JP6868030B2 - Directional electrical steel sheet and its manufacturing method - Google Patents

Directional electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP6868030B2
JP6868030B2 JP2018533618A JP2018533618A JP6868030B2 JP 6868030 B2 JP6868030 B2 JP 6868030B2 JP 2018533618 A JP2018533618 A JP 2018533618A JP 2018533618 A JP2018533618 A JP 2018533618A JP 6868030 B2 JP6868030 B2 JP 6868030B2
Authority
JP
Japan
Prior art keywords
annealing
hot
weight
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533618A
Other languages
Japanese (ja)
Other versions
JP2019506528A (en
Inventor
ソク コ,ヒョン
ソク コ,ヒョン
ウク ソ,ジン
ウク ソ,ジン
ウ イ,サン
ウ イ,サン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019506528A publication Critical patent/JP2019506528A/en
Application granted granted Critical
Publication of JP6868030B2 publication Critical patent/JP6868030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same.

方向性電磁鋼板は、鋼板の結晶方位が{110}<001>である、別名ゴス(Goss)方位を有する結晶粒からなる、圧延方向の磁気的特性に優れた軟磁性材料である。
このような方向性電磁鋼板は、スラブ加熱後、熱間圧延、熱延板焼鈍、冷間圧延により、通常0.15〜0.35mmの最終厚さに圧延された後、1次再結晶焼鈍と2次再結晶形成のために高温焼鈍を経て製造される。
この時、高温焼鈍時には、昇温率が遅いほど、2次再結晶されるゴス方位の集積度が高まって磁性に優れることが知られている。通常、方向性電磁鋼板の高温焼鈍中の昇温率は、時間あたり15℃以下であって、昇温だけで2〜3日かかるだけでなく、40時間以上の純化焼鈍が必要であるので、エネルギー消耗が大きい工程といえる。また、現在の最終高温焼鈍工程は、コイル状態でバッチ(Batch)形態の焼鈍を実施するため、工程上の次のような困難が発生する。第一、コイル状態での熱処理によるコイルの外巻部と内巻部の温度偏差が発生して各部分で同一の熱処理パターンを適用できず、外巻部と内巻部の磁性偏差が発生する。第二、脱炭焼鈍後、MgOを表面にコーティングし、高温焼鈍中にBase coatingを形成する過程で多様な表面欠陥が発生するため、実歩留まりを低下させる。第三、脱炭焼鈍が終わった脱炭板をコイル形態に巻いた後、高温焼鈍後に再度平坦化焼鈍を経て絶縁コーティングをするため、生産工程が3段階に分けられることによって、実歩留まりが低下する問題点が発生する。
The grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction and composed of crystal grains having a crystal orientation of {110} <001>, also known as a Goss orientation.
Such a directional electromagnetic steel sheet is usually rolled to a final thickness of 0.15 to 0.35 mm by hot rolling, hot rolling sheet annealing, and cold rolling after slab heating, and then primary recrystallization annealing. And manufactured through high temperature annealing for secondary recrystallization.
At this time, it is known that during high-temperature annealing, the slower the temperature rise rate, the higher the degree of integration of the secondary recrystallized Goth orientation and the better the magnetism. Normally, the rate of temperature rise during high-temperature annealing of grain-oriented electrical steel sheets is 15 ° C. or less per hour, and not only does it take 2 to 3 days just to raise the temperature, but also 40 hours or more of purified annealing is required. It can be said that this is a process that consumes a lot of energy. Further, in the current final high-temperature annealing process, since the annealing in the batch form is performed in the coil state, the following difficulties in the process occur. First, the temperature deviation between the outer winding part and the inner winding part of the coil occurs due to the heat treatment in the coil state, the same heat treatment pattern cannot be applied to each part, and the magnetic deviation between the outer winding part and the inner winding part occurs. .. Second, after decarburization annealing, MgO is coated on the surface, and various surface defects occur in the process of forming Base coating during high-temperature annealing, which lowers the actual yield. Third, after the decarburized plate that has been decarburized and annealed is wound in a coil form, it is annealed at a high temperature and then flattened and annealed again to apply an insulating coating. Therefore, the actual yield is reduced by dividing the production process into three stages. Problems occur.

本発明の目的は、方向性電磁鋼板およびその製造方法を提供することにある。 An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for producing the same.

本発明の一実施形態に係る方向性電磁鋼板は、重量%で、Si:1.0〜4.0%、C:0.002%以下(0%を除く)、およびBi:0.001〜0.1%を含み、残部はFeおよびその他の不可避不純物を含むことを特徴とする。 The grain-oriented electrical steel sheet according to an embodiment of the present invention has Si: 1.0 to 4.0%, C: 0.002% or less (excluding 0%), and Bi: 0.001 to 10% by weight. It is characterized by containing 0.1% and the balance containing Fe and other unavoidable impurities.

Mnを0.05重量%以下(0重量%を除く)、Alを0.01重量%以下(0重量%を除く)、Sを0.001重量%以下(0重量%を除く)、およびNを0.001重量%以下(0重量%を除く)さらに含むことができる。
Pを0.1重量%以下(0重量%を除く)、Moを0.05重量%以下(0重量%を除く)、Snを0.1重量%以下(0重量%を除く)、およびSbを0.05重量%以下(0重量%を除く)さらに含んでもよい。
結晶粒の直径が20〜500μmの結晶粒の体積比率が80%以上であることが好ましい。
鋼板の板面に対して誤差範囲15°以下で平行なゴス結晶粒の体積比率が80%以上であることができる。
Mn is 0.05% by weight or less (excluding 0% by weight), Al is 0.01% by weight or less (excluding 0% by weight), S is 0.001% by weight or less (excluding 0% by weight), and N. Can be further contained in an amount of 0.001% by weight or less (excluding 0% by weight).
P is 0.1% by weight or less (excluding 0% by weight), Mo is 0.05% by weight or less (excluding 0% by weight), Sn is 0.1% by weight or less (excluding 0% by weight), and Sb. May be further contained in an amount of 0.05% by weight or less (excluding 0% by weight).
It is preferable that the volume ratio of the crystal grains having a diameter of 20 to 500 μm is 80% or more.
The volume ratio of Goth crystal grains parallel to the plate surface of the steel sheet with an error range of 15 ° or less can be 80% or more.

本発明の一実施形態に係る方向性電磁鋼板の製造方法は、重量%で、Si:1.0〜4.0%およびC:0.01〜0.4%を含み、残部はFeおよびその他の不可避不純物を含むスラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を熱延板焼鈍する段階、熱延板焼鈍が完了した熱延板を冷間圧延して冷延板を製造する段階、冷延板を脱炭焼鈍する段階、および脱炭焼鈍が完了した電磁鋼板を最終焼鈍する段階、を含み、熱延板焼鈍する段階の後、熱延板表層部の平均結晶粒粒径が150〜250μmであることを特徴とする。 The method for producing a directional electromagnetic steel sheet according to an embodiment of the present invention contains Si: 1.0 to 4.0% and C: 0.01 to 0.4% in% by weight, and the balance is Fe and others. The stage of heating a slab containing unavoidable impurities, the stage of hot-rolling a slab to produce a hot-rolled plate, the stage of hot-rolling a hot-rolled plate, and the stage of cold-rolling a hot-rolled plate that has been annealed. It includes a step of rolling to produce a cold-rolled sheet, a step of decarburizing the cold-rolled sheet, and a step of finally tanning an electromagnetic steel sheet that has been decarburized and annealed, and after a step of hot-rolling the hot-rolled sheet. The average grain size of the surface layer of the plate is 150 to 250 μm.

スラブは、Biを0.001〜0.1重量%さらに含んでもよい。
スラブは、Mnを0.05重量%以下(0重量%を除く)、Alを0.01重量%以下(0重量%を除く)、Sを0.001重量%以下(0重量%を除く)、およびNを0.001重量%以下(0重量%を除く)さらに含むことができる。
Pを0.1重量%以下(0重量%を除く)、Moを0.05重量%以下(0重量%を除く)、Snを0.1重量%以下(0重量%を除く)、およびSbを0.05重量%以下(0重量%を除く)さらに含むことが好ましい。
The slab may further contain 0.001 to 0.1% by weight of Bi.
The slab contains Mn of 0.05% by weight or less (excluding 0% by weight), Al of 0.01% by weight or less (excluding 0% by weight), and S of 0.001% by weight or less (excluding 0% by weight). , And N can be further contained in an amount of 0.001% by weight or less (excluding 0% by weight).
P is 0.1% by weight or less (excluding 0% by weight), Mo is 0.05% by weight or less (excluding 0% by weight), Sn is 0.1% by weight or less (excluding 0% by weight), and Sb. Is more preferably 0.05% by weight or less (excluding 0% by weight).

スラブを加熱する段階において、1100〜1350℃に加熱することがよい。
熱延板焼鈍する段階において、脱炭過程を含むことができる。
熱延板焼鈍する段階は、850℃〜1000℃の温度および50℃〜70℃の露点温度で焼鈍する熱延板焼鈍の第1段階と、1000℃〜1200℃の温度および0℃以下の露点温度で焼鈍する熱延板焼鈍の第2段階とを含むことが好ましい。
熱延板焼鈍の第1段階を10〜300秒間実施し、熱延板焼鈍の第2段階を10〜180秒間実施することができる。
In the step of heating the slab, it is preferable to heat it to 1100 to 1350 ° C.
A decarburization process can be included in the stage of hot rolling plate annealing.
The stages of hot-rolled plate annealing are the first stage of hot-rolled plate annealing, which is annealed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C, a temperature of 1000 ° C to 1200 ° C, and a dew point of 0 ° C or less. It preferably includes a second stage of hot-rolled sheet annealing, which is annealed at temperature.
The first step of hot-rolled sheet annealing can be carried out for 10 to 300 seconds, and the second step of hot-rolled sheet annealing can be carried out for 10 to 180 seconds.

冷延板を製造する段階から前記最終焼鈍する段階までは、連続して行われることが好ましい。
冷延板を製造する段階および前記脱炭焼鈍する段階は、2回以上複数回繰り返されることがよい。
脱炭焼鈍する段階は、850℃〜1000℃の温度および50℃〜70℃の露点温度で焼鈍することができる。
It is preferable that the steps from the step of manufacturing the cold-rolled sheet to the step of final annealing are continuously performed.
The step of manufacturing the cold-rolled plate and the step of decarburizing and annealing may be repeated two or more times and a plurality of times.
The decarburization annealing step can be annealed at a temperature of 850 ° C. to 1000 ° C. and a dew point temperature of 50 ° C. to 70 ° C.

スラブは、NiおよびCrのうち1種以上をそれぞれ単独またはこれらの合計量で0.01重量%〜0.1重量%さらに含むことができる。
スラブは、Sbを0.005重量%〜0.06重量%さらに含むことが好ましい。
スラブは、Moを0.001重量%〜0.015重量%さらに含むことがよい。
スラブは、Bi、Pb、Mg、As、Nb、Vのうち1種以上をそれぞれ0.0005重量%〜0.005重量%さらに含むことが好ましい。
スラブを1,050℃〜1,250℃に加熱することができる。
The slab can further contain one or more of Ni and Cr, respectively, alone or in total amounts of 0.01% to 0.1% by weight.
The slab preferably further contains 0.005% by weight to 0.06% by weight of Sb.
The slab may further contain 0.001% to 0.015% by weight of Mo.
The slab preferably further contains one or more of Bi, Pb, Mg, As, Nb, and V in an amount of 0.0005% by weight to 0.005% by weight, respectively.
The slab can be heated to 1,050 ° C to 1,250 ° C.

最終焼鈍する段階は、850℃〜1000℃および露点温度70℃以下で焼鈍を実施する最終焼鈍の第1段階と、1000℃〜1200℃の温度およびH 50体積%以上の雰囲気で実施する最終焼鈍の第2段階とを含むことができる。
最終焼鈍の第1段階を10〜180秒間実施し、最終焼鈍の第2段階を10〜600秒間実施することができる。
The step of final annealing, the final implementing the final and first stage annealing, 1000 ° C. to 1200 temperature and H 2 50 vol% or more of the atmosphere ° C. implementing annealed at 850 ° C. to 1000 ° C. and a dew point temperature of 70 ° C. or less It can include a second stage of annealing.
The first stage of final annealing can be carried out for 10 to 180 seconds and the second stage of final annealing can be carried out for 10 to 600 seconds.

本発明によれば、本発明の方向性電磁鋼板の製造方法は、最終焼鈍時、コイル状態でバッチ(Batch)形態の焼鈍を実施せずに連続的な焼鈍を実施可能な方向性電磁鋼板の製造方法を提供することができる。
また、短時間の最終焼鈍だけでも磁性に優れた方向性電磁鋼板を生産することができる。
また、冷延鋼板を巻取る工程を必要としない。
さらに、結晶粒成長抑制剤を用いない方向性電磁鋼板を提供することができる。
なお、浸窒焼鈍を省略可能で、安定的に磁性に優れた方向性電磁鋼板を生産することができる。
According to the present invention, the method for producing a directional electromagnetic steel sheet of the present invention is a method for producing a directional electromagnetic steel sheet, which enables continuous annealing without performing batch annealing in a coil state at the time of final annealing. A manufacturing method can be provided.
Further, it is possible to produce a grain-oriented electrical steel sheet having excellent magnetism only by final annealing for a short time.
Moreover, the step of winding the cold-rolled steel sheet is not required.
Further, it is possible to provide a grain-oriented electrical steel sheet that does not use a crystal grain growth inhibitor.
It should be noted that immersion annealing can be omitted, and a grain-oriented electrical steel sheet having excellent magnetism can be stably produced.

実施例2でBiを500ppm含有する熱延板を熱延板焼鈍した後に結晶粒分布を分析した結果である。This is the result of analyzing the crystal grain distribution after the hot-rolled plate containing 500 ppm of Bi in Example 2 was annealed by the hot-rolled plate. 実施例2でBiを含有しない熱延板を熱延板焼鈍した後に結晶粒分布を分析した結果である。This is the result of analyzing the crystal grain distribution after the hot-rolled plate containing no Bi in Example 2 was annealed.

第1、第2および第3などの用語は、多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを、他の部分、成分、領域、層またはセクションと区別するためにのみ使用される。したがって、以下に述べる第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションと言及される。
ここで使用される専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は、文章がこれと明確に反対の意味を示さない限り、複数形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるわけではない。
Terms such as first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and / or sections. These terms are used only to distinguish one part, component, area, layer or section from another part, component, area, layer or section. Therefore, the first part, component, region, layer or section described below is referred to as the second part, component, region, layer or section within the scope of the present invention.
The terminology used herein is merely to refer to a particular embodiment and is not intended to limit the invention. The singular form used herein also includes multiple forms, unless the text has a clear opposite meaning. As used herein, the meaning of "contains" embodies a particular property, region, integer, stage, behavior, element and / or component, and other characteristics, region, integer, stage, behavior, element and / or. It does not exclude the presence or addition of ingredients.

ある部分が他の部分の「上に」にあると言及する場合、これは、他の部分の上にあるか、その間に他の部分が伴っていてもよい。対照的にある部分が他の部分の「真上に」あると言及する場合、その間に他の部分が介在しない。
別途に定義しないものの、ここに使用される技術用語および科学用語を含むすべての用語は、本発明の属する技術分野における通常の知識を有する者が一般に理解する意味と同じ意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示された内容に符合する意味を有すると追加解釈され、定義されない限り、理想的または非常に公式的な意味で解釈されない。
また、特に言及しない限り、%は、重量%を意味し、1ppmは、0.0001重量%である。
以下、本発明の実施例について、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように詳細に説明する。しかし、本発明は種々の異なる形態で実現可能であり、ここで説明する実施例に限定されない。
When referring to one part being "above" another part, this may be above or with another part in between. In contrast, when one mentions that one part is "directly above" another, there is no other part in between.
Although not defined separately, all terms used herein, including technical and scientific terms, have the same meanings generally understood by those with ordinary knowledge in the technical field to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted as having a meaning consistent with the relevant technical literature and currently disclosed content, and are not interpreted in an ideal or very formal sense unless defined.
Further, unless otherwise specified,% means% by weight, and 1 ppm is 0.0001% by weight.
Hereinafter, examples of the present invention will be described in detail so that a person having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the examples. However, the present invention is feasible in a variety of different forms and is not limited to the examples described herein.

既存の方向性電磁鋼板技術では、結晶粒成長抑制剤としてAlN、MnSなどのような析出物を用いており、すべての工程が析出物の分布を厳格に制御し、2次再結晶された鋼板内に残留した析出物が除去されるようにするための条件によって工程条件がごく制約されていた。
反面、本発明の一実施形態では、結晶粒成長抑制剤としてAlN、MnSなどのような析出物を用いず、2次再結晶を用いない。本発明の一実施形態では、Biを用いることによって、熱延板焼鈍する段階で表層部の結晶粒を効果的に成長させてゴス結晶粒分率を増加させ、磁性に優れた電磁鋼板を得ることができる。
In the existing directional electromagnetic steel sheet technology, precipitates such as AlN and MnS are used as crystal grain growth inhibitors, and the distribution of the precipitates is strictly controlled in all processes, and the secondary recrystallized steel sheet is used. The process conditions were very constrained by the conditions for removing the precipitates remaining inside.
On the other hand, in one embodiment of the present invention, precipitates such as AlN and MnS are not used as the crystal grain growth inhibitor, and secondary recrystallization is not used. In one embodiment of the present invention, by using Bi, the crystal grains in the surface layer portion are effectively grown at the stage of annealing the hot-rolled plate to increase the Goth crystal grain fraction, and an electromagnetic steel sheet having excellent magnetism is obtained. be able to.

本発明の一実施形態に係る方向性電磁鋼板は、重量%で、Si:1.0〜4.0%、C:0.002%以下(0%を除く)、およびBi:0.001〜0.1%を含み、残部はFeおよびその他の不可避不純物を含む。
以下、各成分について具体的に説明する。
The grain-oriented electrical steel sheet according to an embodiment of the present invention has Si: 1.0 to 4.0%, C: 0.002% or less (excluding 0%), and Bi: 0.001 to 10% by weight. It contains 0.1% and the balance contains Fe and other unavoidable impurities.
Hereinafter, each component will be specifically described.

シリコン(Si)は、電磁鋼板の磁気異方性を低下させ且つ比抵抗を増加させて鉄損を改善する。Si含有量が1.0重量%未満の場合には鉄損が劣り、4.0重量%超過の場合、脆性が増加する。したがって、スラブおよび最終焼鈍段階後の方向性電磁鋼板におけるSiの含有量は、1.0重量%〜4.0重量%であってもよい。
炭素(C)は、熱延板焼鈍、冷延板脱炭焼鈍、および最終焼鈍中に表層部のゴス結晶粒が中心部に拡散するために、中心部のCが表層部に抜け出る過程が必要であるため、スラブ中のCの含有量は、0.01〜0.4重量%であってもよい。また、脱炭が完了した最終焼鈍段階後の方向性電磁鋼板における炭素量は、0.0020重量%以下であってもよい。
ビスマス(Bi)は、揮発性が強い偏析元素であって、表層部に位置する場合、表面で揮発して表層部の結晶粒を粗大にする特徴があり、これとは逆に、鋼の中心部では結晶粒を微細化させる効果がある。0.001重量%未満で含む場合、その効果がわずかでありうる。逆に、0.1重量%を超えて添加する時には、表面結晶粒の大きさの不均一性を招くので、0.001〜0.1重量%添加することが好ましい。
Silicon (Si) reduces the magnetic anisotropy of electrical steel sheets and increases specific resistance to improve iron loss. When the Si content is less than 1.0% by weight, the iron loss is inferior, and when it exceeds 4.0% by weight, the brittleness increases. Therefore, the Si content in the grain-oriented electrical steel sheet after the slab and the final annealing step may be 1.0% by weight to 4.0% by weight.
Carbon (C) requires a process in which C in the central portion escapes to the surface layer in order for Goth crystal grains in the surface layer to diffuse to the central portion during hot-rolled plate annealing, cold-rolled plate decarburization annealing, and final annealing. Therefore, the content of C in the slab may be 0.01 to 0.4% by weight. Further, the carbon content in the grain-oriented electrical steel sheet after the final annealing step in which decarburization is completed may be 0.0020% by weight or less.
Bismuth (Bi) is a highly volatile segregation element, and when it is located on the surface layer, it has the characteristic of volatilizing on the surface and coarsening the crystal grains on the surface layer. The part has the effect of making the crystal grains finer. If it is contained in less than 0.001% by weight, the effect may be negligible. On the contrary, when it is added in an amount of more than 0.1% by weight, non-uniformity of the size of the surface crystal grains is caused, so that it is preferable to add 0.001 to 0.1% by weight.

本発明の一実施形態において、AlN、MnSなどの析出物を結晶粒成長抑制剤として用いないため、マンガン(Mn)、アルミニウム(Al)、窒素(N)、硫黄(S)など一般的な方向性電磁鋼板で必須として使用される元素は、不純物の範囲で管理される。つまり、不可避にMn、Al、N、Sなどをさらに含む場合、Mnを0.05重量%以下、Alを0.01重量%以下、Sを0.001重量%以下、およびNを0.001重量%以下でさらに含んでもよい。より具体的には、Alを0.005重量%以下で含むことができる。
また、Pを0.1重量%以下(0重量%を除く)、Moを0.05重量%以下(0重量%を除く)、Snを0.1重量%以下(0重量%を除く)、およびSbを0.05重量%以下(0重量%を除く)さらに含んでもよい。
リン(P)は、ゴス結晶粒形成促進元素であり、過剰添加時、クラック(Crack)を誘発し結晶粒成長を妨げることがある。具体的には、Pを0.001〜0.1重量%含むことができる。
In one embodiment of the present invention, since precipitates such as AlN and MnS are not used as a crystal grain growth inhibitor, general directions such as manganese (Mn), aluminum (Al), nitrogen (N) and sulfur (S) are used. Elements used as essential in sex electromagnetic steel sheets are controlled within the range of impurities. That is, when Mn, Al, N, S and the like are inevitably further contained, Mn is 0.05% by weight or less, Al is 0.01% by weight or less, S is 0.001% by weight or less, and N is 0.001. It may be further contained in% by weight or less. More specifically, Al can be contained in an amount of 0.005% by weight or less.
Further, P is 0.1% by weight or less (excluding 0% by weight), Mo is 0.05% by weight or less (excluding 0% by weight), Sn is 0.1% by weight or less (excluding 0% by weight), And Sb may be further contained in an amount of 0.05% by weight or less (excluding 0% by weight).
Phosphorus (P) is a Goth crystal grain formation promoting element, and when excessively added, it may induce cracks and hinder crystal grain growth. Specifically, P can be contained in an amount of 0.001 to 0.1% by weight.

モリブデン(Mo)は、熱延板のゴス結晶粒の形成を促進する元素である。脱炭を妨げないものの、過剰添加時、結晶粒の不均衡が発生しうる。具体的には、Moを0.001〜0.05重量%含むことができる。
スズ(Sn)は、ゴス結晶粒形成促進元素であり、過剰添加時、表面偏析で脱炭を妨げて結晶成長を妨げることがある。具体的には、Snを0.001〜0.1重量%含むことができる。
アンチモン(Sb)は、ゴス結晶粒形成促進元素であり、過剰添加時、表面偏析で脱炭を妨げて結晶成長を妨げることがある。具体的には、Sbを0.001〜0.05重量%含むことができる。
Molybdenum (Mo) is an element that promotes the formation of Goth crystal grains in hot-rolled plates. Although it does not prevent decarburization, an imbalance of crystal grains may occur when excessively added. Specifically, Mo can be contained in an amount of 0.001 to 0.05% by weight.
Tin (Sn) is a Goth crystal grain formation promoting element, and when excessively added, tin (Sn) may prevent decarburization by surface segregation and hinder crystal growth. Specifically, Sn can be contained in an amount of 0.001 to 0.1% by weight.
Antimony (Sb) is a Goth crystal grain formation promoting element, and when excessively added, it may prevent decarburization by surface segregation and hinder crystal growth. Specifically, Sb can be contained in an amount of 0.001 to 0.05% by weight.

また、その他の不可避不純物として、Ti、Mg、Caのような成分は、鋼中で酸素と反応して酸化物を形成して、介在物として最終製品の磁区移動を妨げて磁性劣化の原因となりうるので、強く抑制することが必要である。したがって、これらを不可避に含有する場合、それぞれの成分ごとに0.005重量%以下に管理することができる。
電磁鋼板において、結晶粒の直径が20〜500μmの結晶粒の体積比率が80%以上であってもよい。結晶粒の直径が20〜500μmの結晶粒の体積比率が80%未満の場合、結晶粒成長が十分でなくて磁性が低下することがある。
In addition, as other unavoidable impurities, components such as Ti, Mg, and Ca react with oxygen in steel to form oxides, which hinder the movement of magnetic domains in the final product as inclusions and cause magnetic deterioration. Since it is possible, it is necessary to strongly suppress it. Therefore, when these are unavoidably contained, each component can be controlled to 0.005% by weight or less.
In the electrical steel sheet, the volume ratio of the crystal grains having a diameter of 20 to 500 μm may be 80% or more. When the volume ratio of the crystal grains having a diameter of 20 to 500 μm is less than 80%, the crystal grain growth may not be sufficient and the magnetism may decrease.

鋼板の板面に対して誤差範囲15°以下で平行なゴス結晶粒の体積比率が80%以上であってもよい。ゴス結晶粒の体積比率が80%未満の場合、十分な磁性を確保できないことがある。
本発明の一実施形態に係る方向性電磁鋼板の製造方法は、重量%で、Si:1.0〜4.0%およびC:0.01〜0.4%を含み、残部はFeおよびその他の不可避不純物を含むスラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を熱延板焼鈍する段階、熱延板焼鈍が完了した熱延板を冷間圧延して冷延板を製造する段階、冷延板を脱炭焼鈍する段階、および脱炭焼鈍が完了した電磁鋼板を最終焼鈍する段階、を含む。
The volume ratio of Goth crystal grains parallel to the plate surface of the steel sheet with an error range of 15 ° or less may be 80% or more. If the volume ratio of Goth crystal grains is less than 80%, sufficient magnetism may not be ensured.
The method for producing a directional electromagnetic steel sheet according to an embodiment of the present invention contains Si: 1.0 to 4.0% and C: 0.01 to 0.4% in% by weight, and the balance is Fe and others. The stage of heating a slab containing unavoidable impurities, the stage of hot rolling the slab to produce a hot-rolled plate, the stage of annealing a hot-rolled plate, and the stage of cold-rolling a hot-rolled plate that has been annealed. It includes a step of rolling to produce a cold-rolled sheet, a step of decarburizing and annealing the cold-rolled sheet, and a step of final annealing of an electromagnetic steel sheet that has been decarburized and annealed.

以下、各段階ごとに方向性電磁鋼板の製造方法を具体的に説明する。
まず、スラブを加熱する。
スラブの組成については、電磁鋼板の組成に関連して具体的に説明したので、重複した説明は省略する。
スラブ加熱温度は、通常の加熱温度より高い1100℃〜1350℃であってもよい。スラブ加熱時の温度が高い場合、熱延組織が粗大化して磁性に悪影響を及ぼす問題点がある。しかし、本発明の一実施形態に係る方向性電磁鋼板の製造方法は、スラブ内の炭素の含有量が従来より多くて、スラブ加熱温度が高くても熱延組織が粗大化せず、通常の場合、より高い温度で加熱することによって、熱間圧延時に有利である。
Hereinafter, the method for manufacturing the grain-oriented electrical steel sheet will be specifically described for each step.
First, heat the slab.
Since the composition of the slab has been specifically described in relation to the composition of the electrical steel sheet, duplicate description will be omitted.
The slab heating temperature may be 1100 ° C. to 1350 ° C., which is higher than the normal heating temperature. When the temperature at the time of heating the slab is high, there is a problem that the hot-rolled structure becomes coarse and adversely affects the magnetism. However, in the method for producing a directional electromagnetic steel sheet according to an embodiment of the present invention, the carbon content in the slab is higher than before, and the hot-rolled structure does not become coarse even when the slab heating temperature is high, which is normal. In some cases, heating at a higher temperature is advantageous during hot rolling.

次に、スラブを熱間圧延して熱延板を製造する。熱間圧延温度は制限はなく、一実施形態として950℃以下で熱延を終了することができる。
次に、熱延板を熱延板焼鈍する。この時、熱延板焼鈍は、脱炭過程を含むことができる。具体的には、脱炭焼鈍は、オーステナイト単相領域、またはフェライトおよびオーステナイトの複合相が存在する領域で、露点温度50℃〜70℃で実施できる。この時、温度範囲は、850℃〜1000℃であってもよい。また、雰囲気は、水素および窒素の混合ガス雰囲気であってもよい。さらに、脱炭焼鈍時の脱炭量は、0.0300重量%〜0.0600重量%であってもよい。より具体的には、脱炭過程を含むために、熱延板焼鈍する段階は、850℃〜1000℃の温度および50℃〜70℃の露点温度で焼鈍する熱延板焼鈍の第1段階と、1000℃〜1200℃の温度および0℃以下の露点温度で焼鈍する熱延板焼鈍の第2段階とを含むことができる。より具体的には、熱延板焼鈍の第1段階を10〜300秒間実施し、熱延板焼鈍の第2段階を10〜180秒間実施できる。
Next, the slab is hot-rolled to produce a hot-rolled plate. The hot rolling temperature is not limited, and as one embodiment, hot rolling can be completed at 950 ° C. or lower.
Next, the hot-rolled plate is annealed. At this time, the hot-rolled sheet annealing can include a decarburization process. Specifically, decarburization annealing can be carried out at a dew point temperature of 50 ° C. to 70 ° C. in an austenite single-phase region or a region in which a composite phase of ferrite and austenite is present. At this time, the temperature range may be 850 ° C to 1000 ° C. Further, the atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen. Further, the amount of decarburized during decarburization annealing may be 0.0300% by weight to 0.0600% by weight. More specifically, in order to include a decarburization process, the steps of hot-rolled sheet annealing are the first step of hot-rolled sheet annealing, which is annealed at a temperature of 850 ° C. to 1000 ° C. and a dew point temperature of 50 ° C. to 70 ° C. , A second stage of hot rolled plate annealing, which is annealed at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of 0 ° C. or lower. More specifically, the first step of hot-rolled sheet annealing can be carried out for 10 to 300 seconds, and the second step of hot-rolled sheet annealing can be carried out for 10 to 180 seconds.

脱炭焼鈍過程において、熱延板表面の結晶粒の大きさは粗大に成長するが、電磁鋼板の内部の結晶粒は微細な組織として残るようになる。このような脱炭焼鈍後の表面部のフェライト結晶粒の大きさは、150μm〜250μmであってもよい。この時、表層部の平均結晶粒粒径を前述した範囲に調節することによって、最終的に製造される方向性電磁鋼板のゴス結晶粒分率を高めることができ、方向性電磁鋼板の磁性を向上させることができる。
次に、熱延板焼鈍が完了した熱延板を冷間圧延して冷延板を製造する。通常の高磁束密度方向性電磁鋼板の製造工程において、冷間圧延は、90%に近い高圧下率で1回実施することが効果的であると知られている。これが1次再結晶粒のうちゴス結晶粒だけが粒子成長に有利な環境を作るからである。
しかし、本発明の一実施形態に係る方向性電磁鋼板の製造方法は、ゴス方位結晶粒の異常な粒子成長を利用せず、脱炭焼鈍および冷間圧延によって発生した表層部のゴス結晶粒を内部拡散させるものであるので、表層部でゴス方位結晶粒を多数分布するように形成することが有利である。
したがって、冷間圧延時の圧下率50%〜70%で冷間圧延を実施する場合、ゴス集合組織が表層部で多数形成される。あるいは55%〜65%であってもよい。
In the decarburization annealing process, the size of the crystal grains on the surface of the hot-rolled sheet grows coarsely, but the crystal grains inside the electrical steel sheet remain as a fine structure. The size of the ferrite crystal grains on the surface portion after such decarburization annealing may be 150 μm to 250 μm. At this time, by adjusting the average grain grain size of the surface layer portion to the above-mentioned range, the goth crystal grain fraction of the grain-oriented electrical steel sheet finally produced can be increased, and the magnetism of the grain-oriented electrical steel sheet can be increased. Can be improved.
Next, the hot-rolled plate that has been annealed is cold-rolled to produce a cold-rolled plate. It is known that in a normal manufacturing process of a high magnetic flux density directional electromagnetic steel sheet, it is effective to carry out cold rolling once at a high pressure reduction rate close to 90%. This is because only Goth crystal grains among the primary recrystallized grains create an environment favorable for particle growth.
However, the method for producing a directional electromagnetic steel sheet according to an embodiment of the present invention does not utilize the abnormal grain growth of Goth-oriented crystal grains, and produces Goth crystal grains on the surface layer portion generated by decarburization annealing and cold rolling. Since it is internally diffused, it is advantageous to form a large number of Goth-oriented crystal grains on the surface layer.
Therefore, when cold rolling is carried out at a rolling reduction of 50% to 70% during cold rolling, a large number of Goth textures are formed on the surface layer portion. Alternatively, it may be 55% to 65%.

次に、冷延板を脱炭焼鈍する。850℃〜1000℃の温度および50℃〜70℃の露点温度で焼鈍することができる。
また、冷間圧延および脱炭焼鈍過程を2回以上複数回実施すると、ゴス集合組織が表層部で多数形成される。
次に、脱炭焼鈍が完了した電磁鋼板を最終焼鈍する。
本発明の一実施形態に係る方向性電磁鋼板の製造方法では、既存のバッチ(batch)方式とは異なり、冷間圧延に続いて連続的に最終焼鈍を実施できる。つまり、冷延板を製造する段階から最終焼鈍する段階までは連続して行われる。したがって、焼鈍分離剤を塗布する必要がない。
Next, the cold rolled plate is decarburized and annealed. It can be annealed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C.
Further, when the cold rolling and decarburization annealing processes are carried out twice or more and a plurality of times, a large number of Goth textures are formed on the surface layer portion.
Next, the electromagnetic steel sheet that has been decarburized and annealed is finally annealed.
In the method for manufacturing grain-oriented electrical steel sheets according to an embodiment of the present invention, unlike the existing batch method, cold rolling can be followed by continuous final annealing. That is, the process from the stage of manufacturing the cold-rolled plate to the stage of final annealing is continuously performed. Therefore, it is not necessary to apply an annealing separator.

最終焼鈍する段階は、850℃〜1000℃および露点温度70℃以下で焼鈍を実施する最終焼鈍の第1段階と、1000℃〜1200℃の温度およびHが50体積%以上の雰囲気で実施する最終焼鈍の第2段階とを含むことができる。より具体的には、最終焼鈍の第2段階は、Hが90体積%以上の雰囲気で実施できる。
上述したように、本発明の一実施形態では、結晶粒成長抑制剤として、Bi偏析を用いることができ、AlN析出物を用いない。したがって、AlN、MnSを分解して除去するための純化焼鈍の負担が軽減される。
The final annealing steps are carried out in the first step of final annealing in which annealing is carried out at 850 ° C. to 1000 ° C. and a dew point temperature of 70 ° C. or lower, and in an atmosphere at a temperature of 1000 ° C. to 1200 ° C. and H 2 of 50% by volume or more. A second stage of final annealing and can be included. More specifically, the second stage of final annealing can be carried out in an atmosphere where H 2 is 90% by volume or more.
As described above, in one embodiment of the present invention, Bi segregation can be used as the crystal grain growth inhibitor, and AlN precipitate is not used. Therefore, the burden of purification annealing for decomposing and removing AlN and MnS is reduced.

以下、実施例を通じて本発明をより詳細に説明する。しかし、このような実施例は単に本発明を例示するためのものであり、本発明がこれに限定されるものではない。
実施例1
重量%で、Si:3.23%、C:0.25%を含有し、残部Feおよび不可避不純物からなるスラブを1250℃の温度で加熱した後、1.6mmの厚さに熱間圧延した。次に、焼鈍温度870℃、露点温度60℃で120秒間焼鈍後、露点温度0℃以下の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃、および下記表1にまとめられた時間の間熱延板焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。
冷間圧延された冷延板は再度、焼鈍温度870℃、露点温度60℃で60秒間焼鈍後、露点温度0℃の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および50秒間脱炭焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。
Hereinafter, the present invention will be described in more detail through examples. However, such examples are merely for exemplifying the present invention, and the present invention is not limited thereto.
Example 1
A slab containing Si: 3.23% and C: 0.25% by weight and consisting of the balance Fe and unavoidable impurities was heated at a temperature of 1250 ° C. and then hot-rolled to a thickness of 1.6 mm. .. Next, after annealing at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 120 seconds, the annealing temperature was 1100 ° C. in a mixed gas atmosphere of hydrogen and nitrogen having an annealing temperature of 0 ° C. or lower, and hot rolling was performed for the time summarized in Table 1 below. After plate annealing and cooling, pickling was carried out and cold rolling was carried out at a rolling reduction of 60%.
The cold-rolled cold-rolled sheet is again annealed at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 60 seconds, and then decarburized and annealed at an annealing temperature of 1100 ° C. and 50 seconds in a mixed gas atmosphere of hydrogen and nitrogen at a dew point temperature of 0 ° C. After carrying out and cooling, pickling was carried out and cold rolling was carried out at a reduction rate of 60%.

この後、最終焼鈍時には、900℃の温度で水素、窒素の湿潤(露点温度60℃)混合ガス雰囲気で60秒間脱炭焼鈍を実施した後、1050℃の100体積%H雰囲気で3分間熱処理を実施した。熱延板焼鈍時の1100℃での焼鈍時間と熱延板焼鈍後の表層部の結晶粒の直径、最終電磁鋼板のゴス結晶粒分率および最終電磁鋼板の磁気的特性を測定して、下記表1に示した。

Figure 0006868030
表1に示したとおり、熱延板焼鈍時、露点温度0℃以下、焼鈍温度1100℃での焼鈍時間が長くなるほど表層部の結晶粒が成長して、ゴス分率および磁性に優れていることが分かる。しかし、焼鈍時間が適正値より長くなると、内部の結晶粒が成長して冷間圧延後の脱炭焼鈍時に組織が不均一になり、最終磁性が劣る原因となる。 Thereafter, at the time of final annealing, hydrogen at a temperature of 900 ° C., wet (dew point 60 ° C.) of nitrogen was carried out for 60 seconds decarburization annealing in a mixed gas atmosphere, heat treatment for 3 minutes at 100 vol% H 2 atmosphere at 1050 ° C. Was carried out. The annealing time at 1100 ° C. during hot-rolled sheet annealing, the grain diameter of the surface layer after hot-rolled sheet annealing, the Goth crystal grain fraction of the final electrical steel sheet, and the magnetic properties of the final electrical steel sheet were measured and described below. It is shown in Table 1.
Figure 0006868030
As shown in Table 1, the crystal grains on the surface layer grow as the annealing time at the dew point temperature of 0 ° C or lower and the annealing temperature of 1100 ° C becomes longer during hot rolling plate annealing, and the goth fraction and magnetism are excellent. I understand. However, if the annealing time is longer than the appropriate value, the crystal grains inside grow and the structure becomes non-uniform during decarburization annealing after cold rolling, which causes inferior final magnetism.

実施例2
重量%で、Si:3.22%、C:0.245%、Biを下記表2のように含有し、残部Feおよび不可避不純物からなるスラブを1250℃の温度で加熱した後、1.6mmの厚さに熱間圧延し、続いて、焼鈍温度870℃、露点温度60℃で120秒間焼鈍後、露点温度0℃以下の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および30秒間熱延板焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。
冷間圧延された板は再度、焼鈍温度870℃、露点温度60℃で60秒間脱炭焼鈍後、露点温度0℃の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および50秒間焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。
この後、最終焼鈍時には、900℃の温度で水素、窒素の湿潤(露点温度60℃)混合ガス雰囲気で60秒間脱炭焼鈍を実施した後、1050℃の100体積%H雰囲気で3分間熱処理を実施した。熱延板焼鈍時のBi含有量と熱延板焼鈍後の表層部の結晶粒の直径、最終電磁鋼板のゴス結晶粒分率および最終電磁鋼板の磁気的特性を測定して、下記表2に示した。

Figure 0006868030
表2に示したとおり、Biを結晶粒成長抑制剤として用いて、熱延板焼鈍後の表層部の結晶粒粒径を適切に調節することができ、ゴス分率および磁性に優れていることが分かる。 Example 2
By weight%, Si: 3.22%, C: 0.245%, Bi is contained as shown in Table 2 below, and the slab consisting of the balance Fe and unavoidable impurities is heated at a temperature of 1250 ° C. and then 1.6 mm. Hot-rolled to the thickness of 1100 ° C, then annealed at an annealing temperature of 870 ° C and a dew point temperature of 60 ° C for 120 seconds, and then hot-rolled at an annealing temperature of 1100 ° C and 30 seconds in a mixed gas atmosphere of hydrogen and nitrogen with an annealing temperature of 0 ° C or less. After plate annealing and cooling, pickling was carried out and cold rolling was carried out at a rolling reduction of 60%.
The cold-rolled plate is again annealed by decarburization at an annealing temperature of 870 ° C. and an annealing temperature of 60 ° C. for 60 seconds, and then annealed at an annealing temperature of 1100 ° C. and 50 seconds in a mixed gas atmosphere of hydrogen and nitrogen at an annealing temperature of 0 ° C. After cooling, pickling was carried out and cold rolling was performed at a rolling reduction of 60%.
Thereafter, at the time of final annealing, hydrogen at a temperature of 900 ° C., wet (dew point 60 ° C.) of nitrogen was carried out for 60 seconds decarburization annealing in a mixed gas atmosphere, heat treatment for 3 minutes at 100 vol% H 2 atmosphere at 1050 ° C. Was carried out. The Bi content during hot-rolled sheet annealing, the diameter of the crystal grains on the surface layer after hot-rolled sheet annealing, the Goth crystal grain fraction of the final electrical steel sheet, and the magnetic properties of the final electrical steel sheet were measured and shown in Table 2 below. Indicated.
Figure 0006868030
As shown in Table 2, Bi can be used as a crystal grain growth inhibitor to appropriately adjust the grain size of the surface layer after annealing on a hot-rolled plate, and has excellent goth fraction and magnetism. I understand.

実施例3
重量%で、Si:3.19%、C:0.24%、Bi:0.05%を含有し、残部Feおよび不可避不純物からなるスラブを1250℃の温度で加熱した後、1.6mmの厚さに熱間圧延し、続いて、焼鈍温度870℃、露点温度60℃で120秒間焼鈍後、水素、露点温度0℃以下の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および下記表3に記載された時間の間熱延板焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。
冷間圧延された板は再度、焼鈍温度870℃、露点温度60℃で60秒間脱炭焼鈍後、露点温度0℃の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および50秒間焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。
この後、最終焼鈍時には、900℃の温度で水素、窒素の湿潤(露点温度60℃)混合ガス雰囲気で60秒間脱炭焼鈍を実施した後、1050℃の100体積%H雰囲気で3分間熱処理を実施した。熱延板焼鈍時の1100℃での焼鈍時間と熱延板焼鈍後の表層部の結晶粒の直径、最終電磁鋼板のゴス結晶粒分率および最終電磁鋼板の磁気的特性を測定して、下記表3に示した。

Figure 0006868030
表3に示したとおり、熱延板焼鈍時、露点温度0℃以下、焼鈍温度1100℃での焼鈍時間が長くなるほど表層部の結晶粒が成長して、ゴス分率および磁性に優れていることが分かる。しかし、焼鈍時間が適正値より長くなると、内部の結晶粒が成長して冷間圧延後の脱炭焼鈍時に組織が不均一になり、最終磁性が劣る原因となる。 Example 3
By weight%, a slab containing Si: 3.19%, C: 0.24%, Bi: 0.05% and composed of the balance Fe and unavoidable impurities was heated at a temperature of 1250 ° C. and then 1.6 mm. It is hot-rolled to a thickness, then annealed at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 120 seconds, and then annealed at a mixed gas atmosphere of hydrogen, a dew point temperature of 0 ° C. or lower, and nitrogen at a annealing temperature of 1100 ° C. and Table 3 below. The hot-rolled sheet was annealed for the time described in the above, cooled, pickled, and cold-rolled at a reduction rate of 60%.
The cold-rolled plate is again annealed by decarburization at an annealing temperature of 870 ° C. and an annealing temperature of 60 ° C. for 60 seconds, and then annealed at an annealing temperature of 1100 ° C. and 50 seconds in a mixed gas atmosphere of hydrogen and nitrogen at an annealing temperature of 0 ° C. After cooling, pickling was carried out and cold rolling was performed at a rolling reduction of 60%.
Thereafter, at the time of final annealing, hydrogen at a temperature of 900 ° C., wet (dew point 60 ° C.) of nitrogen was carried out for 60 seconds decarburization annealing in a mixed gas atmosphere, heat treatment for 3 minutes at 100 vol% H 2 atmosphere at 1050 ° C. Was carried out. The annealing time at 1100 ° C. during hot-rolled sheet annealing, the grain diameter of the surface layer after hot-rolled sheet annealing, the Goth crystal grain fraction of the final electrical steel sheet, and the magnetic properties of the final electrical steel sheet were measured and described below. It is shown in Table 3.
Figure 0006868030
As shown in Table 3, the crystal grains on the surface layer grow as the annealing time at the dew point temperature of 0 ° C or lower and the annealing temperature of 1100 ° C becomes longer during hot rolling plate annealing, and the goth fraction and magnetism are excellent. I understand. However, if the annealing time is longer than the appropriate value, the crystal grains inside grow and the structure becomes non-uniform during decarburization annealing after cold rolling, which causes inferior final magnetism.

実施例4
重量%で、Si:3.19%、C:0.24%、Bi:0.05%を含有し、P、Sn、Sb、Mo、Al、Mnを下記表4のとおり含み、残部Feおよび不可避不純物からなるスラブを1250℃の温度で加熱した後、1.6mmの厚さに熱間圧延し、続いて、焼鈍温度870℃、露点温度60℃で120秒間焼鈍後、水素、露点温度0℃以下の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃、120秒間熱延板焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。冷間圧延された板は再度、焼鈍温度870℃、露点温度60℃で60秒間脱炭焼鈍後、露点温度0℃の水素、窒素の混合ガス雰囲気で焼鈍温度1100℃および50秒間焼鈍を実施し、冷却した後、酸洗を実施し、60%の圧下率で冷間圧延した。この後、最終焼鈍時には、900℃の温度で水素、窒素の湿潤(露点温度60℃)混合ガス雰囲気で60秒間脱炭焼鈍を実施した後、1100℃の100体積%H雰囲気で3分間熱処理を実施した。各成分に応じた熱延焼鈍板の表面結晶粒の大きさ、最終電磁鋼板のゴス結晶粒分率および最終電磁鋼板の磁気的特性を測定して、下記表5に示した。

Figure 0006868030
Figure 0006868030
表4、表5に示したとおり、P、Sn、Sb、Moなどの成分を適切な範囲で追加的に含む時、磁性を向上させる効果が得られることを確認できる。Al、Mnの場合、酸化度が高くて多量含む場合、磁性に有害な方位の結晶粒を形成して、磁性に悪影響を及ぼすことを確認できる。 Example 4
By weight%, Si: 3.19%, C: 0.24%, Bi: 0.05%, P, Sn, Sb, Mo, Al, Mn are contained as shown in Table 4 below, and the balance Fe and A slab composed of unavoidable impurities is heated at a temperature of 1250 ° C. and then hot-rolled to a thickness of 1.6 mm. Then, after annealing at an annealing temperature of 870 ° C. and a dew point temperature of 60 ° C. for 120 seconds, hydrogen and a dew point temperature of 0. Annealing was carried out at a annealing temperature of 1100 ° C. for 120 seconds in a mixed gas atmosphere of hydrogen and nitrogen at ° C. or lower, and after cooling, pickling was carried out and cold rolling was carried out at a reduction rate of 60%. The cold-rolled plate is again annealed at an annealing temperature of 870 ° C. and an annealing temperature of 60 ° C. for 60 seconds, and then annealed at an annealing temperature of 1100 ° C. and 50 seconds in a mixed gas atmosphere of hydrogen and nitrogen at an annealing temperature of 0 ° C. After cooling, pickling was carried out and cold rolling was performed at a rolling reduction of 60%. Thereafter, at the time of final annealing, hydrogen at a temperature of 900 ° C., wet (dew point 60 ° C.) of nitrogen was carried out for 60 seconds decarburization annealing in a mixed gas atmosphere, heat treatment for 3 minutes at 100 vol% H 2 atmosphere at 1100 ° C. Was carried out. The size of the surface crystal grains of the hot-rolled annealed sheet, the Goth crystal grain fraction of the final electromagnetic steel sheet, and the magnetic characteristics of the final electromagnetic steel sheet were measured according to each component and are shown in Table 5 below.
Figure 0006868030
Figure 0006868030
As shown in Tables 4 and 5, it can be confirmed that the effect of improving magnetism can be obtained when components such as P, Sn, Sb, and Mo are additionally contained in an appropriate range. In the case of Al and Mn, when the degree of oxidation is high and a large amount is contained, it can be confirmed that crystal grains having an orientation harmful to magnetism are formed and adversely affect magnetism.

本発明は、実施例に限定されるものではなく、互いに異なる多様な形態で製造可能であり、本発明の属する技術分野における通常の知識を有する者は本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態で実施可能であることを理解するであろう。そのため、上記の実施例はあらゆる面で例示的なものであり、限定的ではないと理解しなければならない。 The present invention is not limited to the examples, and can be produced in various forms different from each other, and a person having ordinary knowledge in the technical field to which the present invention belongs is the technical idea and essential features of the present invention. You will understand that it can be implemented in other concrete forms without modification. Therefore, it should be understood that the above examples are exemplary in all respects and are not limiting.

Claims (10)

重量%で、Si:1.0〜4.0%、C:0.01〜0.4%、Bi:0.001〜0.1%、Mn:0.05%以下(0重量%を除く)、Al:0.01%以下(0重量%を除く)、S:0.001%以下(0重量%を除く)、N:0.001%以下(0重量%を除く)、P:0.1%以下(0重量%を除く)、Mo:0.05%以下(0重量%を除く)、Sn:0.1%以下(0重量%を除く)、およびSb:0.05%以下(0重量%を除く)を含み、残部はFeおよびその他の不可避不純物からなるスラブを加熱する段階、
前記スラブを熱間圧延して熱延板を製造する段階、
前記熱延板を熱延板焼鈍する段階、
熱延板焼鈍が完了した熱延板を冷間圧延して冷延板を製造する段階、
前記冷延板を脱炭焼鈍する段階、および
脱炭焼鈍が完了した電磁鋼板を最終焼鈍する段階、を含み、
前記最終焼鈍する段階は、最終焼鈍を連続的な焼鈍で実施し、
前記熱延板焼鈍する段階の後、熱延板表層部の平均結晶粒粒径が150〜250μmであり、
最終焼鈍する段階の後、結晶粒の直径が20〜500μmの結晶粒の体積比率が80%以上であり、
鋼板の板面に対して誤差範囲15°以下で平行なゴス結晶粒の体積比率が80%以上であることを特徴とする方向性電磁鋼板の製造方法。
By weight%, Si: 1.0 to 4.0%, C: 0.01 to 0.4%, Bi: 0.001 to 0.1%, Mn: 0.05% or less (excluding 0% by weight) ), Al: 0.01% or less (excluding 0% by weight), S: 0.001% or less (excluding 0% by weight), N: 0.001% or less (excluding 0% by weight), P: 0 .1% or less (excluding 0% by weight), Mo: 0.05% or less (excluding 0% by weight), Sn: 0.1% or less (excluding 0% by weight), and Sb: 0.05% or less The stage of heating a slab, including (excluding 0% by weight) and the balance consisting of Fe and other unavoidable impurities,
The stage of hot-rolling the slab to produce a hot-rolled sheet,
The stage of annealing the hot-rolled plate,
The stage of cold-rolling a hot-rolled plate that has been annealed to produce a cold-rolled plate,
Including a step of decarburizing and annealing the cold-rolled sheet and a step of final annealing of the electromagnetic steel sheet for which decarburization and annealing has been completed.
In the final annealing step, the final annealing is carried out by continuous annealing, and the final annealing is carried out.
After the step of annealing the hot-rolled plate, the average crystal grain size of the surface layer of the hot-rolled plate is 150 to 250 μm.
After the final annealing step, the volume ratio of the crystal grains having a diameter of 20 to 500 μm is 80% or more.
A method for producing a directional electromagnetic steel sheet, characterized in that the volume ratio of Goth crystal grains parallel to the plate surface of the steel sheet in an error range of 15 ° or less is 80% or more.
前記スラブを加熱する段階において、1100〜1350℃に加熱することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1 , wherein the slab is heated to 1100 to 1350 ° C. at the stage of heating the slab. 前記熱延板焼鈍する段階において、脱炭過程を含むことを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。 In the step of annealing the hot-rolled sheet, a manufacturing method of the grain-oriented electrical steel sheet according to claim 1 or 2 you comprising a decarburization process. 前記熱延板焼鈍する段階は、850℃〜1000℃の温度および50℃〜70℃の露点温度で焼鈍する熱延板焼鈍の第1段階と、1000℃〜1200℃の温度および0℃以下の露点温度で焼鈍する熱延板焼鈍の第2段階とを含むことを特徴とする請求項1乃至3のいずれか一項に記載の方向性電磁鋼板の製造方法。 The steps of hot-rolled sheet annealing are the first step of hot-rolled sheet annealing, which is annealed at a temperature of 850 ° C. to 1000 ° C. and a dew point temperature of 50 ° C. to 70 ° C., and a temperature of 1000 ° C. to 1200 ° C. and 0 ° C. or lower. The method for producing a directional electromagnetic steel sheet according to any one of claims 1 to 3 , further comprising a second step of hot-rolled sheet annealing, which is annealed at a dew point temperature. 前記熱延板焼鈍の第1段階を10〜300秒間実施し、前記熱延板焼鈍の第2段階を10〜180秒間実施することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The production of the grain-oriented electrical steel sheet according to claim 4 , wherein the first step of the hot-rolled sheet annealing is carried out for 10 to 300 seconds, and the second step of the hot-rolled sheet annealing is carried out for 10 to 180 seconds. Method. 前記冷延板を製造する段階から前記最終焼鈍する段階までは、連続して行われることを特徴とする請求項1乃至5のいずれか一項に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 5 , wherein the steps from the step of manufacturing the cold-rolled sheet to the step of final annealing are continuously performed. 前記冷延板を製造する段階および前記脱炭焼鈍する段階は、2回以上繰り返されることを特徴とする請求項1乃至6のいずれか一項に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 6 , wherein the step of manufacturing the cold-rolled sheet and the step of decarburizing and annealing are repeated two or more times. 前記脱炭焼鈍する段階は、850℃〜1000℃の温度および50℃〜70℃の露点温度で焼鈍することを特徴とする請求項1乃至7のいずれか一項に記載の方向性電磁鋼板の製造方法。 The grain-oriented electrical steel sheet according to any one of claims 1 to 7 , wherein the decarburization annealing step is annealed at a temperature of 850 ° C. to 1000 ° C. and a dew point temperature of 50 ° C. to 70 ° C. Production method. 前記最終焼鈍する段階は、850℃〜1000℃の温度および70℃以下の露点温度で焼鈍を実施する最終焼鈍の第1段階と、1000℃〜1200℃の温度およびH 50体積%以上の雰囲気で実施する最終焼鈍の第2段階とを含むことを特徴とする請求項4乃至8のいずれか一項に記載の方向性電磁鋼板の製造方法。 Wherein the step of final annealing, the first stage of the final annealing implementing annealing temperature and 70 ° C. below the dew point temperature of 850 ℃ ~1000 ℃, 1000 ℃ ~1200 temperature and H 2 50 vol% or more of the atmosphere ° C. The method for producing a directional electromagnetic steel plate according to any one of claims 4 to 8 , further comprising a second step of final annealing carried out in 1. 前記最終焼鈍の第1段階を10〜180秒間実施し、前記最終焼鈍の第2段階を10〜600秒間実施することを特徴とする請求項9に記載の方向性電磁鋼板の製造方法。
The method for manufacturing a grain-oriented electrical steel sheet according to claim 9 , wherein the first step of the final annealing is carried out for 10 to 180 seconds, and the second step of the final annealing is carried out for 10 to 600 seconds.
JP2018533618A 2015-12-23 2016-12-23 Directional electrical steel sheet and its manufacturing method Active JP6868030B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150185068A KR101700125B1 (en) 2015-12-23 2015-12-23 Oriented electrical steel sheet and method for manufacturing the same
KR10-2015-0185068 2015-12-23
PCT/KR2016/015222 WO2017111547A1 (en) 2015-12-23 2016-12-23 Grain oriented electrical steel sheet and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2019506528A JP2019506528A (en) 2019-03-07
JP6868030B2 true JP6868030B2 (en) 2021-05-12

Family

ID=57992836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533618A Active JP6868030B2 (en) 2015-12-23 2016-12-23 Directional electrical steel sheet and its manufacturing method

Country Status (5)

Country Link
US (1) US20180371572A1 (en)
JP (1) JP6868030B2 (en)
KR (1) KR101700125B1 (en)
CN (1) CN108474077B (en)
WO (1) WO2017111547A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020276B1 (en) * 2017-12-26 2019-09-10 주식회사 포스코 Grain oriented electrical steel sheet method for manufacturing the same
KR102088405B1 (en) * 2017-12-26 2020-03-12 주식회사 포스코 Manufacturing method of oriented electrical steel sheet
KR102271299B1 (en) * 2019-12-19 2021-06-29 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
CN113186381B (en) * 2021-03-19 2023-03-03 首钢智新迁安电磁材料有限公司 Preparation method of oriented silicon steel ultrathin strip for intermediate frequency and steel substrate thereof
CN114480968A (en) * 2022-01-14 2022-05-13 山西雷麦电子科技有限公司 Soft magnetic alloy thin strip material with low coercive force and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531996B2 (en) * 1995-03-28 2004-05-31 新日本製鐵株式会社 Method of manufacturing unidirectional electromagnetic steel strip
US6280534B1 (en) * 1998-05-15 2001-08-28 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheet and manufacturing thereof
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP4259025B2 (en) * 2002-02-20 2009-04-30 Jfeスチール株式会社 Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JP4258166B2 (en) * 2002-04-09 2009-04-30 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP4241226B2 (en) * 2003-07-04 2009-03-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5251221B2 (en) * 2008-04-08 2013-07-31 新日鐵住金株式会社 High-stiffness steel plate and method for manufacturing the same
JP5712491B2 (en) * 2010-03-12 2015-05-07 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN102443736B (en) * 2010-09-30 2013-09-04 宝山钢铁股份有限公司 Method for producing high magnetic flux-density oriented silicon steel product
KR101223115B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
KR101351957B1 (en) * 2011-11-22 2014-01-22 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same
KR101506679B1 (en) * 2012-12-27 2015-03-27 주식회사 포스코 Oriented electrical steel steet and method for the same
JP5854236B2 (en) * 2013-03-06 2016-02-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN104726796A (en) * 2013-12-23 2015-06-24 Posco公司 Oriented electrical steel sheets and method for manufacturing the same
KR101594601B1 (en) * 2013-12-23 2016-02-16 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same

Also Published As

Publication number Publication date
WO2017111547A1 (en) 2017-06-29
JP2019506528A (en) 2019-03-07
US20180371572A1 (en) 2018-12-27
KR101700125B1 (en) 2017-01-26
CN108474077B (en) 2020-06-19
CN108474077A (en) 2018-08-31

Similar Documents

Publication Publication Date Title
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN109715840B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP6868030B2 (en) Directional electrical steel sheet and its manufacturing method
EP2644716B1 (en) Method for producing directional electromagnetic steel sheet
JP2007238984A (en) Method for manufacturing grain oriented silicon steel sheet having excellent magnetic characteristic
JP2009235574A (en) Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
WO2011102455A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
KR101657467B1 (en) Oriented electrical steel sheet and method for manufacturing the same
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP6663999B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP6944523B2 (en) Electrical steel sheet and its manufacturing method
JP7398444B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP7063032B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6808830B2 (en) Electrical steel sheet and its manufacturing method
JP2023508029A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6842550B2 (en) Directional electrical steel sheet and its manufacturing method
JP2021509445A (en) Directional electrical steel sheet and its manufacturing method
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
JP2015098636A (en) Manufacturing method of oriented electromagnetic steel sheet and cold rolled sheet for oriented electromagnetic steel sheet
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
WO2017111432A1 (en) Oriented electrical steel sheet and manufacturing method therefor
JP7312255B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210409

R150 Certificate of patent or registration of utility model

Ref document number: 6868030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250