JP6842550B2 - Directional electrical steel sheet and its manufacturing method - Google Patents

Directional electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP6842550B2
JP6842550B2 JP2019534751A JP2019534751A JP6842550B2 JP 6842550 B2 JP6842550 B2 JP 6842550B2 JP 2019534751 A JP2019534751 A JP 2019534751A JP 2019534751 A JP2019534751 A JP 2019534751A JP 6842550 B2 JP6842550 B2 JP 6842550B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
grain
temperature
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019534751A
Other languages
Japanese (ja)
Other versions
JP2020510751A (en
Inventor
ソク ゴ,ヒョン
ソク ゴ,ヒョン
ソク グォン,ミン
ソク グォン,ミン
ウク ソ,ジン
ウク ソ,ジン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020510751A publication Critical patent/JP2020510751A/en
Application granted granted Critical
Publication of JP6842550B2 publication Critical patent/JP6842550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、方向性電磁鋼板およびその製造方法に係り、より詳しくは、最終焼鈍時、コイル状態でバッチ(Batch)形態の焼鈍を施さず、連続的な焼鈍が実施可能な方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same, and more specifically, a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet capable of continuous annealing without annealing in a batch form in a coil state at the time of final annealing. Regarding the manufacturing method.

方向性電磁鋼板は、鋼板の結晶方位が{110}<001>である、別名、ゴス(Goss)方位を有する結晶粒からなる圧延方向の磁気的特性に優れた軟磁性材料である。
このような方向性電磁鋼板は、スラブ加熱後、熱間圧延、熱延板焼鈍、冷間圧延により最終厚さに圧延された後、1次再結晶焼鈍と2次再結晶形成のために高温焼鈍を経て製造される。
この時、高温焼鈍時には、昇温率が遅いほど、2次再結晶されるGoss方位の集積度が高くなって磁性に優れていることが知られている。通常、方向性電磁鋼板の高温焼鈍中の昇温率は、時間あたり15℃以下であって、昇温だけで2〜3日かかるだけでなく、40時間以上の純化焼鈍が必要になるので、エネルギー消耗が激しい工程といえる。また、現在の最終高温焼鈍工程は、コイル状態でバッチ(Batch)形態の焼鈍を実施するため、工程上の次のような困難が発生する。第一、コイル状態での熱処理によるコイルの外巻部および内巻部の温度偏差が発生して、各部分で同一の熱処理パターンを適用できず、外巻部および内巻部の磁性バラツキが発生する。第二、脱炭焼鈍後、MgOを表面にコーティングし、高温焼鈍中のBase coatingを形成する過程で多様な表面欠陥が発生するため、実歩留まりを低下させる。第三、脱炭焼鈍の終わった脱炭板をコイル状に巻いた後、高温焼鈍後、再度平坦化焼鈍を経て絶縁コーティングをするため、生産工程が3つの段階に分けられることにより、実歩留まりが低下する問題点が発生する。
The grain-oriented electrical steel sheet is a soft magnetic material having a crystal orientation of {110} <001>, which is also known as a grain having a Goss orientation and has excellent magnetic properties in the rolling direction.
Such a directional electromagnetic steel sheet is rolled to the final thickness by hot rolling, hot rolling, and cold rolling after slab heating, and then at a high temperature for primary recrystallization annealing and secondary recrystallization formation. Manufactured after annealing.
At this time, it is known that during high-temperature annealing, the slower the temperature rise rate, the higher the degree of integration of the Goss orientation to be recrystallized secondarily, and the better the magnetism. Normally, the rate of temperature rise during high-temperature annealing of grain-oriented electrical steel sheets is 15 ° C. or less per hour, and not only does it take 2 to 3 days just to raise the temperature, but also 40 hours or more of purification annealing is required. It can be said that this is a process that consumes a lot of energy. Further, in the current final high-temperature annealing process, since the annealing in the batch form is performed in the coil state, the following difficulties in the process occur. First, temperature deviations occur in the outer and inner winding parts of the coil due to heat treatment in the coil state, and the same heat treatment pattern cannot be applied to each part, causing magnetic variations in the outer and inner winding parts. To do. Second, after decarburization annealing, the surface is coated with MgO, and various surface defects occur in the process of forming Base coating during high-temperature annealing, which lowers the actual yield. Third, the decarburized plate that has been decarburized and annealed is wound into a coil, then annealed at a high temperature, then flattened and annealed again to apply an insulating coating. There is a problem that the value is reduced.

本発明が目的とするところは、最終焼鈍時、コイル状態でバッチ(Batch)形態の焼鈍を施さず、連続的な焼鈍が実施可能な方向性電磁鋼板およびその製造方法を提供することである。 An object of the present invention is to provide a directional electromagnetic steel plate capable of continuous annealing without annealing in a batch form in a coil state at the time of final annealing, and a method for producing the same.

本発明による方向性電磁鋼板の製造方法は、質量%で、Si:1.0%〜4.0%、C:0.1%〜0.4%、を含み、残部がFeおよびその他不可避に混入する不純物からなるスラブを提供する段階と、前記スラブを再加熱する段階と、前記スラブを熱間圧延して熱延鋼板を製造する段階と、前記熱延鋼板を熱延板焼鈍する段階と、前記熱延板焼鈍された熱延鋼板を1次冷間圧延する段階と、前記1次冷間圧延された鋼板を脱炭焼鈍する段階と、
前記脱炭焼鈍された鋼板を2次冷間圧延する段階と、前記2次冷間圧延された鋼板を連続的な最終焼鈍する段階と、最終焼鈍された鋼板を酸洗する段階と、前記酸洗された鋼板にセラミックコーティング層を形成する段階と、を含み、前記酸洗する段階は、5〜50質量%の酸水溶液を用いて、50〜100℃の温度で15秒〜100秒間酸洗することを特徴とする。
The method for producing a directional electromagnetic steel sheet according to the present invention contains Si: 1.0% to 4.0% and C: 0.1% to 0.4% in mass%, and the balance is Fe and other inevitable. A step of providing a slab composed of mixed impurities, a step of reheating the slab, a step of hot-rolling the slab to produce a hot-rolled steel sheet, and a step of hot-rolling the hot-rolled steel sheet. A step of primary cold rolling the hot-rolled steel sheet that has been annealed, and a step of decarburizing and annealing the primary cold-rolled steel sheet.
Wherein the steps of rolling decarburization annealed steel sheet secondary cooling, the steps of continuous final annealing the second cold-rolled steel sheet, comprising the steps of pickling the final annealed steel sheet, the acid look-containing forming a ceramic coating layer washed steel sheet, wherein the pickling stages, using 5 to 50 wt% of acid aqueous solution, 15 seconds to 100 seconds acid at a temperature of 50 to 100 ° C. It is characterized by washing.

前記熱延板焼鈍する段階において、脱炭過程を含むことを特徴とする。 The stage of annealing the hot-rolled plate is characterized by including a decarburization process.

前記熱延板焼鈍する段階は、850℃〜950℃の温度および露点温度50℃以上で焼鈍する段階と、1000℃〜1200℃の温度および露点温度0℃以下で焼鈍する段階とを含むことを特徴とする。 The step of annealing the hot-rolled plate includes a step of annealing at a temperature of 850 ° C. to 950 ° C. and a dew point temperature of 50 ° C. or higher, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. It is a feature.

前記1次冷間圧延された鋼板を脱炭焼鈍する段階は、850℃〜950℃の温度および露点温度50℃以上で焼鈍する段階と、1000℃〜1200℃の温度および露点温度0℃以下で焼鈍する段階とを含むことを特徴とする。 The steps of decarburizing and annealing the primary cold-rolled steel sheet are a step of annealing at a temperature of 850 ° C. to 950 ° C. and a dew point temperature of 50 ° C. or higher, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. It is characterized by including a stage of annealing.

前記1次冷間圧延された鋼板を脱炭焼鈍する段階および前記脱炭焼鈍済みの鋼板を2次冷間圧延する段階は、2回以上繰り返されることを特徴とする。 The step of decarburizing and annealing the primary cold-rolled steel sheet and the step of secondary cold-rolling the decarburized and annealed steel sheet are repeated two or more times.

前記最終焼鈍する段階は、850℃〜1000℃の温度および露点温度70℃以下で焼鈍する段階と、1000℃〜1200℃の温度およびH 50体積%以上の雰囲気で焼鈍する段階とを含むことを特徴とする。 Wherein the step of final annealing, include the steps of annealing at 850 ° C. to 1000 ° C. of temperature and dew point temperature 70 ° C. or less, and a step of annealing at a temperature and H 2 50 vol% or more of the atmosphere 1000 ° C. to 1200 ° C. It is characterized by.

前記セラミックコーティング層を形成する段階は、不活性ガスをプラズマ化した熱源にセラミック粉末を供給してセラミックコーティング層を形成することを特徴とする。 The step of forming the ceramic coating layer is characterized in that the ceramic powder is supplied to a heat source in which the inert gas is turned into plasma to form the ceramic coating layer.

前記セラミック粉末は、Al、SiO、TiO、またはZrOを含むことを特徴とする。 The ceramic powder is characterized by containing Al 2 O 3 , SiO 2 , TiO 2 , or ZrO 2.

前記1次冷間圧延する段階から前記セラミックコーティング層を形成する段階は、連続して行われることを特徴とする。 The steps from the primary cold rolling step to the step of forming the ceramic coating layer are performed continuously.

また、本発明による方向性電磁鋼板は、質量%で、Si:1.0%〜4.0%、C:0.002%以下(0%を含まない)、を含み、残部がFeおよびその他不可避に混入する不純物からなる基材と、前記基材の表面上に形成されたセラミックコーティング層とを含み、前記基材は、鋼板の厚さ方向に垂直な面に対して、外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が、全体ゴス結晶粒中の95面積%以上含み、前記基材は、前記基材の表面から基材の内部に2〜5μmの深さまで形成された酸素欠乏層を含み、前記酸素欠乏層は、酸素を100ppm以下含むことを特徴とする。
Further, the directional electromagnetic steel sheet according to the present invention contains Si: 1.0% to 4.0%, C: 0.002% or less (not including 0%) in mass%, and the balance is Fe and others. It contains a base material composed of impurities that are inevitably mixed and a ceramic coating layer formed on the surface of the base material, and the base material has a diameter of an circumscribed circle with respect to a surface perpendicular to the thickness direction of the steel plate. the ratio of (D1) and the inscribed circle diameter (D2) (D2 / D1) is 0.5 or more Goss grains, seen containing 95 area% or more in total Goss grains, the substrate, It contains an oxygen-deficient layer formed from the surface of the base material to the inside of the base material to a depth of 2 to 5 μm, and the oxygen-deficient layer contains 100 ppm or less of oxygen .

前記酸素欠乏層は、Mgを100ppm以下含むことを特徴とする。 The oxygen-deficient layer is characterized by containing 100 ppm or less of Mg.

前記セラミックコーティング層の厚さは、10nm〜4μmであることを特徴とする。 The thickness of the ceramic coating layer is 10 nm to 4 μm.

前記セラミックコーティング層は、Al、SiO、TiO、またはZrOを含むことを特徴とする。 The ceramic coating layer is characterized by containing Al 2 O 3 , SiO 2 , TiO 2 or ZrO 2.

前記セラミックコーティング層は、圧延方向に、幅(w)が10〜100mm、間隔(d)が10〜100mmのパターンを形成することを特徴とする。 The ceramic coating layer is characterized by forming a pattern having a width (w) of 10 to 100 mm and an interval (d) of 10 to 100 mm in the rolling direction.

前記基材は、結晶粒の大きさが20μm〜500μmである結晶粒の比率が80%以上であることを特徴とする。 The base material is characterized in that the ratio of crystal grains having a crystal grain size of 20 μm to 500 μm is 80% or more.

本発明によれば、最終焼鈍時、コイル状態でバッチ(Batch)形態の焼鈍を施さず、連続的な焼鈍を実施可能な方向性電磁鋼板の製造方法を提供することができる。
また、短時間の焼鈍だけでも方向性電磁鋼板を生産することができる。
また、従来の方向性電磁鋼板の製造方法とは異なり、冷延鋼板を巻き取る工程を必要としない。
さらに、本発明の一実施形態による方向性電磁鋼板の製造方法は、結晶粒成長抑制剤を用いない方向性電磁鋼板を提供することができる。
また、浸窒焼鈍を省略することができる。
According to the present invention, it is possible to provide a method for producing a grain-oriented electrical steel sheet capable of performing continuous annealing without performing batch annealing in a coil state at the time of final annealing.
In addition, grain-oriented electrical steel sheets can be produced only by annealing for a short time.
Further, unlike the conventional method for manufacturing grain-oriented electrical steel sheet, the step of winding the cold-rolled steel sheet is not required.
Further, the method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention can provide a grain-oriented electrical steel sheet without using a crystal grain growth inhibitor.
Further, immersion annealing can be omitted.

本発明の一実施形態による方向性電磁鋼板の概略的な断面を示す。A schematic cross section of a grain-oriented electrical steel sheet according to an embodiment of the present invention is shown. 本発明の他の実施形態による方向性電磁鋼板の概略的な斜視図を示す。A schematic perspective view of a grain-oriented electrical steel sheet according to another embodiment of the present invention is shown. 製造例において基材の厚さ方向に垂直な面に対するGoss結晶粒の分布をEBSD分析により示す写真である。It is a photograph which shows the distribution of Goss crystal grains with respect to the plane perpendicular to the thickness direction of the base material by EBSD analysis in the production example. 比較製造例において基材の厚さ方向に垂直な面に対する結晶粒の分布を示す写真である。It is a photograph which shows the distribution of the crystal grain with respect to the plane perpendicular to the thickness direction of the base material in the comparative production example.

第1、第2および第3などの用語は、多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを、他の部分、成分、領域、層またはセクションと区別するためにのみ使用される。したがって、以下に述べる第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションと言及されてもよい。
ここで使用される専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は、文言がこれと明確に反対の意味を示さない限り、複数形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるわけではない。
Terms such as first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and / or sections. These terms are used only to distinguish one part, component, area, layer or section from another part, component, area, layer or section. Therefore, the first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
The terminology used herein is merely to refer to a particular embodiment and is not intended to limit the invention. The singular form used herein also includes multiple forms, unless the wording has a clear opposite meaning. As used herein, the meaning of "contains" embodies a particular property, region, integer, stage, behavior, element and / or component, and other characteristics, region, integer, stage, behavior, element and / or. It does not exclude the presence or addition of ingredients.

ある部分が他の部分の「上に」あると言及する場合、これは、まさに他の部分の上にあったり、その間に他の部分が伴っていてもよい。対照的に、ある部分が他の部分の「真上に」あると言及する場合、その間に他の部分は介在しない。
別途に定義しないものの、ここに使用される技術用語および科学用語を含むすべての用語は、本発明の属する技術分野における通常の知識を有する者が一般に理解する意味と同一の意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示された内容に符合する意味を有すると追加解釈され、定義されない限り、理想的または非常に公式的な意味で解釈されない。
また、特に言及しない限り、%は、質量%を意味し、1ppmは、0.0001質量%である。さらに、ゴス(goss)結晶粒とは、結晶方位が{110}<001>から15度以内の方位を有する結晶粒を意味する。
本発明の一実施形態において、追加の元素をさらに含むとの意味は、追加元素の追加量だけ残部の鉄(Fe)を代替して含むことを意味する。
以下、本発明の実施例について、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように詳しく説明する。しかし、本発明は種々の異なる形態で実現可能であり、ここで説明する実施例に限定されない。
When referring to one part being "above" another part, this may be just above the other part, or with another part in between. In contrast, when one mentions that one part is "directly above" another, no other part intervenes between them.
Although not defined separately, all terms used herein, including technical and scientific terms, have the same meaning as generally understood by those with ordinary knowledge in the technical field to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted as having a meaning consistent with the relevant technical literature and currently disclosed content, and are not interpreted in an ideal or very formal sense unless defined.
Further, unless otherwise specified,% means mass%, and 1 ppm is 0.0001 mass%. Further, the goth crystal grain means a crystal grain having a crystal orientation within 15 degrees from {110} <001>.
In one embodiment of the present invention, the meaning of further containing an additional element means that an additional amount of the additional element is substituted for the remaining iron (Fe).
Hereinafter, examples of the present invention will be described in detail so that a person having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the examples. However, the present invention is feasible in a variety of different forms and is not limited to the examples described herein.

本発明の方向性電磁鋼板の製造方法は、まず、質量%で、Si:1.0%〜4.0%、C:0.1%〜0.4%、を含み、残部がFeおよびその他不可避に混入する不純物からなるスラブを提供する。また、スラブは、質量%で、Mn:0%超過0.1%以下、S:0%超過0.005%以下をさらに含んでもよい。また、スラブは、質量%で、Bi:0.001%〜0.1%をさらに含んでもよい。 The method for producing grain-oriented electrical steel sheets of the present invention first contains, in mass%, Si: 1.0% to 4.0%, C: 0.1% to 0.4%, and the balance is Fe and others. Provided is a slab composed of impurities that are inevitably mixed. Further, the slab may further contain Mn: more than 0% and 0.1% or less, and S: more than 0% and 0.005% or less in mass%. Further, the slab may further contain Bi: 0.001% to 0.1% in mass%.

組成を限定した理由は下記の通りである。
シリコン(Si)は、電磁鋼板の磁気異方性を低下させ、比抵抗を増加させて鉄損を改善する。Si含有量が1.0%未満の場合には、鉄損に劣り、4.0%超過の場合、脆性が増加する。したがって、スラブおよび最終焼鈍段階後、方向性電磁鋼板におけるSiの含有量は、1.0%〜4.0%であってもよい。
炭素(C)は、中間脱炭焼鈍および最終脱炭焼鈍中に表層部のGoss結晶粒が中心部に拡散するために、中心部のCが表層部に抜け出る過程が必要であるため、スラブ中のCの含有量は、0.1〜0.4質量%であってもよい。また、脱炭が完了した最終焼鈍段階後、方向性電磁鋼板における炭素量は、0.0020質量%以下であってもよい。
The reason for limiting the composition is as follows.
Silicon (Si) lowers the magnetic anisotropy of electrical steel sheets, increases specific resistance, and improves iron loss. When the Si content is less than 1.0%, the iron loss is inferior, and when it exceeds 4.0%, the brittleness increases. Therefore, after the slab and the final annealing step, the Si content in the grain-oriented electrical steel sheet may be 1.0% to 4.0%.
Carbon (C) is in the slab because the Goss crystal grains in the surface layer are diffused to the center during the intermediate decarburization annealing and the final decarburization annealing, so that the process in which C in the center escapes to the surface is required. The content of C in may be 0.1 to 0.4% by mass. Further, after the final annealing step in which decarburization is completed, the carbon content in the grain-oriented electrical steel sheet may be 0.0020% by mass or less.

マンガン(Mn)および硫黄(S)は、MnS析出物を形成して、脱炭過程中、中心部に拡散するGoss結晶粒の成長を妨げる。したがって、Mn、Sは添加されないことが好ましい。しかし、製鋼工程中に不可避に混入する量を考慮して、スラブおよび最終焼鈍段階後、方向性電磁鋼板におけるMn、Sは、Mn:0.1%以下、S:0.005%以下に制御することが好ましい。
ビスマス(Bi)は、揮発性の強い偏析元素であって、表層部に位置する場合、表面で揮発して表層部の結晶粒を粗大にする特徴があり、これとは逆に、鋼の中心部では結晶粒を微細化させる効果がある。0.001質量%未満で含む場合、その効果がわずかでありうる。逆に、0.1質量%超過で添加時には、表面結晶粒の大きさの不均一性をもたらすので、0.001〜0.1質量%添加することが好ましい。
Manganese (Mn) and sulfur (S) form MnS precipitates and prevent the growth of Goss crystal grains that diffuse to the center during the decarburization process. Therefore, it is preferable that Mn and S are not added. However, in consideration of the amount unavoidably mixed during the steelmaking process, Mn and S in the grain-oriented electrical steel sheet are controlled to Mn: 0.1% or less and S: 0.005% or less after the slab and the final annealing step. It is preferable to do so.
Bismuth (Bi) is a highly volatile segregation element, and when it is located on the surface layer, it has the characteristic of volatilizing on the surface and coarsening the crystal grains on the surface layer. The part has the effect of making the crystal grains finer. If it is contained in less than 0.001% by mass, the effect may be slight. On the contrary, when it is added in excess of 0.1% by mass, it causes non-uniformity in the size of surface crystal grains, so it is preferable to add 0.001 to 0.1% by mass.

このような組成のスラブを再加熱する。スラブ再加熱温度は、通常の再加熱温度より高い1100℃〜1350℃であってもよい。
スラブ加熱時の温度が高い場合、熱延組織が粗大化されて磁性に悪影響を及ぼす問題点がある。しかし、本発明の方向性電磁鋼板の製造方法は、炭素の含有量が従来より多くて、スラブ再加熱温度が高くても熱延組織が粗大化されず、通常の場合より高い温度で再加熱することによって、熱間圧延時に有利である。
次に、加熱済みのスラブを熱間圧延して熱延鋼板を製造する。
次に、熱延鋼板を熱延板焼鈍する。この時、熱延板焼鈍は、脱炭過程を含むことができる。具体的には、熱延板焼鈍は、850℃〜950℃の温度および露点温度50℃以上で焼鈍する段階と、1000℃〜1200℃の温度および露点温度0℃以下で焼鈍する段階とを含むことができる。
次に、熱延板脱炭焼鈍を実施した後、酸洗をし、1次冷間圧延を実施して冷延鋼板を製造する。
A slab of such composition is reheated. The slab reheating temperature may be 1100 ° C to 1350 ° C, which is higher than the normal reheating temperature.
When the temperature at the time of heating the slab is high, there is a problem that the hot-rolled structure is coarsened and adversely affects the magnetism. However, in the method for producing grain-oriented electrical steel sheet of the present invention, the carbon content is higher than before, and the hot-rolled structure is not coarsened even if the slab reheating temperature is high, and reheating is performed at a higher temperature than usual. This is advantageous during hot rolling.
Next, the heated slab is hot-rolled to produce a hot-rolled steel sheet.
Next, the hot-rolled steel sheet is annealed. At this time, the hot-rolled plate annealing can include a decarburization process. Specifically, the hot-rolled plate annealing includes a step of annealing at a temperature of 850 ° C. to 950 ° C. and a dew point temperature of 50 ° C. or higher, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. be able to.
Next, after performing hot-rolled plate decarburization annealing, pickling is performed and primary cold rolling is performed to produce a cold-rolled steel sheet.

次に、冷延鋼板を脱炭焼鈍する。この時、脱炭焼鈍する段階は、オーステナイト単相領域、またはフェライトおよびオーステナイトの複合相が存在する領域で実施することができる。具体的には、850℃〜950℃の温度および露点温度50℃以上で焼鈍する段階と、1000℃〜1200℃の温度および露点温度0℃以下で焼鈍する段階とを含むことができる。また、脱炭焼鈍時の脱炭量は、0.0300wt%〜0.0600wt%であってもよい。さらに、雰囲気は、水素および窒素の混合ガス雰囲気であってもよい。このような脱炭焼鈍過程において、電磁鋼板の表面の結晶粒の大きさは粗大に成長するが、電磁鋼板の内部の結晶粒は微細な組織として残る。このような脱炭焼鈍後、表面フェライト結晶粒の大きさは、150μm〜250μmであってもよい。 Next, the cold-rolled steel sheet is decarburized and annealed. At this time, the decarburization annealing step can be carried out in a region where an austenite single-phase region or a complex phase of ferrite and austenite is present. Specifically, it can include a step of annealing at a temperature of 850 ° C. to 950 ° C. and a dew point temperature of 50 ° C. or higher, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. The amount of decarburized during decarburization annealing may be 0.0300 wt% to 0.0600 wt%. Further, the atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen. In such a decarburization annealing process, the size of the crystal grains on the surface of the electrical steel sheet grows coarsely, but the crystal grains inside the electrical steel sheet remain as a fine structure. After such decarburization annealing, the size of the surface ferrite crystal grains may be 150 μm to 250 μm.

次に、脱炭焼鈍済みの鋼板を2次冷間圧延する。通常の高磁束密度方向性電磁鋼板の製造工程において、冷間圧延は、90%に近い高圧下率で1回実施することが効果的と知られている。これが、1次再結晶粒中のGoss結晶粒だけが粒子成長するのに有利な環境を作るからである。
しかし、本発明の一実施形態による方向性電磁鋼板の製造方法は、Goss方位の結晶粒の異常な粒子成長を利用せず、脱炭焼鈍および冷間圧延によって発生した表層部のGoss結晶粒を内部拡散させるものであるので、表層部でGoss方位の結晶粒を多数分布するように形成することが有利である。
したがって、冷間圧延時、圧下率50%〜70%で冷間圧延を実施する場合、Goss集合組織が表層部で多数形成される。あるいは55%〜65%であってもよい。
前述した冷延鋼板を脱炭焼鈍する段階および脱炭焼鈍済みの鋼板を2次冷間圧延する段階は、2回以上繰り返し実施可能である。2回以上繰り返し実施することによって、Goss集合組織が表層部で多数形成される。
Next, the decarburized and annealed steel sheet is secondarily cold-rolled. In a normal manufacturing process of a high magnetic flux density directional electromagnetic steel sheet, it is known that cold rolling is effectively performed once at a high pressure reduction rate close to 90%. This is because only the Goss crystal grains in the primary recrystallized grains create an advantageous environment for particle growth.
However, the method for producing a directional electromagnetic steel plate according to an embodiment of the present invention does not utilize the abnormal grain growth of the crystal grains in the Goss orientation, and produces the Goss crystal grains in the surface layer portion generated by decarburization annealing and cold rolling. Since it is internally diffused, it is advantageous to form a large number of Goss-oriented crystal grains on the surface layer.
Therefore, during cold rolling, when cold rolling is carried out at a rolling reduction of 50% to 70%, a large number of Goss textures are formed on the surface layer portion. Alternatively, it may be 55% to 65%.
The steps of decarburizing and annealing the cold-rolled steel sheet and the secondary cold rolling of the decarburized and annealed steel sheet can be repeated two or more times. By repeating the process twice or more, a large number of Goss textures are formed on the surface layer.

次に、脱炭焼鈍および2次冷間圧延済みの電磁鋼板は、最終焼鈍を実施する。
本発明の方向性電磁鋼板の製造方法では、既存のバッチ(batch)方式とは異なり、冷間圧延に続いて、連続して最終焼鈍を実施する。
本発明の一実施形態による方向性電磁鋼板の製造方法において、最終焼鈍は、850℃〜1000℃の温度および露点温度70℃以下で焼鈍する段階と、1000℃〜1200℃の温度およびH 50体積%以上の雰囲気で焼鈍する段階とを含むことができる。また、2番目の段階の雰囲気は、H 90体積%以上であってもよい。
最終焼鈍前の冷延板は、脱炭焼鈍が進行して、素鋼の炭素量が最小スラブの炭素量対比40質量%〜60質量%残っている状態である。したがって、最終焼鈍時、第1段階では、炭素が抜け出ながら表層部に形成された結晶粒が内部に拡散する。第1段階では、鋼板中の炭素量を0.01質量%以下となるように脱炭を実施することができる。
この後、第2段階では、第1段階で拡散したゴス方位を有する集合組織が成長する。
Next, the electromagnetic steel sheet that has been decarburized and annealed and secondarily cold-rolled is finally annealed.
In the method for producing grain-oriented electrical steel sheets of the present invention, unlike the existing batch method, cold rolling is followed by continuous final annealing.
The method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention, final annealing comprises the steps of annealing at 850 ° C. to 1000 ° C. of temperature and dew point temperature 70 ° C. or less, 1000 ° C. to 1200 temperature ° C. and H 2 50 It can include a step of annealing in an atmosphere of% by volume or more. The atmosphere for the second stage, may be H 2 90 vol% or more.
The cold-rolled plate before the final annealing is in a state where decarburization annealing has progressed and the carbon content of the raw steel remains 40% by mass to 60% by mass with respect to the carbon content of the minimum slab. Therefore, at the time of final annealing, in the first stage, the crystal grains formed on the surface layer are diffused inside while carbon is released. In the first stage, decarburization can be carried out so that the amount of carbon in the steel sheet is 0.01% by mass or less.
After this, in the second stage, the texture having the Goth orientation diffused in the first stage grows.

本発明の方向性電磁鋼板の製造方法では、ゴス集合組織は、従来の異常な粒子成長によって結晶粒が成長した場合とは異なり、結晶粒の粒径は、1mm以内であってもよい。したがって、従来の方向性電磁鋼板に比べて結晶粒の大きさが小さいゴス結晶粒が多数個存在する集合組織を有することができる。
このように製造された鋼板は、鋼板の厚さ方向に垂直な面に対して、外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が、全体ゴス結晶粒中の95面積%以上含むことができる。鋼板の結晶組織については、後述する方向性電磁鋼板において具体的に説明する。
一方、従来のバッチ(Batch)形態で最終焼鈍時、MgOを主成分とする焼鈍分離剤を塗布するため、MgOコーティング層が存在するが、本発明の一実施形態による方向性電磁鋼板は、バッチ形態でない連続式で最終焼鈍を実施可能なため、MgOコーティング層が存在しない。
これにより、本発明の一実施形態による方向性電磁鋼板において、鋼板の表面から2μm〜5μmの深さまでのMg含有量は、100ppm以下であってもよい。
In the method for producing a directional electromagnetic steel plate of the present invention, the grain size of the goth texture may be 1 mm or less, unlike the case where the crystal grains are grown by the conventional abnormal particle growth. Therefore, it is possible to have an aggregate structure in which a large number of Goth crystal grains having a smaller crystal grain size than the conventional grain-oriented electrical steel sheet are present.
The steel plate manufactured in this way has a ratio (D2 / D1) of the diameter of the circumscribed circle (D1) to the diameter of the inscribed circle (D2) of 0.5 with respect to the plane perpendicular to the thickness direction of the steel plate. The Goth crystal grains as described above can contain 95 area% or more of the total Goth crystal grains. The crystal structure of the steel sheet will be specifically described in the grain-oriented electrical steel sheet described later.
On the other hand, in the conventional batch form, at the time of final annealing, an annealing separator containing MgO as a main component is applied, so that an MgO coating layer exists. However, the directional electromagnetic steel sheet according to one embodiment of the present invention is a batch. The MgO coating layer does not exist because the final annealing can be carried out in a continuous manner that is not in the form.
As a result, in the grain-oriented electrical steel sheet according to the embodiment of the present invention, the Mg content from the surface of the steel sheet to a depth of 2 μm to 5 μm may be 100 ppm or less.

次に、最終焼鈍済みの鋼板を酸洗する。酸洗する工程により鋼板の表面に自然に形成される酸化層が除去される。結局、鋼板の表面部から2μm〜5μmの深さまでは酸素を500ppm以下で含む酸素欠乏層が形成される。反面、最終焼鈍工程において、MgOなどの焼鈍分離剤を用いて非金属層(ベースコーティング層)を形成し、この非金属層を再度除去する、いわゆるグラスレス方法の場合、非金属層を除去しても、非金属層から拡散した酸素が鋼板の表面層に一部残存して、表面層に酸素を含むようになる。
酸洗する段階は、5〜50質量%の酸水溶液を用いることができる。この時、酸水溶液は、塩酸、硝酸、または硫酸などの無機酸を含む水溶液を使用することができる。酸水溶液の濃度が小さすぎる場合、適切な酸洗が行われないことがある。また、酸水溶液の濃度が大きすぎる場合、鋼板表面の粗さが過度に増加して、磁性に悪影響を及ぼすことがある。
Next, the final annealed steel sheet is pickled. The pickling step removes the oxide layer naturally formed on the surface of the steel sheet. After all, an oxygen-deficient layer containing oxygen at a depth of 500 ppm or less is formed at a depth of 2 μm to 5 μm from the surface portion of the steel sheet. On the other hand, in the final annealing step, a non-metal layer (base coating layer) is formed using an annealing separator such as MgO, and the non-metal layer is removed again. In the so-called glassless method, the non-metal layer is removed. However, some of the oxygen diffused from the non-metal layer remains on the surface layer of the steel plate, and the surface layer contains oxygen.
In the pickling step, a 5 to 50% by mass acid aqueous solution can be used. At this time, as the acid aqueous solution, an aqueous solution containing an inorganic acid such as hydrochloric acid, nitric acid, or sulfuric acid can be used. If the concentration of the aqueous acid solution is too low, proper pickling may not be performed. Further, if the concentration of the acid aqueous solution is too high, the roughness of the surface of the steel sheet may be excessively increased, which may adversely affect the magnetism.

酸洗する段階は、50〜100℃の温度で行われる。温度が低すぎる場合、酸洗が適切に行われない問題が発生しうる。温度が高すぎる場合、再酸化の問題が発生しうる。
酸洗する段階は、5秒〜100秒間酸洗することができる。時間が短すぎる場合、酸化層の除去が十分に行われないことがある。時間が長すぎる場合、結晶粒の内部と結晶粒径との間の酸洗能の不均一性によってむしろ磁性が劣化しうる。さらに具体的には、酸洗する段階は、15〜35秒間酸洗することができる。
このように適切な条件の酸洗工程により基材の内部に酸素欠乏層が形成され、磁区移動が円滑になって磁気履歴損失が減少して、磁性がさらに向上できる。
The pickling step is performed at a temperature of 50-100 ° C. If the temperature is too low, problems with poor pickling can occur. If the temperature is too high, reoxidation problems can occur.
The pickling step can be pickled for 5 to 100 seconds. If the time is too short, the oxide layer may not be removed sufficiently. If the time is too long, the non-uniformity of the pickling ability between the inside of the crystal grains and the grain size can rather deteriorate the magnetism. More specifically, the pickling step can be pickled for 15 to 35 seconds.
As described above, the oxygen-deficient layer is formed inside the base material by the pickling step under appropriate conditions, the movement of magnetic domains is smoothed, the magnetic history loss is reduced, and the magnetism can be further improved.

次に、酸洗済みの鋼板にセラミックコーティング層を形成する。
セラミックコーティング層を形成する段階は、プラズマを用いることができる。具体的には、不活性ガスをプラズマ化した熱源にセラミック粉末を供給してセラミックコーティング層を形成することができる。セラミックコーティング層を形成する方法として、本発明の一実施形態では、プラズマを用いたコーティング方法を使用することができる。
セラミック粉末は、Al、SiO、TiO、またはZrOを含むことができる。不活性ガスは、アルゴンガスを含むことができる。
前述のように、本発明の一実施形態では、従来のバッチ形態で運営される最終焼鈍工程を連続焼鈍工程で運営することができ、1次冷間圧延する段階からセラミックコーティング層を形成する段階は、連続して行われる。
Next, a ceramic coating layer is formed on the pickled steel sheet.
Plasma can be used in the step of forming the ceramic coating layer. Specifically, the ceramic coating layer can be formed by supplying ceramic powder to a heat source in which the inert gas is turned into plasma. As a method for forming the ceramic coating layer, in one embodiment of the present invention, a coating method using plasma can be used.
The ceramic powder can contain Al 2 O 3 , SiO 2 , TiO 2 , or ZrO 2 . The inert gas can include argon gas.
As described above, in one embodiment of the present invention, the final annealing step operated in the conventional batch form can be operated in the continuous annealing step, and the stage of forming the ceramic coating layer from the stage of primary cold rolling. Is performed continuously.

図1に、本発明の一実施形態による方向性電磁鋼板の断面を概略的に示す。図1に示すように、本発明の一実施形態による方向性電磁鋼板100は、基材10と、基材10の表面上に形成されたセラミックコーティング層20とを含む。以下、各構成別に詳しく説明する。図1にて、x方向は鋼板の幅方向、z方向は鋼板の厚さ方向を意味する。図1に示さないが、y方向は鋼板の圧延方向を意味する。
基材は、Si:1.0%〜4.0%、C:0%超0.002%以下、を含み、残部がFeおよびその他不可避に混入する不純物からなる。基材の元素含有量および理由については、前述した方向性電磁鋼板の製造方法に関して具体的に説明したので、重複する説明は省略する。前述のように、製造過程で脱炭過程を含むので、基材内の炭素含有量は、スラブ内の炭素含有量とは異なり、0.002質量%以下で含むことができる。また、基材は、質量%で、Mn:0%超0.1%以下、S:0%超0.005%以下をさらに含んでもよい。さらに、基材は、質量%で、Bi:0.001%〜0.1%をさらに含んでもよい。
FIG. 1 schematically shows a cross section of a grain-oriented electrical steel sheet according to an embodiment of the present invention. As shown in FIG. 1, the grain-oriented electrical steel sheet 100 according to the embodiment of the present invention includes a base material 10 and a ceramic coating layer 20 formed on the surface of the base material 10. Hereinafter, each configuration will be described in detail. In FIG. 1, the x direction means the width direction of the steel sheet, and the z direction means the thickness direction of the steel sheet. Although not shown in FIG. 1, the y direction means the rolling direction of the steel sheet.
The base material contains Si: 1.0% to 4.0%, C: more than 0% and 0.002% or less, and the balance consists of Fe and other unavoidably mixed impurities. Since the element content and the reason of the base material have been specifically described with respect to the above-mentioned method for manufacturing grain-oriented electrical steel sheets, duplicate description will be omitted. As described above, since the decarburization process is included in the manufacturing process, the carbon content in the substrate can be 0.002% by mass or less, unlike the carbon content in the slab. Further, the base material may further contain Mn: more than 0% and 0.1% or less, and S: more than 0% and 0.005% or less in mass%. Further, the base material may further contain Bi: 0.001% to 0.1% in mass%.

基材は、鋼板の厚さ方向に垂直な面に対して、外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が、全体ゴス結晶粒中の95面積%以上含むことができる。ここで、外接円とは、結晶粒の外部を囲む仮想の円のうち最も小さい円を意味し、内接円とは、結晶粒の内部に含まれる仮想の円のうち最も大きい円を意味する。
本発明の基材の組織は、表面のゴス結晶粒が鋼板の内部に成長するので、丸い形態の結晶粒が生成される。反面、既存の方向性電磁鋼板は、本発明による組織より長い楕円形態の結晶粒が生成される。
このように、本発明の一実施形態による特有の基材組織によって、さらに優れた磁性を得ることができる。
本発明の一実施形態による基材の結晶粒の大きさは、20μm〜500μmのものが、全体結晶粒中の80%以上であってもよい。
基材10は、基材10の表面から基材の内部に形成された酸素欠乏層11を含むことができる。さらに具体的には、酸素欠乏層11は、基材10の表面から基材の内部に2μm〜5μmの深さに形成される。
The base material is a goth crystal in which the ratio (D2 / D1) of the diameter of the circumscribed circle (D1) to the diameter of the inscribed circle (D2) is 0.5 or more with respect to the plane perpendicular to the thickness direction of the steel plate. The grains can contain 95 area% or more of the total Goth crystal grains. Here, the circumscribed circle means the smallest circle among the virtual circles surrounding the outside of the crystal grain, and the inscribed circle means the largest circle among the virtual circles contained inside the crystal grain. ..
In the structure of the base material of the present invention, Goth crystal grains on the surface grow inside the steel sheet, so that crystal grains in a round shape are generated. On the other hand, in the existing grain-oriented electrical steel sheet, crystal grains having an elliptical shape longer than the structure according to the present invention are generated.
As described above, further excellent magnetism can be obtained by the unique base material structure according to the embodiment of the present invention.
The size of the crystal grains of the base material according to one embodiment of the present invention may be 20 μm to 500 μm, which may be 80% or more of the total crystal grains.
The base material 10 can include an oxygen-deficient layer 11 formed inside the base material from the surface of the base material 10. More specifically, the oxygen-deficient layer 11 is formed at a depth of 2 μm to 5 μm from the surface of the base material 10 to the inside of the base material.

酸素欠乏層11は、酸素を500ppm以下で含むことができる。残りの組成は、前述した基材の合金組成と同一である。既存のベースコーティングフリー鋼板とは異なり、ベースコーティングを形成した後、これを除去するのではないことから、自然に形成される酸化層を酸洗により除去することによって、鋼板表面部に酸素欠乏層を形成することができる。
酸素欠乏層11の形成によって、磁区移動が円滑になって磁気履歴損失が減少して、磁性がさらに向上できる。さらに具体的には、酸素欠乏層11は、酸素を100ppm以下で含むことができる。また、フォルステライトを含むベースコーティング層を形成しないことから、酸素欠乏層11内にはMgを不純物範囲に含むようになる。具体的には、Mgを100ppm以下で含むことができる。
基材10の表面上にはセラミックコーティング層20が形成される。基材10内に酸素欠乏層11を含む場合、酸素欠乏層11上にセラミックコーティング層20が形成される。セラミックコーティング層20によって強い張力が鋼板に作用可能であり、これによる磁区微細化および鉄損改善の効果が極大化される。
The oxygen-deficient layer 11 can contain oxygen in an amount of 500 ppm or less. The remaining composition is the same as the alloy composition of the base material described above. Unlike existing base coating-free steel sheets, the base coating is not removed after it is formed. Therefore, by removing the naturally formed oxide layer by pickling, an oxygen-deficient layer is formed on the surface of the steel sheet. Can be formed.
The formation of the oxygen-deficient layer 11 facilitates the movement of magnetic domains, reduces magnetic history loss, and further improves magnetism. More specifically, the oxygen-deficient layer 11 can contain oxygen in an amount of 100 ppm or less. Further, since the base coating layer containing forsterite is not formed, Mg is contained in the oxygen-deficient layer 11 in the impurity range. Specifically, Mg can be contained in an amount of 100 ppm or less.
A ceramic coating layer 20 is formed on the surface of the base material 10. When the oxygen-deficient layer 11 is contained in the base material 10, the ceramic coating layer 20 is formed on the oxygen-deficient layer 11. A strong tension can act on the steel sheet by the ceramic coating layer 20, and the effects of magnetic domain miniaturization and iron loss improvement are maximized.

セラミックコーティング層20の厚さは、10nm〜4μmになってもよい。厚さが薄すぎると、張力効果が発生しにくい。厚さが厚すぎると、鉄損改善効果がそれ以上発生せず、むしろ、鋼板の積層後、変圧器の鉄心に用いる時の占積率が低下して、変圧器の無負荷損が増加する原因になりうる。
セラミックコーティング層20は、Al、SiO、TiO、またはZrOを含むことができる。
セラミックコーティング層20は、基材10の表面全体に形成されるが、基材表面の一部分にのみ形成されてもよい。基材表面の一部分に形成される場合、パターンを形成することも可能である。具体的には、セラミックコーティング層20は、圧延方向に、幅(w)が10〜100mm、間隔(d)が10〜100mmのパターンを形成することができる。図2では、セラミックコーティング層20がパターンを形成した場合の例を概略的に示す。このように、セラミックコーティング層20がパターンを形成する場合、磁性がさらに向上できる。
The thickness of the ceramic coating layer 20 may be 10 nm to 4 μm. If the thickness is too thin, the tension effect is unlikely to occur. If the thickness is too thick, the effect of improving iron loss will not occur any more, but rather, the space factor when used for the iron core of the transformer after laminating the steel plate will decrease, and the no-load loss of the transformer will increase. Can be the cause.
The ceramic coating layer 20 can contain Al 2 O 3 , SiO 2 , TiO 2 , or ZrO 2 .
The ceramic coating layer 20 is formed on the entire surface of the base material 10, but may be formed only on a part of the surface of the base material. When formed on a part of the surface of the substrate, it is also possible to form a pattern. Specifically, the ceramic coating layer 20 can form a pattern having a width (w) of 10 to 100 mm and an interval (d) of 10 to 100 mm in the rolling direction. FIG. 2 schematically shows an example in which the ceramic coating layer 20 forms a pattern. As described above, when the ceramic coating layer 20 forms a pattern, the magnetism can be further improved.

以下、実施例を通じて詳しく説明する。ただし、下記の実施例は本発明を例示するものに過ぎず、本発明の内容が下記の実施例によって限定されるものではない。
製造例:方向性電磁鋼板基材の製造
質量%で、Si:3.23%、C:0.25%を含有し、残部がFeおよび不可避不純物からなるスラブを1250℃の温度で加熱した後、1.6mmの厚さに熱間圧延し、次に、焼鈍温度870℃、露点温度60℃で120秒間焼鈍後、露点温度0℃以下、水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および200秒間熱延板焼鈍を実施し冷却した後、酸洗を実施し、60%の圧下率で1次冷間圧延した。
冷間圧延された板は、再度焼鈍温度870℃、露点温度60℃で60秒間焼鈍後、水素、露点温度0℃以下、水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および50秒間脱炭焼鈍を実施し冷却した後、酸洗を実施し、60%の圧下率で2次冷間圧延した。最終厚さは288μmであった。
この後、最終焼鈍時には、900℃の温度で水素、窒素の湿潤(露点温度60℃)混合ガス雰囲気で60秒間焼鈍を実施した後、1050℃の100%H雰囲気で3分間焼鈍を実施した。最終鋼板の炭素含有量は、30ppmであった。
厚さ方向に垂直な面に対するGoss結晶粒の分布をEBSD分析により示す写真を図3に示した。
表1は、図3に示した製造例におけるGoss結晶粒の内接円および外接円の相対的な大きさを測定し、その比(D2/D1)を示した表である。
Hereinafter, a detailed description will be given through examples. However, the following examples merely exemplify the present invention, and the content of the present invention is not limited to the following examples.
Production example: After heating a slab containing Si: 3.23%, C: 0.25% and the balance consisting of Fe and unavoidable impurities at a temperature of 1250 ° C. in the production mass% of the directional electromagnetic steel plate base material. , Hot-rolled to a thickness of 1.6 mm, then annealed at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 120 seconds, then annealed at a dew point temperature of 0 ° C. or lower, an annealing temperature of 1100 ° C. in a mixed gas atmosphere of hydrogen and nitrogen. After hot rolling plate annealing for 200 seconds and cooling, pickling was carried out and primary cold rolling was carried out at a reduction rate of 60%.
The cold-rolled plate is again annealed at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 60 seconds, and then annealed at an annealing temperature of 1100 ° C. and decarburization for 50 seconds in a mixed gas atmosphere of hydrogen, dew point temperature of 0 ° C. or less, hydrogen and nitrogen. After cooling, pickling was carried out and secondary cold rolling was carried out at a reduction rate of 60%. The final thickness was 288 μm.
After that, at the time of final annealing, annealing was carried out for 60 seconds in a wet mixed gas atmosphere of hydrogen and nitrogen (dew point temperature 60 ° C.) at a temperature of 900 ° C., and then annealing was carried out in a 100% H 2 atmosphere at 1050 ° C. for 3 minutes. .. The carbon content of the final steel sheet was 30 ppm.
A photograph showing the distribution of Goss crystal grains with respect to a plane perpendicular to the thickness direction by EBSD analysis is shown in FIG.
Table 1 is a table showing the relative sizes of the inscribed circle and the circumscribed circle of the Goss crystal grains in the production example shown in FIG. 3 and their ratios (D2 / D1).

表1に示した通り、すべてのGoss結晶粒の比(D2/D1)が0.5以上であることを確認することができる。 As shown in Table 1, it can be confirmed that the ratio (D2 / D1) of all Goss crystal grains is 0.5 or more.

比較製造例:方向性電磁鋼板基材の製造
質量%で、Si:3.23%、C:0.25%を含有し、残部Feおよび不可避不純物からなるスラブを1250℃の温度で加熱した後、1.6mmの厚さに熱間圧延し、次に、露点温度0℃以下、水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および200秒間熱延板焼鈍を実施し冷却した後、酸洗を実施し、288μmの厚さに冷間圧延した。
冷間圧延された板は、再度焼鈍温度870℃、露点温度60℃で60秒間焼鈍後、水素、露点温度0℃以下、水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および50秒間脱炭焼鈍を実施し、1050℃の100%H雰囲気で3分間最終焼鈍を実施した。
厚さ方向に垂直な面に対するGoss結晶粒の分布をEBSD分析により示す写真を図4に示した。
表2は、図4に示した方向性電磁鋼板の内接円および外接円の相対的な大きさを測定し、その比(D2/D1)を示した表である。
Comparative production example: After heating a slab containing Si: 3.23% and C: 0.25% in the production mass% of the directional electromagnetic steel plate base material and composed of the balance Fe and unavoidable impurities at a temperature of 1250 ° C. , Hot-rolled to a thickness of 1.6 mm, then annealed at a dew point temperature of 0 ° C. or lower, a mixed gas atmosphere of hydrogen and nitrogen, annealed at a baking temperature of 1100 ° C. for 200 seconds, cooled, and then pickled. Was cold-rolled to a thickness of 288 μm.
The cold-rolled plate is again annealed at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 60 seconds, and then annealed at an annealing temperature of 1100 ° C. and decarburization for 50 seconds in a mixed gas atmosphere of hydrogen, dew point temperature of 0 ° C. or less, hydrogen and nitrogen. performed, it was performed for 3 minutes final annealing at 100% H 2 atmosphere at 1050 ° C..
A photograph showing the distribution of Goss crystal grains with respect to a plane perpendicular to the thickness direction by EBSD analysis is shown in FIG.
Table 2 is a table showing the relative sizes of the inscribed circle and the circumscribed circle of the grain-oriented electrical steel sheet shown in FIG. 4 and their ratios (D2 / D1).

表2に示した通り、比較製造例で製造した基材は、組織が長い楕円形態の結晶粒であるので、D2/D1の値は、本発明の一実施形態による基材より小さい値になることを確認することができる。 As shown in Table 2, since the base material produced in the comparative production example is an elliptical crystal grain having a long structure, the value of D2 / D1 is smaller than that of the base material according to one embodiment of the present invention. You can confirm that.

実施例1
製造例で製造した方向性電磁鋼板基材に、80℃の25質量%濃度のHCl水溶液を用いて酸洗した。この後、鋼板表面全体にAl被膜を3μmの厚さに形成した。
酸洗時間による素地鋼板の厚さの変化と磁気的特性の変化を表3に示した。また、表面から3μmの深さまでの酸素欠乏層内の酸素量を測定して、下記表3に示した。さらに、鉄損磁束密度をsingle sheet測定法を利用して測定し、50Hzで1.7Teslaに磁化されるまでの鉄損(W17/50)および1000A/mの磁場下で誘導される磁束密度(B10)を測定した。その結果を下記表3にまとめた。
Example 1
The grain-oriented electrical steel sheet base material produced in the production example was pickled with an aqueous HCl solution having a concentration of 25% by mass at 80 ° C. After that, an Al 2 O 3 coating was formed on the entire surface of the steel sheet to a thickness of 3 μm.
Table 3 shows the changes in the thickness of the base steel sheet and the changes in the magnetic properties due to the pickling time. In addition, the amount of oxygen in the oxygen-deficient layer from the surface to a depth of 3 μm was measured and shown in Table 3 below. Furthermore, the iron loss magnetic flux density is measured using the single sheet measurement method, and the iron loss (W 17/50 ) until it is magnetized to 1.7 Tesla at 50 Hz and the magnetic flux density induced under a magnetic field of 1000 A / m. (B 10 ) was measured. The results are summarized in Table 3 below.

表3に示す通り、酸洗工程を全く実施しない比較材1に比べて、酸洗工程を実施した発明材1〜発明材7の方が磁性に優れていることを確認することができる。特に、酸洗時間を15〜30秒で行った発明材3〜発明材6の方が、他の発明材に比べて磁性にさらに優れていることを確認することができる。 As shown in Table 3, it can be confirmed that the invention materials 1 to 7 that have undergone the pickling step are superior in magnetism to the comparative material 1 that has not undergone the pickling step at all. In particular, it can be confirmed that the invention materials 3 to 6 in which the pickling time is 15 to 30 seconds are more excellent in magnetism than the other invention materials.

実施例2
製造例で製造した方向性電磁鋼板基材に、80℃の25質量%濃度のHCl水溶液を用いて酸洗した。この後、アルゴン(Ar)ガスを200kWの出力でプラズマ化した熱源にセラミック粉末を供給してセラミックコーティング層を形成した。この時、30mmのコーティング幅(w)および20mmのコーティング間隔(d)でパターンを形成した。セラミックの種類、セラミックコーティング層の厚さを下記表4のように変更し、それによる磁気的特性の変化を表4にまとめた。
Example 2
The grain-oriented electrical steel sheet base material produced in the production example was pickled with an aqueous HCl solution having a concentration of 25% by mass at 80 ° C. After that, the ceramic powder was supplied to a heat source in which argon (Ar) gas was turned into plasma at an output of 200 kW to form a ceramic coating layer. At this time, a pattern was formed with a coating width (w) of 30 mm and a coating interval (d) of 20 mm. The type of ceramic and the thickness of the ceramic coating layer were changed as shown in Table 4 below, and the changes in magnetic properties due to this were summarized in Table 4.

表4に示す通り、セラミックコーティング層を適切に形成することによって、磁性の向上をさらに図ることができる。 As shown in Table 4, the magnetism can be further improved by appropriately forming the ceramic coating layer.

以上、添付した図面を参照して本発明の実施例を説明したが、本発明の属する技術分野における通常の知識を有する者は、本発明がその技術的な思想や必須の特徴を変更することなく他の具体的な形態で実施可能であることを理解するであろう。
そのため、以上に述べた実施例はあらゆる面で例示的なものであり、限定的ではないと理解しなければならない。本発明の範囲は、上記の詳細な説明よりは後述する特許請求の範囲によって示され、特許請求の範囲の意味および範囲、そしてその均等概念から導出されるあらゆる変更または変更された形態が本発明の範囲に含まれると解釈されなければならない。
Although the embodiments of the present invention have been described above with reference to the accompanying drawings, a person having ordinary knowledge in the technical field to which the present invention belongs may change the technical idea and essential features of the present invention. You will understand that it is feasible in other concrete forms.
Therefore, it should be understood that the examples described above are exemplary in all respects and are not limiting. The scope of the present invention is indicated by the scope of claims, which will be described later rather than the detailed description above, and the meaning and scope of the claims, and any modification or modified form derived from the concept of equality thereof, are the present invention. Must be interpreted as being included in the scope of.

100:方向性電磁鋼板
10:基材
11:酸素欠乏層
20:セラミックコーティング層

100: Electrical steel sheet 10: Base material 11: Oxygen-deficient layer 20: Ceramic coating layer

Claims (15)

質量%で、Si:1.0%〜4.0%、C:0.1%〜0.4%、を含み、残部がFeおよびその他不可避に混入する不純物からなるスラブを提供する段階と、
前記スラブを再加熱する段階と、
前記スラブを熱間圧延して熱延鋼板を製造する段階と、
前記熱延鋼板を熱延板焼鈍する段階と、
前記熱延板焼鈍された熱延鋼板を1次冷間圧延する段階と、
前記1次冷間圧延された鋼板を脱炭焼鈍する段階と、
前記脱炭焼鈍された鋼板を2次冷間圧延する段階と、
前記2次冷間圧延された鋼板を連続的な最終焼鈍する段階と、
最終焼鈍された鋼板を酸洗する段階と、
前記酸洗された鋼板にセラミックコーティング層を形成する段階と、を含み、
前記酸洗する段階は、5〜50質量%の酸水溶液を用いて、50〜100℃の温度で15秒〜100秒間酸洗することを特徴とする方向性電磁鋼板の製造方法。
A step of providing a slab containing Si: 1.0% to 4.0% and C: 0.1% to 0.4% in mass%, with the balance consisting of Fe and other unavoidably mixed impurities.
The stage of reheating the slab and
At the stage of hot-rolling the slab to produce a hot-rolled steel sheet,
The stage of annealing the hot-rolled steel sheet and
The stage of primary cold rolling of the hot-rolled steel sheet that has been annealed, and
At the stage of decarburizing and annealing the primary cold-rolled steel sheet,
The method comprising rolling the secondary cold decarburization annealed steel sheet,
A step of continuous final annealing the rolled steel sheet between the secondary cooling,
A step of pickling the final annealed steel sheet,
Forming a ceramic coating layer on the pickled steel sheet, only including,
The pickling step is a method for producing a directional electromagnetic steel plate, which comprises pickling at a temperature of 50 to 100 ° C. for 15 to 100 seconds using an acid aqueous solution of 5 to 50% by mass.
前記熱延板焼鈍する段階において、脱炭過程を含むことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 1, wherein the step of annealing the hot-rolled sheet includes a decarburization step. 前記熱延板焼鈍する段階は、850℃〜950℃の温度および露点温度50℃以上で焼鈍する段階と、1000℃〜1200℃の温度および露点温度0℃以下で焼鈍する段階とを含むことを特徴とする請求項1乃至請求項2に記載の方向性電磁鋼板の製造方法。 The step of annealing the hot-rolled plate includes a step of annealing at a temperature of 850 ° C. to 950 ° C. and a dew point temperature of 50 ° C. or higher, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. The method for manufacturing a directional electromagnetic steel plate according to claim 1 to 2, wherein 前記1次冷間圧延された鋼板を脱炭焼鈍する段階は、850℃〜950℃の温度および露点温度50℃以上で焼鈍する段階と、1000℃〜1200℃の温度および露点温度0℃以下で焼鈍する段階とを含むことを特徴とする請求項1乃至請求項3の何れか1項に記載の方向性電磁鋼板の製造方法。 The steps of decarburizing and annealing the primary cold-rolled steel sheet are a step of annealing at a temperature of 850 ° C. to 950 ° C. and a dew point temperature of 50 ° C. or higher, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. The method for producing a directional electromagnetic steel sheet according to any one of claims 1 to 3, wherein the method includes a step of annealing. 前記1次冷間圧延された鋼板を脱炭焼鈍する段階および前記脱炭焼鈍済みの鋼板を2次冷間圧延する段階は、2回以上繰り返されることを特徴とする請求項1乃至請求項4の何れか1項に記載の方向性電磁鋼板の製造方法。 Claims 1 to 4 are characterized in that the step of decarburizing and annealing the primary cold-rolled steel sheet and the step of secondary cold-rolling the decarburized and annealed steel sheet are repeated two or more times. The method for manufacturing a directional electromagnetic steel sheet according to any one of the above items. 前記最終焼鈍する段階は、850℃〜1000℃の温度および露点温度70℃以下で焼鈍する段階と、1000℃〜1200℃の温度およびH2 50体積%以上の雰囲気で焼鈍する段階とを含むことを特徴とする請求項1乃至請求項5の何れか1項に記載の方向性電磁鋼板の製造方法。 The final annealing step includes a step of annealing at a temperature of 850 ° C. to 1000 ° C. and a dew point temperature of 70 ° C. or lower, and a step of annealing at a temperature of 1000 ° C. to 1200 ° C. and an atmosphere of H250% by volume or more. The method for manufacturing a directional electromagnetic steel sheet according to any one of claims 1 to 5, which is characteristic. 前記セラミックコーティング層を形成する段階は、不活性ガスをプラズマ化した熱源にセラミック粉末を供給してセラミックコーティング層を形成することを特徴とする請求項1乃至請求項の何れか1項に記載の方向性電磁鋼板の製造方法。 The step of forming the ceramic coating layer is according to any one of claims 1 to 6 , wherein the ceramic powder is supplied to a heat source obtained by converting an inert gas into plasma to form the ceramic coating layer. Directional electromagnetic steel plate manufacturing method. 前記セラミック粉末は、Al、SiO、TiO、またはZrOを含むことを特徴とする請求項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 7 , wherein the ceramic powder contains Al 2 O 3 , SiO 2 , TiO 2 , or ZrO 2. 前記1次冷間圧延する段階から前記セラミックコーティング層を形成する段階は、連続して行われることを特徴とする請求項1乃至請求項の何れか1項に記載の方向性電磁鋼板の製造方法。 The production of the grain-oriented electrical steel sheet according to any one of claims 1 to 8 , wherein the step of forming the ceramic coating layer from the step of the primary cold rolling is continuously performed. Method. 質量%で、Si:1.0%〜4.0%、C:0.002%以下(0%を含まない)、を含み、残部がFeおよびその他不可避に混入する不純物からなる基材と、
前記基材の表面上に形成されたセラミックコーティング層とを含み、
前記基材は、鋼板の厚さ方向に垂直な面に対して、外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が、全体ゴス結晶粒中の95面積%以上含み、
前記基材は、前記基材の表面から基材の内部に2〜5μmの深さまで形成された酸素欠乏層を含み、
前記酸素欠乏層は、酸素を100ppm以下含むことを特徴とする方向性電磁鋼板。
A base material containing Si: 1.0% to 4.0% and C: 0.002% or less (not including 0%) in mass%, and the balance consisting of Fe and other unavoidably mixed impurities.
Includes a ceramic coating layer formed on the surface of the substrate.
The base material has a ratio (D2 / D1) of 0.5 or more between the diameter of the circumscribed circle (D1) and the diameter of the inscribed circle (D2) with respect to the plane perpendicular to the thickness direction of the steel plate. grains, seen containing 95 area% or more in total Goss grains,
The base material contains an oxygen-deficient layer formed from the surface of the base material to the inside of the base material to a depth of 2 to 5 μm.
The oxygen-deficient layer is a grain- oriented electrical steel sheet containing 100 ppm or less of oxygen.
前記酸素欠乏層は、Mgを100ppm以下含むことを特徴とする請求項10に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 10 , wherein the oxygen-deficient layer contains 100 ppm or less of Mg. 前記セラミックコーティング層の厚さは、10nm〜4μmであることを特徴とする請求項10または請求項11に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 10 or 11 , wherein the thickness of the ceramic coating layer is 10 nm to 4 μm. 前記セラミックコーティング層は、Al、SiO、TiO、またはZrOを含むことを特徴とする請求項10乃至請求項12の何れか1項に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to any one of claims 10 to 12 , wherein the ceramic coating layer contains Al 2 O 3 , SiO 2 , TiO 2 , or ZrO 2. 前記セラミックコーティング層は、圧延方向に、幅(w)が10〜100mm、間隔(d)が10〜100mmのパターンを形成することを特徴とする請求項10乃至請求項13の何れか1項に記載の方向性電磁鋼板。 The ceramic coating layer according to any one of claims 10 to 13 , characterized in that the ceramic coating layer forms a pattern having a width (w) of 10 to 100 mm and an interval (d) of 10 to 100 mm in the rolling direction. The described grain-oriented electrical steel sheet. 前記基材は、結晶粒の大きさが20μm〜500μmである結晶粒の比率が80%以上であることを特徴とする請求項10乃至請求項14の何れか1項に記載の方向性電磁鋼板。
The grain-oriented electrical steel sheet according to any one of claims 10 to 14 , wherein the base material has a crystal grain size of 20 μm to 500 μm and a crystal grain ratio of 80% or more. ..
JP2019534751A 2016-12-23 2017-12-22 Directional electrical steel sheet and its manufacturing method Active JP6842550B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0178404 2016-12-23
KR1020160178404A KR101919527B1 (en) 2016-12-23 2016-12-23 Oriented electrical steel sheet and method for manufacturing the same
PCT/KR2017/015384 WO2018117749A1 (en) 2016-12-23 2017-12-22 Grain-oriented electrical steel sheet and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2020510751A JP2020510751A (en) 2020-04-09
JP6842550B2 true JP6842550B2 (en) 2021-03-17

Family

ID=62626716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534751A Active JP6842550B2 (en) 2016-12-23 2017-12-22 Directional electrical steel sheet and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6842550B2 (en)
KR (1) KR101919527B1 (en)
CN (1) CN110114479B (en)
WO (1) WO2018117749A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724808B (en) * 2019-10-09 2021-01-26 马鞍山钢铁股份有限公司 Method for producing electrical steel by cold rolling of 3.01-4.5 mm hot rolled coil
KR102438473B1 (en) * 2019-12-20 2022-08-31 주식회사 포스코 Grain oreinted electrical steel sheet and manufacturing method of the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243754A (en) * 1989-03-15 1990-09-27 Nippon Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JP2662482B2 (en) * 1992-08-21 1997-10-15 新日本製鐵株式会社 Low iron loss grain-oriented electrical steel sheet
DE69326792T2 (en) * 1992-04-07 2000-04-27 Nippon Steel Corp., Tokio/Tokyo Grain-oriented silicon steel sheet with low iron losses and manufacturing processes
JPH10245667A (en) * 1997-03-06 1998-09-14 Kawasaki Steel Corp Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JP3882103B2 (en) * 2000-04-25 2007-02-14 Jfeスチール株式会社 Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
CN101348855A (en) * 2008-09-05 2009-01-21 首钢总公司 Production method of common orientated electrical steel having higher magnetic strength
KR101223115B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
KR101448596B1 (en) * 2012-12-27 2014-10-08 주식회사 포스코 Oriented electrical steel steet and method for the same
EP2933350A1 (en) * 2014-04-14 2015-10-21 Mikhail Borisovich Tsyrlin Production method for high-permeability grain-oriented electrical steel
JP6260513B2 (en) * 2014-10-30 2018-01-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101642281B1 (en) * 2014-11-27 2016-07-25 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR101657467B1 (en) * 2014-12-18 2016-09-19 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
KR101919527B1 (en) 2018-11-16
CN110114479B (en) 2021-04-02
JP2020510751A (en) 2020-04-09
CN110114479A (en) 2019-08-09
KR20180074382A (en) 2018-07-03
WO2018117749A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6808735B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020050955A (en) Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
US12040110B2 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR101980940B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP6868030B2 (en) Directional electrical steel sheet and its manufacturing method
JP6768068B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2004353036A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2007239009A (en) Method for manufacturing grain-oriented silicon steel sheet
JP2022501516A (en) Bidirectional magnetic steel sheet and its manufacturing method
JP6842550B2 (en) Directional electrical steel sheet and its manufacturing method
JP2023508029A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2022512498A (en) Directional electrical steel sheet and its manufacturing method
JP2022514793A (en) Non-oriented electrical steel sheet and its manufacturing method
JP6622919B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
KR20190078160A (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
JP5332707B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties
JP6842549B2 (en) Directional electrical steel sheet and its manufacturing method
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP2017122269A (en) Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
JP7312255B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2024162442A1 (en) Method for producing grain-oriented electrical steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
WO2024162441A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250