下、P:0.2%以下、S:0.01%以下、N:0.01%以下およびO:0.01%以下を含有し、残部がFeおよび不可避不純物からなり、板厚が0.005〜0.50mm、3次元粗さ:Saが0.1μm以上である2枚以上の無方向性電磁鋼板が、B、Mg、Al、Si、P、CaおよびZrの元素の内、少なくとも1種を含む酸化物、窒化物および炭化物のうちから選んだ1種以上を主体とする絶縁層で接着され、総板厚が0.10〜1.0mmである積層電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.05% or less, Si: 7.0% or less, Al: 3.0% or less, Mn: 3.0% or less, P: 0.2% or less, S: 0.01% or less, N: 0.01% or less, and O: 0.01% Two or more non-oriented electrical steel sheets containing the following, the balance consisting of Fe and inevitable impurities, and having a plate thickness of 0.005 to 0.50 mm, three-dimensional roughness: Sa of 0.1 μm or more are B, Mg, Al Bonded with an insulating layer mainly composed of one or more selected from oxides, nitrides and carbides containing at least one of elements of Si, P, Ca and Zr, and a total thickness of 0.10 to 1.0 Laminated electrical steel sheet that is mm.

2.前記無方向性電磁鋼板が、さらに質量%で、Sn:0.005%以上0.2%以下、Sb:0.005%以上0.2%以下、Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.0005%以上0.010%以下、Ti:0.001%以上1%以下、Nb:0.001%以上1%以下、V:0.001%以上1%以下、B:0.0005%以上0.01%以下、Cr:0.1%以上3.0%以下およびCu:0.1%以上3.0%以下から選んだ少なくとも1種を含む前記1に記載の積層電磁鋼板。 2. The non-oriented electrical steel sheet is further mass%, Sn: 0.005% to 0.2%, Sb: 0.005% to 0.2%, Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM : 0.0005% to 0.010%, Ti: 0.001% to 1%, Nb: 0.001% to 1%, V: 0.001% to 1%, B: 0.0005% to 0.01%, Cr: 0.1% to 3.0% 2. The laminated electrical steel sheet according to 1 above, comprising at least one selected from Cu and 0.1% or less and Cu: 0.1% or more and 3.0% or less.

3.質量%で、C:0.05%以下、Si:7.0%以下、Al:3.0%以下、Mn:3.0%以下、P:0.2%以下、S:0.01%以下、N:0.01%以下およびO:0.01%以下を含有し、残部Feおよび不可避不純物からなるスラブを、熱間圧延してから、熱延板焼鈍を行い、あるいは行わずに、1回の冷間圧延もしくは中間焼鈍を挟む2回以上の冷間圧延を行い、板厚を0.005〜0.5mmで、3次元粗さ:Saを0.1μm以上の無方向性電磁鋼板としたのち、仕上焼鈍と絶縁被膜塗布を行う一連の積層電磁鋼板の製造方法において、
上記冷間圧延後、上記仕上焼鈍前にB、Mg、Al、Si、P、CaおよびZrの元素の内、少なくとも1種を含む酸化物、窒化物および炭化物のうちから選んだ1種以上を主体とする接着剤で2枚以上の鋼板を積層し、総板厚を0.10〜1.0mmとする積層電磁鋼板の製造方法。
3. In mass%, C: 0.05% or less, Si: 7.0% or less, Al: 3.0% or less, Mn: 3.0% or less, P: 0.2% or less, S: 0.01% or less, N: 0.01% or less, and O: 0.01% A slab containing the following, the balance Fe and inevitable impurities, hot-rolled, and then with or without hot-rolled sheet annealing, two or more cold sandwiches with one cold rolling or intermediate annealing. A series of laminated electrical steel sheet manufacturing methods in which rolling is performed and a non-oriented electrical steel sheet having a thickness of 0.005 to 0.5 mm and a three-dimensional roughness Sa of 0.1 μm or more is applied, followed by finish annealing and coating with an insulating film. In
One or more selected from oxides, nitrides and carbides containing at least one of the elements B, Mg, Al, Si, P, Ca and Zr after the cold rolling and before the finish annealing. A method for producing a laminated electrical steel sheet in which two or more steel sheets are laminated with an adhesive as a main component so that the total thickness is 0.10 to 1.0 mm.

4.前記スラブが、さらに質量%で、Sn:0.005%以上0.2%以下、Sb:0.005%以上0.2%以下、Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.0005%以上0.010%以下、Ti:0.001%以上1%以下、Nb:0.001%以上1%以下、V:0.001%以上1%以下、B:0.0005%以上0.01%以下、Cr:0.1%以上3.0%以下およびCu:0.1%以上3.0%以下から選んだ少なくとも1種を含む前記3に記載の積層電磁鋼板の製造方法。 4). The slab is further mass%, Sn: 0.005% to 0.2%, Sb: 0.005% to 0.2%, Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM: 0.0005% or more 0.010% or less, Ti: 0.001% to 1%, Nb: 0.001% to 1%, V: 0.001% to 1%, B: 0.0005% to 0.01%, Cr: 0.1% to 3.0% and Cu The method for producing a laminated electrical steel sheet according to 3 above, comprising at least one selected from 0.1% to 3.0%.

本発明によれば、コストの高いプロセスを用いることなく、安定して高い鉄損特性を有する積層電磁鋼板を製造することができる。   According to the present invention, a laminated electrical steel sheet having stable and high iron loss characteristics can be produced without using a costly process.

以下、本発明を、具体的に説明する。
本発明は、積層電磁鋼板にかかる発明であるが、これは、無方向性電磁鋼板を2枚以上積層したものである。
そこで、まず、本発明に従う無方向性電磁鋼板の鋼成分の限定理由について説明する。なお、以下の%表示は、特に断らない限り質量%を意味する。また、本発明では、単に、鋼板といった場合は、特に断らない限り無方向性電磁鋼板を意味する。
C:0.05%以下
Cは、鋼板の強度調整に用いることができるが、C含有量が0.05%を超えると、炭化物が増加して鉄損が大幅に劣化する。したがって、C含有量の上限は0.05%とする。鉄損を重視する場合は、炭化物による鉄損劣化、磁気時効による磁性劣化を抑制するために、Cを0.005%以下とする必要がある。すなわち、C含有量の好ましい範囲は0.005%以下である。なお、C含有量の下限に特段の制限はないが、工業上、0.0005%程度である。
Hereinafter, the present invention will be specifically described.
The present invention relates to a laminated electrical steel sheet, which is a laminate of two or more non-oriented electrical steel sheets.
Therefore, first, the reasons for limiting the steel components of the non-oriented electrical steel sheet according to the present invention will be described. In addition, the following% display means the mass% unless there is particular notice. In the present invention, the term “steel plate” simply means a non-oriented electrical steel plate unless otherwise specified.
C: 0.05% or less C can be used for adjusting the strength of the steel sheet. However, if the C content exceeds 0.05%, carbides increase and iron loss significantly deteriorates. Therefore, the upper limit of the C content is 0.05%. When iron loss is regarded as important, C must be 0.005% or less in order to suppress iron loss deterioration due to carbide and magnetic deterioration due to magnetic aging. That is, the preferable range of the C content is 0.005% or less. In addition, although there is no special restriction | limiting in the lower limit of C content, it is about 0.0005% industrially.

Si:7.0%以下
Siは、鋼の比抵抗を増加させ、鉄損を低減する効果がある。しかし、7.0%を超えて添加すると鋼板が脆くなり圧延が困難になる。したがって、Si含有量の範囲は7.0%以下とする。また、好ましい範囲は1.0%以上4.5%以下である。
Si: 7.0% or less
Si has the effect of increasing the specific resistance of steel and reducing iron loss. However, if added over 7.0%, the steel sheet becomes brittle and rolling becomes difficult. Therefore, the range of Si content is 7.0% or less. Moreover, a preferable range is 1.0% or more and 4.5% or less.

Al:3.0%以下
Alは、鋼の比抵抗を増加させ、鉄損を低減する効果がある。しかし、3.0%を超えて添加すると鋼板が脆くなり圧延が困難になる。したがって、Al含有量の上限は3.0%とする。なお、Al含有量が0.01〜0.1%の範囲では、微細AlNを増加させて粒成長性を劣化させるおそれがあるため、好ましい範囲は0.01%以下か、もしくは0.1%以上1.0%以下の範囲である。
Al: 3.0% or less
Al has the effect of increasing the specific resistance of steel and reducing iron loss. However, if added over 3.0%, the steel sheet becomes brittle and rolling becomes difficult. Therefore, the upper limit of the Al content is 3.0%. It should be noted that when the Al content is in the range of 0.01 to 0.1%, there is a possibility that the fine AlN is increased and the grain growth property is deteriorated. Therefore, the preferable range is 0.01% or less, or 0.1% or more and 1.0% or less. .

Mn:3.0%以下
Mnは、鋼の比抵抗を増加させ、鉄損を低減する効果がある。しかし3.0%を超えて添加しても効果が薄いため、Mn 含有量の範囲は3.0%以下とする。なお、熱間脆性を回避するために、Mnは0.1%以上添加することが好ましく、より好ましい範囲は0.1%以上1.0%以下である。
Mn: 3.0% or less
Mn has the effect of increasing the specific resistance of steel and reducing iron loss. However, even if added over 3.0%, the effect is weak, so the range of Mn content should be 3.0% or less. In order to avoid hot brittleness, Mn is preferably added in an amount of 0.1% or more, and a more preferable range is 0.1% or more and 1.0% or less.

P:0.2%以下
Pは、鋼の硬度調整に用いることができる。0.2%を超えて添加すると板が脆くなり圧延が困難になる。したがって、P含有量の範囲は0.2%以下とする。好ましい範囲は0.1%以下である。なお、P含有量の下限に特段の制限はないが、工業上、0.001%程度である。
P: 0.2% or less P can be used for adjusting the hardness of steel. If it exceeds 0.2%, the plate becomes brittle and rolling becomes difficult. Therefore, the range of P content is 0.2% or less. A preferable range is 0.1% or less. In addition, although there is no special restriction | limiting in the lower limit of P content, it is about 0.001% industrially.

S:0.01%以下
S含有量が0.01%を超えると、MnS等の析出物が増加し、粒成長性が劣化する。したがって、S含有量の上限は0.01%とする。好ましい範囲は0.003%以下である。なお、S含有量の下限に特段の制限はないが、工業上、0.0001%程度である。
S: 0.01% or less When the S content exceeds 0.01%, precipitates such as MnS increase and grain growth properties deteriorate. Therefore, the upper limit of the S content is 0.01%. A preferred range is 0.003% or less. In addition, although there is no special restriction | limiting in the lower limit of S content, it is about 0.0001% industrially.

N:0.01%以下
N含有量が0.01%を超えると、AlN等の析出物が増加し、粒成長性が劣化する。したがって、N含有量の上限は0.01%とする。好ましい範囲は0.003%以下である。なお、N含有量の下限に特段の制限はないが、工業上、0.0005%程度である。
N: 0.01% or less When the N content exceeds 0.01%, precipitates such as AlN increase and the grain growth property deteriorates. Therefore, the upper limit of the N content is 0.01%. A preferred range is 0.003% or less. In addition, although there is no special restriction | limiting in the minimum of N content, it is about 0.0005% industrially.

O:0.01%以下
O含有量が0.01%を超えると、Si、 AlおよびMnの酸化物などの介在物が増加するため、粒成長性が劣化する。したがって、O含有量の上限は0.01%とする。さらに好ましい範囲は0.003%以下である。なお、O含有量の下限に特段の制限はないが、工業上、0.0005%程度である。
O: 0.01% or less When the O content exceeds 0.01%, inclusions such as oxides of Si, Al, and Mn increase, and grain growth properties deteriorate. Therefore, the upper limit of the O content is 0.01%. A more preferable range is 0.003% or less. In addition, although there is no special restriction | limiting in the lower limit of O content, it is about 0.0005% industrially.

以上、鋼スラブ中の必須成分について説明したが、本発明では、以下の元素を適宜含有させることができる。なお、残部はFeおよび不可避不純物である。
SnおよびSb:0.005〜0.2%
Snおよび Sbは、0.005%以上添加することで、再結晶集合組織中の[111]結晶粒を低減して、磁束密度を向上させる効果がある。一方、0.2%超添加しても添加効果が薄いため、Snおよび Sb含有量の範囲はそれぞれ0.005%以上0.2%以下が好ましい。さらに好ましい範囲はそれぞれ0.02%以上0.1%以下である。
Although the essential components in the steel slab have been described above, the following elements can be appropriately contained in the present invention. The balance is Fe and inevitable impurities.
Sn and Sb: 0.005-0.2%
Addition of 0.005% or more of Sn and Sb has the effect of reducing the [111] crystal grains in the recrystallized texture and improving the magnetic flux density. On the other hand, even if added over 0.2%, the effect of addition is small, so the range of Sn and Sb content is preferably 0.005% to 0.2%, respectively. Further preferable ranges are 0.02% or more and 0.1% or less, respectively.

REM、MgおよびCa:0.0005〜0.010%
REM、MgおよびCaは、いずれも、0.0005%以上添加することで硫化物を粗大化させ、粒成長性を改善させる効果がある。一方、0.010%を超えて添加するとかえって粒成長性が悪くなるため、REM、MgおよびCa含有量の範囲はそれぞれ0.0005%以上0.010%以下が好ましい。より好ましい範囲は、REM、MgおよびCaいずれも、0.001%以上0.005%以下である。
REM, Mg and Ca: 0.0005 to 0.010%
REM, Mg, and Ca all have the effect of coarsening sulfides and improving grain growth by adding 0.0005% or more. On the other hand, if added over 0.010%, the grain growth property is worsened. Therefore, the range of REM, Mg and Ca contents is preferably 0.0005% or more and 0.010% or less, respectively. A more preferable range is 0.001% or more and 0.005% or less for all of REM, Mg and Ca.

Ti、NbおよびV:0.001〜1%
Ti、NbおよびVは、いずれも炭化物、窒化物を形成して鋼板の強度を上昇させる元素である。0.001%未満では添加効果がない一方で、1%を超えて添加するとコストが著しく増加するため、Ti、NbおよびVの含有量はいずれも0.001%以上1%以下が好ましい。
Ti, Nb and V: 0.001 to 1%
Ti, Nb and V are all elements that increase the strength of the steel sheet by forming carbides and nitrides. If it is less than 0.001%, there is no effect of addition, but if it exceeds 1%, the cost increases remarkably. Therefore, the contents of Ti, Nb and V are all preferably 0.001% or more and 1% or less.

B:0.0005〜0.01%
Bは、鋼板の脆化を抑制する元素であり、圧延性改善のために添加することができる。0.0005%未満では添加効果がなく、0.01%超添加すると鉄損が著しく劣化するため、Bの含有量は0.0005%以上0.01%以下が好ましい。
B: 0.0005-0.01%
B is an element that suppresses embrittlement of the steel sheet, and can be added to improve the rollability. If it is less than 0.0005%, there is no effect of addition, and if it exceeds 0.01%, the iron loss is remarkably deteriorated. Therefore, the B content is preferably 0.0005% or more and 0.01% or less.

Cr:0.1〜3.0%
Crは、鋼の比抵抗を増加させ、鉄損を低減する効果がある。0.1%未満では効果がない一方で、3.0%を超えて添加すると、Cr炭化物が増加して逆に鉄損が悪くなる。したがって、Cr含有量は0.1%以上3.0%以下が好ましい。
Cr: 0.1-3.0%
Cr has the effect of increasing the specific resistance of steel and reducing iron loss. If less than 0.1%, there is no effect, but if added over 3.0%, Cr carbide increases and the iron loss worsens. Therefore, the Cr content is preferably 0.1% or more and 3.0% or less.

Cu:0.1〜3.0%
Cuは、時効処理を行うことで微細Cu粒子を析出させて、鋼の強度を上昇させる元素である。0.1%未満では添加効果がない一方で、3.0%を超えて添加しても効果が飽和する。したがって、Cr含有量は0.1%以上3.0%以下が好ましい。
Cu: 0.1-3.0%
Cu is an element that increases the strength of steel by precipitating fine Cu particles by aging treatment. If it is less than 0.1%, there is no effect of addition, but if it exceeds 3.0%, the effect is saturated. Therefore, the Cr content is preferably 0.1% or more and 3.0% or less.

次に、本発明に従う積層電磁鋼板の製造工程について説明する。
上記の好適成分組成に調整した、溶鋼から、通常の造塊−分塊法や連続鋳造法によってスラブを製造してもよいし、100mm以下の厚さの薄鋳片から、直接鋳造法で製造してもよい。
ついで、スラブは通常の方法で加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延に供してもよい。なお、薄鋳片の場合には、熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進めてもよい。熱間圧延の後、磁性改善、リジング防止のために熱延板焼鈍を行ってもよい。
熱延もしくは熱延板焼鈍の後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して目標板厚に仕上げる。ここでの仕上げ板厚は0.005mm以上0.50mm以下とする。
0.005mmより薄い板厚を得ようとすると、圧延時間が長くなりすぎて、製造コストが著しく高くなる一方で、0.50mmより厚いと、高周波鉄損が高くなってしまうからである。
Next, the manufacturing process of the laminated electrical steel sheet according to the present invention will be described.
A slab may be produced from molten steel adjusted to the above-mentioned preferred component composition by a normal ingot-bundling method or continuous casting method, or by a direct casting method from a thin cast piece having a thickness of 100 mm or less. May be.
Next, the slab is heated by a normal method and subjected to hot rolling, but may be immediately subjected to hot rolling without being heated after casting. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the subsequent process may be performed as it is. After hot rolling, hot-rolled sheet annealing may be performed to improve magnetism and prevent ridging.
After hot-rolling or hot-rolled sheet annealing, cold rolling is performed once or two or more times with intermediate annealing between them to finish the target plate thickness. The finished plate thickness here is 0.005 mm or more and 0.50 mm or less.
This is because, if an attempt is made to obtain a plate thickness thinner than 0.005 mm, the rolling time becomes too long and the manufacturing cost becomes remarkably high. On the other hand, if it exceeds 0.50 mm, the high-frequency iron loss increases.

ここで、本発明では、鋼板の3次元粗さ:Saを0.1μm以上とすることが重要なポイントである。というのは、鋼板の3次元粗さ:Saが0.1μm未満の場合、接着剤のアンカー効果が十分に発揮されず、密着性を保てなくなるからである。好ましくは0.2μm以上である。なお、本発明において、鋼板の3次元粗さは、例えばタンデム圧延機のロール粗さを変更することで容易に調整することができるが、例えば、タンデム圧延機の仕上圧延ロールの粗さをSa≧0.1μm、好ましくはSa≧0.2μmとする。   Here, in the present invention, it is an important point that the three-dimensional roughness of the steel plate: Sa is 0.1 μm or more. This is because when the three-dimensional roughness of the steel plate: Sa is less than 0.1 μm, the anchor effect of the adhesive is not sufficiently exhibited, and the adhesion cannot be maintained. Preferably it is 0.2 μm or more. In the present invention, the three-dimensional roughness of the steel sheet can be easily adjusted, for example, by changing the roll roughness of the tandem rolling mill. For example, the roughness of the finish rolling roll of the tandem rolling mill is set to Sa ≧ 0.1 μm, preferably Sa ≧ 0.2 μm.

また、鋼板の3次元粗さは、一般的な触針式粗さ計を用い、測定はJIS B0601、JIS B0632、JIS B0633、JIS B0651等に記載の内容に準じて行う。   The three-dimensional roughness of the steel plate is measured using a general stylus roughness meter according to the contents described in JIS B0601, JIS B0632, JIS B0633, JIS B0651, etc.

最終冷間圧延の後、仕上焼鈍を施す。仕上焼鈍では、鋼板を再結晶・粒成長させる必要があるため、均熱温度を800〜1100℃とすることが好ましい。仕上焼鈍ののち、必要に応じて絶縁コーティングを施し、製品板とする。絶縁コーティングは公知のものを用いることができ、無機コーティング、有機コーティング、無機・有機混合コーティングなどを目的に応じて使い分ければよい。   After the final cold rolling, finish annealing is performed. In finish annealing, since it is necessary to recrystallize and grow grains in the steel sheet, the soaking temperature is preferably set to 800 to 1100 ° C. After finish annealing, if necessary, apply an insulating coating to make a product plate. As the insulating coating, a known one can be used, and an inorganic coating, an organic coating, an inorganic / organic mixed coating, or the like may be used depending on the purpose.

上記のプロセスに加え、本発明では、最終冷間圧延の後、仕上焼鈍前に2枚以上の鋼板を積層・接着して総板厚:0.10mm以上1.0mm以下とすることが必要である。総板厚が0.10mmより薄いと製造性改善の効果が得られず、1.0mmより厚いとユーザーの打ち抜き加工などが困難となるからである。   In addition to the above process, in the present invention, it is necessary to laminate and bond two or more steel plates after final cold rolling and before finish annealing so that the total thickness is from 0.10 mm to 1.0 mm. This is because if the total thickness is less than 0.10 mm, the effect of improving productivity cannot be obtained, and if it is more than 1.0 mm, it is difficult for the user to perform punching.

本発明で用いる接着剤、および得られる無機物の絶縁層には、仕上焼鈍に耐える耐熱性が必要であり、かつ、渦電流損低減の観点から高い絶縁性が必要である。
発明者らの検討の結果、B、Mg、Al、Si、P、CaおよびZrの元素の内、少なくとも1種を含む酸化物、窒化物および炭化物のうちから選んだ1種以上を主体とすることが極めて効果的な絶縁層を形成することが判明した。なお、本発明では、酸化物、窒化物および炭化物の併用物(混合物)であっても問題なく使用することができる。
The adhesive used in the present invention and the resulting inorganic insulating layer need to have heat resistance that can withstand finish annealing, and from the viewpoint of reducing eddy current loss, high insulation is required.
As a result of the study by the inventors, one or more selected from oxides, nitrides and carbides containing at least one of the elements B, Mg, Al, Si, P, Ca and Zr are mainly used. Has been found to form a very effective insulating layer. In the present invention, even a combination (mixture) of oxide, nitride and carbide can be used without any problem.

コストの観点からは、製造・入手が容易な、B、Mg、Al、Si、P、CaおよびZrの各酸化物を用いることが好ましいが、本発明において、用いる酸化物、窒化物、炭化物としては、具体的には、マグネシア、アルミナ、シリカ、リン酸塩、ホウ酸塩、カルシア、ジルコニア、ジルコン、アルミノシリケート、窒化アルミニウム、窒化ホウ素などの化合物の微粒子やコロイド、そしてこれらの混合物などが挙げられる。あるいは、B、Mg、Al、Si、P、CaおよびZrの複合酸化物や、複合窒化物、複合炭化物、並びに、これらの混合物であってもよい。   From the viewpoint of cost, it is preferable to use each oxide of B, Mg, Al, Si, P, Ca and Zr, which is easy to manufacture and obtain, but in the present invention, as the oxide, nitride and carbide used Specific examples include fine particles and colloids of compounds such as magnesia, alumina, silica, phosphate, borate, calcia, zirconia, zircon, aluminosilicate, aluminum nitride, boron nitride, and mixtures thereof. It is done. Alternatively, it may be a composite oxide of B, Mg, Al, Si, P, Ca, and Zr, a composite nitride, a composite carbide, and a mixture thereof.

これらの化合物のうち、マグネシア、アルミナ、シリカ、ジルコニア、ジルコン、アルミノシリケートが接着性および絶縁性の観点から特に好適、と考えているが、上記した元素を有する酸化物、窒化物および炭化物であれば、接着剤の主成分としての使用は制限されない。例えば、無機接着剤、セラミック系接着剤と称される接着剤である。   Of these compounds, magnesia, alumina, silica, zirconia, zircon, and aluminosilicate are considered to be particularly suitable from the viewpoints of adhesiveness and insulation. However, oxides, nitrides, and carbides having the above-described elements may be used. For example, the use of the adhesive as a main component is not limited. For example, an adhesive called an inorganic adhesive or a ceramic adhesive.

ここで、「主体とする」とは、焼鈍後の接着剤層(絶縁層)中、あるいは接着剤の固形分中に、上記酸化物、窒化物および炭化物が合計で50%以上、好ましくは80%以上含まれていることを意味する。残部は、一般に結合剤や硬化剤などに含まれている成分で良い。当然ながら、結合剤や硬化剤についても、上記元素を含むものを用いることが好ましい。例えば、ケイ酸塩、リン酸塩、コロイダルシリカ、コロイダルアルミナ、アルキルシリケートなどが挙げられる。   Here, “mainly” means that the oxide, nitride and carbide in total in the adhesive layer (insulating layer) after annealing or in the solid content of the adhesive are 50% or more in total, preferably 80 % Is included. The balance may be a component generally contained in a binder or a curing agent. Of course, it is preferable to use a binder and a curing agent containing the above elements. For example, silicate, phosphate, colloidal silica, colloidal alumina, alkyl silicate and the like can be mentioned.

上記接着剤は、バーコーターやスプレーなど、公知公用の手段で塗布することができる。接着剤塗布後、キュアリング(硬化処理)、ポストキュア(追加加熱)を行ってもよいが、これらの処理なしでコイルのハンドリングに十分な接着強度が得られる場合は、省略することもできる。
また、本発明に従う接着剤を用いた鋼板の硬化処理は、常法に従えば良い。
The adhesive can be applied by a publicly known means such as a bar coater or a spray. After application of the adhesive, curing (curing treatment) and post-curing (additional heating) may be performed, but may be omitted if sufficient adhesive strength for handling the coil can be obtained without these treatments.
Moreover, what is necessary is just to follow the hardening method of the steel plate using the adhesive agent according to this invention.

〔実施例1〕
表1に示す化学組成を有するスラブ(残部はFeおよび不可避不純物)に対して1100℃、30分間のスラブ加熱を行い、熱間圧延を実施して板厚:1.8mmの熱延板とした。
得られた熱延板に対して1000℃、30秒間の熱延板焼鈍を行い、酸洗を施してスケールを除去したのち、冷間圧延を施し、表1に示した仕上板厚、3次元粗さ:Saを有する冷間圧延板を得た。
さらに、上記冷間圧延板を洗浄した後、接着剤(COTRONICS社製、Resbond 989 Alumina Ceramic、主成分:アルミナ、固形分中の含有量:95%)をスプレーで平均厚み20μmになるように均一塗布し、鋼板を張り合わせ、100℃で1分間の硬化処理を行い、乾燥窒素-水素雰囲気中で1000℃、30秒間の仕上焼鈍を施して積層電磁鋼板としたのち、この積層電磁鋼板の表裏面に絶縁コーティングを塗布して製品板とした。ただし、表1のNo.1については、比較のため、接着剤の塗布および鋼板の積層を行わずに、そのまま通板した。得られた製品板について、それぞれエプスタイン試験で鉄損W10/400を測定した。
測定結果を表1に併記する。
[Example 1]
A slab having the chemical composition shown in Table 1 (the balance is Fe and inevitable impurities) was subjected to slab heating at 1100 ° C. for 30 minutes, and hot rolling was performed to obtain a hot rolled sheet having a thickness of 1.8 mm.
The obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, pickled, removed the scale, cold-rolled, and finished plate thicknesses shown in Table 1 and 3D A cold rolled sheet having roughness: Sa was obtained.
Furthermore, after washing the cold-rolled plate, spray an adhesive (COTRONICS, Resbond 989 Alumina Ceramic, main component: alumina, solid content: 95%) to an average thickness of 20 μm by spraying After coating, laminating steel plates, curing at 100 ° C for 1 minute, and finishing annealing in dry nitrogen-hydrogen atmosphere at 1000 ° C for 30 seconds to make laminated electrical steel plates, the front and back surfaces of this laminated electrical steel plate An insulating coating was applied to the product plate. For comparison, however, No. 1 in Table 1 was passed through as it was without applying an adhesive and laminating steel plates. About the obtained product board, iron loss W10 / 400 was measured by the Epstein test, respectively.
The measurement results are also shown in Table 1.

Figure 0006176181
Figure 0006176181

同表より、本発明に従い製造された積層電磁鋼板は、仕上焼鈍後も接着性が保たれると共に、優れた鉄損特性が得られていることが分かる。   From the table, it can be seen that the laminated electrical steel sheet produced according to the present invention maintains the adhesiveness even after finish annealing and has excellent iron loss characteristics.

〔実施例2〕
上記表1のNo.1に示した化学組成を有するスラブに対して、1100℃、30分間のスラブ加熱を行い、熱間圧延を実施して板厚:1.8mmの熱延板とした。この熱延板に対して1000℃、30秒間の熱延板焼鈍を行い、酸洗を施してスケールを除去したのち、冷間圧延を施し、仕上板厚:0.20mm、3次元粗さ:Saが0.24μmである冷間圧延板を得た。
上記冷間圧延板を洗浄し、表2に示す無機化合物を、固形分中の含有量で80%以上含む接着剤として、スプレーで平均厚み:5μmになるように均一塗布したのち、鋼板を2枚ずつ張り合わせて200℃で1分間の硬化処理を行い、乾燥窒素-水素雰囲気中で1000℃、30秒間の仕上焼鈍を施し積層電磁鋼板を得た。さらに、この積層電磁鋼板の表裏面に絶縁コーティングを塗布して製品板とした。得られた製品板について、エプスタイン試験で鉄損W10/400を測定した。
測定結果を表2に併記する。
[Example 2]
The slab having the chemical composition shown in No. 1 in Table 1 above was subjected to slab heating at 1100 ° C. for 30 minutes, and hot rolling was performed to obtain a hot rolled sheet having a thickness of 1.8 mm. This hot-rolled sheet is subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, acid pickled to remove the scale, and then cold-rolled. Finished sheet thickness: 0.20 mm, 3D roughness: Sa A cold-rolled sheet having a thickness of 0.24 μm was obtained.
The cold-rolled sheet was washed, and after applying uniformly to an average thickness of 5 μm by spraying as an adhesive containing 80% or more of the inorganic compound shown in Table 2 in the solid content, 2 steel plates were used. The laminated magnetic steel sheets were laminated one by one and subjected to a curing treatment at 200 ° C. for 1 minute, followed by finishing annealing at 1000 ° C. for 30 seconds in a dry nitrogen-hydrogen atmosphere to obtain a laminated electrical steel sheet. Further, an insulating coating was applied to the front and back surfaces of this laminated electrical steel sheet to obtain a product plate. About the obtained product board, iron loss W10 / 400 was measured by the Epstein test.
The measurement results are also shown in Table 2.

Figure 0006176181
Figure 0006176181

同表より、本発明の範囲で製造された積層電磁鋼板は、仕上焼鈍後も接着性が保たれると共に、優れた鉄損特性が得られていることが分かる。   From the table, it can be seen that the laminated electrical steel sheet produced within the scope of the present invention maintains its adhesiveness even after finish annealing and has excellent iron loss characteristics.

Claims (4)

質量%で、C:0.05%以下、Si:7.0%以下、Al:3.0%以下、Mn:3.0%以下、P:0.2%以下、S:0.01%以下、N:0.01%以下およびO:0.01%以下を含有し、残部がFeおよび不可避不純物からなり、板厚が0.005〜0.50mm、3次元粗さ:Saが0.10μm以上である2枚以上の無方向性電磁鋼板が、B、Mg、Al、P、CaおよびZrの元素の内、少なくとも1種を含む酸化物、窒化物および炭化物のうちから選んだ1種以上を合計で50質量%以上含有する絶縁層で接着され、総板厚が0.10〜1.0mmである積層電磁鋼板。 In mass%, C: 0.05% or less, Si: 7.0% or less, Al: 3.0% or less, Mn: 3.0% or less, P: 0.2% or less, S: 0.01% or less, N: 0.01% or less, and O: 0.01% Two or more non-oriented electrical steel sheets containing the following, the balance being Fe and inevitable impurities, and having a thickness of 0.005 to 0.50 mm, three-dimensional roughness: Sa is 0.10 μm or more are B, Mg, Al , P 1 , Ca, and Zr, at least one selected from oxides, nitrides and carbides selected from oxides, nitrides and carbides are bonded together with an insulating layer containing a total of 50% by mass or more. Laminated electrical steel sheet that is 0.10 to 1.0 mm. 前記無方向性電磁鋼板が、さらに質量%で、Sn:0.005%以上0.2%以下、Sb:0.005%以上0.2%以下、Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.0005%以上0.010%以下、Ti:0.001%以上1%以下、Nb:0.001%以上1%以下、V:0.001%以上1%以下、B:0.0005%以上0.01%以下、Cr:0.1%以上3.0%以下およびCu:0.1%以上3.0%以下から選んだ少なくとも1種を含む請求項1に記載の積層電磁鋼板。   The non-oriented electrical steel sheet is further mass%, Sn: 0.005% to 0.2%, Sb: 0.005% to 0.2%, Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM : 0.0005% to 0.010%, Ti: 0.001% to 1%, Nb: 0.001% to 1%, V: 0.001% to 1%, B: 0.0005% to 0.01%, Cr: 0.1% to 3.0% The laminated electrical steel sheet according to claim 1, comprising at least one selected from Cu and 0.1% or less and Cu: 0.1% or more and 3.0% or less. 質量%で、C:0.05%以下、Si:7.0%以下、Al:3.0%以下、Mn:3.0%以下、P:0.2%以下、S:0.01%以下、N:0.01%以下およびO:0.01%以下を含有し、残部Feおよび不可避不純物からなるスラブを、熱間圧延してから、熱延板焼鈍を行い、あるいは行わずに、1回の冷間圧延もしくは中間焼鈍を挟む2回以上の冷間圧延を行い、板厚を0.005〜0.5mmで、3次元粗さ:Saを0.10μm以上の無方向性電磁鋼板としたのち、仕上焼鈍と絶縁被膜塗布を行う一連の積層電磁鋼板の製造方法において、
上記冷間圧延後、上記仕上焼鈍前にB、Mg、Al、P、CaおよびZrの元素の内、少なくとも1種を含む酸化物、窒化物および炭化物のうちから選んだ1種以上を合計で全固形分の50質量%以上含有する接着剤で2枚以上の鋼板を積層し、総板厚を0.10〜1.0mmとする積層電磁鋼板の製造方法。
In mass%, C: 0.05% or less, Si: 7.0% or less, Al: 3.0% or less, Mn: 3.0% or less, P: 0.2% or less, S: 0.01% or less, N: 0.01% or less, and O: 0.01% A slab containing the following, the balance Fe and inevitable impurities, hot-rolled, and then with or without hot-rolled sheet annealing, two or more cold sandwiches with one cold rolling or intermediate annealing. A series of laminated electrical steel sheet manufacturing methods in which rolling is performed and a non-oriented electrical steel sheet having a sheet thickness of 0.005 to 0.5 mm and a three-dimensional roughness Sa of 0.10 μm or more is applied, followed by finish annealing and application of an insulating coating In
A total of one or more selected from oxides, nitrides and carbides containing at least one of the elements B, Mg, Al 2 , P 3 , Ca and Zr after the cold rolling and before the finish annealing. A method for producing a laminated electrical steel sheet in which two or more steel sheets are laminated with an adhesive containing 50% by mass or more of the total solid content, and the total thickness is 0.10 to 1.0 mm.
前記スラブが、さらに質量%で、Sn:0.005%以上0.2%以下、Sb:0.005%以上0.2%以下、Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.0005%以上0.010%以下、Ti:0.001%以上1%以下、Nb:0.001%以上1%以下、V:0.001%以上1%以下、B:0.0005%以上0.01%以下、Cr:0.1%以上3.0%以下およびCu:0.1%以上3.0%以下から選んだ少なくとも1種を含む請求項3に記載の積層電磁鋼板の製造方法。   The slab is further mass%, Sn: 0.005% to 0.2%, Sb: 0.005% to 0.2%, Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM: 0.0005% or more 0.010% or less, Ti: 0.001% to 1%, Nb: 0.001% to 1%, V: 0.001% to 1%, B: 0.0005% to 0.01%, Cr: 0.1% to 3.0% and Cu The method for producing a laminated electrical steel sheet according to claim 3, comprising at least one selected from 0.1% to 3.0%.
JP2014088510A 2014-04-22 2014-04-22 Laminated electrical steel sheet and manufacturing method thereof Active JP6176181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088510A JP6176181B2 (en) 2014-04-22 2014-04-22 Laminated electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088510A JP6176181B2 (en) 2014-04-22 2014-04-22 Laminated electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015206092A JP2015206092A (en) 2015-11-19
JP6176181B2 true JP6176181B2 (en) 2017-08-09

Family

ID=54603134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088510A Active JP6176181B2 (en) 2014-04-22 2014-04-22 Laminated electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6176181B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101918720B1 (en) 2016-12-19 2018-11-14 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101892227B1 (en) * 2016-12-22 2018-08-27 주식회사 포스코 Non-oriented electrical steel steet laminate and manufacturing method for the same
JP7068313B2 (en) 2016-12-23 2022-05-16 ポスコ Electrical steel sheet adhesive coating composition, electrical steel sheet products, and their manufacturing methods
JP6624393B2 (en) * 2016-12-28 2019-12-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent recyclability
WO2018131710A1 (en) * 2017-01-16 2018-07-19 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and production method of non-oriented electromagnetic steel sheet
BR112019009604B1 (en) * 2017-01-16 2022-08-02 Nippon Steel Corporation NON-ORIENTED ELECTRIC STEEL SHEET
JP6903996B2 (en) * 2017-03-28 2021-07-14 日本製鉄株式会社 Non-oriented electrical steel sheet
JP6855896B2 (en) * 2017-04-14 2021-04-07 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
JP6855895B2 (en) * 2017-04-14 2021-04-07 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
KR102107439B1 (en) * 2017-07-19 2020-05-07 닛폰세이테츠 가부시키가이샤 Non-oriented electronic steel sheet
KR102112171B1 (en) 2017-12-26 2020-05-18 주식회사 포스코 Adhesive coating composition for electrical steel sheet, electrical steel sheet product, and method for manufacturing the same
CN112430778A (en) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 Thin non-oriented electrical steel plate and manufacturing method thereof
WO2021117325A1 (en) * 2019-12-09 2021-06-17 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet, motor core, and methods respectively for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330231A (en) * 1993-05-26 1994-11-29 Kawasaki Steel Corp Silicon steel sheet for adhesion type laminated iron core
JP3243099B2 (en) * 1993-12-29 2002-01-07 日本鋼管株式会社 Manufacturing method of laminated electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2015206092A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6176181B2 (en) Laminated electrical steel sheet and manufacturing method thereof
JP6728199B2 (en) Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet
JP6127408B2 (en) Method for producing non-oriented electrical steel sheet
EP2746415B1 (en) Non-oriented electrical steel sheet, method of manufacturing the same, laminate for motor iron core, and method of manufacturing the same
MX2013001337A (en) Grain-oriented magnetic steel sheet and process for producing same.
TWI692534B (en) Multilayer electromagnetic steel plate
JP6319465B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6476979B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4265166B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2012126980A (en) Electromagnetic steel sheet and method for manufacturing the same
JP2012188733A (en) Manufacturing method for grain-oriented electrical steel sheet
JP2007056303A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
JP6555449B1 (en) Multi-layer electrical steel sheet
JP2022506636A (en) Electric steel strips or sheet steel for high frequency electric motor applications with improved polarization and low magnetic loss
JP2006249555A (en) Silicon steel sheet having low core loss in high frequency region and method for producing the same
JP3782273B2 (en) Electrical steel sheet
JP6519725B1 (en) Multi-layered electromagnetic steel sheet
AU2006336817B2 (en) Hot steel strip particularly suited for the production of electromagnetic lamination packs
CN111465709B (en) Multilayer electromagnetic steel sheet
JP2001279400A (en) Nonriented silicon steel sheet excellent in film adhesiveness, and its production method
JP4306259B2 (en) Method for producing grain-oriented electrical steel sheet
JP2018184654A (en) Method for producing grain-oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6176181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250