JP6808830B2 - Electrical steel sheet and its manufacturing method - Google Patents
Electrical steel sheet and its manufacturing method Download PDFInfo
- Publication number
- JP6808830B2 JP6808830B2 JP2019522885A JP2019522885A JP6808830B2 JP 6808830 B2 JP6808830 B2 JP 6808830B2 JP 2019522885 A JP2019522885 A JP 2019522885A JP 2019522885 A JP2019522885 A JP 2019522885A JP 6808830 B2 JP6808830 B2 JP 6808830B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- weight
- grain
- electrical steel
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 7
- 238000000137 annealing Methods 0.000 claims description 41
- 238000001953 recrystallisation Methods 0.000 claims description 37
- 229910052788 barium Inorganic materials 0.000 claims description 34
- 229910052727 yttrium Inorganic materials 0.000 claims description 34
- 239000013078 crystal Substances 0.000 claims description 33
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 28
- 229910052796 boron Inorganic materials 0.000 claims description 17
- 238000005097 cold rolling Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 238000002791 soaking Methods 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 239000003966 growth inhibitor Substances 0.000 description 17
- 238000005096 rolling process Methods 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 13
- 239000011572 manganese Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000004907 flux Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000005389 magnetism Effects 0.000 description 8
- 238000005261 decarburization Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、方向性電磁鋼板およびその製造方法に係り、より詳しくは、B、Ba、Yを一定量含ませて、結晶粒界に偏析させた方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for producing the same, and more particularly to a grain-oriented electrical steel sheet obtained by containing a certain amount of B, Ba, and Y and segregating at grain boundaries and a method for producing the same.
方向性電磁鋼板は、鋼板の結晶方位が{110}<001>である、別名、ゴス(Goss)方位を有する結晶粒からなる、圧延方向への磁気的特性に優れた軟磁性材料である。
一般に、磁気特性は、磁束密度と鉄損で表現され、高い磁束密度は、結晶粒の方位を{110}<001>方位に正確に配列することにより得られる。磁束密度が高い電磁鋼板は、電気機器の鉄心材料の大きさを小さくできるだけでなく、履歴損失が低くなって電気機器の小型化と同時に高効率化を高めることができる。鉄損は、鋼板に任意の交流磁場を加えた時、熱エネルギーとして消費される電力損失であって、鋼板の磁束密度と板厚さ、鋼板中の不純物量、比抵抗、そして2次再結晶粒の大きさなどによって大きく変化し、磁束密度と比抵抗が高いほど、そして板厚さと鋼板中の不純物量が低いほど、鉄損が低くなって電気機器の効率が増加する。
The grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction, which is composed of crystal grains having a crystal orientation of {110} <001>, also known as a Goss orientation.
Generally, the magnetic characteristics are expressed by the magnetic flux density and the iron loss, and the high magnetic flux density is obtained by accurately arranging the orientations of the crystal grains in the {110} <001> orientation. An electromagnetic steel sheet having a high magnetic flux density can not only reduce the size of the iron core material of an electric device, but also reduce the history loss, so that the electric device can be miniaturized and the efficiency can be improved at the same time. Iron loss is the power loss consumed as thermal energy when an arbitrary alternating magnetic field is applied to a steel plate, and is the magnetic flux density and thickness of the steel plate, the amount of impurities in the steel plate, the specific resistance, and the secondary recrystallization. It varies greatly depending on the grain size and the like, and the higher the magnetic flux density and specific resistance, and the lower the plate thickness and the amount of impurities in the steel plate, the lower the iron loss and the higher the efficiency of electrical equipment.
現在、全世界的にCO2発生を低減することで地球温暖化に対処するために、エネルギー節約と共に高効率製品化を目指す傾向にあり、電気エネルギーを少なく使用する高効率化された電気機器の拡大普及に対する需要が増加するに伴い、より優れた低鉄損特性を有する方向性電磁鋼板の開発に対する社会的要求が増大している。
一般に、磁気特性に優れた方向性電磁鋼板は、鋼板の圧延方向に{110}<001>方位のゴス組織(Goss texture)が強く発達しなければならず、このような集合組織を形成させるためには、ゴス方位の結晶粒が2次再結晶という異常な結晶粒成長を形成させなければならない。このような異常な結晶成長は、通常の結晶粒成長とは異なり、正常な結晶粒成長が析出物、介在物やあるいは固溶または粒界に偏析する元素によって正常に成長する結晶粒界の移動が抑制された時に発生する。このように結晶粒成長を抑制する析出物や介在物などを特に結晶粒成長抑制剤(inhibitor)と呼び、{110}<001>方位の2次再結晶による方向性電磁鋼板の製造技術に関する研究は、強い結晶粒成長抑制剤を用いて{110}<001>方位に対する集積度が高い2次再結晶を形成して優れた磁気特性を確保するのに力を注いできた。
Currently, in order to deal with global warming by reducing CO 2 emissions worldwide, there is a tendency to aim for high-efficiency products as well as energy saving, and highly efficient electrical equipment that uses less electrical energy. As the demand for expansion and dissemination increases, the social demand for the development of grain-oriented electrical steel sheets having better low iron loss characteristics is increasing.
Generally, in a directional electromagnetic steel sheet having excellent magnetic properties, a Goss texture in the {110} <001> direction must be strongly developed in the rolling direction of the steel sheet, and in order to form such an aggregate structure. In order, the grains in the Goth orientation must form an abnormal grain growth called secondary recrystallization. Such abnormal crystal growth is different from normal grain growth, and the movement of grain boundaries in which normal grain growth normally grows due to precipitates, inclusions, or elements that segregate into solid solutions or grain boundaries. Occurs when is suppressed. Precipitates and inclusions that suppress grain growth in this way are particularly called grain growth inhibitors (inhibitors), and research on manufacturing technology for directional electromagnetic steel sheets by secondary recrystallization in the {110} <001> orientation. Has focused its efforts on forming secondary recrystallization with a high degree of integration with respect to the {110} <001> orientation using a strong grain growth inhibitor to ensure excellent magnetic properties.
既存の方向性電磁鋼板技術では、主に、AlN、MnS[Se]などの析出物を結晶粒成長抑制剤として用いている。一例として、1回の強冷間圧延後、脱炭を実施した後に、アンモニアガスを用いた別途の窒化工程により、鋼板の内部に窒素を供給して強い結晶粒成長抑制効果を発揮するAl系の窒化物によって2次再結晶を起こす製造方法がある。
しかし、高温焼鈍過程で炉内雰囲気による脱窒または復窒による析出物の不安定性の深刻化および高温で30時間以上の長時間の純化焼鈍が必要であるという点は、製造工程上の複雑性とコスト負担を伴う。
In the existing grain-oriented electrical steel sheet technology, precipitates such as AlN and MnS [Se] are mainly used as a crystal grain growth inhibitor. As an example, after one strong cold rolling and decarburization, nitrogen is supplied to the inside of the steel sheet by a separate nitriding process using ammonia gas to exert a strong grain growth suppressing effect. There is a manufacturing method in which secondary recrystallization is caused by the nitride of the above.
However, the complexity of the manufacturing process is that the instability of the precipitate due to denitrification or renitrification due to the atmosphere in the furnace becomes serious in the high temperature annealing process, and that long-term purification annealing at high temperature for 30 hours or more is required. And cost burden.
このような理由から、最近、AlN、MnSなどの析出物を結晶粒成長抑制剤として使用せずに方向性電磁鋼板を製造する方法が提案されている。一例として、バリウム(Ba)およびイットリウム(Y)などの粒界偏析元素を用いる製造方法がある。
BaおよびYは、2次再結晶の形成が可能なほど結晶粒成長抑制効果に優れ、高温焼鈍過程で炉内雰囲気の影響を受けないなどの利点があるが、粒界の結合力を弱めるという欠点がある。したがって、強圧下が必要な冷間圧延過程で粒界クラックが多数発生して生産性の低下を避けられなくなる問題がある。
For this reason, recently, a method for producing grain-oriented electrical steel sheets without using precipitates such as AlN and MnS as a crystal grain growth inhibitor has been proposed. As an example, there is a production method using grain boundary segregation elements such as barium (Ba) and yttrium (Y).
Ba and Y are excellent in the effect of suppressing grain growth so that secondary recrystallization can be formed, and have advantages such as not being affected by the atmosphere in the furnace during the high temperature annealing process, but they are said to weaken the binding force of the grain boundaries. There are drawbacks. Therefore, there is a problem that a large number of grain boundary cracks are generated in the cold rolling process that requires strong reduction, and a decrease in productivity cannot be avoided.
本発明の目的とするところは、方向性電磁鋼板およびその製造方法を提供することにある。 An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for producing the same.
本発明の一実施例による方向性電磁鋼板は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%、およびBaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むこと位を特徴とする。 The grain-oriented electrical steel sheet according to an embodiment of the present invention contains Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y alone or in total in% by weight. It is characterized by containing 0.005% by weight to 0.5% by weight, and the balance containing Fe and other unavoidable impurities.
本発明の一実施例による方向性電磁鋼板は、下記式1を満足することができる。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。)
C:0.005%以下(0%を除く)、Al:0.005%以下(0%を除く)、N:0.0055%以下(0%を除く)、およびS:0.0055%以下(0%を除く)をさらに含むことができる。
The grain-oriented electrical steel sheet according to an embodiment of the present invention can satisfy the following formula 1.
[Equation 1]
0.5 ≤ ([Ba] + [Y]) / ([B] * 10) ≤ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
C: 0.005% or less (excluding 0%), Al: 0.005% or less (excluding 0%), N: 0.0055% or less (excluding 0%), and S: 0.0055% or less (Excluding 0%) can be further included.
Mn:0.01%〜0.5%をさらに含むことができる。
2mm以上の粒径を有する結晶粒の平均粒径は、10mm以上であること位が好ましい。
結晶粒界に偏析したB並びに、BaまたはYを含むことができる。
Mn: 0.01% to 0.5% can be further contained.
The average particle size of the crystal grains having a particle size of 2 mm or more is preferably 10 mm or more.
B segregated at the grain boundaries and Ba or Y can be included.
本発明の一実施例による方向性電磁鋼板の製造方法は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むスラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階、冷延板を1次再結晶焼鈍する段階、および、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階、を含むことを特徴とする In the method for producing a directional electromagnetic steel sheet according to an embodiment of the present invention, Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y are used alone or in% by weight, respectively. The total amount contains 0.005% by weight to 0.5% by weight, and the balance is the stage of heating a slab containing Fe and other unavoidable impurities, the stage of hot rolling the slab to produce a hot-rolled plate, and the stage of hot-rolled plate. Includes a step of cold rolling to produce a cold rolled plate, a step of primary recrystallization annealing of the cold rolled plate, and a step of secondary recrystallization annealing of the cold rolled plate for which the primary recrystallization annealing has been completed. Characterized by
スラブは、下記式1を満足することができる。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。)
スラブは、C:0.001〜0.1%、Al:0.01%以下(0%を除く)、N:0.0055%以下(0%を除く)、およびS:0.0055%以下(0%を除く)をさらに含むことができる。
The slab can satisfy the following equation 1.
[Equation 1]
0.5 ≤ ([Ba] + [Y]) / ([B] * 10) ≤ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
The slab has C: 0.001 to 0.1%, Al: 0.01% or less (excluding 0%), N: 0.0055% or less (excluding 0%), and S: 0.0055% or less. (Excluding 0%) can be further included.
スラブは、Mn:0.01%〜0.5%をさらに含むことができる。
スラブを加熱する段階で、1000〜1280℃に加熱することがよい。
熱延板を冷間圧延して冷延板を製造する段階で、最終圧下率が80%以上になることが好ましい。
2次再結晶焼鈍する段階は、昇温段階および均熱段階を含み、均熱段階の温度は、900〜1250℃になることがよい。
The slab can further contain Mn: 0.01% to 0.5%.
At the stage of heating the slab, it is preferable to heat it to 1000 to 1280 ° C.
At the stage of cold-rolling the hot-rolled plate to produce the cold-rolled plate, the final reduction ratio is preferably 80% or more.
The secondary recrystallization annealing step includes a temperature raising step and a heat soaking step, and the temperature of the heat soaking step is preferably 900 to 1250 ° C.
本発明の一実施例による方向性電磁鋼板は、ゴス結晶粒を安定的に形成させることによって、磁気的特性に優れている。
また、結晶粒成長抑制剤としてAlNおよびMnSを使用しないので、1300℃以上の高温にスラブを加熱する必要がない。
さらに、結晶粒界強化効果によって、強冷間圧延下でも粒界クラックの発生が低減され、生産性の向上および製造費用が節減される。
The grain-oriented electrical steel sheet according to an embodiment of the present invention is excellent in magnetic properties by stably forming Goth crystal grains.
Moreover, since AlN and MnS are not used as the crystal grain growth inhibitor, it is not necessary to heat the slab to a high temperature of 1300 ° C. or higher.
Further, due to the effect of strengthening the grain boundaries, the occurrence of grain boundary cracks is reduced even under strong cold rolling, and the productivity is improved and the manufacturing cost is reduced.
第1、第2および第3などの用語は、多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを、他の部分、成分、領域、層またはセクションと区別するためにのみ使用される。したがって、以下に述べる第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションとして言及される。
ここで使用される専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は、文言がこれと明確に反対の意味を示さない限り、複数形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるわけではない。
Terms such as first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and / or sections. These terms are used only to distinguish one part, component, area, layer or section from another part, component, area, layer or section. Therefore, the first part, component, region, layer or section described below is referred to as the second part, component, region, layer or section within the scope of the present invention.
The terminology used herein is merely to refer to a particular embodiment and is not intended to limit the invention. The singular form used herein also includes multiple forms, unless the wording has a clear opposite meaning. As used herein, the meaning of "contains" embodies a particular property, region, integer, stage, behavior, element and / or component, and other characteristics, region, integer, stage, behavior, element and / or. It does not exclude the presence or addition of ingredients.
ある部分が他の部分の「上に」あると言及する場合、これは、まさに他の部分の上にあるか、その間に他の部分が伴ってもよい。対照的にある部分が他の部分の「真上に」あると言及する場合、その間に他の部分が介在しない。
別途に定義しないものの、ここに使用される技術用語および科学用語を含むすべての用語は、本発明の属する技術分野における通常の知識を有する者が一般に理解する意味と同じ意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示された内容に符合する意味を有するものとして追加解釈され、定義されない限り、理想的または非常に公式的な意味で解釈されない。
また、特に言及しない限り、%は、重量%を意味し、1ppmは、0.0001重量%である。
When referring to one part being "above" another part, this may be just above the other part, or with another part in between. In contrast, when one mentions that one part is "directly above" another, there is no other part in between.
Although not defined separately, all terms, including the technical and scientific terms used herein, have the same meaning as generally understood by those with ordinary knowledge in the technical field to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted as having a meaning consistent with the relevant technical literature and currently disclosed content, and are not interpreted in an ideal or very formal sense unless defined.
Further, unless otherwise specified,% means% by weight, and 1 ppm is 0.0001% by weight.
以下、本発明の実施例について、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように詳細に説明する。しかし、本発明は種々の異なる形態で実現可能であり、ここで説明する実施例に限定されない。
既存の方向性電磁鋼板技術では、結晶粒成長抑制剤としてAlN、MnSなどのような析出物を使用しており、すべての工程が析出物の分布を厳格に制御し、2次再結晶された鋼板内に残留した析出物が除去されるようにするための条件によって工程条件が極めて限られていた。
反面、本発明の一実施例では、結晶粒成長抑制剤としてAlN、MnSなどのような析出物を使用しない。本発明の一実施例では、B並びに、BaまたはYを結晶粒成長抑制剤として使用することによって、Goss結晶粒の分率を増加させ、磁性に優れた電磁鋼板を得ることができる。
Hereinafter, examples of the present invention will be described in detail so that a person having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the examples. However, the present invention is feasible in a variety of different forms and is not limited to the examples described herein.
In the existing directional electromagnetic steel sheet technology, precipitates such as AlN and MnS are used as the crystal grain growth inhibitor, and all the steps strictly control the distribution of the precipitates and secondary recrystallization is performed. The process conditions were extremely limited by the conditions for removing the precipitates remaining in the steel sheet.
On the other hand, in one embodiment of the present invention, precipitates such as AlN and MnS are not used as the crystal grain growth inhibitor. In one embodiment of the present invention, by using B and Ba or Y as a crystal grain growth inhibitor, the fraction of Goss crystal grains can be increased and an electromagnetic steel sheet having excellent magnetism can be obtained.
本発明の一実施例による方向性電磁鋼板は、重量%で、Si:1.0〜7.0%、Mn:0.01%〜0.5%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含む。
以下、各成分について具体的に説明する。
The grain-oriented electrical steel sheet according to an embodiment of the present invention is Si: 1.0 to 7.0%, Mn: 0.01% to 0.5%, B: 0.001 to 0.1% in weight%. In addition, Ba and Y are contained alone or in a combined amount of 0.005% by weight to 0.5% by weight, and the balance contains Fe and other unavoidable impurities.
Hereinafter, each component will be specifically described.
バリウム(Ba)およびイットリウム(Y)は、本発明の一実施例において、結晶粒成長抑制剤として作用し、2次再結晶焼鈍時、ゴス結晶粒以外の他の方位の結晶粒が成長するのを抑制して電磁鋼板の磁性を向上させる。BaおよびYは、それぞれ単独で添加されるか、複合添加されてもよい。BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含むことができる。つまり、BaまたはYがそれぞれ単独で添加される場合、BaまたはYの含有量がそれぞれ0.005重量%〜0.5重量%になってもよく、BaおよびYが同時に添加される場合、BaおよびYの含有量の合計が(つまり、合量が)0.005重量%〜0.5重量%になってもよい。BaまたはYまたはその合量が少なすぎると、十分な抑制力を発揮しにくく、BaまたはYまたはその合量が多すぎると、鋼板の脆性が増加して、圧延時にクラックが発生することがある。 In one embodiment of the present invention, barium (Ba) and yttrium (Y) act as crystal grain growth inhibitors, and during secondary recrystallization annealing, crystal grains in directions other than Goth crystal grains grow. To improve the magnetism of the electromagnetic steel sheet. Ba and Y may be added individually or in combination. Ba and Y can be contained alone or in a combined amount of 0.005% by weight to 0.5% by weight, respectively. That is, when Ba or Y is added alone, the content of Ba or Y may be 0.005% by weight to 0.5% by weight, respectively, and when Ba and Y are added at the same time, Ba. And the total content of Y may be between 0.005% and 0.5% by weight (ie, the total amount). If the amount of Ba or Y or the total amount thereof is too small, it is difficult to exert a sufficient restraining force, and if the amount of Ba or Y or the total amount thereof is too large, the brittleness of the steel sheet increases and cracks may occur during rolling. ..
ホウ素(B、ボロン)は、粒界に偏析して粒界結合力を強化するので、圧延時のクラック発生および圧延回数を低減する役割を果たす。また、鋼中の窒素と反応してBN析出物を一部形成するが、BNは、高温安定性に優れていて、前述したBaおよびYと共に結晶粒成長を抑制する補助インヒビターの作用が可能である。Bの含有量は、0.001〜0.1重量%になってもよい。Bが過度に少なく含まれると、BaおよびYによる粒界脆性を緩和させるのに不足しうる。Bが過度に多く含まれると、BaおよびYの粒界偏析を抑制し、高温焼鈍過程で介在物を多数形成して磁気特性が低下しうる。
Bは、BaおよびYとの関係において下記式1を満足することができる。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。)
式1の値が0.5未満の場合、BaおよびYの粒界偏析を抑制し、高温焼鈍過程で介在物を多数形成して磁気特性が低下しうる。式1の値が3超過の場合、BaおよびYによる粒界脆性を緩和させるのに不足しうる。
Boron (B, boron) segregates at the grain boundaries and strengthens the grain boundary bonding force, so that it plays a role of reducing crack generation during rolling and the number of rolling times. In addition, it reacts with nitrogen in steel to form a part of BN precipitate, but BN is excellent in high temperature stability and can act as an auxiliary inhibitor that suppresses crystal grain growth together with Ba and Y described above. is there. The content of B may be 0.001 to 0.1% by weight. If B is contained in an excessively small amount, it may be insufficient to alleviate the intergranular brittleness due to Ba and Y. If B is contained in an excessively large amount, the grain boundary segregation of Ba and Y can be suppressed, and a large number of inclusions can be formed in the high temperature annealing process to deteriorate the magnetic properties.
B can satisfy the following equation 1 in relation to Ba and Y.
[Equation 1]
0.5 ≤ ([Ba] + [Y]) / ([B] * 10) ≤ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
When the value of Equation 1 is less than 0.5, the grain boundary segregation of Ba and Y can be suppressed, and a large number of inclusions can be formed in the high temperature annealing process to deteriorate the magnetic properties. If the value of Equation 1 exceeds 3, it may be insufficient to alleviate the intergranular brittleness due to Ba and Y.
シリコン(Si)は、素材の比抵抗を増加させて鉄損を低くする役割を果たす。スラブおよび電磁鋼板においてSi含有量が1.0重量%未満の場合、比抵抗が減少して鉄損特性が低下しうる。逆に、方向性電磁鋼板においてSi含有量が7重量%を超える場合、変圧器の製造時に加工が難しいので、方向性電磁鋼板におけるSi含有量は、7重量%以下であるのが良い。
炭素(C)は、オーステナイト安定化元素であって、0.001重量%以上スラブ中に添加されて、連鋳過程で発生する粗大な柱状組織を微細化し、Sのスラブ中心偏析を抑制することができる。また、冷間圧延中に鋼板の加工硬化を促進して、鋼板内に{110}<001>方位の2次再結晶の核生成を促進したりすることができる。しかし、0.1%を超えると、熱延中にエッジ−クラック(edge−crack)が発生することがある。ただし、電磁鋼板の製造時に脱炭焼鈍を経るようになり、脱炭焼鈍後の最終電磁鋼板内のC含有量は、0.005重量%以下であるのが良い。より具体的には0.003重量%以下である。
Silicon (Si) plays a role of increasing the specific resistance of the material and lowering the iron loss. If the Si content of the slab and the electrical steel sheet is less than 1.0% by weight, the specific resistance may decrease and the iron loss characteristics may decrease. On the contrary, when the Si content of the grain-oriented electrical steel sheet exceeds 7% by weight, it is difficult to process it at the time of manufacturing the transformer. Therefore, the Si content of the grain-oriented electrical steel sheet is preferably 7% by weight or less.
Carbon (C) is an austenite stabilizing element, which is added to 0.001% by weight or more in the slab to refine the coarse columnar structure generated in the continuous casting process and suppress the segregation of S in the slab center. Can be done. Further, it is possible to promote work hardening of the steel sheet during cold rolling to promote nucleation of secondary recrystallization in the {110} <001> orientation in the steel sheet. However, if it exceeds 0.1%, edge-cracks may occur during hot spreading. However, the electrical steel sheet undergoes decarburization annealing during production, and the C content in the final electrical steel sheet after decarburization annealing is preferably 0.005% by weight or less. More specifically, it is 0.003% by weight or less.
本発明の一実施例において、AlN、MnSなどの析出物を結晶粒成長抑制剤として使用しないので、アルミニウム(Al)、窒素(N)、硫黄(S)など一般的な方向性電磁鋼板で必須として使用される元素は、不純物範囲で管理される。つまり、不可避にAl、N、Sなどをさらに含む場合、Alを0.005重量%以下、Sを0.0055重量%以下、およびNを0.0055重量%以下でさらに含んでもよい。
本発明の一実施例では、AlNを結晶粒成長抑制剤として使用しなくてよいので、アルミニウム(Al)含有量を積極的に抑制することができる。したがって、本発明の一実施例では、方向性電磁鋼板内にAlは添加されなかったり、0.005重量%以下に制御することができる。また、スラブでは、製造工程過程でAlが除去されるので、Alを0.01重量%以下で含むことができる。
In one embodiment of the present invention, since precipitates such as AlN and MnS are not used as a grain growth inhibitor, they are essential for general directional electromagnetic steel sheets such as aluminum (Al), nitrogen (N) and sulfur (S). The elements used as are controlled in the impurity range. That is, when Al, N, S and the like are inevitably further contained, Al may be further contained in 0.005% by weight or less, S in 0.0055% by weight or less, and N in 0.0055% by weight or less.
In one embodiment of the present invention, since AlN does not have to be used as a crystal grain growth inhibitor, the aluminum (Al) content can be positively suppressed. Therefore, in one embodiment of the present invention, Al is not added to the grain-oriented electrical steel sheet, or it can be controlled to 0.005% by weight or less. Further, in the slab, since Al is removed in the manufacturing process, Al can be contained in an amount of 0.01% by weight or less.
窒素(N)は、AlN、(Al、Mn)N、(Al、Si、Mn)N、Si3N4、BNなどの析出物を形成するので、本発明の一実施例では、Nは添加されなかったり、0.0055重量%以下に制御することができる。より具体的には0.0030重量%以下であってもよい。本発明の一実施例では、浸窒工程を省略できるので、スラブ内のN含有量と最終電磁鋼板内のN含有量とが実質的に同一であり得る。
硫黄(S)は、熱間圧延時、固溶温度が高くて偏析が激しい元素であるので、本発明の一実施例では、添加されなかったり、0.0055重量%以下に制御することができる。より具体的には0.0035重量%以下であってもよい。
Nitrogen (N) forms precipitates such as AlN, (Al, Mn) N, (Al, Si, Mn) N, Si3N4, and BN. Therefore, in one embodiment of the present invention, N is not added. , 0.0055% by weight or less can be controlled. More specifically, it may be 0.0030% by weight or less. In one embodiment of the present invention, since the nitrification step can be omitted, the N content in the slab and the N content in the final magnetic steel sheet can be substantially the same.
Sulfur (S) is an element that has a high solid solution temperature and severe segregation during hot rolling. Therefore, in one embodiment of the present invention, sulfur (S) may not be added or may be controlled to 0.0055% by weight or less. .. More specifically, it may be 0.0035% by weight or less.
本発明の一実施例では、MnSを結晶粒成長抑制剤として使用しないので、マンガン(Mn)を添加しなくてよい。ただし、Mnは、比抵抗元素であって磁性を改善する効果があるので、スラブおよび電磁鋼板に任意成分として、追加的にさらに含まれてもよい。Mnが追加的に含まれる場合、Mnの含有量は、0.01重量%以上であってもよい。しかし、0.5重量%を超える場合、2次再結晶後に相変態を起こして磁性が劣化することがある。本発明の一実施例において、追加元素をさらに含む場合、残部の鉄(Fe)を代替して添加されることが理解される。
また、その他の不可避不純物として、Ti、Mg、Caのような成分は、鋼中で酸素と反応して酸化物を形成して、介在物として最終製品の磁区移動に妨害を与えて磁性劣化の原因になりうるので、強力抑制することが必要である。したがって、これらを不可避に含有する場合、それぞれの成分ごとに0.005重量%以下で管理することができる。
In one embodiment of the present invention, since MnS is not used as a crystal grain growth inhibitor, manganese (Mn) does not have to be added. However, since Mn is a resistivity element and has an effect of improving magnetism, it may be additionally contained as an optional component in the slab and the electromagnetic steel sheet. When Mn is additionally contained, the content of Mn may be 0.01% by weight or more. However, if it exceeds 0.5% by weight, phase transformation may occur after secondary recrystallization and the magnetism may deteriorate. In one embodiment of the present invention, it is understood that when additional elements are further included, the remaining iron (Fe) is added in place of it.
In addition, as other unavoidable impurities, components such as Ti, Mg, and Ca react with oxygen in steel to form oxides, which interfere with the movement of magnetic domains in the final product as inclusions and cause magnetic deterioration. Since it can be a cause, it is necessary to strongly suppress it. Therefore, when these are unavoidably contained, each component can be controlled at 0.005% by weight or less.
本発明の一実施例による方向性電磁鋼板は、2mm以上の粒径を有する結晶粒の平均粒径が10mm以上になる。2mm以上の粒径を有する結晶粒の平均粒径が10mm未満の場合、結晶粒が十分に成長せずに磁性が低下しうる。本発明の一実施例において、結晶粒の粒径とは、円に相当する結晶粒に対する直径の長さを意味する。
本発明の一実施例による方向性電磁鋼板は、ゴス結晶粒を安定的に形成させることによって、磁気的特性に優れている。具体的には、本発明の一実施例による方向性電磁鋼板は、800A/mの磁場で測定した磁束密度のB8が1.88T以上であってもよい。
In the grain-oriented electrical steel sheet according to an embodiment of the present invention, the average particle size of crystal grains having a particle size of 2 mm or more is 10 mm or more. When the average particle size of the crystal grains having a particle size of 2 mm or more is less than 10 mm, the crystal grains do not grow sufficiently and the magnetism may decrease. In one embodiment of the present invention, the grain size of the crystal grains means the length of the diameter with respect to the crystal grains corresponding to the circle.
The grain-oriented electrical steel sheet according to an embodiment of the present invention is excellent in magnetic properties by stably forming Goth crystal grains. Specifically, the grain-oriented electrical steel sheet according to the embodiment of the present invention may have a magnetic flux density of B8 of 1.88 T or more measured in a magnetic field of 800 A / m.
本発明の一実施例による方向性電磁鋼板の製造方法は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むスラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階、冷延板を1次再結晶焼鈍する段階、および、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階、を含む。 In the method for producing a directional electromagnetic steel sheet according to an embodiment of the present invention, Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y are used alone or in% by weight, respectively. The total amount contains 0.005% by weight to 0.5% by weight, and the balance is the stage of heating the slab containing Fe and other unavoidable impurities, the stage of hot rolling the slab to produce a hot-rolled plate, and the hot-rolled plate. Includes a step of cold rolling to produce a cold rolled plate, a step of primary recrystallization annealing of the cold rolled plate, and a step of secondary recrystallization annealing of the cold rolled plate for which the primary recrystallization annealing has been completed. ..
以下、各段階ごとに方向性電磁鋼板の製造方法を具体的に説明する。
まず、スラブを加熱する。
スラブの組成については、電磁鋼板の組成に関連して具体的に説明したので、重複する説明は省略する。
スラブの加熱温度は制限されないが、スラブを1280℃以下の温度に加熱すると、スラブの柱状晶組織が粗大に成長するのを防止して、熱間圧延工程で板のクラックが発生するのを防止することができる。したがって、スラブの加熱温度は、1000℃〜1280℃であってもよい。特に、本発明の一実施例では、結晶粒成長抑制剤としてAlNおよびMnSを使用しないので、1300℃以上の高温にスラブを加熱する必要がない。
Hereinafter, the method for manufacturing the grain-oriented electrical steel sheet will be specifically described for each step.
First, the slab is heated.
Since the composition of the slab has been specifically described in relation to the composition of the electrical steel sheet, duplicate description will be omitted.
The heating temperature of the slab is not limited, but heating the slab to a temperature of 1280 ° C or lower prevents the columnar crystal structure of the slab from growing coarsely and prevents cracks in the plate during the hot rolling process. can do. Therefore, the heating temperature of the slab may be 1000 ° C. to 1280 ° C. In particular, in one embodiment of the present invention, since AlN and MnS are not used as the crystal grain growth inhibitors, it is not necessary to heat the slab to a high temperature of 1300 ° C. or higher.
次に、スラブを熱間圧延して熱延板を製造する。熱間圧延温度は制限されず、一実施例として950℃以下で熱延を終了することができる。この後、水冷して600℃以下で巻取ることができる。
次に、必要に応じて、熱延板を熱延板焼鈍することができる。熱延板焼鈍を実施する場合、熱延組織を均一にするために、900℃以上の温度に加熱し、均熱した後、冷却することができる。
次に、熱延板を冷間圧延して冷延板を製造する。冷間圧延は、リバース(Reverse)圧延機あるいはタンデム(Tandem)圧延機を用いて、1回の冷間圧延、複数回の冷間圧延、または中間焼鈍を含む複数回の冷間圧延法で0.1mm〜0.5mmの厚さの冷延板を製造することができる。
また、冷間圧延中に鋼板の温度を100℃以上に維持する温間圧延を実施できる。
Next, the slab is hot-rolled to produce a hot-rolled plate. The hot rolling temperature is not limited, and as an example, hot rolling can be completed at 950 ° C. or lower. After that, it can be cooled with water and wound at 600 ° C. or lower.
Next, if necessary, the hot-rolled plate can be annealed. When the hot-rolled plate is annealed, it can be heated to a temperature of 900 ° C. or higher, equalized, and then cooled in order to make the hot-rolled structure uniform.
Next, the hot-rolled plate is cold-rolled to produce a cold-rolled plate. Cold rolling, using a reverse (Reverse) mill or a tandem (Tandem) rolling mill, one of the cold rolling, a plurality of times of cold rolling, or multiple cold rolling method including intermediate annealing 0 A cold rolled plate having a thickness of 1 mm to 0.5 mm can be produced.
In addition, warm rolling can be performed in which the temperature of the steel sheet is maintained at 100 ° C. or higher during cold rolling.
さらに、冷間圧延による最終圧下率は、80%以上になってもよい。本発明の一実施例では、前述のように、スラブ成分内にBを特定の含有量含むことによって、粒界に偏析して粒界結合力を強化するので、圧延時のクラック発生および圧延回数を低減することができ、最終圧下率を高めることができる。
次に、冷間圧延された冷延板を1次再結晶焼鈍する。1次再結晶焼鈍段階でゴス結晶粒の核が生成される1次再結晶が起こる。1次再結晶焼鈍段階で冷延板の脱炭が行われる。脱炭のために、800℃〜900℃の温度で焼鈍することができる。また、雰囲気は、水素および窒素の混合ガス雰囲気であってもよい。さらに、脱炭が完了すると、冷延板内の炭素含有量は、0.005重量%以下になってもよい。本発明の一実施例では、AlN結晶粒成長抑制剤を使用しないので、窒化工程を省略することができる。
Further, the final rolling reduction by cold rolling may be 80% or more. In one embodiment of the present invention, as described above, by including B in the slab component at a specific content, segregation occurs at the grain boundaries and the grain boundary bonding force is strengthened, so that cracks occur during rolling and the number of times of rolling. Can be reduced and the final rolling reduction rate can be increased.
Next, the cold-rolled cold-rolled sheet is first recrystallized and annealed. Primary recrystallization In the annealing step, primary recrystallization occurs in which nuclei of Goth grains are generated. The cold rolled plate is decarburized at the primary recrystallization annealing stage. For decarburization, it can be annealed at a temperature of 800 ° C to 900 ° C. Further, the atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen. Further, when the decarburization is completed, the carbon content in the cold rolled plate may be 0.005% by weight or less. In one embodiment of the present invention, since the AlN crystal grain growth inhibitor is not used, the nitriding step can be omitted.
次に、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する。この時、1次再結晶焼鈍が完了した冷延板に焼鈍分離剤を塗布した後、2次再結晶焼鈍することができる。この時、焼鈍分離剤は特に制限せず、MgOを主成分として含む焼鈍分離剤を使用することができる。
2次再結晶焼鈍する段階は、昇温段階および均熱段階を含む。昇温段階は、1次再結晶焼鈍が完了した冷延板を均熱段階の温度まで昇温する段階である。均熱段階の温度は、900℃〜1250℃であってもよい。900℃未満であれば、ゴス結晶粒が十分に成長せずに磁性が低下し、1250℃超過時、結晶粒が粗大に成長して電磁鋼板の特性が低下しうる。昇温段階は水素および窒素の混合ガス雰囲気で、均熱段階は水素雰囲気で行われる。
Next, the cold-rolled plate for which the primary recrystallization annealing has been completed is subjected to the secondary recrystallization annealing. At this time, after applying the annealing separator to the cold-rolled plate for which the primary recrystallization annealing has been completed, the secondary recrystallization annealing can be performed. At this time, the annealing separator is not particularly limited, and an annealing separator containing MgO as a main component can be used.
The secondary recrystallization annealing step includes a heating step and a soaking step. The temperature raising step is a step of raising the temperature of the cold rolled sheet for which the primary recrystallization annealing has been completed to the temperature of the soaking step. The temperature of the soaking step may be 900 ° C to 1250 ° C. If it is less than 900 ° C., the Goth crystal grains do not grow sufficiently and the magnetism decreases, and if it exceeds 1250 ° C., the crystal grains grow coarsely and the characteristics of the electrical steel sheet may deteriorate. The heating step is performed in a mixed gas atmosphere of hydrogen and nitrogen, and the soaking step is performed in a hydrogen atmosphere.
本発明の一実施例による方向性電磁鋼板の製造方法では、AlN、MnSの結晶粒成長抑制剤を使用しないので、2次再結晶焼鈍が完了した後、純化焼鈍工程を省略することができる。従来のMnS、AlNを結晶粒成長抑制剤として使用する方向性電磁鋼板の製造方法では、AlNおよびMnSのような析出物を除去するための高温の純化焼鈍が必要であったが、本発明の一実施例による方向性電磁鋼板の製造方法では、純化焼鈍工程を必要としない。
この後、必要に応じて、方向性電磁鋼板の表面に絶縁被膜を形成したり、磁区微細化処理を行うことができる。本発明の一実施例において、方向性電磁鋼板の合金成分は、絶縁被膜などのコーティング層を除いた素地鋼板を意味する。
以下、実施例を通じて本発明をより詳細に説明する。しかし、このような実施例は単に本発明を例示するためのものであり、本発明がこれに限定されるものではない。
Since the method for producing grain grain growth inhibitor of AlN and MnS is not used in the method for producing grain grain growth inhibitor according to the embodiment of the present invention, the purification annealing step can be omitted after the secondary recrystallization annealing is completed. In the conventional method for producing grain-oriented electrical steel sheets using MnS and AlN as grain growth inhibitors, high-temperature purification annealing for removing precipitates such as AlN and MnS was required. The method for manufacturing grain-oriented electrical steel sheets according to one embodiment does not require a purification annealing step.
After that, if necessary, an insulating film can be formed on the surface of the grain-oriented electrical steel sheet, or a magnetic domain miniaturization treatment can be performed. In one embodiment of the present invention, the alloy component of the grain-oriented electrical steel sheet means a base steel sheet excluding a coating layer such as an insulating film.
Hereinafter, the present invention will be described in more detail through examples. However, such examples are merely for exemplifying the present invention, and the present invention is not limited thereto.
実施例1
重量%で、Si:3.2%、C:0.05%、Mn:0.06%、S:0.0048%、N:0.0032%、および、Al:0.005%を含み、バリウム(Ba)、イットリウム(Y)、およびボロン(B)を下記表1のように含有し、残部Feとその他不可避に混入する不純物からなるスラブを準備した。
スラブを1150℃の温度に90分間加熱した後、熱間圧延して2.6mmの厚さの熱延板を製造した。この熱延板を1050℃以上の温度に加熱した後、910℃で90秒間維持し、水冷した後、酸洗した。次に、リバース(Reverse)圧延機を用いて、計7回のパスを経て0.30mmの厚さまで冷間圧延した。各パスあたりの圧下率は、試験条件ごとに同一に適用した。冷間圧延された鋼板は、炉中で昇温した後、水素:50体積%および窒素:50体積%の混合ガス雰囲気、および、焼鈍温度850℃で120秒間維持して炭素濃度0.002重量%まで脱炭と共に1次再結晶焼鈍を行った。この後、MgOを塗布した後、コイル状に巻取って2次再結晶焼鈍した。2次再結晶焼鈍は、窒素:25体積%および水素:75体積%の混合ガス雰囲気で1200℃まで昇温し、1200℃到達後には水素:100体積%のガス雰囲気で20時間維持後、炉冷した。
Example 1
By weight%, it contains Si: 3.2%, C: 0.05%, Mn: 0.06%, S: 0.0048%, N: 0.0032%, and Al: 0.005%. A slab containing barium (Ba), yttrium (Y), and boron (B) as shown in Table 1 below, and consisting of the balance Fe and other unavoidably mixed impurities was prepared.
The slab was heated to a temperature of 1150 ° C. for 90 minutes and then hot-rolled to produce a hot-rolled plate having a thickness of 2.6 mm. The hot-rolled plate was heated to a temperature of 1050 ° C. or higher, maintained at 910 ° C. for 90 seconds, cooled with water, and then pickled. Next, using a Reverse rolling mill, cold rolling was performed to a thickness of 0.30 mm through a total of 7 passes. The reduction rate per pass was applied the same for each test condition. After the temperature of the cold-rolled steel sheet is raised in the furnace, it is maintained at a mixed gas atmosphere of hydrogen: 50% by volume and nitrogen: 50% by volume and an annealing temperature of 850 ° C. for 120 seconds to have a carbon concentration of 0.002% by volume. Primary recrystallization annealing was performed along with decarburization to%. Then, after applying MgO, it was wound into a coil and annealed for secondary recrystallization. In the secondary recrystallization annealing, the temperature is raised to 1200 ° C. in a mixed gas atmosphere of nitrogen: 25% by volume and hydrogen: 75% by volume, and after reaching 1200 ° C., maintained in a gas atmosphere of hydrogen: 100% by volume for 20 hours, and then the furnace. It was chilled.
最終的に得られた鋼板を表面洗浄後、single sheet測定法を利用して、磁場の強さを800A/mの条件で磁束密度を測定した。
表1から確認できるように、BaおよびYの含有量に応じてBの含有量が本発明の範囲内で制御された場合に、圧延クラックの発生がなく、比較材に比べて優れた磁性を得ることができた。
また、図1、および図2に、試料番号2番の発明材の製造工程中の冷延鋼板の写真、および試料番号1番の比較材の製造工程中の冷延鋼板の写真を示した。比較材の場合、圧延クラックが明確に現れることを確認できる。
As can be confirmed from Table 1, when the B content is controlled within the range of the present invention according to the Ba and Y contents, rolling cracks do not occur and the magnetism is superior to that of the comparative material. I was able to get it.
Further, FIGS. 1 and 2 show a photograph of a cold-rolled steel sheet during the manufacturing process of the invention material of Sample No. 2 and a photograph of the cold-rolled steel sheet during the manufacturing process of the comparative material of Sample No. 1. In the case of the comparative material, it can be confirmed that rolling cracks clearly appear.
実施例2
重量%で、Si:3.2%、C:0.048%、Mn:0.11%、S:0.0051%、N:0.0028%、および、Al:0.008%を含み、バリウム(Ba)、イットリウム(Y)、およびボロン(B)を下記表2のように含有し、残部Feとその他不可避に混入する不純物からなるスラブを準備した。
スラブを1150℃の温度に90分間加熱した後、熱間圧延して2.6mmの厚さの熱延板を製造した。この熱延板を1050℃以上の温度に加熱した後、910℃で90秒間維持し、水冷した後、酸洗した。次に、リバース(Reverse)圧延機を用いて、計7回のパスを経て0.30mmの厚さまで冷間圧延した。各パスあたりの圧下率は、試験条件ごとに同一に適用した。冷間圧延された鋼板は、炉中で昇温した後、水素:50体積%および窒素:50体積%の混合ガス雰囲気、および、焼鈍温度850℃で120秒間維持して炭素濃度0.003重量%まで脱炭と共に1次再結晶焼鈍を行った。この後、MgOを塗布した後、コイル状に巻取って2次再結晶焼鈍した。2次再結晶焼鈍は、窒素:25体積%および水素:75体積%の混合ガス雰囲気で1200℃まで昇温し、1200℃到達後には水素:100体積%のガス雰囲気で20時間維持後、炉冷した。
Example 2
By weight%, it contains Si: 3.2%, C: 0.048%, Mn: 0.11%, S: 0.0051%, N: 0.0028%, and Al: 0.008%. A slab containing barium (Ba), yttrium (Y), and boron (B) as shown in Table 2 below, and consisting of the balance Fe and other unavoidably mixed impurities was prepared.
The slab was heated to a temperature of 1150 ° C. for 90 minutes and then hot-rolled to produce a hot-rolled plate having a thickness of 2.6 mm. The hot-rolled plate was heated to a temperature of 1050 ° C. or higher, maintained at 910 ° C. for 90 seconds, cooled with water, and then pickled. Next, using a Reverse rolling mill, cold rolling was performed to a thickness of 0.30 mm through a total of 7 passes. The reduction rate per pass was applied the same for each test condition. After the temperature of the cold-rolled steel sheet is raised in the furnace, it is maintained at a mixed gas atmosphere of hydrogen: 50% by volume and nitrogen: 50% by volume and an annealing temperature of 850 ° C. for 120 seconds to have a carbon concentration of 0.003% by volume. Primary recrystallization annealing was performed along with decarburization to%. Then, after applying MgO, it was wound into a coil and annealed for secondary recrystallization. In the secondary recrystallization annealing, the temperature is raised to 1200 ° C. in a mixed gas atmosphere of nitrogen: 25% by volume and hydrogen: 75% by volume, and after reaching 1200 ° C., maintained in a gas atmosphere of hydrogen: 100% by volume for 20 hours, and then the furnace. It was chilled.
最終的に得られた鋼板を表面洗浄後、single sheet測定法を利用して、磁場の強さを800A/mの条件で磁束密度を測定した。また、結晶粒の粒径は60℃に加熱された塩酸に5分間浸漬して表面のコーティング層を除去した後、面積に応じた平均値で計算した。
本発明は、上記の実施例に限定されるものではなく、互いに異なる多様な形態で製造可能であり、本発明の属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態で実施可能であることを理解するであろう。そのため、以上に述べた実施例はあらゆる面で例示的なものであり、限定的ではないと理解しなければならない。 The present invention is not limited to the above-mentioned examples, and can be produced in various forms different from each other, and a person having ordinary knowledge in the technical field to which the present invention belongs may consider the technical idea of the present invention. You will understand that it can be implemented in other concrete forms without changing the essential features. Therefore, it should be understood that the above-described embodiments are exemplary in all respects and are not limiting.
Claims (9)
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。) By weight%, Si: 1.0 to 7.0%, B: 0.001 to 0.1 %, Ba and Y alone or in total, 0.005% by weight to 0.5% by weight , C: 0.005% or less (excluding 0%) , Al: 0.005% or less (excluding 0%), N: 0.0055% or less (excluding 0%), and S: 0.0055% or less (0) % excluding) wherein, the balance being impurities mixed in Fe and other unavoidable, oriented electrical steel sheet satisfies the following formula 1.
[Equation 1]
0.5 ≤ ([Ba] + [Y]) / ([B] * 10) ≤ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
前記スラブを熱間圧延して熱延板を製造する段階;
前記熱延板を冷間圧延して冷延板を製造する段階;
前記冷延板を1次再結晶焼鈍する段階;および;
前記1次再結晶焼鈍が完了した前記冷延板を2次再結晶焼鈍する段階;を含むことを特徴とする方向性電磁鋼板の製造方法。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。) By weight%, Si: 1.0 to 7.0%, B: 0.001 to 0.1 %, Ba and Y alone or in total, 0.005% by weight to 0.5% by weight , C: 0.001 to 0.1%, Al: 0.01% or less (excluding 0%), N: 0.0055% or less (excluding 0%), and S: 0.0055% or less (excluding 0%) ) wherein, the balance being impurities mixed in Fe and other unavoidable, satisfies the following formula 1, heating the slab stage;
A stage in which the slab is hot-rolled to produce a hot-rolled plate;
A stage in which the hot-rolled plate is cold-rolled to produce a cold-rolled plate;
The stage of primary recrystallization annealing of the cold rolled plate; and;
A method for producing a grain-oriented electrical steel sheet, which comprises a step of secondary recrystallization annealing of the cold-rolled sheet for which the primary recrystallization annealing has been completed.
[Equation 1]
0.5 ≤ ([Ba] + [Y]) / ([B] * 10) ≤ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160139937A KR101884428B1 (en) | 2016-10-26 | 2016-10-26 | Grain oriented electrical steel sheet and method for manufacturing the same |
KR10-2016-0139937 | 2016-10-26 | ||
PCT/KR2017/011849 WO2018080167A1 (en) | 2016-10-26 | 2017-10-25 | Grain-oriented electrical steel sheet and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020509153A JP2020509153A (en) | 2020-03-26 |
JP6808830B2 true JP6808830B2 (en) | 2021-01-06 |
Family
ID=62023776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019522885A Active JP6808830B2 (en) | 2016-10-26 | 2017-10-25 | Electrical steel sheet and its manufacturing method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190309387A1 (en) |
EP (1) | EP3533896B1 (en) |
JP (1) | JP6808830B2 (en) |
KR (1) | KR101884428B1 (en) |
CN (1) | CN109906284B (en) |
WO (1) | WO2018080167A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102176348B1 (en) * | 2018-11-30 | 2020-11-09 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method of the same |
KR102305718B1 (en) * | 2019-12-18 | 2021-09-27 | 주식회사 포스코 | Grain oriented electrical steel sheet and method of manufacturing the same |
KR102271299B1 (en) * | 2019-12-19 | 2021-06-29 | 주식회사 포스코 | Double oriented electrical steel sheet method for manufacturing the same |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6162306A (en) * | 1997-11-04 | 2000-12-19 | Kawasaki Steel Corporation | Electromagnetic steel sheet having excellent high-frequency magnetic properities and method |
KR100709056B1 (en) * | 2002-12-05 | 2007-04-18 | 제이에프이 스틸 가부시키가이샤 | Non-oriented magnetic steel sheet and method for production thereof |
JP4352691B2 (en) * | 2002-12-05 | 2009-10-28 | Jfeスチール株式会社 | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same |
DE20316160U1 (en) * | 2003-10-22 | 2004-01-15 | Turevsky, Boris | Steel alloy used in metallurgy contains alloying additions of silicon, manganese, chromium, aluminum, vanadium, calcium, boron, titanium and barium |
JP2005264280A (en) * | 2004-03-22 | 2005-09-29 | Jfe Steel Kk | Grain-oriented electromagnetic steel sheet having superior stamping property and peeling resistance of coating, and manufacturing method therefor |
EP1840906B1 (en) * | 2004-12-17 | 2015-06-03 | Hitachi Metals, Ltd. | Magnetic core for current transformer, current transformer and watthour meter |
WO2006126660A1 (en) * | 2005-05-23 | 2006-11-30 | Nippon Steel Corporation | Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same |
JP4962516B2 (en) * | 2009-03-27 | 2012-06-27 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN102002567B (en) * | 2010-12-15 | 2012-07-11 | 北京科技大学 | Production method of oriented high-silicon-steel thin plates |
KR101482354B1 (en) * | 2012-12-27 | 2015-01-13 | 주식회사 포스코 | Grain-oriented electrical steel having excellent magnetic properties |
KR20150073551A (en) * | 2013-12-23 | 2015-07-01 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
KR20150073511A (en) * | 2013-12-23 | 2015-07-01 | 김종암 | Warmth keeping cover for chima-part and the vinyl house using the same |
KR20150074925A (en) * | 2013-12-24 | 2015-07-02 | 주식회사 포스코 | Non-oriented electrical steel sheets and method for manufacturing the same |
KR101647655B1 (en) * | 2014-12-15 | 2016-08-11 | 주식회사 포스코 | Grain orientied electrical steel sheet and method for manufacturing the same |
JP6344263B2 (en) * | 2015-02-25 | 2018-06-20 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN104928452B (en) * | 2015-05-15 | 2018-03-20 | 武汉钢铁有限公司 | A kind of coating that can prevent orientation silicon steel secondary recrystallization annealing side from splitting |
-
2016
- 2016-10-26 KR KR1020160139937A patent/KR101884428B1/en active IP Right Grant
-
2017
- 2017-10-25 WO PCT/KR2017/011849 patent/WO2018080167A1/en unknown
- 2017-10-25 EP EP17866141.9A patent/EP3533896B1/en active Active
- 2017-10-25 US US16/345,488 patent/US20190309387A1/en not_active Abandoned
- 2017-10-25 JP JP2019522885A patent/JP6808830B2/en active Active
- 2017-10-25 CN CN201780066820.2A patent/CN109906284B/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20180045504A (en) | 2018-05-04 |
CN109906284B (en) | 2021-10-15 |
US20190309387A1 (en) | 2019-10-10 |
WO2018080167A1 (en) | 2018-05-03 |
CN109906284A (en) | 2019-06-18 |
EP3533896B1 (en) | 2021-03-31 |
EP3533896A1 (en) | 2019-09-04 |
EP3533896A4 (en) | 2019-10-16 |
KR101884428B1 (en) | 2018-08-01 |
JP2020509153A (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9953752B2 (en) | Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet | |
JP7068312B2 (en) | Directional electrical steel sheet and its manufacturing method | |
WO2011102455A1 (en) | Manufacturing method for grain-oriented electromagnetic steel sheet | |
WO2011102456A1 (en) | Manufacturing method for grain-oriented electromagnetic steel sheet | |
JP6663999B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP2019501282A (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP6944523B2 (en) | Electrical steel sheet and its manufacturing method | |
JP6808830B2 (en) | Electrical steel sheet and its manufacturing method | |
JP6079580B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR102579761B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
CN113166892B (en) | Oriented electrical steel sheet and method for manufacturing same | |
JP7160926B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR20140084893A (en) | Oriented electrical steel steet and method for the same | |
KR102079771B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JP7465975B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP2014208907A (en) | Method of producing grain oriented electrical steel | |
JP7037657B2 (en) | Directional electrical steel sheet and its manufacturing method | |
JP7053848B2 (en) | Electrical steel sheet and its manufacturing method | |
JP6842549B2 (en) | Directional electrical steel sheet and its manufacturing method | |
KR102319831B1 (en) | Method of grain oriented electrical steel sheet | |
KR101664096B1 (en) | Grain-orientied electrical steel sheet and method for manufacturing the same | |
JP7221480B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
JP7312256B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR101263847B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same | |
KR20120074024A (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190426 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6808830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |