JP6622919B2 - Oriented electrical steel sheet and manufacturing method thereof - Google Patents

Oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6622919B2
JP6622919B2 JP2018532632A JP2018532632A JP6622919B2 JP 6622919 B2 JP6622919 B2 JP 6622919B2 JP 2018532632 A JP2018532632 A JP 2018532632A JP 2018532632 A JP2018532632 A JP 2018532632A JP 6622919 B2 JP6622919 B2 JP 6622919B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018532632A
Other languages
Japanese (ja)
Other versions
JP2019505671A (en
Inventor
ソク ハン,キュ
ソク ハン,キュ
ソク コ,ヒョン
ソク コ,ヒョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019505671A publication Critical patent/JP2019505671A/en
Application granted granted Critical
Publication of JP6622919B2 publication Critical patent/JP6622919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Description

本発明は、方向性電磁鋼板及びその製造方法に関する。   The present invention relates to a grain-oriented electrical steel sheet and a manufacturing method thereof.

方向性電磁鋼板は、鋼板の結晶方位が{110}<001>であるいわゆるゴス(Goss)方位を有する結晶粒からなる圧延方向の磁気的特性に優れた軟磁性材料である。
このような方向性電磁鋼板は、スラブ加熱後の熱間圧延、熱延板焼鈍、冷間圧延により通常最終的に0.15〜0.35mmの厚さに圧延された後、1次再結晶焼鈍と2次再結晶形成のために高温焼鈍を経て製造される。
A grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction, which is made of crystal grains having a so-called Goss orientation in which the crystal orientation of the steel sheet is {110} <001>.
Such a grain-oriented electrical steel sheet is usually finally rolled to a thickness of 0.15 to 0.35 mm by hot rolling after slab heating, hot-rolled sheet annealing, and cold rolling, followed by primary recrystallization. Manufactured through high temperature annealing for annealing and secondary recrystallization formation.

この時、高温焼鈍時には昇温率が遅いほど2次再結晶されるゴス方位の集積度が高まり磁性が優れることが知られている。通常、方向性電磁鋼板の高温焼鈍中の昇温率は、時間当り15℃以下であり、昇温だけで2〜3日がかかるだけでなく40時間以上の純化焼鈍が必要であるため、エネルギ消費が激しい工程であるといえる。また、現在の最終高温焼鈍工程は、コイル状態でバッチ(Batch)形態の焼鈍を行うため、工程上次のような困難が発生する。第一に、コイル状態での熱処理によるコイルの外巻部と内巻部との温度偏差が発生して各部分で同じ熱処理パターンを適用できず、外巻部と内巻部との磁性偏差が発生する。第二に、脱炭焼鈍後にMgOを表面にコーティングして高温焼鈍中のベースコーティングを形成する過程で多様な表面欠陥が発生するため、実収率が低下する。第三に、脱炭焼鈍が終了した脱炭板をコイル形態に巻き、高温焼鈍後に再び平坦化焼鈍を経て絶縁コーティングをするため、生産工程が3段階となり、作業効率が落ちる問題点が発生する。   At this time, it is known that the higher the rate of temperature increase during high-temperature annealing, the higher the degree of integration of Goss orientation recrystallized and the better the magnetism. Usually, the temperature rise rate during high-temperature annealing of grain-oriented electrical steel sheets is 15 ° C. or less per hour, and it takes 2-3 days not only for temperature rising but also requires 40 hours or more purification annealing. It can be said that it is a process with high consumption. In addition, since the current final high-temperature annealing process performs batch-type annealing in a coil state, the following difficulties occur in the process. First, the temperature deviation between the outer and inner winding portions of the coil due to the heat treatment in the coil state occurs, and the same heat treatment pattern cannot be applied to each portion, and the magnetic deviation between the outer and inner winding portions is different. appear. Secondly, since various surface defects are generated in the process of forming the base coating during high temperature annealing by coating MgO on the surface after decarburization annealing, the actual yield decreases. Thirdly, the decarburized plate that has been decarburized and annealed is wound into a coil form, and after the high-temperature annealing, the insulating coating is performed again through flattening annealing. .

本発明の目的とするところは、方向性電磁鋼板の製造方法及びこれによって製造された方向性電磁鋼板を提供することにある。   An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet produced thereby.

本発明の方向性電磁鋼板の製造方法は、重量%で、Si:4.0%以下(0重量%を除く)、C:0.001%〜0.4%及び、Mn:0.001〜2.0%を含有し、残部はFe及びその他不可避的に混入される不純物を含むスラブを提供する段階と、スラブを再加熱する段階と、スラブを熱間圧延して熱延鋼板を製造する段階と、熱延鋼板を熱延板焼鈍する段階と、熱延板焼鈍された熱延鋼板を1次冷間圧延する段階と、冷間圧延された鋼板を脱炭焼鈍する段階と、脱炭焼鈍が完了した鋼板を2次冷間圧延する段階と、冷間圧延が完了した鋼板を最終焼鈍する段階と、を含み、最終焼鈍が終了した鋼板は、結晶粒内に存在する磁区の大きさ(2L)が鋼板の厚さ(D)より小さい(2L<D)ことを特徴とする。   The production method of the grain-oriented electrical steel sheet according to the present invention is, in wt%, Si: 4.0% or less (excluding 0 wt%), C: 0.001% to 0.4%, and Mn: 0.001. Providing a slab containing 2.0%, the balance including Fe and other impurities inevitably mixed, a step of reheating the slab, and hot rolling the slab to produce a hot-rolled steel sheet A stage, a stage of hot-rolled sheet annealing of the hot-rolled steel sheet, a stage of primary cold-rolling the hot-rolled steel sheet that has been hot-rolled sheet annealed, a stage of decarburizing and annealing the cold-rolled steel sheet, and decarburization The steel plate that has been subjected to the final cold annealing of the steel sheet that has been annealed and that has been subjected to secondary cold rolling and the final annealing of the steel sheet that has been cold-rolled is the size of the magnetic domain existing in the crystal grains. (2L) is smaller than the thickness (D) of the steel plate (2L <D).

スラブは、Siを1重量%以下(0重量%を除く)含むことがよい。
スラブは、Alを0.01重量%以下(0重量%を除く)さらに含むことが好ましい。
スラブの再加熱温度は、1050℃〜1350℃であることができる。
1次冷間圧延する段階及び2次冷間圧延する段階における圧下率は、それぞれ50%〜70%であることがよい。
The slab preferably contains 1 wt% or less (excluding 0 wt%) of Si.
It is preferable that the slab further contains 0.01% by weight or less (excluding 0% by weight) of Al.
The reheating temperature of the slab can be from 1050 ° C to 1350 ° C.
The rolling reduction in the primary cold rolling stage and the secondary cold rolling stage may be 50% to 70%, respectively.

冷間圧延された鋼板を脱炭焼鈍する段階及び脱炭焼鈍が完了した鋼板を2次冷間圧延する段階は、2回以上繰り返し行うことが好ましい。
脱炭焼鈍する段階は、800℃〜1150℃の温度で露点温度0℃以上の水素を含む雰囲気で行うことがよい。
最終焼鈍する段階は、850℃〜1150℃の温度で露点温度10℃〜70℃の雰囲気で行う第1段階と、900℃〜1200℃の温度で露点温度10℃以下の水素及び窒素を含む混合ガス雰囲気で行う第2段階を含むことが好ましい。
第1段階は300秒以下で行い、第2段階は60秒〜300秒間行うことがよい。
It is preferable that the step of decarburizing and annealing the cold-rolled steel plate and the step of secondary cold-rolling the steel plate after the decarburization annealing are repeated twice or more.
The stage of decarburization annealing is preferably performed in an atmosphere containing hydrogen at a temperature of 800 ° C. to 1150 ° C. and a dew point temperature of 0 ° C. or higher.
The final annealing step is a first step performed in an atmosphere having a dew point temperature of 10 ° C. to 70 ° C. at a temperature of 850 ° C. to 1150 ° C., and a mixture containing hydrogen and nitrogen having a dew point temperature of 10 ° C. or less at a temperature of 900 ° C. to 1200 ° C. It is preferable to include a second stage performed in a gas atmosphere.
The first stage is preferably performed for 300 seconds or less, and the second stage is preferably performed for 60 seconds to 300 seconds.

冷間圧延する段階以降の最終焼鈍する段階は、連続して行うことができる。
最終焼鈍段階以降の電磁鋼板内の炭素量は、0.003重量%以下(0重量%を除く)であることがよい。
最終焼鈍が終了した鋼板は、{110}<001>方位から15度以内の方位を有する結晶粒の体積分率が50%以上であることができる。
最終焼鈍が終了した鋼板は、粒径が20μm〜1000μmの結晶粒の体積分率が50%以上であることが好ましい。
The final annealing step after the cold rolling step can be performed continuously.
The amount of carbon in the electrical steel sheet after the final annealing stage is preferably 0.003% by weight or less (excluding 0% by weight).
The steel sheet that has undergone the final annealing may have a volume fraction of crystal grains having an orientation within 15 degrees from the {110} <001> orientation that is 50% or more.
The steel sheet after the final annealing preferably has a volume fraction of crystal grains having a grain size of 20 μm to 1000 μm of 50% or more.

本発明の方向性電磁鋼板は、重量%で、Si:4.0%以下(0重量%を除く)、C:0.003%以下(0重量%を除く)及びMn:0.001〜2.0%を含有し、残部はFe及びその他不可避的に混入される不純物を含み、結晶粒内に存在する磁区の大きさ(2L)は鋼板の厚さ(D)より小さいことを特徴とする。   The grain-oriented electrical steel sheet of the present invention is, by weight, Si: 4.0% or less (excluding 0% by weight), C: 0.003% or less (excluding 0% by weight), and Mn: 0.001-2. 0.0%, the balance contains Fe and other impurities inevitably mixed, and the size (2L) of the magnetic domains existing in the crystal grains is smaller than the thickness (D) of the steel sheet. .

Siを1.0重量%以下(0重量%を除く)含むことがよい。
Alを0.01重量%以下(0重量%を除く)さらに含みことが好ましい。
結晶粒内に存在する磁区の大きさ(2L)は、10〜500μmであることができる。
{110}<001>方位から15度以内の方位を有する結晶粒の体積分率が50%以上であることが好ましい。
粒径が20μm〜1000μmの結晶粒の体積分率が50%以上であることがよい。
Si is preferably contained in an amount of 1.0% by weight or less (excluding 0% by weight).
It is preferable to further contain 0.01% by weight or less (excluding 0% by weight) of Al.
The size (2L) of the magnetic domains present in the crystal grains can be 10 to 500 μm.
The volume fraction of crystal grains having an orientation within 15 degrees from the {110} <001> orientation is preferably 50% or more.
The volume fraction of crystal grains having a particle diameter of 20 μm to 1000 μm is preferably 50% or more.

本発明によれば、最終焼鈍時コイル状態でバッチ(Batch)形態の焼鈍を行わず連続的な焼鈍を行い得る方向性電磁鋼板の製造方法を提供することができる。
また、本発明によれば、短時間の焼鈍だけでも方向性電磁鋼板を生産することができる。
さらに、本発明の一実施例によれば、結晶粒成長抑制剤を使わない方向性電磁鋼板を提供することができる。
さらにまた、本発明の一実施例によれば、浸窒焼鈍を省略することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the grain-oriented electrical steel sheet which can perform continuous annealing, without performing batch-type annealing in the coil state at the time of final annealing can be provided.
Moreover, according to this invention, a grain-oriented electrical steel sheet can be produced only by short-time annealing.
Furthermore, according to one embodiment of the present invention, a grain-oriented electrical steel sheet that does not use a crystal grain growth inhibitor can be provided.
Furthermore, according to one embodiment of the present invention, nitrous annealing can be omitted.

実施例1で製造した方向性電磁鋼板の微細組織及び磁区を示す写真である。It is a photograph which shows the fine structure and magnetic domain of the grain-oriented electrical steel sheet manufactured in Example 1. FIG.

第1、第2及び第3などの用語は、多様な部分、成分、領域、層及び/またはセクションを説明するために用いられるが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを他の部分、成分、領域、層またはセクションとの区別にのみ用いられる。したがって、以下で叙述する第1部分、成分、領域、層またはセクションは、本発明の範囲から外れない範囲内で第2部分、成分、領域、層またはセクションといえる。
ここに用いられる専門用語は、単に特定の実施例を説明するためであり、本発明を限定することを意図しない。ここに用いられる単数形は文言においてこれと明確に反対の意味を有さない限り複数形も含む。明細書において用いられる「含む」の意味は、特定の特性、領域、整数、段階、動作、要素及び/または成分を具体化し、他の特性、領域、整数、段階、動作、要素及び/または成分の存在や付加を除くものではない。
Terms such as first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first part, component, region, layer or section described below can be referred to as the second part, component, region, layer or section within the scope of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular forms used herein include the plural unless the word has a clearly opposite meaning. As used herein, the meaning of “comprising” embodies a particular property, region, integer, step, operation, element and / or component and other property, region, integer, step, operation, element and / or component. It does not exclude the presence or addition of.

ある部分が他の部分の「上に」にあるという場合、これは、他の部分の真上または上にあるか、その間に他の部分が介在され得る。これと対照的にある部分が他の部分の「真上に」あるという場合は、その間に他の部分が介されない。
他に定義しないが、ここに用いられる技術用語及び科学用語を含むすべての用語は、本発明が属する技術分野における通常の知識を有する者が一般的に理解する意味と同じ意味を有する。一般的に用いられる辞書に定義されている用語は、関連技術文献と現在開示された内容に符合する意味を有するものとさらに解釈され、定義しない限り理想的又は過度に形式的な意味として解釈されない。
また、特に言及しない限り%は重量%を意味し、1ppmは0.0001重量%である。
以下、本発明の実施例について、本発明が属する技術分野における通常の知識を有する者が容易に行うように詳しく説明する。しかし、本発明は、様々な相異する形態に実現され得さ、ここで説明する実施例に限定されない。
When one part is “on top” of another part, it is directly above or above the other part, or another part may be interposed therebetween. In contrast, when one part is “directly above” another part, no other part is interposed between them.
Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms defined in commonly used dictionaries are further interpreted as having a meaning consistent with relevant technical literature and the presently disclosed content, and are not interpreted as ideal or overly formal meaning unless defined .
Moreover, unless otherwise stated,% means% by weight, and 1 ppm is 0.0001% by weight.
Hereinafter, embodiments of the present invention will be described in detail so as to be easily performed by those having ordinary knowledge in the technical field to which the present invention belongs. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.

一般に、変圧器のコア素材として電力変換に用いられる方向性電磁鋼板に求められる特性は、高い磁束密度と低い鉄損特性である。高い磁束密度の特性は、電力変換効率を高められるだけでなく、設計磁束密度を高めることが可能であり、少ないコア素材を使用して変圧器の大きさを縮小できる利点がある。さらに、電力変化過程で方向性電磁鋼板自体で発生する損失である鉄損の場合、変圧器の無負荷損失を減らすことができる利点がある。
これまで方向性電磁鋼板に関する研究及び技術開発は、ほぼ大部分が鉄損を減少させるために進められてきた。方向性電磁鋼板の鉄損は、大きく次のとおり履歴損失(Hysteresis Loss)、伝統的渦電流損失(Classical Eddy Current Loss)及び異常渦電流損失(Anomalous Eddy Current Loss)に区分される。
履歴損失の場合、方向性電磁鋼板が磁化程度によって発生する電磁鋼板自体の損失であって、方向性電磁鋼板に不純物や欠陥がなく、ゴス方位の集積度が高い場合は損失が小さい。
In general, the characteristics required for grain-oriented electrical steel sheets used for power conversion as a core material of a transformer are high magnetic flux density and low iron loss characteristics. The characteristics of high magnetic flux density not only increase the power conversion efficiency, but also increase the design magnetic flux density, and have the advantage that the size of the transformer can be reduced by using less core material. Furthermore, in the case of iron loss, which is a loss generated in the grain-oriented electrical steel sheet itself during the power change process, there is an advantage that the no-load loss of the transformer can be reduced.
Until now, most research and technology development on grain-oriented electrical steel sheets has been carried out in order to reduce iron loss. Iron loss of grain-oriented electrical steel sheets is roughly classified into hysteresis loss, traditional eddy current loss, and abnormal eddy current loss as follows.
In the case of the hysteresis loss, the loss of the magnetic steel sheet itself caused by the degree of magnetization of the grain-oriented electrical steel sheet is low, and the loss is small when the grain-oriented electrical steel sheet has no impurities or defects and the Goth orientation is highly integrated.

伝統的渦電流損失は、方向性電磁鋼板が磁化過程において鋼板自体で発生する渦電流によって発生する損失であって、Si含有量を高め、鋼板の厚さを減少させることによって鋼板の渦電流を最小化して損失を減らす努力が行われてきた。また、他の異常渦電流損失は、変圧器が作動する交流下で方向性電磁鋼板磁区(magnetic domain)の移動及び回転に関する損失であって、磁区の大きさ(Magnetic domain size、2L)が微細なほど損失が減少する特性がある。異常渦電流損失を改善するための研究は、履歴損失と伝統的渦電流損失に対する研究より相対的に最近になって進められた研究であり、レーザを鋼板表面に照射することによって鋼板表面に局部的な応力を付与して一時的に磁区を微細化する方法や鋼板表面に一定のパターンの屈曲を付与して構造的磁区変化による永久的磁区微細化する方法などが開発されてきた。また、他の磁区微細化方法としては鋼板表面に膨張係数が異なるコーティング物質を塗布することによって鋼板表面に膨張係数差による張力を付与して磁区を微細化する方法までも開発されてきた。   Traditional eddy current loss is loss caused by eddy current generated in a steel sheet itself during the process of magnetization of a grain-oriented electrical steel sheet. By increasing the Si content and reducing the thickness of the steel sheet, the eddy current of the steel sheet is reduced. Efforts have been made to minimize and reduce losses. The other abnormal eddy current loss is a loss related to the movement and rotation of the magnetic domain magnetic domain (magnetic domain) under the alternating current in which the transformer is operated, and the magnetic domain size (Magnetic domain size, 2L) is fine. There is a characteristic that the loss is reduced. Research to improve abnormal eddy current loss is a relatively recent study compared to studies on hysteresis loss and traditional eddy current loss. There have been developed a method for temporarily refining magnetic domains by applying a specific stress and a method for refining permanent magnetic domains by changing a structural magnetic domain by imparting a certain pattern of bending to the surface of a steel sheet. As another magnetic domain refining method, a method of applying a coating material having a different expansion coefficient to the steel sheet surface to apply a tension due to the difference in expansion coefficient to the steel sheet surface to refine the magnetic domain has been developed.

本発明者らは、方向性電磁鋼板の異常渦電流損失を減らすための研究を重ねた結果、方向性電磁鋼板の結晶粒の大きさを小さくすれば、磁区の大きさを小さくすることができ、これによって製造された方向性電磁鋼板全体の鉄損を画期的に減らすことが可能である事実を発見した。
通常、磁区の大きさは、結晶粒の大きさと下記式(1)の関係にある。
磁区の大きさ(2L)∝(結晶粒の大きさ)1/2 (1)
つまり、結晶粒の大きさが小さいほど磁区の大きさは小さくなり、これによって異常渦電流損失は減少する。
As a result of repeated studies to reduce the abnormal eddy current loss of the grain-oriented electrical steel sheet, the inventors can reduce the size of the magnetic domain by reducing the grain size of the grain-oriented electrical steel sheet. , Discovered the fact that it is possible to dramatically reduce the iron loss of the entire grain-oriented electrical steel sheet manufactured by this.
Usually, the size of the magnetic domain is in the relationship of the size of the crystal grains and the following formula (1).
Magnetic domain size (2L) ∝ (crystal grain size) 1/2 (1)
That is, the smaller the size of the crystal grains, the smaller the size of the magnetic domain, thereby reducing the abnormal eddy current loss.

異常渦電流損失は、伝統的渦電流損失と下記式(2)の関係にある。
Wea=[1.63*(2L/d)−1]*Wec (2)
式(2)において、Weaは異常渦電流損失、Wecは伝統的な渦電流損失、2Lは磁区の大きさ、dは鋼板の厚さを示す。
式(2)において、鋼板の厚さが一定であると仮定すると,磁区の大きさが減少するほど異常渦電流損失も減少する。
ゴス方位結晶粒の大きさを小さいくすれば、結晶粒大きさと磁区の大きさの関係式(1)に基づいて、画期的に磁区の大きさを減少させることが可能であり、これによって、方向性電磁鋼板の鉄損を画期的に減少させることができる。
The abnormal eddy current loss is related to the traditional eddy current loss by the following equation (2).
Wea = [1.63 * (2L / d) -1] * Wec (2)
In Equation (2), Wea is an abnormal eddy current loss, Wec is a traditional eddy current loss, 2L is the size of the magnetic domain, and d is the thickness of the steel sheet.
Assuming that the thickness of the steel sheet is constant in Equation (2), the abnormal eddy current loss decreases as the magnetic domain size decreases.
If the size of the Goss-oriented crystal grains is reduced, it is possible to dramatically reduce the size of the magnetic domain based on the relational expression (1) between the crystal grain size and the magnetic domain size. The iron loss of the grain-oriented electrical steel sheet can be dramatically reduced.

以上のことをまとめると、方向性電磁鋼板の鉄損を低減するためには、ゴス方位の再結晶粒形成による優れた磁化特性に応じた履歴損失の低減とSi含有量の増加と鋼板の厚さ減少による伝統的な渦電流損失の低減そして、最終的にゴス方位結晶粒の大きさを微細化することによって、磁区の大きさを縮小させて異常渦電流損失を減少させることが必要である。方向性電磁鋼板全体の損失を減らすためには、すべての履歴損失、伝統的渦電流損失そして異常渦電流損失をいずれも減少させることが好ましいが、場合によっては履歴損失や伝統的な渦電流損失の画期的な改善がなくとも、ゴス方位結晶粒の大きさを最少化して異常渦電流損失だけを大きく改善させることによって、生産が容易でかつ磁気特性に優れた方向性電磁鋼板を製造することができる。   In summary, in order to reduce the iron loss of grain-oriented electrical steel sheets, the hysteresis loss is reduced according to the excellent magnetization characteristics by the formation of recrystallized grains in the goth orientation, the Si content is increased, and the steel sheet thickness is reduced. It is necessary to reduce the size of the magnetic domain and reduce the abnormal eddy current loss by reducing the traditional eddy current loss by reducing the thickness and finally refining the size of the goth-oriented grains . In order to reduce the overall loss of grain-oriented electrical steel sheets, it is preferable to reduce all hysteresis loss, traditional eddy current loss and abnormal eddy current loss, but in some cases hysteresis loss and traditional eddy current loss Even if there is no breakthrough improvement, the grain-oriented electrical steel sheet that is easy to produce and has excellent magnetic properties is manufactured by minimizing the size of goth-oriented grains and greatly improving only the abnormal eddy current loss. be able to.

本発明の一実施例による方向性電磁鋼板の製造方法は、重量%で、Si:4.0%以下(0重量%を除く)、C:0.001%〜0.4%及び、Mn:0.001〜2.0%を含有し、残部はFe及びその他不可避的に混入される不純物を含むスラブを提供する段階と、スラブを再加熱する段階と、スラブを熱間圧延して熱延鋼板を製造する段階と、熱延鋼板を熱延板焼鈍する段階と、熱延板焼鈍された熱延鋼板を1次冷間圧延する段階と、冷間圧延された鋼板を脱炭焼鈍する段階と、脱炭焼鈍が完了した鋼板を2次冷間圧延する段階と、冷間圧延が完了した鋼板を最終焼鈍する段階と、を含む。この他に、方向性電磁鋼板の製造方法は、必要に応じて他の段階をさらに含むことができる。   The method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention is, in wt%, Si: 4.0% or less (excluding 0 wt%), C: 0.001% to 0.4%, and Mn: A slab containing 0.001 to 2.0%, the balance including Fe and other impurities inevitably mixed, a step of reheating the slab, and hot rolling the slab by hot rolling A step of producing a steel plate, a step of hot-rolling the hot-rolled steel plate, a primary cold-rolling of the hot-rolled steel plate that has been hot-rolled, and a step of decarburizing and annealing the cold-rolled steel plate. And a step of secondary cold rolling the steel plate that has been decarburized annealed, and a step of final annealing the steel plate that has been cold rolled. In addition to this, the method for manufacturing the grain-oriented electrical steel sheet may further include other stages as necessary.

以下では各段階別に詳しく説明する。
まず、重量%で、Si:4.0%以下(0重量%を除く)、C:0.001%〜0.4%及び、Mn:0.001〜2.0%を含有し、残部はFe及びその他不可避的に混入される不純物を含むスラブを準備する。
組成を限定する理由は次のとおりである。
シリコン(Si)は、方向性電磁鋼板の磁気異方性を低くして比抵抗を増加させて鉄損を改善する。本発明の一実施例では最終製品結晶粒の大きさを小さくして異常渦電流損失を大きく減少させることが特徴であるが、Siを添加すればするほど鉄損をさらに改善させることができるため、一定量以上を添加することが効果的である。したがって、冷間圧延が可能な含有量である4重量%の範囲まで、Si含有量を添加することができる。しかし、Si含有量が多過ぎる場合は、冷延時の脆性が増加して冷間圧延が不可能になる虞がある。さらに具体的にはSiを1重量%以下(0重量%を除く)とすることが好ましい。
Below, it explains in detail according to each stage.
First, by weight, Si: 4.0% or less (excluding 0% by weight), C: 0.001% to 0.4% and Mn: 0.001 to 2.0%, the balance being A slab containing Fe and other impurities inevitably mixed is prepared.
The reason for limiting the composition is as follows.
Silicon (Si) improves the iron loss by lowering the magnetic anisotropy of the grain-oriented electrical steel sheet and increasing the specific resistance. One embodiment of the present invention is characterized in that the size of the final product crystal grains is reduced to greatly reduce the abnormal eddy current loss, but the iron loss can be further improved as Si is added. It is effective to add a certain amount or more. Therefore, the Si content can be added up to a range of 4% by weight, which is a content that allows cold rolling. However, when there is too much Si content, there exists a possibility that the brittleness at the time of cold rolling may increase, and cold rolling may become impossible. More specifically, Si is preferably 1% by weight or less (excluding 0% by weight).

炭素(C)は、オーステナイト相変態を促進する元素であって、方向性電磁鋼板の熱延組織を均一にし、冷間圧延時ゴス方位の結晶粒形成を促進して磁性に優れた方向性電磁鋼板を製造するために必要な重要な元素である。しかし、最終製品にCが存在すると、磁気時効現象を起こして磁気特性を低下させるため、最終製造された電磁鋼板には、Cが0.003重量%以下にしなければならない。C添加による相変態及びゴス方位結晶粒の再結晶を促進するためには、スラブ内にCが0.001重量%以上添加されなければ効果が得られず、これより少ない含有量では不均一な熱延組織によって2次再結晶が不安定に形成される。しかし、スラブにCを0.4重量%超えて添加すると、熱間圧延時にオーステナイト相変態による微細な熱延組織の形成により1次再結晶粒が微細になり、熱間圧延終了後の巻取り過程や熱延板焼鈍後に冷却過程において粗大なカーバイドを形成する虞があり、常温ではFeC(セメンタイト)を形成して組織を不均一に導きやすい。さらに、脱炭工程及び最終焼鈍工程において0.003重量%以下に脱炭するのに焼鈍時間が長くなる問題がある。したがって、スラブ内のCの含有量は0.001〜0.4重量%に限定することがよい。 Carbon (C) is an element that promotes the austenite phase transformation, and makes the hot-rolled structure of the grain-oriented electrical steel sheet uniform, promotes the formation of goss-oriented crystal grains during cold rolling, and is excellent in magnetism. It is an important element necessary for producing steel sheets. However, if C is present in the final product, a magnetic aging phenomenon occurs and magnetic properties are deteriorated. Therefore, C must be 0.003% by weight or less in the finally manufactured electrical steel sheet. In order to promote the phase transformation due to the addition of C and the recrystallization of goth-oriented grains, the effect is not obtained unless C is added in an amount of 0.001% by weight or more in the slab. Secondary recrystallization is unstablely formed by the hot rolled structure. However, if C is added to the slab in an amount exceeding 0.4% by weight, the primary recrystallized grains become fine due to the formation of a fine hot-rolled structure due to the austenite phase transformation during hot rolling, and winding after the hot rolling is completed. There is a possibility that coarse carbides may be formed in the cooling process after the process or hot-rolled sheet annealing, and Fe 3 C (cementite) is formed at room temperature, and the structure tends to be unevenly guided. Furthermore, there is a problem that the annealing time becomes long to decarburize to 0.003% by weight or less in the decarburization step and the final annealing step. Therefore, the C content in the slab is preferably limited to 0.001 to 0.4% by weight.

マンガン(Mn)は、Siと同様に比抵抗を増加させて鉄損を減少させる効果もあり、Cと同様にオーステナイト相変態を促進して熱間圧延及び焼鈍工程で結晶粒の粒径を微細化させる重要な元素である。このようなMnの添加量を0.001重量%未満にすると、Cの効果と同様に相変態が十分行われず、スラブ及び熱延組織が粗大化して最終製品の結晶粒の粒径が微細にならない虞があり、比抵抗の増加による鉄損改善の効果も微々たるものとなる。さらに、Mnを2.0重量%を超えて添加すると、鋼板表面にFeSiOのほかにマンガン酸化物(Mn Oxide)が形成され、最終焼鈍工程で脱炭が円滑に行われなくなる。したがって、好ましいMnの添加量は、0.001〜2.0重量%であり得る。さらに具体的にMnの添加量は、0.01〜1.0重量%であることがより好ましい。 Manganese (Mn), like Si, has the effect of increasing the specific resistance and reducing iron loss. Like C, it promotes austenite phase transformation and refines the grain size in the hot rolling and annealing processes. It is an important element to be converted. When the amount of Mn added is less than 0.001% by weight, the phase transformation is not sufficiently performed similarly to the effect of C, the slab and the hot rolled structure are coarsened, and the grain size of the crystal grains of the final product is fine. The effect of iron loss improvement due to an increase in specific resistance is also insignificant. Furthermore, when Mn is added in excess of 2.0% by weight, manganese oxide (Mn Oxide) is formed on the steel sheet surface in addition to Fe 2 SiO 4 , and decarburization is not smoothly performed in the final annealing step. Therefore, the preferable amount of Mn added may be 0.001 to 2.0% by weight. More specifically, the amount of Mn added is more preferably 0.01 to 1.0% by weight.

本発明の一実施例でアルミニウム(Al)は、不可避的不純物として扱う。つまり、Alは、スラブ及び鋼板内でその含有量を最小化することがよい。具体的にAlをさらに含む場合、その範囲を0.01重量%以下に制限することが好ましい。
前述した成分は、本発明の基本構成であって、その他にも不可避的に含まれたり、磁気特性を向上させる他の合金元素が添加されても本発明の特徴であるゴス方位結晶粒の微細化による鉄損改善の効果を弱化させない。
前述した組成の溶鋼からスラブを製造する方法としては、分塊法、連続鋳造方法、薄スラブ鋳造またはストリップキャスティングが可能である。
次に、スラブを再加熱する。スラブの再加熱温度は1050℃〜1350℃であることができる。スラブの再加熱時の温度が低いと、圧延負荷が増加し、温度が高い場合は低融点の高温酸化物の形成によりスラブウォッシング(washing)現象が起こり、実収率が落ち、また、熱延組織が粗大化して磁性に悪影響を及ぼす問題が発生する。したがって、前述した温度範囲にスラブの再加熱温度を調節することがよい。
In one embodiment of the present invention, aluminum (Al) is treated as an inevitable impurity. That is, the content of Al is preferably minimized in the slab and the steel plate. Specifically, when Al is further contained, the range is preferably limited to 0.01% by weight or less.
The above-described components are the basic structure of the present invention, and other fine elements of the Goss-oriented crystal grains that are the characteristics of the present invention are included unavoidably or other alloying elements that improve magnetic properties are added. Does not weaken the effect of iron loss improvement by aging.
As a method for producing the slab from the molten steel having the above-described composition, a lump method, a continuous casting method, a thin slab casting or a strip casting can be used.
Next, the slab is reheated. The reheating temperature of the slab can be from 1050 ° C to 1350 ° C. If the temperature at the time of reheating the slab is low, the rolling load increases, and if the temperature is high, the slab washing phenomenon occurs due to the formation of a high melting point oxide with a low melting point, the actual yield decreases, and the hot rolled structure Becomes coarse and causes problems that adversely affect magnetism. Therefore, it is preferable to adjust the reheating temperature of the slab within the above-described temperature range.

次に、再加熱が完了したスラブを熱間圧延して熱延鋼板を製造する。熱間圧延時、オーステナイト相が存在する温度範囲内で熱間圧延して熱延鋼板を製造することがよい。オーステナイト相が存在しない低い温度では圧延負荷が増加するだけでなく、相変態による結晶粒微細化の効果も得られない。
次に、熱延鋼板を熱延板焼鈍する。熱延板は、再結晶及び相変態が可能な温度以上で熱延板焼鈍することがよい。具体的に高温加熱による低融点酸化層の生成を防止するため、850〜1150℃の温度で熱延板焼することができる。熱延板焼鈍時の雰囲気は、熱延板の脱炭反応が起こり得る0℃以上の露点温度及び水素ガスを含有する雰囲気であることが好ましい。
次に、熱延板焼鈍された熱延鋼板を1次冷間圧延する。熱延板焼鈍を行った後、鋼板を酸洗して冷間圧延してもよい。冷間圧延時の圧下率は50%〜70%であることがよい。
Next, the slab that has been reheated is hot-rolled to produce a hot-rolled steel sheet. At the time of hot rolling, it is preferable to produce a hot-rolled steel sheet by hot rolling within a temperature range in which an austenite phase exists. At a low temperature at which no austenite phase exists, not only the rolling load increases, but also the effect of grain refinement due to phase transformation cannot be obtained.
Next, the hot rolled steel sheet is subjected to hot rolled sheet annealing. The hot-rolled sheet is preferably annealed at a temperature higher than the temperature at which recrystallization and phase transformation are possible. Specifically, in order to prevent the formation of a low melting point oxide layer due to high-temperature heating, hot-rolled sheet firing can be performed at a temperature of 850 to 1150 ° C. The atmosphere during the hot-rolled sheet annealing is preferably an atmosphere containing a dew point temperature of 0 ° C. or higher and hydrogen gas that can cause a decarburization reaction of the hot-rolled sheet.
Next, the hot rolled steel sheet annealed by hot rolling is subjected to primary cold rolling. After hot-rolled sheet annealing, the steel sheet may be pickled and cold rolled. The rolling reduction during cold rolling is preferably 50% to 70%.

次に、冷間圧延された鋼板を脱炭焼鈍する。冷間圧延鋼板は、再結晶のための焼鈍を行い、この時、脱炭反応が起こるように800℃〜1150℃の温度で、0℃以上の露点温度及び水素ガスを含有する雰囲気で焼鈍を行う。温度が低すぎると、脱炭が難しく、温度が高すぎると、厚い酸化層が形成され、むしろ脱炭反応が阻害される。露点温度が低すぎると、脱炭反応が阻害される。さらに具体的に露点温度は10〜70℃であることがより好ましい。
次に、脱炭焼鈍が完了した鋼板を2次冷間圧延を行う。冷間圧延時、圧下率は50%〜70%であることができる。冷間圧延された鋼板を脱炭焼鈍する段階及び脱炭焼鈍が完了した鋼板を2次冷間圧延する段階は、2回以上繰り返し行う。一例として、2回繰り返し行う場合、1次冷間圧延する段階、脱炭焼鈍する段階、2次冷間圧延する段階、脱炭焼鈍する段階、3次冷間圧延する段階、最終焼鈍する段階順に行う。この時、最後の冷間圧延する段階で最終製品の厚さまで冷間圧延を行い、それぞれの脱炭工程は、脱炭反応が起こるように800℃〜1150℃の温度で、0℃以上の露点温度及び水素ガスを含有する雰囲気で焼鈍を行う。
Next, the cold-rolled steel sheet is decarburized and annealed. The cold-rolled steel sheet is annealed for recrystallization, and at this time, annealed in an atmosphere containing a dew point temperature of 0 ° C. or more and hydrogen gas at a temperature of 800 ° C. to 1150 ° C. so that a decarburization reaction occurs. Do. If the temperature is too low, decarburization is difficult, and if the temperature is too high, a thick oxide layer is formed, and rather the decarburization reaction is inhibited. If the dew point temperature is too low, the decarburization reaction is inhibited. More specifically, the dew point temperature is more preferably 10 to 70 ° C.
Next, secondary cold rolling is performed on the steel sheet that has been decarburized and annealed. At the time of cold rolling, the rolling reduction can be 50% to 70%. The stage of decarburizing and annealing the cold-rolled steel sheet and the stage of secondary cold rolling of the steel sheet that has been decarburized and annealed are repeated twice or more. As an example, in the case of repeating twice, in the order of primary cold rolling, decarburizing annealing, secondary cold rolling, decarburizing annealing, third cold rolling, and final annealing. Do. At this time, cold rolling is performed to the final product thickness at the final cold rolling stage, and each decarburization step is performed at a temperature of 800 ° C. to 1150 ° C. so that a decarburization reaction occurs, and a dew point of 0 ° C. or more. Annealing is performed in an atmosphere containing temperature and hydrogen gas.

次に、冷間圧延が完了した鋼板を最終焼鈍する。
本発明の一実施例による方向性電磁鋼板の製造方法では、既存のバッチ(batch)方式と異なり2次冷間圧延に次いで連続して最終焼鈍を行うことができる。
最終焼鈍段階は、850℃〜1150℃の温度で露点温度10℃〜70℃の雰囲気で行う第1段階、及び900℃〜1200℃の温度で露点温度10℃以下の水素及び窒素を含む混合ガス雰囲気で行う第2段階で行うことがよい。第1段階は300秒以下で行い、第2段階は60秒〜300秒間行う。
最終焼鈍前の冷延板は、脱炭焼鈍が進行され、 素鋼炭素量が最小スラブの炭素量に対して40重量%〜60重量%残っている状態である。したがって、最終焼鈍時の第1段階では、炭素が抜け出しながら表層部に形成された結晶粒が内部に拡散する。第1段階では鋼板中の炭素量を0.01重量%以下になるように脱炭を行うことがよい。
Next, the steel sheet that has been cold-rolled is finally annealed.
In the method for manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention, unlike the existing batch system, the final annealing can be performed continuously after the secondary cold rolling.
The final annealing step is a first step performed in an atmosphere having a dew point temperature of 10 ° C. to 70 ° C. at a temperature of 850 ° C. to 1150 ° C., and a mixed gas containing hydrogen and nitrogen having a dew point temperature of 10 ° C. or less at a temperature of 900 ° C. to 1200 ° C. It is good to carry out at the 2nd step performed in atmosphere. The first stage is performed for 300 seconds or less, and the second stage is performed for 60 seconds to 300 seconds.
The cold-rolled sheet before final annealing is in a state in which decarburization annealing is progressed and the carbon content of the steel remains 40 wt% to 60 wt% with respect to the carbon content of the minimum slab. Therefore, in the first stage at the time of the final annealing, crystal grains formed in the surface layer portion diffuse into the inside while carbon escapes. In the first stage, decarburization is preferably performed so that the amount of carbon in the steel sheet is 0.01% by weight or less.

この後、第2段階では1段階で拡散されたゴス方位を有する集合組織が成長する。本発明の一実施例による方向性電磁鋼板の製造方法では、ゴス集合組織は、従来の正常ではない粒子成長によって結晶粒が成長した場合とは異なり、結晶粒の粒径は1mm以内となることができる。したがって、従来の方向性電磁鋼板に比べて結晶粒の粒径が非常に小さいゴス方位結晶粒からなる微細組織を得ることができる。
最終焼鈍が完了した電磁鋼板内の炭素量は、0.003重量%以下であることがよい。
最終焼鈍が完了した方向性電磁鋼板は、必要に応じて絶縁コーティング液を塗布した後、乾燥するとがよい。
Thereafter, in the second stage, a texture having Goth orientation diffused in one stage grows. In the method for manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention, the Goss texture is different from the case where crystal grains are grown by conventional abnormal grain growth, and the grain size of the crystal grains is within 1 mm. Can do. Therefore, it is possible to obtain a fine structure composed of goth-oriented crystal grains in which the grain size of the crystal grains is much smaller than that of the conventional grain-oriented electrical steel sheet.
The amount of carbon in the electrical steel sheet after the final annealing is preferably 0.003% by weight or less.
The grain-oriented electrical steel sheet that has been subjected to final annealing may be dried after applying an insulating coating liquid as necessary.

一方、従来のバッチ(Batch)形態に最終焼鈍時、MgOを主成分とする焼鈍分離剤を塗布するため、MgOコーティング層が存在するが、本発明の一実施例による方向性電磁鋼板は、バッチ形態でない連続式で最終焼鈍を行い得るため、MgOコーティング層が存在しないことがある。
本発明の一実施例により生成されたゴス(Goss)方位({110}<001>方位から15度以内の方位)の結晶粒は、冷間圧延及び脱炭焼鈍を繰り返すほどさらに増加する傾向を示し、少なくとも2回の冷間圧延及び脱炭焼鈍を行った時、鋼板内のゴス方位を有する結晶粒の体積分率は、少なくとも50%以上に増加する。
本発明の一実施例により生成された結晶粒は、粒径が5mm未満であり、20μm〜1000μmの結晶粒の体積分率が50%以上となる。結局、結晶粒内に存在する磁区の大きさは非常に小さくなる。従来の方向性電磁鋼板で見られる磁区の大きさは、通常鋼板の厚さより大きいが、本発明の一実施例により製造される鋼板は、結晶粒内に存在する磁区の大きさ(2L)が鋼板の厚さ(D)より小さく形成される。
On the other hand, in order to apply an annealing separator mainly composed of MgO to the conventional batch (Batch) form, there is an MgO coating layer, but the grain-oriented electrical steel sheet according to an embodiment of the present invention is a batch. Since the final annealing can be performed in a continuous manner that is not a form, the MgO coating layer may not exist.
The crystal grains of the Goss orientation (an orientation within 15 degrees from the {110} <001> orientation) generated according to an embodiment of the present invention tend to further increase as cold rolling and decarburization annealing are repeated. Shown, when performing at least two cold rolling and decarburization annealing, the volume fraction of crystal grains having goth orientation in the steel sheet increases to at least 50% or more.
The crystal grains produced according to one embodiment of the present invention have a grain size of less than 5 mm, and the volume fraction of crystal grains of 20 μm to 1000 μm is 50% or more. Eventually, the size of the magnetic domains present in the crystal grains becomes very small. The magnetic domain size found in conventional grain-oriented electrical steel sheets is usually larger than the thickness of the steel sheet, but the steel sheet manufactured according to one embodiment of the present invention has a magnetic domain size (2L) present in the crystal grains. It is formed smaller than the thickness (D) of the steel plate.

本発明の一実施例による方向性電磁鋼板は、重量%で、Si:4.0%以下(0重量%を除く)、C:0.003%以下(0重量%を除く)及び、Mn:0.001〜2.0%を含有し、残部はFe及びその他不可避的に混入される不純物を含み、結晶粒内に存在する磁区の大きさ(2L)は鋼板の厚さ(D)より小さい。
方向性電磁鋼板の組成については、前述したスラブの組成と同一であり、方向性電磁鋼板の製造過程で組成範囲が実質的に変動しないので、重複する説明は省略する。ただし、前述したように、脱炭焼鈍及び最終焼鈍過程で脱炭されるため、炭素の含有量は0.003重量%以下となる。
The grain-oriented electrical steel sheet according to one embodiment of the present invention is, by weight, Si: 4.0% or less (excluding 0% by weight), C: 0.003% or less (excluding 0% by weight), and Mn: 0.001 to 2.0% is contained, the balance contains Fe and other impurities inevitably mixed, and the size (2L) of the magnetic domain existing in the crystal grains is smaller than the thickness (D) of the steel plate. .
About the composition of a grain-oriented electrical steel sheet, since it is the same as the composition of the slab mentioned above and the composition range does not change substantially in the manufacturing process of a grain-oriented electrical steel sheet, the overlapping description is abbreviate | omitted. However, as described above, since the decarburization is performed in the decarburization annealing and the final annealing process, the carbon content is 0.003% by weight or less.

本発明の一実施例による方向性電磁鋼板は、鋼板内のゴス方位を有する結晶粒の体積分率は、少なくとも50%以上増加して鉄損及び磁束密度に優れる。また、方向性電磁鋼板内の結晶粒の粒径は、20〜1000μmが50%以上となり、最大5mmを越えない大きさであって、この時、結晶粒内に存在する磁区の大きさは、鋼板の厚さより小さい大きさになる。このような微細な磁区構造によって、本発明で製造された鋼板の異常渦電流損失は、従来の方法で製造された方向性電磁鋼板の異常渦電流損失より画期的に減少して全体の鉄損を大きく改善させることができる。
さらに具体的に結晶粒内に存在する磁区の大きさ(2L)は、10〜500μmであることが好ましい。
In the grain-oriented electrical steel sheet according to an embodiment of the present invention, the volume fraction of crystal grains having the Goth orientation in the steel sheet is increased by at least 50%, and the iron loss and magnetic flux density are excellent. In addition, the grain size of the grain in the grain-oriented electrical steel sheet is 50% or more of 20 to 1000 μm, and the size does not exceed 5 mm at the maximum. At this time, the size of the magnetic domain existing in the grain is The size is smaller than the thickness of the steel plate. Due to such a fine magnetic domain structure, the abnormal eddy current loss of the steel sheet manufactured according to the present invention is dramatically reduced from the abnormal eddy current loss of the grain-oriented electrical steel sheet manufactured by the conventional method, and the entire iron The loss can be greatly improved.
More specifically, the size (2L) of the magnetic domains present in the crystal grains is preferably 10 to 500 μm.

以下、実施例により本発明をさらに詳細に説明する。しかし、この実施例は単に本発明を例示するためのものであり、本発明はこれに限定されない。
実施例1
重量%でSi:2.0%、C:0.15%、Mn:0.05%を含有し、残部はFe及び不可避的不純物からなるスラブを1100℃の温度で加熱した後、3mmの厚さに熱間圧延し、次いで、焼鈍温度1000℃で熱延板焼鈍を行った。冷却した後酸洗を行い、最終の厚さ0.27mmまで冷間圧延を行った。最終の厚さまで冷間圧延を行うことにおいて、冷間圧延と冷間圧延との間に脱炭焼鈍を含まず直接最終の厚さまで冷間圧延する方法と、冷間圧延と冷間圧延との間に脱炭焼鈍を1回以上含み、複数の段階を経て冷間圧延する方法を行った。脱炭焼鈍は、1000℃の温度で水素及び窒素の湿潤混合ガス雰囲気(露点温度60℃)で行った。
その後の最終焼鈍時には1000℃の温度で水素及び窒素の湿潤混合ガス雰囲気(露点温度60℃)で2分間焼鈍を行った後、1100℃の乾燥(露点温度0℃)水素及び窒素混合ガス雰囲気で3分間の焼鈍を行った。
Hereinafter, the present invention will be described in more detail with reference to examples. However, this example is merely to illustrate the present invention, and the present invention is not limited thereto.
Example 1
The slab containing Si: 2.0%, C: 0.15%, Mn: 0.05% by weight, the balance being Fe and unavoidable impurities was heated at a temperature of 1100 ° C., and the thickness was 3 mm. Then, hot rolling was performed, and then hot-rolled sheet annealing was performed at an annealing temperature of 1000 ° C. After cooling, pickling was performed, and cold rolling was performed to a final thickness of 0.27 mm. In performing cold rolling to the final thickness, the method of cold rolling directly to the final thickness without decarburization annealing between cold rolling and cold rolling, and cold rolling and cold rolling A method of cold rolling through a plurality of stages was performed, including decarburization annealing at least once. The decarburization annealing was performed at a temperature of 1000 ° C. in a wet mixed gas atmosphere of hydrogen and nitrogen (dew point temperature 60 ° C.).
After the final annealing, annealing was performed at a temperature of 1000 ° C. in a wet mixed gas atmosphere of hydrogen and nitrogen (dew point temperature 60 ° C.) for 2 minutes, followed by drying at 1100 ° C. (dew point temperature 0 ° C.) in a hydrogen and nitrogen mixed gas atmosphere. Annealing was performed for 3 minutes.

最終焼鈍処理が終了した鋼板でゴス方位結晶粒の分率と磁気特性との関係を比較して下記表1に示した。
ここで、ゴス方位の結晶粒分率評価は、通常の結晶方位測定方法に用いて理想的な{110}<001>方位から15度以内の誤差が見える方位の結晶粒の体積分率を測定した。
さらに、Kerr microscopyを用いて電磁鋼板を脱磁した状態で磁区観察による磁区平均大きさを測定した。

Figure 0006622919
表1に示したとおり、熱延板焼鈍を行った後に、最終の厚さまで冷間圧延過程で少なくとも1回以上の脱炭が起こる中間焼鈍を含む場合に最終製品にゴス方位の結晶粒の分率は少なくとも50%以上確保し得、微細な磁区の大きさが得られた。このような高いゴス方位分率及び微細な磁区の大きさによって最終製品において優れた磁束密度及び低鉄損の特性が得られた。 Table 1 below shows a comparison of the relationship between the fraction of goth-oriented crystal grains and the magnetic properties of the steel sheets after the final annealing treatment.
Here, evaluation of the crystal grain fraction of Goss orientation is performed by measuring the volume fraction of crystal grains having an orientation in which an error within 15 degrees can be seen from the ideal {110} <001> orientation by using a normal crystal orientation measurement method. did.
Further, the magnetic domain average size was measured by magnetic domain observation in a state where the magnetic steel sheet was demagnetized using Kerr microscopy.
Figure 0006622919
As shown in Table 1, the content of goth-oriented grains in the final product includes intermediate annealing in which at least one decarburization occurs in the cold rolling process to the final thickness after hot-rolled sheet annealing. The rate could be secured at least 50% or more, and a fine magnetic domain size was obtained. Due to such high Goss orientation fraction and fine magnetic domain size, excellent magnetic flux density and low iron loss characteristics were obtained in the final product.

実施例2
重量%でC:0.2%、Mn:0.05%を含有し、残部はFe及び不可避的不純物からなるスラブのSi含有量を下記表2に示すように変化させて製造した。スラブを1150℃の温度で加熱した後、3mmの厚さに熱間圧延し、次いで焼鈍温度950℃で熱延板焼鈍を行った。冷却した後酸洗を行い、60%の圧下率で冷間圧延を行った。冷間圧延された板は、再び900℃の温度で露点温度60℃の水素と窒素の混合ガス雰囲気で再結晶及び脱炭焼鈍を行った。以降、同一の冷間圧延と脱炭焼鈍を2回さらに繰り返した。最終的に鋼板の厚さを0.23mmまで冷延した後、950℃の温度で露点温度60℃の水素と窒素の混合ガス雰囲気で180秒間脱炭焼鈍(1段階)を行った後、1000℃の乾燥(露点0℃)した水素雰囲気で100秒間熱処理(2段階)を行った。Si含有量変化に応じた最終焼鈍鋼板の磁気特性を表2に示した。
Example 2
C: 0.2% by weight and Mn: 0.05% were contained, and the balance was produced by changing the Si content of the slab composed of Fe and inevitable impurities as shown in Table 2 below. The slab was heated at a temperature of 1150 ° C., hot-rolled to a thickness of 3 mm, and then hot-rolled sheet annealed at an annealing temperature of 950 ° C. After cooling, pickling was performed, and cold rolling was performed at a reduction rate of 60%. The cold-rolled plate was again recrystallized and decarburized and annealed in a mixed gas atmosphere of hydrogen and nitrogen having a dew point of 60 ° C. and a temperature of 900 ° C. Thereafter, the same cold rolling and decarburization annealing were further repeated twice. After the steel sheet was finally cold-rolled to 0.23 mm, decarburization annealing (one stage) was performed for 180 seconds in a mixed gas atmosphere of hydrogen and nitrogen at a temperature of 950 ° C. and a dew point of 60 ° C., then 1000 Heat treatment (two steps) was performed for 100 seconds in a hydrogen atmosphere dried at 0 ° C. (dew point 0 ° C.). Table 2 shows the magnetic properties of the final annealed steel sheet according to the Si content change.

Figure 0006622919
表2に示したとおり、Si含有量が4重量%以下は、複数の冷間圧延及び脱炭焼鈍により最終結晶粒の粒径1000μm以下の微細組織を確保し、この時磁区の大きさは、鋼板の厚さより小さい磁区の大きさを確保した結果、優れた鉄損を確保することができた。Si含有量が4重量%を超えた場合は脆性が増加して冷間圧延時の板破断により最終の厚さまで冷間圧延することが難しく、脱炭焼鈍時間のあいだ脱炭が行われず、非常に小さい結晶粒の粒径と劣位である磁気特性を示した。
Figure 0006622919
As shown in Table 2, when the Si content is 4% by weight or less, a fine structure having a grain size of 1000 μm or less of the final crystal grains is ensured by a plurality of cold rolling and decarburization annealing. As a result of securing a magnetic domain size smaller than the thickness of the steel plate, excellent iron loss could be secured. When the Si content exceeds 4% by weight, brittleness increases and it is difficult to cold-roll to the final thickness due to sheet breakage during cold rolling, and decarburization is not performed during the decarburization annealing time. The magnetic properties of small crystal grains and inferiority were shown.

実施例3
重量%でSi:3.0%、C:0.25%、Mn:0.5%を含有し、残部はFe及び不可避的不純物からなるスラブを1200℃の温度で加熱した後、2.5mmの厚さに熱間圧延し、次いで焼鈍温度1100℃、露点温度40℃の水素及び窒素混合ガス雰囲気で熱延板焼鈍を行い、冷却した後酸洗を行った後、65%の圧下率で1次冷間圧延を行った。次に、冷間圧延された板は、再び1050℃の温度で露点温度60℃の水素及び窒素の湿潤混合ガス雰囲気で脱炭焼鈍を行った。以降1次脱炭焼鈍板を最終0.30mmの厚さまで2次冷間圧延を行った後、最終焼鈍をした。最終焼鈍は、炭素含有量が0.003重量%以下となるように露点温度65℃の水素、窒素の湿潤混合ガス雰囲気で下記表3のように焼鈍温度を変更して脱炭焼鈍(1段階)を行った。最終的に脱炭焼鈍に次いで追加昇温して1150℃の露点0℃の乾燥した水素雰囲気で仕上げ熱処理(2段階)を行った。最終焼鈍が終了した鋼板の結晶粒の粒径及びKerr microscopyを用いた磁区の大きさを測定し、磁気特性と比較して下記表3に示した。
Example 3
The slab containing Si: 3.0%, C: 0.25%, Mn: 0.5% by weight, the balance being Fe and unavoidable impurities is heated at a temperature of 1200 ° C., and then 2.5 mm. And then hot-rolled sheet annealing in a mixed gas atmosphere of hydrogen and nitrogen having an annealing temperature of 1100 ° C. and a dew point temperature of 40 ° C., and after cooling and pickling, at a rolling reduction of 65% Primary cold rolling was performed. Next, the cold-rolled plate was decarburized and annealed again in a wet mixed gas atmosphere of hydrogen and nitrogen having a dew point temperature of 60 ° C. at a temperature of 1050 ° C. Thereafter, the primary decarburized annealed plate was subjected to secondary cold rolling to a final thickness of 0.30 mm, and then final annealed. The final annealing is a decarburization annealing by changing the annealing temperature as shown in Table 3 below in a wet mixed gas atmosphere of hydrogen and nitrogen with a dew point temperature of 65 ° C. so that the carbon content is 0.003% by weight or less (one step) ) Finally, after decarburization annealing, the temperature was additionally increased, and finish heat treatment (two steps) was performed in a dry hydrogen atmosphere with a dew point of 0 ° C. at 1150 ° C. The grain size of the crystal grains of the steel sheet after the final annealing and the size of the magnetic domain using Kerr microscopy were measured and shown in Table 3 below in comparison with the magnetic properties.

Figure 0006622919
表3に示したとおり、最終焼鈍温度(1段階)が850〜1150℃である場合は、最終製品で結晶粒の粒径が20〜1000μmの比率が50%以上となりれ、そのために磁区の大きさも鋼板の厚さより小さい大きさとなって優れた鉄損特性示した。脱炭焼鈍温度が850℃より低い場合、磁区の大きさが非常に小さいにもかかわらず、全体的な磁気特性劣位である理由は、結晶粒の中にゴス方位分率が50%以下であるためと判断された。逆に、1150℃より高い場合は、結晶粒の粒径が粗大になることによって、磁区の大きさが鋼板の厚さより大きくなるため、鉄損が改善されなかった。
Figure 0006622919
As shown in Table 3, when the final annealing temperature (one stage) is 850 to 1150 ° C., the ratio of the crystal grain size of 20 to 1000 μm in the final product can be 50% or more. In addition, the iron loss characteristic was excellent because it was smaller than the thickness of the steel sheet. When the decarburization annealing temperature is lower than 850 ° C., the reason for the overall magnetic property inferiority despite the fact that the size of the magnetic domain is very small is that the Goth orientation fraction in the crystal grains is 50% or less. It was judged because. On the other hand, when the temperature is higher than 1150 ° C., the grain size of the crystal grains becomes coarse so that the size of the magnetic domain becomes larger than the thickness of the steel sheet, and thus the iron loss is not improved.

本発明は、実施例に限定されず、互いに異なる多様な形態で製造するこよができる。本発明が属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更せず、他の具体的な形態で実施することができることを理解できるであろう。したがって、上に記した実施例は、すべての面で例示的なものであり、限定的なものでないと理解しなければならない。   The present invention is not limited to the embodiments and can be manufactured in various forms different from each other. Those skilled in the art to which the present invention pertains can understand that the present invention can be implemented in other specific forms without changing the technical idea and essential features of the present invention. Accordingly, it should be understood that the embodiments described above are illustrative in all aspects and not limiting.

Claims (15)

重量%で、Si:4.0%以下(0%を除く)、C:0.001%〜0.4%、Mn:0.001〜2.0%及び、Al:0.01%以下(0%を除く)を含有し、残部はFe及びその他不可避的に混入される不純物からなるスラブを提供する段階と、
前記スラブを再加熱する段階と、
前記スラブを熱間圧延して熱延鋼板を製造する段階と、
前記熱延鋼板を熱延板焼鈍する段階と、
前記熱延板焼鈍された熱延鋼板を1次冷間圧延する段階と、
前記1次冷間圧延された鋼板を脱炭焼鈍する段階と、
前記脱炭焼鈍が完了した鋼板を2次冷間圧延する段階と、
前記2次冷間圧延が完了した鋼板を連続式最終焼鈍する段階と、を含み、
前記最終焼鈍が終了した鋼板は、結晶粒内に存在する磁区の大きさ(2L)が鋼板の厚さ(D)より小さく、前記最終焼鈍が終了した鋼板は、粒径が20μm〜1000μmの結晶粒の体積分率が50%以上であることを特徴とする方向性電磁鋼板の製造方法。
In weight percent, Si: 4.0% or less (excluding 0%), C: 0.001% to 0.4% , Mn : 0.001 to 2.0% , and Al: 0.01% or less ( containing excluding 0%), the balance comprising: providing a slab consisting of Fe and other inevitable impurities to be mixed,
Reheating the slab;
Hot rolling the slab to produce a hot rolled steel sheet,
Annealing the hot-rolled steel sheet,
Primary cold rolling the hot-rolled steel sheet annealed by the hot-rolled sheet;
Decarburizing and annealing the primary cold-rolled steel sheet;
Secondary cold rolling the steel plate after the decarburization annealing is completed;
Including a step of continuous final annealing of the steel sheet on which the secondary cold rolling has been completed,
Steel sheet wherein the final annealing is completed, the size of the magnetic domains present in the crystal grains (2L) is rather smaller than the thickness of the steel sheet (D), a steel sheet wherein the final annealing is completed, the particle size of 20μm~1000μm A method for producing a grain- oriented electrical steel sheet, wherein the volume fraction of crystal grains is 50% or more .
前記スラブは、Siを1重量%以下(0重量%を除く)含むことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the slab contains 1% by weight or less (excluding 0% by weight) of Si. 前記スラブの再加熱温度は、1050℃〜1350℃であることを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 1 or 2 , wherein the reheating temperature of the slab is 1050C to 1350C. 前記1次冷間圧延する段階及び前記2次冷間圧延する段階における圧下率は、それぞれ50%〜70%であることを特徴とする請求項1乃至のいずれか一項に記載の方向性電磁鋼板の製造方法。 The directionality according to any one of claims 1 to 3 , wherein the rolling reduction in the primary cold rolling and the secondary cold rolling is 50% to 70%, respectively. A method for producing electrical steel sheets. 前記冷間圧延された鋼板を脱炭焼鈍する段階及び前記脱炭焼鈍が完了した鋼板を2次冷間圧延する段階は、2回以上繰り返し行うことを特徴とする請求項1乃至のいずれか一項に記載の方向性電磁鋼板の製造方法。 The step of rolling said cold rolled stages steel sheet decarburization annealing and the steel sheet secondary cold decarburization annealing is completed, any one of claims 1 to 4, characterized in that repeated more than once The manufacturing method of the grain-oriented electrical steel sheet according to one item. 前記脱炭焼鈍する段階は、800℃〜1150℃の温度で露点温度0℃以上の水素を含む雰囲気で行うことを特徴とする請求項1乃至のいずれか一項に記載の方向性電磁鋼板の製造方法。 The grain-oriented electrical steel sheet according to any one of claims 1 to 5 , wherein the decarburization annealing is performed in an atmosphere containing hydrogen at a temperature of 800 ° C to 1150 ° C and a dew point temperature of 0 ° C or higher. Manufacturing method. 前記最終焼鈍する段階は、850℃〜1150℃の温度で露点温度10℃〜70℃の雰囲気で行う第1段階と、900℃〜1200℃の温度で露点温度10℃以下の水素及び窒素を含む混合ガス雰囲気で行う第2段階とを含む請求項1乃至のいずれか一項に記載の方向性電磁鋼板の製造方法。 The final annealing step includes a first step performed in an atmosphere having a dew point temperature of 10 ° C. to 70 ° C. at a temperature of 850 ° C. to 1150 ° C., and hydrogen and nitrogen having a dew point temperature of 10 ° C. or less at a temperature of 900 ° C. to 1200 ° C. The method for manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 6 , comprising a second stage performed in a mixed gas atmosphere. 前記第1段階は300秒以下で行い、前記第2段階は60秒〜300秒間行う請求項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 7 , wherein the first stage is performed for 300 seconds or less, and the second stage is performed for 60 seconds to 300 seconds. 前記冷間圧延する段階以降の最終焼鈍する段階は、連続して行うことを特徴とする請求項1乃至のいずれか一項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 8 , wherein the step of final annealing after the step of cold rolling is performed continuously. 前記最終焼鈍段階以降の電磁鋼板内の炭素量は、0.003重量%以下(0重量%を除く)であることを特徴とする請求項1乃至のいずれか一項に記載の方向性電磁鋼板の製造方法。 The directional electromagnetic according to any one of claims 1 to 9 , wherein the carbon content in the electrical steel sheet after the final annealing stage is 0.003% by weight or less (excluding 0% by weight). A method of manufacturing a steel sheet. 前記最終焼鈍が終了した鋼板は、{110}<001>方位から15度以内の方位を有する結晶粒の体積分率が50%以上であることを特徴とする請求項1乃至10のいずれか一項に記載の方向性電磁鋼板の製造方法。 Steel sheet wherein the final annealing is completed, {110} <001> any one of claims 1 to 10 grain volume fraction having an orientation within 15 degrees from the orientation is equal to or 50% or more The manufacturing method of the grain-oriented electrical steel sheet as described in a term. 重量%で、Si:4.0%以下(0%を除く)、C:0.003%以下(0%を除く)、Mn:0.001〜2.0%、及びAl:0.01%以下(0%を除く)を含有し、残部はFe及びその他不可避的に混入される不純物からなり
結晶粒内に存在する磁区の大きさ(2L)は、鋼板の厚さ(D)より小さく、粒径が20μm〜1000μmの結晶粒の体積分率が50%以上であることを特徴とする方向性電磁鋼板。
By weight, Si: 4.0% or less (excluding 0%), C: 0.003% or less (excluding 0%), Mn: 0.001 to 2.0%, and Al: 0.01% contained the following (excluding 0%), the balance consisting of Fe and other inevitable impurities to be mixed,
The size of the magnetic domains present in the crystal grains (2L) is rather smaller than the thickness of the steel sheet (D), particle size of 20μm~1000μm grain volume fraction is characterized in that 50% or more Oriented electrical steel sheet.
Siを1.0重量%以下(0重量%を除く)含むことを特徴とする請求項12に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 12 , comprising Si in an amount of 1.0% by weight or less (excluding 0% by weight). 結晶粒内に存在する磁区の大きさ(2L)は、10〜500μmであることを特徴とする請求項12又は13に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 12 or 13 , wherein the size (2L) of the magnetic domains existing in the crystal grains is 10 to 500 µm. {110}<001>方位から15度以内の方位を有する結晶粒の体積分率が50%以上であることを特徴とする請求項12乃至14のいずれか一項に記載の方向性電磁鋼板。
The grain oriented electrical steel sheet according to any one of claims 12 to 14 , wherein the volume fraction of crystal grains having an orientation within 15 degrees from the {110} <001> orientation is 50% or more.
JP2018532632A 2015-12-21 2016-12-20 Oriented electrical steel sheet and manufacturing method thereof Active JP6622919B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150182839A KR101675318B1 (en) 2015-12-21 2015-12-21 Oriented electrical steel sheet and method for manufacturing the same
KR10-2015-0182839 2015-12-21
PCT/KR2016/014945 WO2017111432A1 (en) 2015-12-21 2016-12-20 Oriented electrical steel sheet and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2019505671A JP2019505671A (en) 2019-02-28
JP6622919B2 true JP6622919B2 (en) 2019-12-18

Family

ID=57527701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532632A Active JP6622919B2 (en) 2015-12-21 2016-12-20 Oriented electrical steel sheet and manufacturing method thereof

Country Status (7)

Country Link
US (2) US20180371571A1 (en)
EP (1) EP3395959B1 (en)
JP (1) JP6622919B2 (en)
KR (1) KR101675318B1 (en)
CN (1) CN108431244B (en)
PL (1) PL3395959T3 (en)
WO (1) WO2017111432A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642281B1 (en) * 2014-11-27 2016-07-25 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
EP3715479A1 (en) * 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000015A (en) * 1975-05-15 1976-12-28 Allegheny Ludlum Industries, Inc. Processing for cube-on-edge oriented silicon steel using hydrogen of controlled dew point
JPS535800A (en) * 1976-07-05 1978-01-19 Kawasaki Steel Co Highhmagneticcflux density oneeway siliconnsteellfolstellite insulator film and method of formation thereof
JPS5518511A (en) * 1978-07-21 1980-02-08 Nippon Steel Corp Manufacture of unidirectional electrical steel sheet
US4202711A (en) * 1978-10-18 1980-05-13 Armco, Incl. Process for producing oriented silicon iron from strand cast slabs
JPS5920745B2 (en) * 1980-08-27 1984-05-15 川崎製鉄株式会社 Unidirectional silicon steel plate with extremely low iron loss and its manufacturing method
JPS61117215A (en) * 1984-10-31 1986-06-04 Nippon Steel Corp Manufacture of grain oriented magnetic steel sheet of low iron loss
JPH06306473A (en) * 1993-04-26 1994-11-01 Nippon Steel Corp Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3438282B2 (en) * 1993-12-28 2003-08-18 Jfeスチール株式会社 Method of manufacturing oriented silicon steel sheet with high magnetic flux density
KR100237158B1 (en) * 1995-12-14 2000-01-15 이구택 The manufacturing method for oriented electric steel sheet with excellent magnetic property
US5885371A (en) * 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
US6039818A (en) * 1996-10-21 2000-03-21 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
KR19980033020U (en) * 1996-12-02 1998-09-05 조윤희 Two-line Dunes
KR100541695B1 (en) * 1998-08-14 2006-04-28 주식회사 하이닉스반도체 Internal power supply circuit of semiconductor device
JP2000345306A (en) * 1999-05-31 2000-12-12 Nippon Steel Corp High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss
KR100359622B1 (en) * 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 High flux density grain-oriented electrical steel sheet excellent in high magnetic field core loss property and method of producing the same
US6613160B2 (en) * 2000-08-08 2003-09-02 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP4103393B2 (en) * 2002-01-09 2008-06-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP4288054B2 (en) * 2002-01-08 2009-07-01 新日本製鐵株式会社 Method for producing grain-oriented silicon steel sheet
KR100940720B1 (en) * 2002-12-27 2010-02-08 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheets with excellent magnetic properties
KR101141279B1 (en) * 2004-12-28 2012-05-04 주식회사 포스코 method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
US7736444B1 (en) * 2006-04-19 2010-06-15 Silicon Steel Technology, Inc. Method and system for manufacturing electrical silicon steel
JP2009155731A (en) * 2009-03-30 2009-07-16 Nippon Steel Corp Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
JP5871137B2 (en) * 2012-12-12 2016-03-01 Jfeスチール株式会社 Oriented electrical steel sheet
EP2775007B1 (en) * 2013-03-08 2018-12-05 Voestalpine Stahl GmbH A process for the production of a grain-oriented electrical steel
MX2016009420A (en) * 2014-01-23 2016-09-16 Jfe Steel Corp Directional magnetic steel plate and production method therefor.
KR101642281B1 (en) * 2014-11-27 2016-07-25 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
CN108431244B (en) 2022-09-27
EP3395959A4 (en) 2019-01-02
EP3395959B1 (en) 2020-04-22
US20180371571A1 (en) 2018-12-27
EP3395959A1 (en) 2018-10-31
CN108431244A (en) 2018-08-21
WO2017111432A1 (en) 2017-06-29
KR101675318B1 (en) 2016-11-11
PL3395959T3 (en) 2020-09-21
JP2019505671A (en) 2019-02-28
US20220106657A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP5896112B2 (en) Oriented electrical steel sheet, method of manufacturing the same, and transformer
CN106702260B (en) A kind of high-magnetic induction, low-iron loss non-orientation silicon steel and its production method
JP2009235574A (en) Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP6379100B2 (en) Directional silicon steel and method for producing the same
JP6683724B2 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
US20220106657A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2019163516A (en) Production method of grain-oriented electromagnetic steel sheet
JP2023508029A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2020509153A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP6842550B2 (en) Directional electrical steel sheet and its manufacturing method
JP2018070974A (en) Production method for grain-oriented electromagnetic steel sheet
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JP2001158919A (en) Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP4206664B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017122269A (en) Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP7312255B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4258149B2 (en) Method for producing grain-oriented electrical steel sheet
JP2005146295A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020509209A (en) Grain-oriented electrical steel sheet and its manufacturing method
KR102305718B1 (en) Grain oriented electrical steel sheet and method of manufacturing the same
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191122

R150 Certificate of patent or registration of utility model

Ref document number: 6622919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250