JP5896112B2 - Oriented electrical steel sheet, method of manufacturing the same, and transformer - Google Patents

Oriented electrical steel sheet, method of manufacturing the same, and transformer Download PDF

Info

Publication number
JP5896112B2
JP5896112B2 JP2011226647A JP2011226647A JP5896112B2 JP 5896112 B2 JP5896112 B2 JP 5896112B2 JP 2011226647 A JP2011226647 A JP 2011226647A JP 2011226647 A JP2011226647 A JP 2011226647A JP 5896112 B2 JP5896112 B2 JP 5896112B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011226647A
Other languages
Japanese (ja)
Other versions
JP2013087305A (en
Inventor
早川 康之
康之 早川
木島 剛
剛 木島
千田 邦浩
邦浩 千田
智幸 大久保
智幸 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011226647A priority Critical patent/JP5896112B2/en
Publication of JP2013087305A publication Critical patent/JP2013087305A/en
Application granted granted Critical
Publication of JP5896112B2 publication Critical patent/JP5896112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁歪特性に優れる方向性電磁鋼板とその製造方法、ならびに、その方向性電磁鋼板を用いた低騒音の変圧器に関するものである。   The present invention relates to a grain-oriented electrical steel sheet having excellent magnetostriction characteristics, a manufacturing method thereof, and a low-noise transformer using the grain-oriented electrical steel sheet.

近年、環境に対する意識の高まりから、変圧器や電動機などの電磁応用機器が発する騒音の低減が強く求められている。それに伴い、変圧器や電動機の鉄心に使用される方向性電磁鋼板にも、低鉄損であることに加えて、騒音特性にも優れた材料であることが求められるようになってきている。   In recent years, there has been a strong demand for reduction of noise generated by electromagnetic application devices such as transformers and electric motors due to increasing environmental awareness. Accordingly, directional electromagnetic steel sheets used for iron cores of transformers and electric motors are demanded to be materials having excellent noise characteristics in addition to low iron loss.

変圧器の騒音に影響を及ぼす素材因子としては、方向性電磁鋼板が有する磁歪特性がある。上記「磁歪」とは、方向性電磁鋼板を交流で励磁したときの、鋼板が圧延方向に伸縮する率(=圧延方向鋼板伸縮量/鋼板長さ)のことをいい、その大きさは、通常、数10−6程度である。そこで、従来から、この磁歪の大きさを低減することで、低騒音化を図ろうとする研究がなされてきた。 As a material factor affecting the noise of the transformer, there is a magnetostriction characteristic of the grain-oriented electrical steel sheet. The above-mentioned “magnetostriction” refers to the rate of expansion and contraction of the steel sheet in the rolling direction when the directional electromagnetic steel sheet is excited with an alternating current (= the amount of expansion and contraction of the steel sheet in the rolling direction / the length of the steel sheet). About 10 −6 . Therefore, conventionally, research has been made to reduce noise by reducing the magnitude of magnetostriction.

磁歪を低減させるには、還流磁区を減少させることが最も有効である。ここで、「還流磁区」とは、磁場付加方向に対して磁化ベクトルが90°方向を向いた磁区のことをいい、この磁化が磁場付加方向と平行な向きに移動しようとする時に磁歪が生じる。そして、この磁歪は、鋼板にかかる圧縮応力が大きくなるに従って増大することが知られている。   In order to reduce magnetostriction, it is most effective to reduce the reflux magnetic domain. Here, the “return magnetic domain” means a magnetic domain in which the magnetization vector is oriented in the direction of 90 ° with respect to the magnetic field application direction, and magnetostriction occurs when the magnetization tries to move in a direction parallel to the magnetic field application direction. . This magnetostriction is known to increase as the compressive stress applied to the steel plate increases.

そこで、上記還流磁区を減少させる方法として、方向性電磁鋼板に被膜張力を付与する方法が提案されている。例えば、非特許文献1および特許文献1には、被膜張力を鋼板に付与することで、還流磁区を消去する方法が開示されている。一般に、方向性電磁鋼板には、鋼板に引張応力を付与するフォルステライト質の下地被膜と、その上の被成したリン酸塩を主成分とする絶縁被膜が被成されているが、上記の方法は、上層の絶縁被膜をも鋼板に引張応力を付与する張力付与被膜とすることで、磁歪特性の改善を図ろうとするものである。しかし、これらの方法は、鋼板に圧縮応力が付与されるような場合には、十分な効果が得られないという問題がある。   Therefore, as a method of reducing the reflux magnetic domain, a method of applying a film tension to the grain-oriented electrical steel sheet has been proposed. For example, Non-Patent Document 1 and Patent Document 1 disclose a method of erasing a reflux magnetic domain by applying a film tension to a steel plate. In general, a grain-oriented electrical steel sheet is provided with a forsterite base coating that imparts tensile stress to the steel plate and an insulating coating mainly composed of a phosphate formed thereon. The method intends to improve the magnetostriction characteristics by forming the upper insulating film as a tension-imparting film that applies a tensile stress to the steel sheet. However, these methods have a problem that sufficient effects cannot be obtained when compressive stress is applied to the steel sheet.

また、通常、変圧器の鉄心は、冷媒により冷却されているが、この冷却が不十分であったり、変圧器の稼動初期のときには、鉄心内の温度分布が不均一となるため、熱応力が発生することは避けられない。非特許文献2によると、5℃の温度差が生じると、<001>方向に対して3〜6MPa程度の圧縮応力が生じ、この圧縮応力によって磁歪特性が低下し、変圧器の騒音が増大すると報告されている。そのため、圧縮応力に対する磁歪感受性が低い方向性電磁鋼板の開発が強く望まれている。   Usually, the iron core of the transformer is cooled by a refrigerant. However, when this cooling is insufficient or the temperature distribution in the iron core becomes uneven at the initial stage of operation of the transformer, the thermal stress is reduced. It is inevitable that it will occur. According to Non-Patent Document 2, when a temperature difference of 5 ° C. occurs, a compressive stress of about 3 to 6 MPa is generated in the <001> direction. This compressive stress reduces magnetostriction characteristics and increases transformer noise. It has been reported. Therefore, development of a grain-oriented electrical steel sheet having low magnetostriction sensitivity to compressive stress is strongly desired.

特公昭59−17521号公報Japanese Patent Publication No.59-17521

T.Nozawa et al,「Relationship between total losses under tensile stress in 3percentSi−Fe single Crystals and their orientations near(110)[001],IEEE Trans.on Mag.,Vol.MAG−14,No.4,1978T.A. Nozawa et al, "Relationship between total loss under tenile stress in 3 percent Si-Fe single Crystals and theorientations near (110) 4, IEon. 岡崎ら、「方向性電磁鋼板の磁歪特性に及ぼす温度分布の影響」、電気学会論文誌A.Vol.123(2003),No.9、p833−838Okazaki et al., “Effect of Temperature Distribution on Magnetostrictive Properties of Oriented Electrical Steel Sheet”, IEEJ Transactions A. Vol. 123 (2003), no. 9, p833-838

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、圧縮応力に対する磁歪感受性を低減し、変圧器等の鉄心から生ずる騒音を効果的に低減することができる、磁歪特性に優れる方向性電磁鋼板と、その鋼板を用いた低騒音の変圧器を提供することにある。   The present invention has been made in view of the above problems of the prior art, and its purpose is to reduce magnetostriction sensitivity to compressive stress and effectively reduce noise generated from iron cores such as transformers. An object of the present invention is to provide a grain-oriented electrical steel sheet having excellent magnetostrictive properties and a low noise transformer using the steel sheet.

発明者らは、上記課題を解決するべく、方向性電磁鋼板の圧縮応力下における磁歪特性に影響する様々な材料因子について詳細な検討を行った。その結果、張力付与被膜を有する鋼板においては、圧縮応力下における磁歪特性に影響する因子として、二次再結晶後の鋼板におけるゴス方位(110)<001>粒の結晶方位の方位差角δが重要であることを見出した。ここで、上記方位差角δとは、二次再結晶後の鋼板のゴス方位(110)<001>粒における理想ゴス方位粒からのずれの大きさを、圧延方向を軸とした回転角で表わしたものである。そして、発明者らは、鋼成分を適正化した上で、上記方位差角δを適正範囲に制御することで、低騒音化に有効な磁歪特性を有する方向性電磁鋼板が得られることを知見し、本発明を開発するに至った。   In order to solve the above-mentioned problems, the inventors have conducted detailed studies on various material factors that affect the magnetostriction characteristics of a grain-oriented electrical steel sheet under compressive stress. As a result, in the steel sheet having the tension-imparting coating, the orientation difference angle δ of the crystal orientation of the Goth orientation (110) <001> grains in the steel sheet after secondary recrystallization is a factor that affects the magnetostriction characteristics under compressive stress. I found it important. Here, the above-mentioned misorientation angle δ is a rotation angle around the rolling direction, which is the magnitude of deviation from the ideal Goth orientation grain in the Goth orientation (110) <001> grain of the steel sheet after secondary recrystallization. It is a representation. The inventors have found that a grain-oriented electrical steel sheet having magnetostriction characteristics effective for noise reduction can be obtained by optimizing the steel components and controlling the orientation difference angle δ within an appropriate range. Thus, the present invention has been developed.

すなわち、本発明は、Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フォルステライト被膜による引張応力との合計が10MPa以上となる張力付与絶縁被膜が被成してなる方向性電磁鋼板であって、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λp−pが1.7×10−6以下である方向性電磁鋼板である。 That is, the present invention provides Si: 3.0 to 7.0 mass%, Mn: 0.04 to 0.15 mass%, Sb: 0.01 to 0.10 mass%, and Sn: 0.01 to 0.20 mass%. A grain- oriented electrical steel sheet comprising a tension-imparting insulating coating comprising a component composition consisting of Fe and inevitable impurities, and a total of 10 MPa or more of the tensile stress due to the forsterite coating , The average misorientation angle δ of the crystal orientation with the rolling direction as the rotation axis in the Goss orientation {110} <001> grains is 6 ° or less, and a compressive stress of 3.92 MPa is applied in the rolling direction to 50 Hz, 1. It is a grain - oriented electrical steel sheet having a magnetostriction λpp of 1.7 × 10 −6 or less when magnetized at 7T.

本発明の方向性電磁鋼板は、上記成分組成に加えてさらに、Cr:0.10mass%以下、Ni:0.50mass%以下、Mo:0.10mass%以下、Cu:0.10mass%以下、Nb:0.05mass%以下およびP:0.05mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the grain-oriented electrical steel sheet of the present invention further includes Cr: 0.10 mass% or less, Ni: 0.50 mass% or less, Mo: 0.10 mass% or less, Cu: 0.10 mass% or less, Nb : One or more selected from 0.05 mass% or less and P: 0.05 mass% or less.

また、本発明は、C:0.01〜0.10mass%、Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%、N:0.0030〜0.0100mass%を含有し、かつ、インヒビター成分として、Al,S,SeおよびBのうちのいずれか1以上を、Al:0.01〜0.030mass%、SおよびSe:単独または合計で0.010〜0.030mass%、B:0.0005〜0.0030mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、必要に応じて熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚とした後、一次再結晶焼鈍し、焼鈍分離剤を塗布し、二次再結晶焼鈍し、平坦化焼鈍し、張力付与絶縁被膜を被成する方向性電磁鋼板の製造方法において、上記鋼スラブはさらに、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を複合含有し、150〜250℃の温度で圧下率が84〜90%の最終冷間圧延し、平坦化焼鈍における炉内張力を10MPa以下とし、フォルステライト被膜と張力付与絶縁被膜によって付与される合計引張応力を10MPa以上とすることで、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λ p−p が1.7×10 −6 以下である方向性電磁鋼板を得ることを特徴とする方向性電磁鋼板の製造方法である。 In the present invention, C: 0.01-0.10 mass%, Si: 3.0-7.0 mass%, Mn: 0.04-0.15 mass%, N: 0.0030-0.0100 mass% And one or more of Al, S, Se and B as an inhibitor component, Al: 0.01 to 0.030 mass%, S and Se: alone or in total 0.010 to 0.0. A steel slab containing 030 mass%, B: 0.0005 to 0.0030 mass%, the balance being composed of Fe and inevitable impurities, is hot-rolled, and subjected to hot-rolled sheet annealing as necessary, once or after a final thickness by two times or more cold rolling sandwiching the intermediate annealing, primary recrystallization annealing, applying an annealing separating agent, and secondary recrystallization annealing, flattening annealing, tensioning insulating directional to HiNaru a coating In the method for producing a magnetic steel sheet, the steel slab further contains a composite of Sb: 0.01 to 0.10 mass% and Sn: 0.01 to 0.20 mass%, and has a rolling reduction of 84 at a temperature of 150 to 250 ° C. The final cold rolling of ˜90%, the in-furnace tension in flattening annealing is set to 10 MPa or less, and the total tensile stress applied by the forsterite coating and the tension-imparting insulating coating is set to 10 MPa or more, so that the Goth orientation {110} When the average orientation difference angle δ of the crystal orientation with the rolling direction of the <001> grains as the rotation axis is 6 ° or less, and a compressive stress of 3.92 MPa is applied in the rolling direction and magnetized at 50 Hz and 1.7 T The grain - oriented electrical steel sheet having a magnetostriction λ p-p of 1.7 × 10 −6 or less is obtained .

また、本発明は、C:0.01〜0.10mass%、Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%を含有し、かつ、Al:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Se:0.0050mass%以下、B:0.0010mass%以下に低減し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、必要に応じて熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚とした後、一次再結晶焼鈍し、焼鈍分離剤を塗布し、二次再結晶焼鈍し、平坦化焼鈍し、張力付与絶縁被膜を被成する方向性電磁鋼板の製造方法において、上記鋼スラブはさらに、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を複合含有し、150〜250℃の温度で圧下率が84〜90%の最終冷間圧延を施し、平坦化焼鈍における炉内張力を10MPa以下とし、フォルステライト被膜と張力付与絶縁被膜によって付与される合計引張応力を10MPa以上とすることで、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λ p−p が1.7×10 −6 以下である方向性電磁鋼板を得ることを特徴とする方向性電磁鋼板の製造方法である。 Moreover, this invention contains C: 0.01-0.10 mass%, Si: 3.0-7.0mass%, Mn: 0.04-0.15mass % , and Al: 0.0100mass% Below, N: 0.0050 mass% or less, S: 0.0050 mass% or less, Se: 0.0050 mass% or less, B: 0.0010 mass% or less, with the balance being a component composition of Fe and inevitable impurities The slab is hot-rolled, hot-rolled sheet annealing is performed as necessary, and cold rolling is performed once or two times sandwiching the intermediate annealing to the final sheet thickness, followed by primary recrystallization annealing and annealing separation agent is applied, secondary recrystallization annealing, flattening annealing, in the manufacturing method of the grain-oriented electrical steel sheet which HiNaru tensioning insulating coating, the steel slab further, Sb: 0.01~0.10mass% And Sn : The 0.01~0.20Mass% containing composite, rolling reduction at a temperature of 150 to 250 ° C. is facilities the rolled 84-90% of the final cooling, the following 10MPa furnace tension in flattening annealing, folders By setting the total tensile stress imparted by the stellite coating and the tension-imparting insulating coating to 10 MPa or more, the average misorientation angle δ of the crystal orientation with the rolling direction in the Goss orientation {110} <001> grains as the rotation axis is 6 °. A grain - oriented electrical steel sheet having a magnetostriction λ p-p of 1.7 × 10 −6 or less when applied with a compressive stress of 3.92 MPa in the rolling direction and magnetized at 50 Hz and 1.7 T is obtained. It is a manufacturing method of the grain-oriented electrical steel sheet characterized by this.

本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Cr:0.10mass%以下、Ni:0.50mass%以下、Mo:0.10mass%以下、Cu:0.10mass%以下、Nb:0.05mass%以下およびP:0.05mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the steel slab in the grain-oriented electrical steel sheet manufacturing method of the present invention further includes Cr: 0.10 mass% or less, Ni: 0.50 mass% or less, Mo: 0.10 mass% or less, Cu: It is characterized by containing one or more selected from 0.10 mass% or less, Nb: 0.05 mass% or less, and P: 0.05 mass% or less.

また、本発明は、上記に記載の方向性電磁鋼板を積層した鉄心を用いてなることを特徴とする変圧器である。   Moreover, this invention is a transformer characterized by using the iron core which laminated | stacked the grain-oriented electrical steel sheet as described above.

本発明によれば、磁歪特性に優れる方向性電磁鋼板を提供することができるので、低騒音の変圧器を安定して製造することができる。   According to the present invention, a grain-oriented electrical steel sheet having excellent magnetostriction characteristics can be provided, and a low-noise transformer can be stably manufactured.

圧縮応力下における磁歪λp−pと変圧器の騒音との関係を示すグラフである。It is a graph which shows the relationship between magnetostriction (lambda) pp under a compressive stress, and the noise of a transformer. 方向性電磁鋼板の平均方位差角δと圧縮応力下における磁歪λp−pとの関係を示すグラフである。It is a graph which shows the relationship between the average orientation difference angle (delta) of a grain-oriented electrical steel sheet, and the magnetostriction (lambda) pp under compressive stress. 方向性電磁鋼板の平均方位差角δに及ぼす冷延圧下率の影響を示すグラフである。It is a graph which shows the influence of the cold rolling reduction ratio on the average orientation difference angle (delta) of a grain-oriented electrical steel sheet.

まず、本発明を開発する契機となった実験について説明する。
<実験1>
C:0.070mass%、Si:3.3mass%、Mn:0.06mass%、Al:0.02mass%、N:0.008mass%、Se:0.02mass%をベースとし、これにさらに、Sb:0.05mass%および/またはSn:0.05mass%を添加した、表1に示すA〜C3種類の成分組成を有する鋼スラブを1420℃に加熱後、熱間圧延して板厚1.6〜3.3mmの熱延板とし、1100℃×30秒の熱延板焼鈍を施した後、最終冷間圧延して板厚:0.29mmの冷延板とした。なお、上記冷間圧延における最終冷間圧延では、加工発熱によって鋼板温度を220℃まで上昇させた。また、最終冷間圧延の圧下率は、素材板厚の違いによって82〜91%の範囲で変化させた。
First, an experiment that triggered the development of the present invention will be described.
<Experiment 1>
C: 0.070 mass%, Si: 3.3 mass%, Mn: 0.06 mass%, Al: 0.02 mass%, N: 0.008 mass%, Se: 0.02 mass%, and further, Sb : Steel mass slab having 0.05 to 5 mass% and / or Sn: 0.05 mass% and having A to C 3 kinds of composition shown in Table 1 is heated to 1420 ° C and hot-rolled to obtain a thickness of 1.6. A hot-rolled sheet having a thickness of ˜3.3 mm was subjected to hot-rolled sheet annealing at 1100 ° C. × 30 seconds, followed by final cold rolling to obtain a cold-rolled sheet having a thickness of 0.29 mm. In the final cold rolling in the cold rolling, the steel plate temperature was raised to 220 ° C. by processing heat generation. Further, the reduction ratio of the final cold rolling was changed in the range of 82 to 91% depending on the difference in the material plate thickness.

Figure 0005896112
Figure 0005896112

次いで、露点60℃の湿潤水素雰囲気下で、840℃×120秒の脱炭を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布、乾燥し、そのた後、乾燥(N+H)混合雰囲気下で1000℃まで昇温して二次再結晶させた後、乾燥H雰囲気下で1150℃以上の温度に20時間保持して純化処理する仕上焼鈍を施した。次いで、仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカと、燐酸マグネシウムからなるコーティング液を両面目付量が10g/mとなるよう塗布し、9MPaの張力を付与しながら840℃の温度で平坦化焼鈍を施して張力付与被膜を被成し、製品板とした。 Next, in a wet hydrogen atmosphere with a dew point of 60 ° C., after subjecting to primary recrystallization annealing also serving as decarburization at 840 ° C. for 120 seconds, an annealing separator mainly composed of MgO is applied to the steel sheet surface and dried. After that, the temperature is raised to 1000 ° C. in a dry (N 2 + H 2 ) mixed atmosphere to perform secondary recrystallization, and then purified at a temperature of 1150 ° C. or higher for 20 hours in a dry H 2 atmosphere. Finish annealing was performed. Next, after removing the unreacted annealing separator from the surface of the steel sheet after the finish annealing, a coating liquid composed of 50 mass% colloidal silica and magnesium phosphate was applied so that the double-sided area weight was 10 g / m 2 . While applying tension, planarization annealing was performed at a temperature of 840 ° C. to form a tension-applying coating film to obtain a product plate.

斯くして得られた製品板から、圧延方向を長さ方向として長さ:300mm×幅:100mmの試験片を切り出し、二次再結晶後のゴス方位(110)<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δをX線ラウエ法で測定した。
また、3.92MPaの圧縮応力を鋼板の圧延方向に付加した状態で、50Hz、1.7Tで磁化した時の磁歪λp−pを、レーザー変位計で測定した。
さらに、上記製品板を用いて積層鉄心を組み立て、400kVAの変圧器を作製し、1.7T、50Hzで励磁した時の騒音を測定した。
From the product plate thus obtained, a test piece of length: 300 mm × width: 100 mm was cut out with the rolling direction as the length direction, and the rolling direction in the Goss orientation (110) <001> grains after secondary recrystallization was determined. The average misorientation angle δ of the crystal orientation as the rotation axis was measured by the X-ray Laue method.
Further, the magnetostriction λ p-p when magnetized at 50 Hz and 1.7 T with a compressive stress of 3.92 MPa applied in the rolling direction of the steel sheet was measured with a laser displacement meter.
Furthermore, a laminated iron core was assembled using the product plate, a 400 kVA transformer was produced, and noise when excited at 1.7 T and 50 Hz was measured.

図1に、3.92MPaの圧縮応力下における磁歪λp−pと変圧器の騒音との関係を示す。この図から、磁歪λp−pを低減することによって、変圧器の騒音を小さくすることができること、また、Sb単独添加した鋼AあるいはSn単独添加した鋼Bでは低騒音化は難しいが、SbとSnを複合添加した鋼Cでは、磁歪λp−pが1.7×10−6以下の領域で50dB以下の低騒音を実現できていること、したがって、磁歪と騒音を低減するには、SbとSnの複合添加が必須であることがわかる。 FIG. 1 shows the relationship between magnetostriction λ p-p and transformer noise under a compressive stress of 3.92 MPa. From this figure, it is possible to reduce the noise of the transformer by reducing the magnetostriction λp -p, and it is difficult to reduce the noise with the steel A added with Sb alone or the steel B added with Sn alone. In Steel C in which Sn and Sn are added in combination, a low noise of 50 dB or less can be realized in a region where the magnetostriction λ p-p is 1.7 × 10 −6 or less. Therefore, in order to reduce magnetostriction and noise, It can be seen that the combined addition of Sb and Sn is essential.

また、図2は、二次再結晶後の鋼板が有する平均方位差角δが、3.92MPaの圧縮応力下における磁歪λp−pに及ぼす影響を示すグラフである。この図から、平均方位差角δが小さくなるほど、磁歪λp−pが低減すること、また、SbとSnを複合添加した鋼Cにおいて、磁歪λp−pを1.7×10−6以下とするためには、平均方位差角δを約6°以下に抑える必要があることがわかる。 FIG. 2 is a graph showing the influence of the average misorientation angle δ of the steel sheet after secondary recrystallization on the magnetostriction λ p-p under a compressive stress of 3.92 MPa. From this figure, the smaller the average misorientation angle δ, the smaller the magnetostriction λ p-p , and in the steel C to which Sb and Sn are added in combination, the magnetostriction λ p-p is 1.7 × 10 −6 or less. In order to achieve this, it is understood that the average misorientation angle δ needs to be suppressed to about 6 ° or less.

また、図3は、二次再結晶後の鋼板の平均方位差角δに及ぼす最終冷延圧下率の影響をしたものである。この図から、平均方位差角δを低減するには最適な冷延圧下率の範囲が存在し、SbとSnを複合添加した鋼Cの場合には、方位差角δを6°以下にするためには、冷延圧下率を84〜90%の範囲に制御する必要があること、また、方位差角δを4°以下にするには、冷延圧下率を85〜89%の範囲に、さらに、方位差角δを3°以下にするには、冷延圧下率を86〜98%の範囲に制御する必要があることがわかる。   FIG. 3 shows the effect of the final cold rolling reduction ratio on the average misorientation angle δ of the steel sheet after secondary recrystallization. From this figure, there is an optimum cold rolling reduction range for reducing the average misorientation angle δ, and in the case of steel C to which Sb and Sn are added in combination, the misorientation angle δ is set to 6 ° or less. Therefore, it is necessary to control the cold rolling reduction ratio in the range of 84 to 90%, and in order to make the misorientation angle δ 4 ° or less, the cold rolling reduction ratio is set in the range of 85 to 89%. Furthermore, it can be seen that in order to make the misorientation angle δ 3 ° or less, it is necessary to control the cold rolling reduction ratio in the range of 86 to 98%.

ここで、SbとSnを複合添加した鋼板において、平均方位差角δが大きく低減される理由は、表面に偏析する傾向の強いSbと、粒界に偏析する傾向の強いSnの効果が、後述する最終冷間圧延後の鋼板温度上昇による効果と相俟って、一次再結晶集合組織が改善され、二次再結晶方位の理想ゴス方位への集積度が高まるためと考えられる。   Here, the reason why the average misorientation angle δ is greatly reduced in the steel sheet to which Sb and Sn are added in combination is that the effect of Sb that tends to segregate on the surface and Sn that tends to segregate on the grain boundary will be described later. This is thought to be due to the improvement in the primary recrystallization texture and the increase in the degree of integration of the secondary recrystallization orientation in the ideal Goth orientation, coupled with the effect of the steel plate temperature increase after the final cold rolling.

また、SbおよびSnは、熱間における鋼強度を高める効果もあるので、平坦化焼鈍における鋼板伸びが抑制されて、形状矯正時の下地被膜(フォルステライト質被膜)の損傷が軽減される結果、下地被膜による引張応力が強化されて、圧縮応力による磁歪特性の低下が抑制されることも考えられる。   In addition, Sb and Sn also have an effect of increasing the steel strength in the hot, so that the elongation of the steel sheet in the flattening annealing is suppressed, and damage to the base film (forsterite film) during shape correction is reduced. It is also conceivable that the tensile stress due to the undercoat is strengthened and the deterioration of magnetostrictive properties due to compressive stress is suppressed.

すなわち、SbとSnを複合添加した鋼板では、前述した二次再結晶粒の方位差角δが減少することによる磁歪特性の改善効果と、上記下地被膜の引張応力強化効果とが効果的に組み合わされることによって、磁歪の絶対値(λp−p)および磁歪波形の高調波成分が低減されて、変圧器の騒音低減が達成されるものと考えられる。特に、高調波成分は、還流磁区の増加により増大するので、還流磁区の生成を抑制する被膜張力強化は、高調波成分の低減に有効である。 That is, in the steel sheet to which Sb and Sn are added in combination, the effect of improving the magnetostriction characteristics due to the decrease in the misorientation angle δ of the secondary recrystallized grains and the tensile stress strengthening effect of the undercoat are effectively combined. Thus, it is considered that the absolute value (λ p−p ) of the magnetostriction and the harmonic component of the magnetostrictive waveform are reduced, and the noise reduction of the transformer is achieved. In particular, since the harmonic component increases with an increase in the reflux magnetic domain, the enhancement of the film tension that suppresses the generation of the reflux magnetic domain is effective in reducing the harmonic component.

<実験2>
C:0.072mass%、Si:3.4mass%、Mn:0.07mass%、Al:0.02mass%、N:0.009mass%、Se:0.02mass%、Sb:0.04mass%およびSn:0.06mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1420℃に加熱後、熱間圧延して板厚2.4mmの熱延板とし、1120℃×30秒の熱延板焼鈍を施した後、冷間圧延して最終板厚:0.27mmの冷延板とした。なお、上記冷間圧延の最終冷間圧延では、冷延圧下率を88.8%とし、圧延速度を制御して加工発熱により圧延後の鋼板温度を、表2に示した種々の温度に上昇させた。
<Experiment 2>
C: 0.072 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Al: 0.02 mass%, N: 0.009 mass%, Se: 0.02 mass%, Sb: 0.04 mass% and Sn : A steel slab containing 0.06 mass% and the balance being composed of Fe and inevitable impurities, heated to 1420 ° C., and then hot-rolled to a hot-rolled sheet having a thickness of 2.4 mm, 1120 ° C. × After hot-rolled sheet annealing for 30 seconds, it was cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.27 mm. In the final cold rolling of the cold rolling described above, the cold rolling reduction ratio is set to 88.8%, and the steel sheet temperature after rolling is increased to various temperatures shown in Table 2 by controlling the rolling speed and by heat generated by processing. I let you.

Figure 0005896112
Figure 0005896112

次いで、露点60℃の湿潤水素雰囲気下において、840℃×120秒の脱炭を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布、乾燥し、その後、乾燥(N+H)混合雰囲気下で1000℃まで昇温して二次再結晶させた後、乾燥H雰囲気下で1150℃以上の温度に20時間保持して純化処理する仕上焼鈍を施した。次いで、仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカと燐酸マグネシウムからなるコーティング液を両面目付量が10g/mとなるよう塗布し、9MPaの張力を付与しながら840℃の温度で平坦化焼鈍を施して張力付与被膜を被成し、製品板とした。 Next, in a wet hydrogen atmosphere with a dew point of 60 ° C., after performing primary recrystallization annealing that also serves as decarburization at 840 ° C. for 120 seconds, an annealing separator mainly composed of MgO is applied to the steel sheet surface and dried. Thereafter, the temperature is raised to 1000 ° C. in a dry (N 2 + H 2 ) mixed atmosphere and subjected to secondary recrystallization, and then the finish annealing is performed at a temperature of 1150 ° C. or higher for 20 hours in a dry H 2 atmosphere for purification treatment. Was given. Next, after removing the unreacted annealing separator from the surface of the steel sheet after the finish annealing, a coating liquid composed of 50 mass% colloidal silica and magnesium phosphate is applied so that the double-sided weight is 10 g / m 2, and a tension of 9 MPa A flattening annealing was performed at a temperature of 840 ° C. while applying a tension to form a tension-imparting coating, thereby obtaining a product plate.

斯くして得られた製品板から、圧延方向を長さ方向として長さ:300mm×幅:100mmの試験片を切り出し、二次再結晶後のゴス方位(110)<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δをX線ラウエ法で測定した。
また、3.92MPaの圧縮応力を鋼板の圧延方向に付加した状態で、50Hz、1.7Tで磁化した時の磁歪λp−pを、レーザー変位計で測定した。
さらに、上記製品板を用いて積層鉄心を組み立て、400kVAの変圧器を作製し、1.7T、50Hzで励磁した時の騒音を測定した。
From the product plate thus obtained, a test piece of length: 300 mm × width: 100 mm was cut out with the rolling direction as the length direction, and the rolling direction in the Goss orientation (110) <001> grains after secondary recrystallization was determined. The average misorientation angle δ of the crystal orientation as the rotation axis was measured by the X-ray Laue method.
Further, the magnetostriction λ p-p when magnetized at 50 Hz and 1.7 T with a compressive stress of 3.92 MPa applied in the rolling direction of the steel sheet was measured with a laser displacement meter.
Furthermore, a laminated iron core was assembled using the product plate, a 400 kVA transformer was produced, and noise when excited at 1.7 T and 50 Hz was measured.

上記実験の結果を表2に併記した。この結果から、磁歪λp−pを1.7×10−6以下とするためには、最終冷間圧延後の鋼板温度を150〜250℃の範囲に制御することが必要であることがわかる。
ここで鋼板温度を上記温度範囲に制御する必要がある理由は、鋼板温度は、辷り系を変えることによる変形挙動の変化を介して一次再結晶集合組織を改善し、ひいては、二次再結晶粒のゴス方位への集積度を高める効果があるからである。最終冷間圧延後の鋼板温度が150℃未満では、上記効果が十分に得られず、一方、250℃を超えると転位が回復して、一次再結晶集合組織を劣化させるからである。
なお、鋼板温度は、上記のように冷間圧延における加工発熱によって昇温させてもよいし、最終冷間圧延前に予め加熱しておいてもよく、その効果に違いはない。
The results of the experiment are also shown in Table 2. From this result, in order to make magnetostriction (lambda) pp below 1.7 * 10 < -6 >, it turns out that it is necessary to control the steel plate temperature after final cold rolling in the range of 150-250 degreeC. .
The reason why the steel plate temperature needs to be controlled within the above temperature range is that the steel plate temperature improves the primary recrystallization texture through a change in deformation behavior by changing the twisting system, and thus the secondary recrystallization grain. This is because there is an effect of increasing the degree of integration in the Goss direction. This is because if the steel plate temperature after the final cold rolling is less than 150 ° C., the above effect cannot be obtained sufficiently, while if it exceeds 250 ° C., the dislocation recovers and degrades the primary recrystallization texture.
In addition, the steel plate temperature may be raised by working heat generation in the cold rolling as described above, or may be preheated before the final cold rolling, and there is no difference in the effect.

上記実験の結果から、変圧器の騒音を50dB以下に低減するためには、鉄心に用いる方向性電磁鋼板のゴス方位粒における平均方位差角δを6°以下、かつ、磁歪λp−pを1.7×10−6以下とする必要があり、そのためには、素材としてSbとSnを複合添加した鋼スラブを用い、最終冷間圧延における冷延圧下率を84〜90%の範囲にすると共に、最終冷間圧延後の鋼板温度を150〜250℃の温度範囲に制御する必要があることを新規に見出し、本発明を完成させた。 From the result of the above experiment, in order to reduce the noise of the transformer to 50 dB or less, the average misorientation angle δ in the goth orientation grain of the grain-oriented electrical steel sheet used for the iron core is 6 ° or less, and the magnetostriction λ p-p is It is necessary to set it as 1.7 * 10 <-6> or less, For that purpose, the steel slab which added Sb and Sn as a raw material is used, and the cold rolling reduction in final cold rolling is made into the range of 84 to 90%. At the same time, the present inventors have newly found that it is necessary to control the steel plate temperature after the final cold rolling to a temperature range of 150 to 250 ° C., thereby completing the present invention.

次に、本発明の方向性電磁鋼板について説明する。
本発明の方向性電磁鋼板は、前述したように、圧縮応力下での磁歪特性を改善して、変圧器騒音を低減するため、上記成分組成の限定に加えて、二次再結晶後のゴス方位{110}<001>粒における、圧延方向を回転軸とした結晶方位の方位差角δが6°以下であることが必要である。
Next, the grain-oriented electrical steel sheet of the present invention will be described.
As described above, the grain-oriented electrical steel sheet of the present invention improves the magnetostriction characteristics under compressive stress and reduces transformer noise. In the orientation {110} <001> grains, the orientation difference angle δ of the crystal orientation with the rolling direction as the rotation axis needs to be 6 ° or less.

さらに、本発明の方向性電磁鋼板は、変圧器の鉄損(騒音)を低減するため、圧縮応力3.92MPaを鋼板の圧延方向に付加した状態で、50Hz、1.7Tで磁化した時の磁歪λp−pが1.7×10−6以下の磁歪特性を有することが必要である。 Furthermore, the grain-oriented electrical steel sheet of the present invention has a magnetizing force of 50 Hz and 1.7 T with a compressive stress of 3.92 MPa applied in the rolling direction of the steel sheet in order to reduce the iron loss (noise) of the transformer. It is necessary that the magnetostriction λ p−p has a magnetostriction characteristic of 1.7 × 10 −6 or less.

なお、上記磁歪特性をより向上させるためには、前述した鋼成分と結晶方位を限定することに加えてさらに、絶縁被膜を張力付与被膜として、鋼板に10MPa以上の引張応力を付与してやることや、上記付与される引張応力を相殺する残留歪を鋼板から除去してやることが好ましい。   In order to further improve the magnetostrictive properties, in addition to limiting the steel component and crystal orientation described above, the insulating coating is used as a tension-imparting coating, and a tensile stress of 10 MPa or more is applied to the steel sheet, It is preferable to remove the residual strain that cancels the applied tensile stress from the steel sheet.

次に、本発明の方向性電磁鋼板(製品板)の成分組成について説明する。
Si:3.0〜7.0mass%
Siは、鋼の固有抵抗を高めて渦電流損を低減し、鉄損の低減を図るため、および、磁歪特性を改善して変圧器の騒音を低下させるために必要な必須の元素である。上記効果は、3.0mass%未満では十分ではなく、一方、7.0mass%を超える添加は、加工性を著しく阻害し、圧延して鋼板を製造することを難しくする。よって、Siは3.0〜7.0mass%の範囲とする。好ましくは3.2〜3.7mass%の範囲である。
Next, the component composition of the grain-oriented electrical steel sheet (product board) of the present invention will be described.
Si: 3.0 to 7.0 mass%
Si is an essential element necessary for increasing the specific resistance of steel to reduce eddy current loss and reducing iron loss, and for improving magnetostriction characteristics and reducing transformer noise. If the effect is less than 3.0 mass%, it is not sufficient. On the other hand, the addition exceeding 7.0 mass% significantly impairs workability and makes it difficult to produce a steel sheet by rolling. Therefore, Si is set to a range of 3.0 to 7.0 mass%. Preferably it is the range of 3.2-3.7 mass%.

Sb:0.01〜0.10mass%、Sn:0.01〜0.20mass%
図1および図2に示したように、本発明の方向性電磁鋼板において、二次再結晶後のゴス方位{110}<001>粒における、圧延方向を回転軸とした結晶方位の方位差角δを低減し、かつ、かつ3.92MPaの圧縮応力を鋼板圧延方向に付加した状態で、50Hz、1.7Tで磁化した時の磁歪λp−pを1.7×10−6以下として、変圧器の騒音を低減するためには、SbおよびSnの複合添加は必須である。SbおよびSnの添加量が、それぞれ0.01mass%未満では、上記効果が十分に得られず、一方、Sbは0.10mass%超え、Snは0.20mass%超え添加すると、加工性が著しく低下する。よって、SbおよびSnは、それぞれ、Sb:0.01〜0.10mass%、Sn:0.01〜0.20mass%の範囲とする。好ましくは、Sb:0.02〜0.05mass%、Sn:0.03〜0.10mass%の範囲である。
Sb: 0.01 to 0.10 mass%, Sn: 0.01 to 0.20 mass%
As shown in FIGS. 1 and 2, in the grain-oriented electrical steel sheet according to the present invention, the orientation difference angle of the crystal orientation in the Goss orientation {110} <001> grains after secondary recrystallization with the rolling direction as the rotation axis. In a state where δ is reduced and a compressive stress of 3.92 MPa is applied in the steel sheet rolling direction, the magnetostriction λ p-p when magnetized at 50 Hz and 1.7 T is 1.7 × 10 −6 or less, In order to reduce the noise of the transformer, the combined addition of Sb and Sn is essential. When the addition amount of Sb and Sn is less than 0.01 mass%, the above effect cannot be obtained sufficiently. On the other hand, when Sb exceeds 0.10 mass% and Sn exceeds 0.20 mass%, the workability is remarkably lowered. To do. Therefore, Sb and Sn are in the ranges of Sb: 0.01 to 0.10 mass% and Sn: 0.01 to 0.20 mass%, respectively. Preferably, Sb: 0.02 to 0.05 mass%, Sn: 0.03 to 0.10 mass%.

Mn:0.04〜0.15mass%
Mnは、鋼の熱間加工性を確保するために必要な元素であり、また、SやSeと結合してインヒビターを形成する元素でもある。Mn添加量が0.04mass%未満では、熱間加工性の改善効果が十分に得られず、一方、0.15mass%を超えると、磁歪特性が低下し、騒音が増大するようになる。よって、Mnは0.04〜0.15mass%の範囲とする。好ましくは0.05〜0.08mass%の範囲である。
Mn: 0.04 to 0.15 mass%
Mn is an element necessary for ensuring the hot workability of steel, and is also an element that binds to S and Se to form an inhibitor. If the amount of Mn added is less than 0.04 mass%, the effect of improving the hot workability cannot be sufficiently obtained. On the other hand, if it exceeds 0.15 mass%, the magnetostrictive characteristics are lowered and noise is increased. Therefore, Mn is set to a range of 0.04 to 0.15 mass%. Preferably it is the range of 0.05-0.08 mass%.

また、本発明の方向性電磁鋼板は、上記必須とする成分の他に、後述するインヒビターの作用を補助し、鉄損や磁気特性をより改善するため、Cr:0.10mass%以下、Ni:0.50mass%以下、Mo:0.10mass%以下、Cu:0.10mass%以下、Nb:0.05mass%以下およびP:0.05mass%以下のうちから選ばれる1種または2種以上を含有させることができる。ただし、これら元素の上記範囲を超える添加は、鋼を脆化し、熱間圧延や冷間圧延において割れや破断を引き起こし、製品歩留りの低下を招くので、添加する場合は、上記範囲とするのが好ましい。   Further, the grain-oriented electrical steel sheet of the present invention, in addition to the essential components described above, assists the action of the inhibitor described later and further improves iron loss and magnetic properties, so Cr: 0.10 mass% or less, Ni: Containing one or more selected from 0.50 mass% or less, Mo: 0.10 mass% or less, Cu: 0.10 mass% or less, Nb: 0.05 mass% or less, and P: 0.05 mass% or less Can be made. However, addition of these elements beyond the above range causes embrittlement of the steel and causes cracking and fracture in hot rolling and cold rolling, resulting in a decrease in product yield. preferable.

なお、本発明の方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害しない範囲であれば、他の元素の含有を拒むものではない。ただし、Cは、0.0050mass%を超えて含有すると、磁気時効によって、製品の磁気特性の劣化を招くので、0.0050mass%以下とするのが好ましく、0.0030mass%以下とするのがより好ましい。   In the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, the content of other elements is not rejected as long as the effects of the present invention are not adversely affected. However, if C is contained in excess of 0.0050 mass%, the magnetic properties of the product are deteriorated due to magnetic aging, so 0.0050 mass% or less is preferable, and 0.0030 mass% or less is more preferable. preferable.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
まず、本発明の方向性電磁鋼板の素材となる鋼スラブは、常法に準じて製造すればよく、特に制限はない。
ただし、鋼成分については、前述したように、平均方位差角δを低減し、磁歪特性を向上するため、Sbを0.01〜0.10mass%、Snを0.01〜0.20mass%の範囲で複合して含有するものであることが必要である。
また、鋼の固有抵抗を高めて渦電流損を低減し、鉄損の低減を図るため、および、磁歪特性を改善して変圧器の騒音を低下させるため、Siを3.0〜7.0mass%の範囲で、さらに、鋼の熱間加工性を確保するため、および、インヒビター形成成分として、Mnを0.04〜0.15mass%の範囲で含有するものであることが必要である。
さらに、上記鋼スラブは、Cr,Ni,Mo,Nb,Cu,Pのうちから選ばれる1種または2種以上を、Cr:0.10mass%以下、Ni:0.50mass%以下、Mo:0.10mass%以下、Cu:0.10mass%以下、Nb:0.05mass%以下およびP:0.05mass%以下の範囲で含有していることが好ましい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
First, the steel slab used as the raw material of the grain-oriented electrical steel sheet of the present invention may be produced according to a conventional method, and there is no particular limitation.
However, as described above, for the steel component, in order to reduce the average misorientation angle δ and improve the magnetostriction characteristics, Sb is 0.01 to 0.10 mass%, Sn is 0.01 to 0.20 mass%. It is necessary to contain it in a composite range.
Further, in order to increase the specific resistance of steel to reduce eddy current loss and reduce iron loss, and to improve magnetostriction characteristics and reduce transformer noise, Si is 3.0 to 7.0 mass. Further, in order to ensure the hot workability of the steel in the range of%, and as an inhibitor forming component, it is necessary to contain Mn in the range of 0.04 to 0.15 mass%.
Furthermore, the steel slab is made of one or more selected from Cr, Ni, Mo, Nb, Cu, and P, with Cr: 0.10 mass% or less, Ni: 0.50 mass% or less, Mo: 0 .10 mass% or less, Cu: 0.10 mass% or less, Nb: 0.05 mass% or less, and P: 0.05 mass% or less are preferable.

上記鋼スラブに含まれるその他の成分としては、Cとインヒビター成分がある。
Cは、0.01〜0.10mass%の範囲で含有していることが好ましい。すなわち、Cは、相変態を利用して熱延板の結晶組織を改善するのに有用な元素であるだけでなく、ゴス方位粒を生成させるのに有用な元素であり、少なくとも0.01mass%含有させるのが好ましい。しかし、0.10mass%を超える添加は、脱炭焼鈍を施しても脱炭不足を引き起こすおそれがある。よって、Cは0.01〜0.10mass%の範囲とするのが好ましい。
Other components contained in the steel slab include C and inhibitor components.
C is preferably contained in the range of 0.01 to 0.10 mass%. That is, C is not only an element useful for improving the crystal structure of a hot-rolled sheet using phase transformation, but also an element useful for generating goth-oriented grains, and at least 0.01 mass%. It is preferable to contain. However, addition exceeding 0.10 mass% may cause insufficient decarburization even if decarburization annealing is performed. Therefore, C is preferably in the range of 0.01 to 0.10 mass%.

インヒビター成分は、二次再結晶を発現させるためにインヒビターを利用する場合には必須であり、例えば、AlNをインヒビターに用いるときには、Al:0.010〜0.030mass%、N:0.0030〜0.0100mass%の範囲で、また、MnSおよび/またはMnSeをインヒビターに用いるときには、S,Seは単独あるいは合計で0.010〜0.030mass%の範囲で、また、BNをインヒビターに用いる場合には、B:0.0005〜0.0030mass%、N:0.0030〜0.0100mass%の範囲で含有させることが好ましい。なお、二次再結晶に利用する上記インヒビターは1種だけでもよいし、2種以上を用いてもよい。   The inhibitor component is essential when an inhibitor is used to develop secondary recrystallization. For example, when AlN is used as an inhibitor, Al: 0.010 to 0.030 mass%, N: 0.0030 to When using MnS and / or MnSe as an inhibitor in the range of 0.0100 mass%, S and Se are used alone or in total in the range of 0.010 to 0.030 mass%, and when BN is used as an inhibitor. Is preferably contained in the range of B: 0.0005 to 0.0030 mass% and N: 0.0030 to 0.0100 mass%. In addition, the said inhibitor utilized for secondary recrystallization may be only 1 type, and may use 2 or more types.

一方、特開2000−129356号公報に開示された技術のように、インヒビターを利用せず、固溶窒素の粒界移動抑制効果を利用して二次再結晶を発現させる場合には、Al,N,S,SeおよびB等のインヒビター成分は極力低減することが望ましく、たとえば、Al:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Se:0.0050mass%以下およびB:0.0010mass%以下に低減することが好ましい。   On the other hand, as in the technique disclosed in Japanese Patent Application Laid-Open No. 2000-129356, when secondary recrystallization is expressed using the effect of suppressing the grain boundary migration of solute nitrogen without using an inhibitor, Al, Inhibitor components such as N, S, Se and B are desirably reduced as much as possible. For example, Al: 0.0100 mass% or less, N: 0.0050 mass% or less, S: 0.0050 mass% or less, Se: 0.0050 mass % Or less and B: It is preferable to reduce to 0.0010 mass% or less.

上記成分組成に調整された鋼スラブは、熱間圧延に先立って、加熱炉に装入して所定の温度に再加熱する必要がある。再加熱する温度は、鋼スラブがインヒビター成分を含有する場合には、インヒビター成分を完全に固溶させるため、1300℃以上の温度に加熱するのが好ましい。一方、鋼スラブがインヒビター成分を極力低減した高純度材である場合には、1280℃以下の温度としてもよい。   Prior to hot rolling, the steel slab adjusted to the above component composition needs to be charged into a heating furnace and reheated to a predetermined temperature. When the steel slab contains an inhibitor component, the reheating temperature is preferably 1300 ° C. or higher in order to completely dissolve the inhibitor component. On the other hand, when the steel slab is a high-purity material in which inhibitor components are reduced as much as possible, the temperature may be 1280 ° C. or lower.

続く、熱間圧延は、常法の条件で行えばよく、特に制限はない。熱間圧延した鋼板は、その後、必要に応じて熱延板焼鈍を施すのが好ましい。この熱延板焼鈍は、製品板におけるゴス組織を高度に発達させるのに有効であり、その効果を得るためには、焼鈍温度を800〜1100℃の範囲とするのが好ましい。   The subsequent hot rolling may be performed under ordinary conditions, and is not particularly limited. The hot-rolled steel sheet is then preferably subjected to hot-rolled sheet annealing as necessary. This hot-rolled sheet annealing is effective for highly developing a goth structure in the product plate, and in order to obtain the effect, it is preferable to set the annealing temperature in the range of 800 to 1100 ° C.

熱間圧延した、あるいは、熱延板焼鈍を施した熱延板は、その後、酸洗し、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。
ここで、本発明の製造方法において重要なことは、二次再結晶後の鋼板のゴス方位粒の方位差角δを6°以下とするため、最終冷間圧延における圧下率を84〜90%の範囲に制御すること、および、最終冷間圧延後の鋼板温度を150〜250℃の温度範囲に制御することが重要である。
The hot-rolled sheet that has been hot-rolled or subjected to hot-rolled sheet annealing is then pickled and made into a cold-rolled sheet having a final thickness by cold rolling at least once with one or intermediate annealing in between.
Here, in the production method of the present invention, what is important is that the orientation difference angle δ of the goth-oriented grains of the steel sheet after secondary recrystallization is 6 ° or less, so that the rolling reduction in the final cold rolling is 84 to 90%. It is important to control the steel sheet temperature after the final cold rolling to a temperature range of 150 to 250 ° C.

最終板厚に圧延した冷延板は、その後、800〜1000℃の温度範囲で一次再結晶焼鈍を施すのが好ましい。この際、素材(鋼スラブ)のCが0.005mass%より高い場合には、製品板における磁気時効を防止するため、上記一次再結晶焼鈍を、湿潤雰囲気(酸化性雰囲気)下で脱炭を兼ねて行うのが好ましい。   After that, the cold-rolled sheet rolled to the final sheet thickness is preferably subjected to primary recrystallization annealing in the temperature range of 800 to 1000 ° C. At this time, when C of the material (steel slab) is higher than 0.005 mass%, in order to prevent magnetic aging in the product plate, the primary recrystallization annealing is performed in a wet atmosphere (oxidizing atmosphere). It is preferable to carry out it also.

一次再結晶焼鈍した鋼板は、その後、MgOを主体とした焼鈍分離剤を塗布、乾燥し、コイルに巻き取った後、二次再結晶とフォルステライト被膜形成のため、1000℃以上の温度で仕上焼鈍を施すのが好ましい。仕上焼鈍後の鋼板は、鋼板表面の未反応の焼鈍分離剤を除去した後、絶縁被膜の被成と鋼板形状の矯正を兼ねた平坦化焼鈍を施して、あるいは、平坦化焼鈍を施した後、鋼板表面に絶縁被膜を被成して、製品板とするのが好ましい。   The steel sheet subjected to primary recrystallization annealing is then coated with an annealing separator mainly composed of MgO, dried, wound on a coil, and then finished at a temperature of 1000 ° C. or higher for secondary recrystallization and forsterite film formation. It is preferable to perform annealing. After finishing annealing, after removing the unreacted annealing separator on the surface of the steel sheet, the steel sheet is subjected to flattening annealing that combines the formation of the insulating coating and the correction of the steel plate shape, or after flattening annealing. It is preferable to form a product plate by depositing an insulating coating on the surface of the steel plate.

ここで、上記絶縁被膜は、鋼板圧延方向に圧縮応力3.92MPaを付加した状態で、50Hz、1.7Tで磁化した時の磁歪λp−pを安定して1.7×10−6以下とするため、燐酸塩とコロイダルシリカを混合した、鋼板に引張応力を付与することができる張力付与被膜とするのが好ましい。なお、上記絶縁被膜によって鋼板に付与される引張応力は、下地のフォルステライト質被膜によって付与される引張応力と合わせて、10MPa以上とするのが好ましい。 Here, the insulating coating stably has a magnetostriction λp -p of 1.7 × 10 −6 or less when magnetized at 50 Hz and 1.7 T with a compressive stress of 3.92 MPa applied in the steel sheet rolling direction. Therefore, it is preferable to use a tension-imparting film in which a tensile stress can be imparted to a steel sheet, in which phosphate and colloidal silica are mixed. The tensile stress imparted to the steel sheet by the insulating coating is preferably 10 MPa or more in combination with the tensile stress imparted by the underlying forsterite coating.

また、上記平坦化焼鈍において鋼板に付与する炉内張力は、形状矯正のための必要最小限の張力である10MPa以下にするのが好ましい。これによって、下地のフォルステライト被膜の損傷が抑制され、鋼板に付与される引張応力を高めることができるので、圧縮応力下での磁歪特性を確保するのに有利となる。   Further, the in-furnace tension applied to the steel plate in the above-described flattening annealing is preferably set to 10 MPa or less which is the minimum necessary tension for shape correction. As a result, damage to the underlying forsterite film is suppressed, and the tensile stress imparted to the steel sheet can be increased, which is advantageous in securing magnetostrictive characteristics under compressive stress.

表3に示した成分組成を有する鋼スラブを表3に示した温度に加熱後、熱間圧延して板厚2.4mmの熱延板とし、1120℃で30秒の熱延板焼鈍を施した後、冷間圧延して最終板厚:0.27mm(最終冷延圧下率:88.8%)の冷延板とした。なお、上記冷間圧延の最終冷間圧延では、加工発熱により鋼板温度を220℃まで昇温させた。   A steel slab having the composition shown in Table 3 was heated to the temperature shown in Table 3, and then hot-rolled to a hot-rolled sheet having a thickness of 2.4 mm, and subjected to hot-rolled sheet annealing at 1120 ° C. for 30 seconds. After that, it was cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.27 mm (final cold-rolling reduction ratio: 88.8%). In the final cold rolling of the cold rolling, the steel plate temperature was raised to 220 ° C. by processing heat generation.

Figure 0005896112
Figure 0005896112

次いで、露点62℃の湿潤水素雰囲気下で830℃×120秒の脱炭を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布、乾燥し、その後、乾燥(N+H)混合雰囲気下で1000℃まで昇温して二次再結晶させた後、さらに、乾燥H雰囲気で1150℃以上の温度に20時間保持して純化処理する仕上焼鈍を施した。仕上焼鈍後の鋼板は、鋼板表面の未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカと、燐酸マグネシウムからなるコーティング液を両面目付量が10g/mとなるよう塗布し、8MPaの張力を付与しながら850℃の温度で平坦化焼鈍を施して張力付与被膜を被成し、製品板とした。 Next, after performing primary recrystallization annealing also serving as decarburization at 830 ° C. for 120 seconds in a wet hydrogen atmosphere with a dew point of 62 ° C., an annealing separator mainly composed of MgO is applied to the steel sheet surface, and then dried. Finish annealing after heating to 1000 ° C. in a dry (N 2 + H 2 ) mixed atmosphere, followed by secondary recrystallization, and further maintaining in a dry H 2 atmosphere at a temperature of 1150 ° C. or higher for 20 hours. Was given. The steel sheet after the finish annealing is applied with a coating liquid composed of 50 mass% colloidal silica and magnesium phosphate after removing the unreacted annealing separator on the steel sheet surface so that the double-sided weight is 10 g / m 2. A flattening annealing was performed at a temperature of 850 ° C. while applying a tension, and a tension-imparting film was formed to obtain a product plate.

斯くして得られた製品板から、圧延方向を長さ方向として長さ:300mm×幅:100mmの試験片を切り出し、二次再結晶粒のゴス方位(110)<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δをX線ラウエ法で測定した。
また、3.92MPaの圧縮応力を鋼板の圧延方向に付加した状態で、50Hz、1.7Tの条件で磁化した時の磁歪λp−pを、レーザー変位計で測定した。
さらに、上記製品板を用いて積層鉄心を組み立て、400kVAの変圧器を作製し、1.7T、50Hzで励磁した時の騒音を測定した。
From the product plate thus obtained, a test piece of length: 300 mm × width: 100 mm was cut out with the rolling direction as the length direction, and the rolling direction in the Goth orientation (110) <001> grains of the secondary recrystallized grains was determined. The average misorientation angle δ of the crystal orientation as the rotation axis was measured by the X-ray Laue method.
In addition, the magnetostriction λ p-p when magnetized under the condition of 50 Hz and 1.7 T with a compressive stress of 3.92 MPa applied in the rolling direction of the steel sheet was measured with a laser displacement meter.
Furthermore, a laminated iron core was assembled using the product plate, a 400 kVA transformer was produced, and noise when excited at 1.7 T and 50 Hz was measured.

上記測定の結果を、表3に併記した。表3から、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下で、かつ、圧延方向に圧縮応力3.92MPaを付加した状態で、50Hz、1.7Tで磁化したときの磁歪λp−pが1.7×10−6以下である本発明に適合する鋼板は、いずれも、変圧器の騒音が50dB以下で、騒音特性に優れていることがわかる。 The results of the above measurements are also shown in Table 3. From Table 3, in the state where the average misorientation angle δ of the crystal orientation with the rolling direction as the rotation axis in the Goss orientation {110} <001> grains is 6 ° or less and a compressive stress of 3.92 MPa is applied in the rolling direction. All steel sheets suitable for the present invention having a magnetostriction λ p-p of 1.7 × 10 −6 or less when magnetized at 50 T, 1.7 T have noise characteristics of the transformer of 50 dB or less and noise characteristics. It turns out that it is excellent.

Claims (6)

Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フォルステライト被膜による引張応力との合計が10MPa以上となる張力付与絶縁被膜が被成してなる方向性電磁鋼板であって、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λp−pが1.7×10−6以下である方向性電磁鋼板。 Si: 3.0 to 7.0 mass%, Mn: 0.04 to 0.15 mass%, Sb: 0.01 to 0.10 mass% and Sn: 0.01 to 0.20 mass%, the balance being Fe And a grain- oriented electrical steel sheet having a component composition comprising unavoidable impurities and formed by a tension-imparting insulating coating having a total of 10 MPa or more of the tensile stress caused by the forsterite coating , wherein the Goth orientation {110} <001> When the average orientation difference angle δ of the crystal orientation with the rolling direction as the rotation axis is 6 ° or less, and a compressive stress of 3.92 MPa is applied in the rolling direction and magnetized at 50 Hz and 1.7 T A grain - oriented electrical steel sheet having a magnetostriction λp -p of 1.7 × 10 −6 or less. 上記成分組成に加えてさらに、Cr:0.10mass%以下、Ni:0.50mass%以下、Mo:0.10mass%以下、Cu:0.10mass%以下、Nb:0.05mass%以下およびP:0.05mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板。 In addition to the above component composition, Cr: 0.10 mass% or less, Ni: 0.50 mass% or less, Mo: 0.10 mass% or less, Cu: 0.10 mass% or less, Nb: 0.05 mass% or less, and P: The grain-oriented electrical steel sheet according to claim 1, comprising one or more selected from 0.05 mass% or less. C:0.01〜0.10mass%、Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%、N:0.0030〜0.0100mass%を含有し、かつ、インヒビター成分として、Al,S,SeおよびBのうちのいずれか1以上を、Al:0.01〜0.030mass%、SおよびSe:単独または合計で0.010〜0.030mass%、B:0.0005〜0.0030mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、必要に応じて熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚とした後、一次再結晶焼鈍し、焼鈍分離剤を塗布し、二次再結晶焼鈍し、平坦化焼鈍し、張力付与絶縁被膜を被成する方向性電磁鋼板の製造方法において、上記鋼スラブはさらに、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を複合含有し、150〜250℃の温度で圧下率が84〜90%の最終冷間圧延し、平坦化焼鈍における炉内張力を10MPa以下とし、フォルステライト被膜と張力付与絶縁被膜によって付与される合計引張応力を10MPa以上とすることで、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λ p−p が1.7×10 −6 以下である方向性電磁鋼板を得ることを特徴とする方向性電磁鋼板の製造方法。 C: 0.01-0.10 mass%, Si: 3.0-7.0 mass%, Mn: 0.04-0.15 mass%, N: 0.0030-0.0100 mass%, and an inhibitor As a component, any one or more of Al, S, Se and B is used, Al: 0.01 to 0.030 mass%, S and Se: alone or in total 0.010 to 0.030 mass%, B: 0 A steel slab having a component composition containing 0.05 to 0.0030 mass%, the balance being Fe and inevitable impurities, is hot-rolled, and is subjected to hot-rolled sheet annealing as necessary, and sandwiches one time or intermediate annealing 2 after a final thickness by the above cold rolling once, the direction in which the primary recrystallization annealing, applying an annealing separating agent, secondary recrystallization annealing, to HiNaru flattening annealing, the tensioning insulating coating Of electrical steel sheet In the above, the steel slab further contains Sb: 0.01 to 0.10 mass% and Sn: 0.01 to 0.20 mass%, and finally has a rolling reduction of 84 to 90% at a temperature of 150 to 250 ° C. Cold rolling , the furnace tension in flattening annealing is 10 MPa or less, and the total tensile stress imparted by the forsterite coating and the tension-imparting insulating coating is 10 MPa or more, so that the Goth orientation {110} <001> grains Magnetostriction λ p− when the average orientation difference angle δ of the crystal orientation with the rolling direction as the rotation axis is 6 ° or less, and a compressive stress of 3.92 MPa is applied in the rolling direction and magnetized at 50 Hz, 1.7 T. A method for producing a grain-oriented electrical steel sheet, comprising obtaining a grain-oriented electrical steel sheet having p of 1.7 × 10 −6 or less . C:0.01〜0.10mass%、Si:3.0〜7.0mass%、Mn:0.04〜0.15mass%を含有し、かつ、Al:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Se:0.0050mass%以下、B:0.0010mass%以下に低減し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、必要に応じて熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚とした後、一次再結晶焼鈍し、焼鈍分離剤を塗布し、二次再結晶焼鈍し、平坦化焼鈍し、張力付与絶縁被膜を被成する方向性電磁鋼板の製造方法において、上記鋼スラブはさらに、Sb:0.01〜0.10mass%およびSn:0.01〜0.20mass%を複合含有し、150〜250℃の温度で圧下率が84〜90%の最終冷間圧延を施し、平坦化焼鈍における炉内張力を10MPa以下とし、フォルステライト被膜と張力付与絶縁被膜によって付与される合計引張応力を10MPa以上とすることで、ゴス方位{110}<001>粒における圧延方向を回転軸とした結晶方位の平均方位差角δが6°以下であり、かつ、圧延方向に圧縮応力3.92MPaを付加し、50Hz、1.7Tで磁化したときの磁歪λ p−p が1.7×10 −6 以下である方向性電磁鋼板を得ることを特徴とする方向性電磁鋼板の製造方法。 C: 0.01-0.10 mass%, Si: 3.0-7.0 mass%, Mn: 0.04-0.15 mass % , Al: 0.0100 mass% or less, N: 0.0. 0050 mass% or less, S: 0.0050 mass% or less, Se: 0.0050 mass% or less, B: Reduced to 0.0010 mass% or less, and hot-rolling a steel slab having a composition composed of Fe and inevitable impurities. Then, if necessary, hot-rolled sheet annealing is performed, and cold rolling is performed twice or more with one or more intermediate annealings to obtain a final sheet thickness, followed by primary recrystallization annealing, application of an annealing separator, and following recrystallization annealing, flattening annealing, in the manufacturing method of the grain-oriented electrical steel sheet which HiNaru tensioning insulating coating, the steel slab further, Sb: 0.01~0.10mass% and Sn: 0.01 ~ 0. Containing composite of 20 mass% to facilities the rolling 150 to 250 ° C. The final cold rolling reduction at a temperature of 84 to 90%, the furnace tension not more than 10MPa in flattening annealing, forsterite film and tensioning insulating coating The average tensile difference angle δ of the crystal orientation with the rolling direction of the Goss orientation {110} <001> grains as the rotation axis is 6 ° or less, and the total tensile stress imparted by Directionality characterized by obtaining a grain - oriented electrical steel sheet having a magnetostriction λpp of 1.7 × 10 −6 or less when magnetized at 50 Hz and 1.7 T with a compressive stress of 3.92 MPa applied in the direction. A method for producing electrical steel sheets. 上記鋼スラブは、上記成分組成に加えてさらに、Cr:0.10mass%以下、Ni:0.50mass%以下、Mo:0.10mass%以下、Cu:0.10mass%以下、Nb:0.05mass%以下およびP:0.05mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項3または4に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel slab further includes Cr: 0.10 mass% or less, Ni: 0.50 mass% or less, Mo: 0.10 mass% or less, Cu: 0.10 mass% or less, Nb: 0.05 mass. % Or less and P: 0.05 mass% or less, 1 type, or 2 or more types chosen from it are contained, The manufacturing method of the grain-oriented electrical steel sheet of Claim 3 or 4 characterized by the above-mentioned. 請求項1または2に記載の方向性電磁鋼板を積層した鉄心を用いてなることを特徴とする変圧器。 A transformer comprising an iron core in which the grain-oriented electrical steel sheets according to claim 1 or 2 are laminated.
JP2011226647A 2011-10-14 2011-10-14 Oriented electrical steel sheet, method of manufacturing the same, and transformer Active JP5896112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226647A JP5896112B2 (en) 2011-10-14 2011-10-14 Oriented electrical steel sheet, method of manufacturing the same, and transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226647A JP5896112B2 (en) 2011-10-14 2011-10-14 Oriented electrical steel sheet, method of manufacturing the same, and transformer

Publications (2)

Publication Number Publication Date
JP2013087305A JP2013087305A (en) 2013-05-13
JP5896112B2 true JP5896112B2 (en) 2016-03-30

Family

ID=48531534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226647A Active JP5896112B2 (en) 2011-10-14 2011-10-14 Oriented electrical steel sheet, method of manufacturing the same, and transformer

Country Status (1)

Country Link
JP (1) JP5896112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139312A1 (en) * 2020-12-22 2022-06-30 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146262B2 (en) * 2013-10-29 2017-06-14 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6579078B2 (en) * 2016-10-18 2019-09-25 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6458813B2 (en) * 2017-01-18 2019-01-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP3605566B1 (en) 2017-03-30 2023-06-07 JFE Steel Corporation Transformer iron core
MX2020010226A (en) 2018-03-30 2020-11-06 Jfe Steel Corp Iron core for transformer.
MX2020010236A (en) 2018-03-30 2020-10-28 Jfe Steel Corp Iron core for transformer.
US11961659B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
CN111886662B (en) 2018-03-30 2023-05-12 杰富意钢铁株式会社 Iron core for transformer
JP7172316B2 (en) * 2018-09-11 2022-11-16 日本製鉄株式会社 Manufacturing method of magnetostrictive alloy and magnetostrictive alloy
KR102142511B1 (en) * 2018-11-30 2020-08-07 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102176348B1 (en) * 2018-11-30 2020-11-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
US11952646B2 (en) * 2019-01-16 2024-04-09 Nippon Steel Corporation Grain-oriented electrical steel sheet having excellent insulation coating adhesion without forsterite coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438282B2 (en) * 1993-12-28 2003-08-18 Jfeスチール株式会社 Method of manufacturing oriented silicon steel sheet with high magnetic flux density
JP3551849B2 (en) * 1999-08-20 2004-08-11 Jfeスチール株式会社 Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JP2002194444A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JP2002241906A (en) * 2001-02-09 2002-08-28 Kawasaki Steel Corp Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139312A1 (en) * 2020-12-22 2022-06-30 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP2013087305A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5896112B2 (en) Oriented electrical steel sheet, method of manufacturing the same, and transformer
JP5672273B2 (en) Method for producing grain-oriented electrical steel sheet
KR101421388B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
KR101737871B1 (en) Method for producing grain-oriented electrical steel sheet
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
KR20150121012A (en) Production method for grain-oriented electrical steel sheets
KR102140991B1 (en) Method of producing grain-oriented electrical steel sheet
EP3214188B1 (en) Production method for oriented grain-electromagnetic steel sheet
KR20150109486A (en) Production method for grain-oriented electrical steel sheets
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP2024041844A (en) Manufacturing method of non-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6690501B2 (en) Method for producing grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6622919B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2014074210A (en) Method of manufacturing grain-oriented electromagnetic steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206664B2 (en) Method for producing grain-oriented electrical steel sheet
JP2009155731A (en) Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
WO2018151296A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent or registration of utility model

Ref document number: 5896112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250