JP2014208907A - Method of producing grain oriented electrical steel - Google Patents

Method of producing grain oriented electrical steel Download PDF

Info

Publication number
JP2014208907A
JP2014208907A JP2014066742A JP2014066742A JP2014208907A JP 2014208907 A JP2014208907 A JP 2014208907A JP 2014066742 A JP2014066742 A JP 2014066742A JP 2014066742 A JP2014066742 A JP 2014066742A JP 2014208907 A JP2014208907 A JP 2014208907A
Authority
JP
Japan
Prior art keywords
annealing
less
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014066742A
Other languages
Japanese (ja)
Other versions
JP5907202B2 (en
Inventor
山口 広
Hiroshi Yamaguchi
山口  広
之啓 新垣
Yukihiro Aragaki
之啓 新垣
有衣子 脇阪
Yuiko WAKISAKA
有衣子 脇阪
松田 広志
Hiroshi Matsuda
広志 松田
早川 康之
Yasuyuki Hayakawa
康之 早川
敬 寺島
Takashi Terajima
寺島  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014066742A priority Critical patent/JP5907202B2/en
Publication of JP2014208907A publication Critical patent/JP2014208907A/en
Application granted granted Critical
Publication of JP5907202B2 publication Critical patent/JP5907202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a grain oriented electrical steel which is produced by adding nitrogen to a steel plate before secondary recrystallization so as to form silicon nitride and has good magnetic characteristics due to efficient diffusion of nitrogen into the steel and resultant deposition of silicon nitride in the grain boundary.SOLUTION: The surface of a cold-rolled plate of a final plate thickness has an average roughness Ra of 0.20 μm or greater. In a nitrogen increase treatment which is based on ammonia gas and carried out at the timing of during primary recrystallization annealing or after annealing, the oxidative PH0/PHof the treatment atmosphere is 0.05 or lower, and the hydrogen concentration of the treatment atmosphere is 10 vol% or higher, and the nitrogen weighting (ΔN) of the nitrogen increase treatment is 50-1,000 ppm.

Description

本発明は、トランスなどの鉄心材料に好適な方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for a core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。   A grain-oriented electrical steel sheet is a soft magnetic material mainly used as a core material of a transformer and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. Such a texture preferentially grows grains of the {110} <001> orientation called the Goss orientation during secondary recrystallization annealing during the production process of grain-oriented electrical steel sheets. Formed through secondary recrystallization.

従来、このような方向性電磁鋼板は、4.5mass%以下程度のSiと、MnS,MnSeおよびAlNなどのインヒビター成分を含有するスラブを、1300℃以上に加熱し、インヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施して、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼純を施して、一次再結晶および脱炭を行い、ついでマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2および特許文献3)。   Conventionally, such a grain-oriented electrical steel sheet is heated to 1300 ° C or higher by heating a slab containing about 4.5 mass% or less of Si and an inhibitor component such as MnS, MnSe, and AlN to once dissolve the inhibitor component. After that, it is hot-rolled and subjected to hot-rolled sheet annealing as necessary, to obtain the final sheet thickness by one or more cold rollings sandwiching intermediate annealing, followed by primary recrystallization annealing in a wet hydrogen atmosphere After performing primary recrystallization and decarburization, and then applying an annealing separator mainly composed of magnesia (MgO), the secondary recrystallization and the inhibitor component are purified at 1200 ° C. for about 5 hours. It has been manufactured by performing final finish annealing (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

上述したとおり、従来の方向性電磁鋼板の製造に際しては、MnS,MnSe,AlNなどの析出物(インヒビター成分)をスラブ段階で含有させて、1300℃を超える高温のスラブ加熱をすることにより、これらのインヒビター成分を一旦固溶させ、後工程で微細析出させることによって二次再結晶を発現させるという工程が採用されてきた。   As described above, when manufacturing conventional grain-oriented electrical steel sheets, precipitates (inhibitor components) such as MnS, MnSe, and AlN are included in the slab stage, and these are heated at a high temperature exceeding 1300 ° C. The step of causing secondary recrystallization by once dissolving the inhibitor component of this compound and then precipitating it finely in a subsequent step has been adopted.

このように、従来の方向性電磁鋼板の製造工程では、1300℃を超える高温でのスラブ加熱が必要であったため、その製造コストは極めて高いものとならざるを得ず、近年の製造コスト低減の要求に応えることができないというところに問題を残していた。
また、特許文献4には、スラブにインヒビター成分を含有させない場合であっても、一次再結晶焼鈍後、二次再結晶完了前に、地鉄中のS量を増加させることによって、二次再結晶を発現させることができる技術(「増硫法」)が開示されている。しかしながら、上記技術は、増硫処理後、二次再結晶焼鈍の昇温過程から二次再結晶直前までに、鋼中に侵入したSを均一に分散させることが難しく、二次再結晶自身が不安定となりがちであった。特に、コイル焼鈍を行った場合、コイル内における温度や鋼板層間の雰囲気を一定にすることが難しいため、二次再結晶の組織(方位)がよりばらつく傾向にあった。
As described above, in the manufacturing process of conventional grain-oriented electrical steel sheets, slab heating at a high temperature exceeding 1300 ° C. is necessary, so the manufacturing cost has to be extremely high, and in recent years the manufacturing cost has been reduced. He left a problem where he was unable to meet the demand.
Further, in Patent Document 4, even when the inhibitor component is not contained in the slab, the secondary recrystallization is performed by increasing the amount of S in the ground iron after the primary recrystallization annealing and before the completion of the secondary recrystallization. A technique (“sulfurization method”) capable of expressing crystals is disclosed. However, in the above technique, it is difficult to uniformly disperse S that has entered the steel from the temperature increasing process of the secondary recrystallization annealing to immediately before the secondary recrystallization after the vulcanization treatment. Tended to be unstable. In particular, when the coil annealing is performed, it is difficult to make the temperature in the coil and the atmosphere between the steel sheet layers constant, so that the structure (orientation) of secondary recrystallization tends to vary.

こうした問題を解決するために、例えば、特許文献5では、酸可溶性Al(sol.Al)を0.010〜0.060%含有させ、スラブ加熱を低温に抑えて脱炭焼鈍工程で適正な窒化雰囲気を用いて窒化を行なうことにより、二次再結晶時に(Al,Si)Nを析出させインヒビターとして用いる方法が提案されている。
(Al,Si)Nは鋼中に微細分散することで有効なインヒビターとして機能するが、Alの含有量によってインヒビター強度が決まるために、製鋼でのAl的中精度が不十分な場合は、十分な粒成長抑制力が得られない場合があった。このような途中工程で窒化処理を行ない、(Al,Si)NあるいはAlNをインヒビターとして利用する方法が数多く提案されているが、最近では、スラブ加熱温度が1300℃を超える製造方法等も開示されている。
In order to solve such a problem, for example, in Patent Document 5, 0.010 to 0.060% of acid-soluble Al (sol. Al) is contained, slab heating is suppressed to a low temperature, and an appropriate nitriding atmosphere is used in the decarburization annealing process. A method has been proposed in which (Al, Si) N is precipitated during secondary recrystallization by nitriding and used as an inhibitor.
(Al, Si) N functions as an effective inhibitor by being finely dispersed in the steel, but since the inhibitor strength is determined by the Al content, it is sufficient if the accuracy of Al in steelmaking is insufficient. In some cases, it was not possible to obtain a sufficient grain growth inhibiting force. Many methods have been proposed in which nitriding treatment is performed in the middle of the process and (Al, Si) N or AlN is used as an inhibitor. Recently, however, a manufacturing method in which the slab heating temperature exceeds 1300 ° C has been disclosed. ing.

一方、そもそもスラブにインヒビター成分を含有させずに二次再結晶を発現させる技術については、特許文献6に、インヒビター成分を含有させなくとも二次再結晶ができる技術(インヒビターレス法)が開示されている。
ここに、インヒビターレス法は、より高純度化した鋼を利用し、テクスチャー(集合組織の制御)によって二次再結晶を発現させる技術である。しかしながら、インヒビターレス法では、高温のスラブ加熱が不要であって、低コストでの方向性電磁鋼板の製造が可能であるものの、インヒビターを有しないが故に、製造工程中での温度ばらつきなどの影響を受けて、製品での磁気特性にバラつきが生じやすいといった不利があった。
On the other hand, regarding a technique for expressing secondary recrystallization without containing an inhibitor component in the slab, Patent Document 6 discloses a technique (inhibitorless method) that enables secondary recrystallization without containing an inhibitor component. ing.
Here, the inhibitorless method is a technique in which secondary recrystallization is manifested by texture (control of texture) using higher-purity steel. However, the inhibitorless method does not require high-temperature slab heating and enables production of grain-oriented electrical steel sheets at a low cost. As a result, there is a disadvantage that the magnetic characteristics of the product are likely to vary.

また、集合組織の制御は磁気特性に対して重要な要素であるため、集合組織制御を行う温間圧延などには、多くの条件が提案されている。こうした集合組織制御が十分に行なえない場合は、インヒビターを用いる技術に比べると、二次再結晶後のゴス方位({110}<001>)への集積度が低く、磁束密度も低くなってしまう。   Also, since texture control is an important factor for magnetic properties, many conditions have been proposed for warm rolling and the like for texture control. If this texture control cannot be performed sufficiently, the degree of integration in the Goss orientation ({110} <001>) after secondary recrystallization will be lower and the magnetic flux density will be lower than in the technique using inhibitors. .

米国特許第1965559号明細書U.S. Patent No. 1965559 特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No.51-13469 特許第4321120号公報Japanese Patent No. 4321120 特許第2782086号公報Japanese Patent No. 2782086 特開2000−129356号公報JP 2000-129356 JP 特開平11−29824号公報Japanese Patent Laid-Open No. 11-29824

上述したとおり、これまで提案されてきた方向性電磁鋼板の製造方法では、良好な磁気特性を安定的に実現することが難しい場合が多かった。
これに対し、発明者らは、スラブ加熱温度を抑えつつ、磁気特性のバラつきを低減した方向性電磁鋼板を製造するために、インヒビター成分を含有させない方向性電磁鋼板の製造方法を用いて一次再結晶集合組織の作り込みを行ない、これに途中工程で窒化を利用して窒化珪素(Si3N4)を析出させ、この窒化珪素をインヒビターとして利用することを検討した。
As described above, it has often been difficult to stably achieve good magnetic properties in the method of manufacturing grain-oriented electrical steel sheets that has been proposed so far.
In contrast, in order to manufacture a grain-oriented electrical steel sheet with reduced variation in magnetic properties while suppressing the slab heating temperature, the inventors have used a method for producing a grain-oriented electrical steel sheet that does not contain an inhibitor component to perform primary regeneration. A crystal texture was formed, and silicon nitride (Si 3 N 4 ) was deposited using nitridation in the middle of the process, and the use of this silicon nitride as an inhibitor was investigated.

すなわち、表層窒素濃化層からの窒素の粒界拡散の挙動と、窒化珪素の析出挙動の詳細な検討により、Alを100質量ppm未満に抑制したインヒビターレス成分に準じた成分を用いて、高温スラブ加熱を回避しつつ、増窒処理(窒素増量)を適用することで、AlNではなく窒化珪素を析出させ、この窒化珪素を正常粒成長の抑制力として機能させることで、磁気特性のバラつきを大幅に低減し、工業的に安定して良好な特性を有する方向性電磁鋼板を製造する方法である。   That is, by examining the grain boundary diffusion behavior of nitrogen from the surface nitrogen enriched layer and the precipitation behavior of silicon nitride, using a component similar to the inhibitorless component with Al suppressed to less than 100 mass ppm, By applying a nitrous treatment (nitrogen increase) while avoiding slab heating, silicon nitride is deposited instead of AlN, and this silicon nitride functions as a suppressive force for normal grain growth, resulting in variations in magnetic properties. This is a method for producing a grain-oriented electrical steel sheet that is greatly reduced and industrially stable and has good characteristics.

加えて、発明者らは、上記窒素増量にかかる条件について、さらに検討を加えた。
その結果、特に、アンモニア等の窒化能を有するガスを主体とする雰囲気中での増窒処理を行う場合、キャリアガスとして、一般的にNガスを利用するが、本発明のように鋼中のSi濃度が3質量%前後であって窒化珪素を析出させる手法においては、わずかな酸化性雰囲気下であってもSiO2等のSi酸化物が容易に生成してしまい、窒化珪素の析出性に多大な影響を及ぼす可能性があることが明らかとなった。
そして、上記酸化性雰囲気を、雰囲気酸化性指標であるPH20/PH2 で示すと、その上限値は0.05 であった。
In addition, the inventors further examined the conditions for the nitrogen increase.
As a result, in particular, when the boosted nitrogen process gas having a nitriding ability such as ammonia in an atmosphere mainly composed, as a carrier gas, typically utilize N 2 gas, but as in the present invention in the steel In the method of precipitating silicon nitride with a Si concentration of about 3% by mass, Si oxide such as SiO 2 is easily generated even in a slight oxidizing atmosphere, and the silicon nitride is deposited. It has become clear that it may have a great influence on
When the oxidizing atmosphere is represented by PH 20 / PH 2 which is an atmospheric oxidizing index, the upper limit value was 0.05.

ここで、特許文献7には、A1N をインヒビターとして含有する系において、窒化時の酸化性を適度に低下させる技術が開示されているが、本発明のように、NをSiと結合させて析出物を形成させる場合には、未だ、安定的に窒化を行うことができないことがあった。   Here, Patent Document 7 discloses a technique for appropriately reducing the oxidizability during nitriding in a system containing A1N as an inhibitor. However, as in the present invention, N is combined with Si to precipitate. In the case of forming an object, there has been a case where nitriding cannot be performed stably yet.

そこで、発明者らは安定的に窒化珪素を析出させる増窒処理条件を重ねて検討し、キャリアガス中にHガスを10vol%以上含有させ、かつ炉内露点を低く抑えること、すなわち、水蒸気分圧PH20を水素分圧PH2で除した雰囲気酸化性指標であるPH20/PH2を0.05以下と抑制するだけでなく、さらに、窒化前の鋼板の表面粗度を調整することで、窒化珪素を安定的に析出させて二次再結晶後に良好な磁気特性が得られることを新たに知見した。 Therefore, the inventors have repeatedly investigated the nitriding treatment conditions for stably depositing silicon nitride, containing 10 vol% or more of H 2 gas in the carrier gas, and keeping the dew point in the furnace low, that is, water vapor Not only is the atmospheric oxidation index obtained by dividing the partial pressure PH 2 0 divided by the hydrogen partial pressure PH 2 , but PH 2 0 / PH 2 is suppressed to 0.05 or less, and the surface roughness of the steel sheet before nitriding is adjusted. Thus, it was newly discovered that good magnetic properties can be obtained after secondary recrystallization by stably depositing silicon nitride.

本発明は、上記の知見に基づき開発されたもので、窒化珪素を形成する目的で、二次再結晶前の鋼板に、ガスを主体とする雰囲気での増窒処理により窒素を加えた方向性電磁鋼板に対し、窒素を鋼中へ効率的に拡散させ、窒化珪素を粒界に析出させることで、良好な磁気特性を有する方向性電磁鋼板が得られる方向性電磁鋼板の製造方法を提供することを目的とする。   The present invention was developed on the basis of the above knowledge, and for the purpose of forming silicon nitride, the directionality in which nitrogen was added to the steel sheet before secondary recrystallization to the steel sheet before secondary recrystallization in a nitrogen-based atmosphere. Provided is a method for producing a grain-oriented electrical steel sheet that can obtain a grain-oriented electrical steel sheet having good magnetic properties by efficiently diffusing nitrogen into the steel and precipitating silicon nitride at grain boundaries. For the purpose.

まず、本発明を完成するに至った実験結果について説明する。
質量%または質量ppmで、C:600ppm、Si:3.30%、Mn:0.08%、S:10ppm、Al:20ppm、N:20ppm、Sb:0.01%およびCu:0.05%を含み、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、連続鋳造後、1100℃に加熱したのち、熱間圧延によって2.2mm厚の熱延板とし、ついで1000℃にて熱延板焼鈍を施したのち、酸洗して冷間圧延により0.23mmの厚みに仕上げた。
First, the experimental results that led to the completion of the present invention will be described.
In mass% or mass ppm, C: 600ppm, Si: 3.30%, Mn: 0.08%, S: 10ppm, Al: 20ppm, N: 20ppm, Sb: 0.01% and Cu: 0.05%, the balance being Fe and inevitable After continuous casting, the steel slab with the composition of mechanical impurities is heated to 1100 ° C, then hot-rolled to a 2.2mm thick hot-rolled sheet, then hot-rolled sheet annealed at 1000 ° C, and then pickled Then, it was finished to a thickness of 0.23 mm by cold rolling.

ついで、各コイルを脱脂して850℃の湿水素雰囲気で脱炭焼鈍を行い、得られた脱炭焼鈍板より圧延方向に沿ってエプスタイン試料を切り出した。   Next, each coil was degreased and decarburized and annealed in a wet hydrogen atmosphere at 850 ° C., and an Epstein sample was cut out along the rolling direction from the obtained decarburized and annealed plate.

引続き、750℃のガス窒化炉を用い、アンモニアを主体とする種々の混合ガス雰囲気中でΔN=300ppm程度の増窒処理を行った。その後、MgOを主剤とした焼鈍分離剤を鋼板に塗布し、1150℃で5時間の最終仕上げ焼鈍を行った。最終仕上げ焼鈍の雰囲気ガスとして、昇温中はNガス、1150℃到達後はHガスを用いて純化処理を行った。その後、未反応分離剤を除去した後、コロイダルシリカとリン酸Mgを主体とする絶縁コーティングを850℃で形成して製品板とした。 Subsequently, using a gas nitriding furnace at 750 ° C., a nitrogen increase treatment of about ΔN = 300 ppm was performed in various mixed gas atmospheres mainly composed of ammonia. Thereafter, an annealing separator containing MgO as a main component was applied to the steel sheet, and a final finish annealing was performed at 1150 ° C. for 5 hours. As atmosphere gas for final finish annealing, purification was performed using N 2 gas during the temperature rise and H 2 gas after reaching 1150 ° C. Then, after removing the unreacted separating agent, an insulating coating mainly composed of colloidal silica and Mg phosphate was formed at 850 ° C. to obtain a product plate.

かかる製品板のエプスタイン試料に対し、それぞれ、磁束密度:1.7T、周波数:50Hzにおける鉄損値W17/50(W/kg)および磁束密度B(T)を測定した。この測定結果のうち、雰囲気酸化性を横軸、磁束密度Bを縦軸として図1にプロットした。 The iron loss value W 17/50 (W / kg) and the magnetic flux density B 8 (T) at a magnetic flux density of 1.7 T and a frequency of 50 Hz were measured for the Epstein samples of the product plate, respectively. Among the measured results were plotted atmosphere oxidizing horizontal axis in FIG. 1 the magnetic flux density B 8 as ordinate.

図1より、低Alのインヒビター成分を含まない成分系に対して、増窒処理を施して二次再結晶させる場合には、増窒処理の雰囲気酸化性:PH20/PH2を0.05以下とすることで、高い磁束密度が安定的に得られることが分かった。 As shown in FIG. 1, in the case where the component system containing no low Al inhibitor component is subjected to nitrogen enrichment treatment and secondary recrystallization, the atmospheric oxidation property of nitrogen enrichment treatment: PH 2 0 / PH 2 is 0.05 or less. It was found that a high magnetic flux density can be stably obtained.

また、窒化珪素を形成させるプロセスにおいては、従来知られているAlの含有量が100ppm 以上の成分系に窒化処理を施す場合と異なり、母材のSi濃度が3質量%前後と高い場合は、アンモニアガス等による窒化物形成に対する表面性状の影響が予想以上に大きいことが明らかとなった。   In addition, in the process of forming silicon nitride, unlike the conventional case where nitriding is applied to a component system having an Al content of 100 ppm or more, when the Si concentration of the base material is as high as about 3% by mass, It became clear that the influence of surface properties on nitride formation by ammonia gas or the like was larger than expected.

さらに、鉄損を担う渦流損とヒステリシス損のうち、後者は表面の平滑性を上げることで低減できることが知られているが、窒化処理を行う場合には、さらに、Ra(中心線平均粗さ)で表現される、いわゆる鋼板の表面粗度を0.20μm 以上とすることで、連続処理に適う処理時間を実現できるだけでなく、表面近傍の窒化物形成やその後の窒素の鋼中拡散、さらには鋼板内部でのSi3N4析出を安定させ、結果的に得られる鋼板の磁束密度を高位に安定できることを併せて知見した。
本発明は上記知見に立脚するものである。
Furthermore, it is known that the latter of the eddy current loss and hysteresis loss responsible for iron loss can be reduced by increasing the smoothness of the surface. However, when performing nitriding treatment, Ra (centerline average roughness) ), The surface roughness of the so-called steel sheet is 0.20 μm or more, so that not only the processing time suitable for continuous processing can be realized, but also nitride formation near the surface and subsequent diffusion of nitrogen in the steel, It was also found that the Si 3 N 4 precipitation in the steel plate was stabilized and the magnetic flux density of the resulting steel plate could be stabilized at a high level.
The present invention is based on the above findings.

本発明の要旨構成は次のとおりである。
1.質量%で、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S、SeおよびOをそれぞれ50質量ppm未満、sol.Alを100質量ppm以下、Nを80質量ppm以下に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくあるいは再加熱後、1300℃以下で熱間圧延し、熱延板焼鈍を施した後、あるいは熱延板焼鈍を施すことなく、一回の冷間圧延で最終板厚の冷間圧延板とし、さらに、一次再結晶焼鈍を施して焼鈍分離剤を塗布し、二次再結晶焼鈍を施す一連の方向性電磁鋼板の製造工程において、
上記冷間圧延板の表面の平均粗さRa を0.20μm 以上にすると共に、
上記一次再結晶焼鈍中、焼鈍後のいずれかのタイミングでアンモニアガスを主体とする増窒処理を施すに際し、該増窒処理の雰囲気酸化性:PH20/PH2を0.05以下、水素濃度を10vol%以上とし、さらに、上記増窒処理の窒素増量(ΔN)を50質量ppm以上1000質量ppm以下とする方向性電磁鋼板の製造方法。
The gist of the present invention is as follows.
1. In mass%, C: 0.08% or less, Si: 2.0 to 4.5% and Mn: 0.5% or less, S, Se and O are each less than 50 mass ppm, sol.Al is 100 mass ppm or less, and N is After restraining to 80 mass ppm or less, the balance is a steel slab composed of Fe and inevitable impurities, without reheating or after reheating, after hot rolling at 1300 ° C or less, and hot-rolled sheet annealing Alternatively, without performing hot-rolled sheet annealing, a cold-rolled sheet with the final thickness is obtained by a single cold rolling, and further, a primary recrystallization annealing is applied and an annealing separator is applied, and a secondary recrystallization annealing is performed. In the manufacturing process of a series of grain-oriented electrical steel sheets to be applied,
The average roughness Ra of the surface of the cold rolled plate is 0.20 μm or more,
During the above-mentioned primary recrystallization annealing, when performing the nitrification treatment mainly composed of ammonia gas at any timing after the annealing, the atmospheric oxidation property of the nitrification treatment: PH 2 0 / PH 2 is 0.05 or less, the hydrogen concentration is A method for producing a grain-oriented electrical steel sheet with 10% by volume or more and further a nitrogen increase (ΔN) in the above nitrous treatment of 50 to 1000 ppm by mass.

2.さらに、前記鋼スラブが、質量%で、
Ni:0.005〜1.50%、
Sn:0.01〜0.50%、
Sb:0.005〜0.50%、
Cu:0.01〜0.50%、
Cr:0.01〜1.50%
P:0.0050〜0.50%
Mo:0.01〜0.50%および
Nb:0.0005〜0.0100%
のうちから選んだ1種または2種以上を含有することを特徴とする前記1に記載の方向性電磁鋼板の製造方法。
2. Furthermore, the said steel slab is mass%,
Ni: 0.005-1.50%,
Sn: 0.01 to 0.50%,
Sb: 0.005-0.50%,
Cu: 0.01 to 0.50%,
Cr: 0.01 to 1.50%
P: 0.0050-0.50%
Mo: 0.01-0.50% and
Nb: 0.0005-0.0100%
The method for producing a grain-oriented electrical steel sheet according to 1 above, comprising one or more selected from among the above.

3.前記冷間圧延板の表面の平均粗さRa を、さらに0.25μm 以上とする前記1または2に記載の方向性電磁鋼板の製造方法。 3. 3. The method for producing a grain-oriented electrical steel sheet according to 1 or 2, wherein the average roughness Ra of the surface of the cold-rolled sheet is further 0.25 μm or more.

本発明によれば、高温スラブ加熱を施さずとも、磁気特性のバラつきが大幅に低減され、工業的に安定して良好な特性を有する方向性電磁鋼板を得ることができる。   According to the present invention, even if high temperature slab heating is not performed, the magnetic property variation is greatly reduced, and a grain-oriented electrical steel sheet having industrially stable and good characteristics can be obtained.

冷間圧延の各条件に対する磁束密度の測定結果を、増窒処理の雰囲気酸化性:PH20/PH2を横軸、磁束密度Bを縦軸として示したグラフである。It is the graph which showed the measurement result of the magnetic flux density with respect to each condition of cold rolling, with the atmosphere oxidation property of the nitriding treatment: PH 2 0 / PH 2 as the horizontal axis and the magnetic flux density B 8 as the vertical axis.

以下、本発明おける製造に関するポイントについて述べる。
本発明においては、基本的に従来公知のスラブ高温加熱を利用しない方向性電磁鋼板の製造方法に従う。
まず、本発明において、鋼スラブの成分組成の限定理由について説明する。なお、以下に記載する「%」および「ppm」表示は特に断らない限り、それぞれ質量%および質量ppmを意味するものとする。
Hereafter, the point regarding manufacture in this invention is described.
In the present invention, basically, a conventionally known method for producing grain-oriented electrical steel sheets that does not utilize high-temperature slab heating is followed.
First, the reason for limiting the component composition of the steel slab in the present invention will be described. Unless otherwise specified, “%” and “ppm” described below mean mass% and mass ppm, respectively.

本発明の溶鋼成分については、鋼溶製時にsol.Alを100ppm以下に抑制する。本発明は、AlNをインヒビターとして利用しないプロセスを前提として1300℃以下のスラブ加熱温度を想定しているので、sol.Alが100ppmより多い場合、AlN等として完全固溶できずに、粗大な析出物として二次再結晶の撹乱要因となる。従って、sol.Alを100ppm以下に抑制する必要がある。   About the molten steel component of this invention, sol.Al is suppressed to 100 ppm or less at the time of steel melting. Since the present invention assumes a slab heating temperature of 1300 ° C. or less on the premise of a process that does not use AlN as an inhibitor, when sol.Al is more than 100 ppm, it cannot be completely dissolved as AlN or the like, and coarse precipitation It becomes a disturbance factor of secondary recrystallization as a product. Therefore, it is necessary to suppress sol.Al to 100 ppm or less.

本発明は、増窒処理後にSi3N4を析出させることが重要であるため、不可避的に含まれるAl成分によってAlNが析出すると、後の析出物制御を乱す要因となるので、極力少ない方が良い。また、スラブ加熱時のフクレなどの欠陥の原因となることもあるため、sol.Alは80ppm以下に抑制することが好ましい。 In the present invention, since it is important to deposit Si 3 N 4 after the nitriding treatment, if AlN is inevitably deposited by the Al component contained, it will be a factor that disturbs the subsequent precipitate control, so the less Is good. In addition, sol.Al is preferably suppressed to 80 ppm or less because it may cause defects such as blisters during slab heating.

C:0.08%以下
Cは、一次再結晶集合組織を改善する上で有用な元素であるが、含有量が0.08%を超えると、かえって一次再結晶集合組織の劣化を招くので、本発明では0.08%以下に限定した。磁気特性の観点から望ましい添加量は、0.01〜0.06%の範囲である。なお、下限に関しては、磁気特性上30ppm程度以下が求められるので、要求される磁気特性のレベルがさほど高くない場合には、特に設けなくてもよい。
C: 0.08% or less C is an element useful for improving the primary recrystallization texture. However, if the content exceeds 0.08%, the primary recrystallization texture is deteriorated. % Or less. A desirable addition amount from the viewpoint of magnetic properties is in the range of 0.01 to 0.06%. Note that the lower limit is required to be about 30 ppm or less in terms of magnetic characteristics. Therefore, when the required level of magnetic characteristics is not so high, it is not particularly necessary.

Si:2.0〜4.5%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0%に満たないとその添加効果に乏しく、一方、4.5%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜4.5%の範囲とする必要がある。
Si: 2.0-4.5%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if its content is less than 2.0%, its additive effect is poor. On the other hand, if it exceeds 4.5%, the workability is remarkably high. The amount of Si needs to be in the range of 2.0 to 4.5% because the magnetic flux density also decreases.

Mn:0.5%以下
Mnは、製造時における熱間加工性を向上させる効果があるので、0.005%以上含有させることが好ましいが、含有量が0.5%を超えた場合には、一次再結晶集合組織が悪化して磁気特性の劣化を招くので、Mnは0.5%以下に限定した。
Mn: 0.5% or less
Since Mn has the effect of improving hot workability during production, it is preferable to contain 0.005% or more. However, if the content exceeds 0.5%, the primary recrystallization texture deteriorates and magnetic properties are increased. Since the characteristics are deteriorated, Mn is limited to 0.5% or less.

S、SeおよびO:それぞれ50ppm未満
先に述べたように、本発明では、Alを低減しているため、AlNを主体とする、いわゆるインヒビターの活用はない。この場合、磁束密度の高い方向性電磁鋼板を得るためには、S:50ppm(0.005%)未満、Se:50ppm(0.005%)未満とする必要がある。これは強い抑制力を発揮するインヒビター成分が含まれていない鋼成分系では、不純物による一次再結晶における粒成長性への影響が大きいためである。
また、O量は、50ppm(0.005%)未満とする必要がある。これは介在物としての酸化物が磁気特性に悪影響を及ぼすためである。
S, Se and O: each less than 50 ppm As described above, in the present invention, since Al is reduced, there is no utilization of so-called inhibitors mainly composed of AlN. In this case, in order to obtain a grain-oriented electrical steel sheet having a high magnetic flux density, S: less than 50 ppm (0.005%) and Se: less than 50 ppm (0.005%) are required. This is because, in a steel component system that does not contain an inhibitor component that exhibits a strong suppressive force, the effect of impurities on the grain growth in primary recrystallization is large.
Further, the amount of O needs to be less than 50 ppm (0.005%). This is because oxides as inclusions adversely affect the magnetic properties.

ここで、S量は、磁束密度向上の観点から添加量が多いほど良好であるが、低温スラブ加熱を行う場合、MnS等のインヒビターとして制御性良く析出させることが困難なため、製鋼段階から添加すべきではなく、一次再結晶焼鈍後から二次再結晶完了までの間に、鋼板に対して増硫処理を施して増加させることが望ましい。また、このようなタイミングで増硫処理を施したとしても、二次再結晶焼鈍はバッチ式で焼鈍処理を行うため、昇温速度は一般に遅く、増硫処理により鋼中に侵入したSを均一に分散させるのに適しているので問題はない。   Here, the amount of S is better as the added amount is larger from the viewpoint of improving the magnetic flux density. However, when performing low-temperature slab heating, it is difficult to precipitate as an inhibitor such as MnS with good controllability. It should not be increased, and it is desirable to increase the steel sheet by performing a vulcanization treatment after the primary recrystallization annealing until the completion of the secondary recrystallization. Moreover, even if the vulcanization treatment is performed at such timing, since the secondary recrystallization annealing is performed in a batch manner, the rate of temperature rise is generally slow, and the S that has penetrated into the steel by the vulcanization treatment is uniform. There is no problem because it is suitable for dispersion.

N:80ppm以下
本発明は、インヒビターレスの製造方法を適用し集合組織の作り込みまでを行なうため、Nは80ppm以下に抑制する必要がある。80ppmを超えると粒界偏析の影響や微量窒化物の形成により、集合組織が劣化するといった弊害が生じるからである。また、スラブ加熱時の「フクレ」などの欠陥の原因となることもあるため、80ppm以下に抑制する必要がある。なお、望ましくは60ppm以下である。
N: 80 ppm or less In the present invention, an inhibitorless manufacturing method is applied to complete the formation of a texture. Therefore, N must be suppressed to 80 ppm or less. This is because if it exceeds 80 ppm, the effect of grain boundary segregation and the formation of a trace amount of nitrides will cause the adverse effect of deterioration of the texture. Moreover, since it may cause defects such as “fluff” at the time of slab heating, it is necessary to suppress it to 80 ppm or less. Desirably, it is 60 ppm or less.

以上、必須成分について説明したが、本発明では、工業的により安定して磁気特性を改善する成分として、以下の元素を適宜含有させることができる。なお、残部は、Feおよび不可避的不純物である。
Ni:0.005〜1.50%
Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する働きがあって、そのためには0.005%以上含有させることが好ましいが、含有量が1.50%を超えると所望の二次再結晶を得ることが困難となり、磁気特性が劣化するので、Niは0.005〜1.50%の範囲で含有させることが望ましい。
The essential components have been described above. In the present invention, the following elements can be appropriately contained as components that improve the magnetic properties more stably industrially. The balance is Fe and inevitable impurities.
Ni: 0.005-1.50%
Ni works to improve the magnetic properties by increasing the uniformity of the hot-rolled sheet structure, and for that purpose, it is preferable to contain 0.005% or more, but if the content exceeds 1.50%, the desired secondary Since it becomes difficult to obtain recrystallization and the magnetic properties deteriorate, it is desirable to contain Ni in the range of 0.005 to 1.50%.

Sn:0.01〜0.50%
Snは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素であり、そのためには0.01%以上含有させることが好ましいが、0.50%を超えて含有されると冷間圧延性が劣化するので、Snは0.01〜0.50%の範囲で含有させることが望ましい。
Sn: 0.01-0.50%
Sn is a useful element that suppresses nitriding and oxidation of steel sheets during secondary recrystallization annealing and promotes secondary recrystallization of grains having good crystal orientation to improve magnetic properties. However, if it exceeds 0.50%, the cold rolling property deteriorates, so it is desirable to contain Sn in the range of 0.01 to 0.50%.

Sb:0.005〜0.50%
Sbは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる有用元素であり、その目的のためには0.005%以上含有させることが好ましいが、0.50%を超えて含有されると冷間圧延性が劣化するので、Sbは0.005〜0.50%の範囲で含有させることが望ましい。
Sb: 0.005-0.50%
Sb is a useful element that effectively suppresses nitridation and oxidation of steel sheets during secondary recrystallization annealing, promotes secondary recrystallization of grains with good crystal orientation, and effectively improves magnetic properties. For the purpose, it is preferable to contain 0.005% or more, but if it exceeds 0.50%, the cold rolling property deteriorates, so Sb is preferably contained in the range of 0.005 to 0.50%.

Cu:0.01〜0.50%
Cuは、二次再結晶焼鈍中の鋼板の酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる働きがあり、そのためには0.01%以上含有させることが好ましいが、0.50%を超えて含有されると熱間圧延性の劣化を招くので、Cuは0.01〜0.50%の範囲で含有させることが望ましい。
Cu: 0.01-0.50%
Cu suppresses oxidation of the steel sheet during secondary recrystallization annealing, promotes secondary recrystallization of grains having a good crystal orientation, and effectively improves magnetic properties. However, if it exceeds 0.50%, the hot rolling property is deteriorated, so it is desirable to contain Cu in the range of 0.01 to 0.50%.

Cr:0.01〜1.50%
Crは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.01%以上含有させることが好ましいが、一方でその含有量が1.50%を超えると所望の二次再結晶を得ることが困難となり、磁気特性が劣化するので、Crは0.01〜1.50%の範囲で含有させることが望ましい。
Cr: 0.01 to 1.50%
Cr has a function of stabilizing the formation of the forsterite film, and for that purpose, it is preferable to contain 0.01% or more, but when the content exceeds 1.50%, a desired secondary recrystallization can be obtained. Since it becomes difficult and the magnetic properties deteriorate, it is desirable to contain Cr in the range of 0.01 to 1.50%.

P:0.0050〜0.50%
Pは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.0050%以上含有させることが好ましいが、含有量が0.50%を超えると冷間圧延性が劣化するので、Pは0.0050〜0.50%の範囲で含有させることが望ましい。
P: 0.0050 ~ 0.50%
P has a function of stabilizing the formation of the forsterite film. For that purpose, P is preferably contained in an amount of 0.0050% or more. However, if the content exceeds 0.50%, the cold rolling property deteriorates, so P is 0.0050 to It is desirable to make it contain in 0.50% of range.

Mo:0.01〜0.50%、Nb:0.0005〜0.0100%
MoおよびNbは、スラブ加熱時の温度変化による割れの抑制等を介して、熱延後のヘゲを抑制する効果を有している。これらの元素は、少なくともどちらか一方を、上記下限値以上含有させなければヘゲ抑制の効果は小さく、一方、どちらかが上記上限を超えると、炭化物や窒化物を形成するなどして最終製品まで残留した際、鉄損劣化を引き起こすため、上述した範囲とすることが望ましい。
Mo: 0.01-0.50%, Nb: 0.0005-0.0100%
Mo and Nb have an effect of suppressing sag after hot rolling through suppression of cracking due to temperature change during slab heating. If these elements do not contain at least one of the above lower limit value or more, the effect of suppressing heges is small. On the other hand, if either of these elements exceeds the above upper limit, carbide or nitride is formed, and the final product. In order to cause deterioration of the iron loss when remaining up to, it is desirable to be in the above range.

次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整した鋼スラブを、再加熱することなくあるいは再加熱したのち、熱間圧延に供する。なお、スラブを再加熱する場合には、再加熱温度を、1000℃程度以上とするのが望ましく1300℃以下とすることが必要である。というのは、1300℃を超えるスラブ加熱は、スラブの段階で鋼中にインヒビターをほとんど含まない本発明にとって無意味であり、コストアップの要因となるだけだからである。一方、1000℃未満のスラブ加熱では、熱間圧延時の圧延荷重が高くなって、圧延することが困難になるからである。
Next, the manufacturing method of this invention is demonstrated.
The steel slab adjusted to the above preferable component composition range is subjected to hot rolling without being reheated or after being reheated. When the slab is reheated, the reheating temperature is desirably about 1000 ° C. or higher, and it is necessary to set it to 1300 ° C. or lower. This is because slab heating above 1300 ° C is meaningless for the present invention, which contains almost no inhibitor in the steel at the slab stage, and only increases costs. On the other hand, when the slab is heated at a temperature lower than 1000 ° C., the rolling load at the time of hot rolling becomes high and it becomes difficult to perform rolling.

ついで、熱延板に、必要に応じて熱延板焼鈍を施したのち、1回の冷間圧延を施して、最終冷延板(最終板厚の冷間圧延板)とする。この冷間圧延は、常温で行ってもよいし、常温より高い温度たとえば250℃程度に鋼板温度を上げて圧延する温間圧延としてもよい。
本発明において、上記の最終冷延板の表面粗さは、Ra(中心線平均粗さ)で表現される表面粗度を0.20μm 以上とする必要があり、さらに0.25μm以上とすることが望ましい。電磁鋼板の鉄損値を低減する目的では、ヒステリシス損低減の観点から、表面の平滑性を上げる、すなわち表面粗度Raを低下させることが有効であるが、連続窒化処理における窒加速度増加による生産性向上、磁束密度の高位安定性の観点からは、表面粗度Raが大きいほど良い。前者については、鋼板表面での窒化反応の反応表面積を増加させる効果がある。後者については、そのメカニズムが十分に明らかとなっているわけではないが、表面粗度Raを0.20μm未満に低下させると、窒化処理直後に形成される表面窒化物が不均一に形成されやすく、その後の分解、窒素の鋼中拡散、Si3N4析出に影響し、最終的に得られる磁束密度がばらつきやすい。逆に適度な表面粗度は窒化処理時にマクロ的に均一な表面窒化物形成を促進し、その後のSi3N4均一析出に有効に働くと推定している。
Subsequently, the hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then cold-rolled once to obtain a final cold-rolled sheet (cold-rolled sheet having a final thickness). This cold rolling may be performed at normal temperature, or may be warm rolling in which the steel sheet temperature is raised to a temperature higher than normal temperature, for example, about 250 ° C.
In the present invention, the surface roughness of the final cold rolled sheet needs to be a surface roughness expressed by Ra (center line average roughness) of 0.20 μm or more, and more preferably 0.25 μm or more. . For the purpose of reducing the iron loss value of electrical steel sheets, it is effective to increase the surface smoothness, that is, to reduce the surface roughness Ra, from the viewpoint of reducing hysteresis loss. From the viewpoint of improving the stability and the high stability of the magnetic flux density, the larger the surface roughness Ra, the better. The former has the effect of increasing the reaction surface area of the nitriding reaction on the steel sheet surface. For the latter, the mechanism is not sufficiently clear, but when the surface roughness Ra is reduced to less than 0.20 μm, the surface nitride formed immediately after the nitriding treatment is likely to be unevenly formed, It affects the subsequent decomposition, diffusion of nitrogen in the steel and Si 3 N 4 precipitation, and the final magnetic flux density tends to vary. On the other hand, it is presumed that moderate surface roughness promotes the formation of macroscopically uniform surface nitride during nitriding, and works effectively for subsequent uniform precipitation of Si 3 N 4 .

続いて、最終板厚の冷間圧延板に一次再結晶焼鈍を施す。この一次再結晶焼鈍の目的は、圧延組織を有する冷間圧延板を一次再結晶させて、二次再結晶に最適な一次再結晶粒径に調整することである。そのためには、一次再結晶焼鈍の焼鈍温度を800℃以上950℃未満程度とすることが望ましい。なお、この時の焼鈍雰囲気を、湿水素窒素あるいは湿水素アルゴン雰囲気とし、脱炭焼鈍を兼ねても良い。   Subsequently, primary recrystallization annealing is performed on the cold-rolled sheet having the final thickness. The purpose of this primary recrystallization annealing is to adjust the primary recrystallization grain size optimal for secondary recrystallization by primary recrystallization of a cold rolled sheet having a rolled structure. For that purpose, it is desirable to set the annealing temperature of the primary recrystallization annealing to about 800 ° C. or more and less than 950 ° C. Note that the annealing atmosphere at this time may be wet hydrogen nitrogen or wet hydrogen argon atmosphere, and may also serve as decarburization annealing.

さらに、本発明において、窒素増量のための窒化処理は、アンモニアガスによるガス窒化が前提であって、一次再結晶焼鈍中、あるいは焼鈍後に施す。   Further, in the present invention, the nitriding treatment for increasing nitrogen is premised on gas nitriding with ammonia gas, and is performed during or after the primary recrystallization annealing.

前掲した図1より、窒化炉内の雰囲気ガスの酸化性PH20/PH2が0.05より大きな条件では、一部高磁束密度の素材が得られるものの、磁気特性のばらつきは大きく、磁気特性の低いものが混じってしまい、結果的に、二次再結晶挙動が不安定となっていることが分かる。
すなわち、本発明における低Alのインヒビター成分を含まない成分系に対して、ガス窒化で増窒処理を施す場合には、雰囲気酸化性PH20/PH2を0.05以下として、鋼中Siの酸化による窒化珪素の形成阻害をできる限り抑制させることが必要である。なお、PH20/PH2の値に、下限は特にないが、工業的に利用可能な露点より0.002程度である。
As shown in FIG. 1 above, under conditions where the oxidizing gas PH 2 0 / PH 2 of the atmosphere gas in the nitriding furnace is larger than 0.05, a material having a high magnetic flux density can be obtained, but the variation in magnetic characteristics is large, As a result, it is understood that the secondary recrystallization behavior is unstable.
That is, when a nitrogen enrichment process is performed by gas nitriding on a component system that does not contain a low Al inhibitor component in the present invention, the atmospheric oxidation PH 2 0 / PH 2 is set to 0.05 or less, and oxidation of Si in steel is performed. It is necessary to suppress as much as possible the inhibition of silicon nitride formation due to. There is no particular lower limit to the value of PH 2 0 / PH 2 , but it is about 0.002 from the industrially available dew point.

ここで、上記磁気特性のばらつきの発生原因は明らかではないが、脱炭を伴う一次再結晶焼鈍後の表面にはSiO2を主体とした酸化物が形成されていて、Si酸化物形成に伴って表面近傍の鋼中Si濃度が低下する。そして、そのSi濃度低下に伴って生じるSi分布の不均一性が、窒化珪素の形成や分布挙動に影響を与えているからと推定される。 Here, although the cause of the variation in the magnetic characteristics is not clear, an oxide mainly composed of SiO 2 is formed on the surface after the primary recrystallization annealing accompanied with decarburization. As a result, the Si concentration in the steel near the surface decreases. And it is estimated that the Si distribution non-uniformity caused by the Si concentration reduction affects the formation and distribution behavior of silicon nitride.

他方、雰囲気ガスとして混合するHガスについては、全く混合しない場合、良好な磁束密度が得られず、体積分率で10%以上添加することが必要であることが分かる。上限は特にないが、窒化能を有するアンモニアガスおよびNガスの混合は必要であるので80vol%以下が望ましい。 On the other hand, with respect to the H 2 gas mixed as the atmospheric gas, it can be seen that when it is not mixed at all, a good magnetic flux density cannot be obtained, and it is necessary to add 10% or more in volume fraction. Although there is no particular upper limit, 80 vol% or less is desirable because mixing of ammonia gas having nitriding ability and N 2 gas is necessary.

従って、本発明では、雰囲気ガスとしてHガスを10vol%以上混合することが必要であると同時に、PH20/PH2で規定される雰囲気酸化性を0.05以下とすることが必要である。また、そのためには窒化炉内の露点、すなわち水蒸気分圧を低く抑えることが重要である。 Therefore, in the present invention, it is necessary to mix 10 vol% or more of H 2 gas as the atmospheric gas, and at the same time, it is necessary to reduce the atmospheric oxidation property defined by PH 2 0 / PH 2 to 0.05 or less. For this purpose, it is important to keep the dew point in the nitriding furnace, that is, the water vapor partial pressure low.

上記増窒処理の際、重要な点は表層に窒化物層を得ることである。特に鋼中への拡散を抑制するために800℃以下の温度で窒化を行なうことが望ましいが、時間を短時間(例えば30秒程度)とすることで高温であっても表面へ窒化物層を形成させることが可能となる。   An important point in the above nitriding treatment is to obtain a nitride layer as a surface layer. In order to suppress diffusion into steel, it is desirable to perform nitriding at a temperature of 800 ° C. or less. However, the nitride layer is formed on the surface even at high temperatures by shortening the time (for example, about 30 seconds). It can be formed.

また、窒化による窒素増量(ΔN)は50ppm以上1000ppm以下とするのが肝要である。窒素増量が50ppm未満では、その増窒効果は十分に得られず、一方、1000ppmを超えると窒化珪素の析出量が過多となって、効果的に二次再結晶が生じない。望ましくは200ppm以上1000ppm以下が好適範囲である。なお、当該窒素濃度は、たとえ鋼板の一部に濃化していたとしても、鋼板の厚み方向の平均に均した値である。   Further, it is important that the nitrogen increase (ΔN) by nitriding is 50 ppm or more and 1000 ppm or less. If the nitrogen increase is less than 50 ppm, the effect of increasing nitrogen cannot be obtained sufficiently. On the other hand, if it exceeds 1000 ppm, the amount of silicon nitride deposited becomes excessive and secondary recrystallization does not occur effectively. The preferred range is 200 ppm or more and 1000 ppm or less. Note that the nitrogen concentration is a value averaged to the average in the thickness direction of the steel plate even if it is concentrated in a part of the steel plate.

上記一次再結晶焼鈍および窒化処理を行った後、鋼板表面に焼鈍分離剤を塗布する。二次再結晶焼鈍後の鋼板表面にフォルステライト被膜を形成するためには、焼鈍分離剤の主剤をマグネシア(MgO)とする必要があるが、フォルステライト被膜の形成が必要ない場合には、焼鈍分離剤主剤として、アルミナ(Al203)やカルシア(CaO)など、二次再結晶焼鈍温度より高い融点を有する適当な酸化物を用いることができる。 After performing the primary recrystallization annealing and nitriding treatment, an annealing separator is applied to the steel sheet surface. In order to form a forsterite film on the steel sheet surface after secondary recrystallization annealing, it is necessary to use magnesia (MgO) as the main component of the annealing separator. As the separating agent main component, an appropriate oxide having a melting point higher than the secondary recrystallization annealing temperature, such as alumina (Al 2 O 3 ) or calcia (CaO), can be used.

二次再結晶焼鈍では、300〜800℃間の滞留時間を5時間以上150時間以下とすることが好ましい。窒化珪素の析出は、正常粒成長の抑制が目的であるため、正常粒成長が進行する800℃の段階では十分な量が粒界上に選択的に析出している必要があり、300〜800℃の温度域の滞留時間を5時間以上とすることで、窒化珪素は、粒内で析出することができないものの、粒界を拡散して来たNとSiとは、粒界上に選択的に析出することができるのである。一方、上限については必ずしも設ける必要はないが、150時間を超える焼鈍を行なっても焼鈍に要するエネルギーばかりが必要になるだけなので、150時間以下の時間で行なうことが望ましい。また焼鈍雰囲気は、N、Ar、Hあるいはこれらの混合ガスのいずれもが適合する。 In the secondary recrystallization annealing, the residence time between 300 and 800 ° C. is preferably 5 hours or more and 150 hours or less. Since the purpose of precipitation of silicon nitride is to suppress normal grain growth, a sufficient amount must be selectively deposited on the grain boundary at the stage of 800 ° C. where normal grain growth proceeds, and 300 to 800 By setting the residence time in the temperature range of 5 ° C. to 5 hours or more, silicon nitride cannot be precipitated in the grains, but N and Si diffused in the grain boundaries are selectively on the grain boundaries. It can be deposited in On the other hand, it is not always necessary to set an upper limit. However, even if annealing is performed for more than 150 hours, only the energy required for annealing is required. As the annealing atmosphere, any of N 2 , Ar, H 2 or a mixed gas thereof is suitable.

製造上、窒化珪素の析出には、二次再結晶昇温過程を利用するのがエネルギー効率の観点から、最も有効であることは明白であるが、同様のヒートサイクルを利用すれば窒化珪素の粒界選択析出は可能であるため、長時間の二次再結晶焼鈍の前に、窒化珪素分散焼鈍として、別途の熱処理を実施することも可能である。   From the viewpoint of energy efficiency, it is clear that the secondary recrystallization heating process is most effective for precipitation of silicon nitride in terms of production. However, if a similar heat cycle is used, Since grain boundary selective precipitation is possible, a separate heat treatment can be performed as silicon nitride dispersion annealing before the long-time secondary recrystallization annealing.

方向性電磁鋼板は、トランスなどの鉄心材料に用いられる場合、積層して使用されるため、層間絶縁のための絶縁層が必要である。追加で施される絶縁コートとしては、方向性電磁鋼板に、一般に使用される無機質コートが利用可能である。特に、張力付与効果を有するコーティングは、低鉄損化を達成するために鋼板表面を平滑化した方向性電磁鋼板との組合せが極めて有効である。
張力付与型コーティングの種類としては、熱膨張係数を低下させるシリカを含むコーティングが有効で、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられているリン酸塩-コロイダルシリカ-クロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点から好適である。なお、コーティングの厚みとしては、張力付与効果や占積率、被膜密着性等の点から0.3μm以上10μm以下の程度の範囲が好ましい。
When the grain-oriented electrical steel sheet is used for a core material such as a transformer, it is used by being laminated, so that an insulating layer for interlayer insulation is required. As the additionally applied insulating coating, a generally used inorganic coating can be used for the grain-oriented electrical steel sheet. In particular, a coating having a tension-imparting effect is extremely effective in combination with a grain-oriented electrical steel sheet in which the steel sheet surface is smoothed in order to achieve low iron loss.
As a type of tension-imparting coating, a coating containing silica that reduces the thermal expansion coefficient is effective, and the phosphate-colloidal silica-chromic acid system that has been used for grain-oriented electrical steel sheets having a forsterite film has been used. A coating or the like is preferable from the viewpoint of its effect and cost, uniform processability and the like. The thickness of the coating is preferably in the range of about 0.3 μm or more and 10 μm or less from the viewpoint of tension application effect, space factor, film adhesion, and the like.

さらに、本発明では、平坦化焼鈍により、鋼板の形状を整えることが可能であり、この平坦化焼鈍を、絶縁被膜の焼付け処理と兼ねることもできる。
また、磁区細分化処理として、絶縁コート後にレーザや電子ビーム照射等の熱歪み導入型の磁区細分化処理を施すことでさらに低鉄損化をはかることが可能である。また機械的、電気化学的に物理的な溝を形成して磁区細分化を図り、鉄損を低減することも有効である。
Furthermore, in the present invention, the shape of the steel sheet can be adjusted by flattening annealing, and this flattening annealing can also serve as a baking treatment of the insulating coating.
Further, as the magnetic domain subdivision process, it is possible to further reduce the iron loss by applying a thermal strain introducing type magnetic domain subdivision process such as laser or electron beam irradiation after the insulating coating. It is also effective to reduce the iron loss by forming mechanical and electrochemical physical grooves to subdivide the magnetic domain.

表1に示す鋼記号1〜4の成分を含み、残部はFeおよび不可避的不純物の組成からなるスラブを、1200℃に加熱後、熱間圧延し、2.6mm厚みの熱延コイルとした。次に、この熱延コイルを1000℃で焼鈍した後、酸洗し、タンデム圧延機により0.27mm厚みに仕上げた。最終冷延板の表面粗度は、ワークロールの表面粗度、潤滑用のクーラント量等で調整し、平均粗さRa=0.16〜0.26μmの間に調整した。   A slab including the components of steel symbols 1 to 4 shown in Table 1 and the balance being composed of Fe and inevitable impurities was heated to 1200 ° C. and hot-rolled to obtain a 2.6 mm thick hot rolled coil. Next, the hot rolled coil was annealed at 1000 ° C., pickled, and finished to a thickness of 0.27 mm by a tandem rolling mill. The surface roughness of the final cold-rolled sheet was adjusted by the surface roughness of the work roll, the amount of coolant for lubrication, and the like, and the average roughness Ra was adjusted between 0.16 and 0.26 μm.

Figure 2014208907
Figure 2014208907

各コイルを脱脂して850℃の湿水素雰囲気で脱炭焼鈍を行い、得られた脱炭焼鈍板より圧延方向に沿ってエプスタイン試料を切り出した。
ついで、アンモニアガス主体の窒化炉にて増窒処理をおこない、鋼中窒素量が250ppmおよび400ppm前後の2水準となるよう、Hガス濃度、Nガス濃度、雰囲気露点、窒化温度、時間等を変更した。アンモニアガス濃度は15vol%で一定とした。引き続き、鋼板に、MgOを主体とする焼鈍分離剤を塗布後、1075℃までArとNの混合雰囲気で加熱し、1200℃の純化焼鈍は、H雰囲気で行った。その後、未反応分離剤を除去してから、コロイダルシリカとリン酸マグネシウムを主成分とする絶縁コーティングを800℃で形成した。
かくして得られた製品の磁気特性評価として、1.7Tの磁束密度における50Hz交流励磁での鉄損値W17/50および磁束密度Bを測定した。表2には、平均粗度Raを0.22〜0.24μmの範囲で一定の条件とした最終冷延板を用いた場合の増窒化処理条件と、得られた鋼板のエプスタイン試験法による磁気特性をまとめた。
Each coil was degreased and decarburized and annealed in a wet hydrogen atmosphere at 850 ° C., and an Epstein sample was cut out along the rolling direction from the obtained decarburized and annealed plate.
Next, nitrogen enrichment is performed in a nitriding furnace mainly composed of ammonia gas, and H 2 gas concentration, N 2 gas concentration, atmospheric dew point, nitriding temperature, time, etc., so that the amount of nitrogen in the steel becomes two levels of 250 ppm and 400 ppm. Changed. The ammonia gas concentration was fixed at 15 vol%. Subsequently, after applying an annealing separator mainly composed of MgO to the steel sheet, it was heated to 1075 ° C. in a mixed atmosphere of Ar and N 2 , and purification annealing at 1200 ° C. was performed in an H 2 atmosphere. Then, after removing the unreacted separating agent, an insulating coating composed mainly of colloidal silica and magnesium phosphate was formed at 800 ° C.
As an evaluation of the magnetic properties of the product thus obtained, the iron loss value W 17/50 and the magnetic flux density B 8 at 50 Hz AC excitation at a magnetic flux density of 1.7 T were measured. Table 2 summarizes the nitriding treatment conditions when using the final cold-rolled sheet with the average roughness Ra in the range of 0.22 to 0.24 μm and the magnetic properties of the obtained steel sheet by the Epstein test method. It was.

Figure 2014208907
Figure 2014208907

表2から明らかなように、本発明条件を満たす条件B、FおよびHではいずれも良好な磁気特性を示した。これに対して、鋼成分を満たしていないCおよびE、Hガス濃度が10vol%未満、または雰囲気酸化性PH20/PH2が0.05より大きな条件A、D、GおよびIでは、いずれも良好な磁気特性が得られていない。 As is apparent from Table 2, all of the conditions B, F and H satisfying the present invention exhibited good magnetic properties. On the other hand, in the conditions A, D, G and I in which C and E, which do not satisfy the steel components, the H 2 gas concentration is less than 10 vol%, or the atmospheric oxidizing PH 2 0 / PH 2 is greater than 0.05, all Good magnetic properties are not obtained.

表3には、鋼番号1と4の材料について、最終冷延板の表面粗度を変更した素材への増窒化処理条件と、得られた磁束密度Bの平均値とバラツキ(最大最小の磁束密度差ΔB)をまとめた。
ここで、磁束密度Bは、400L×100Wの試験片をコイル幅方向で10枚切り出したものを、単板磁気試験法により評価した。
Table 3, for the material of the steel No. 1 and 4, and the increasing nitriding condition to the material changing the surface roughness of the final cold rolled sheet, the average value of the resulting magnetic flux density B 8 and the variation (maximum and minimum The magnetic flux density difference ΔB 8 ) was summarized.
Here, the magnetic flux density B 8 is what cut 10 sheets of test pieces of 400 L × 100W in coil width direction were evaluated by single plate magnetic testing method.

Figure 2014208907
Figure 2014208907

表3から明らかなように、本発明条件を満たす条件L、NおよびRはいずれも良好な磁束密度を示し、そのバラツキΔBも小さかった。これに対して、表面粗度Raの条件を満たしていない条件J、K、PおよびQは窒素増量自体も少ない傾向であるが、得られた磁束密度のバラツキΔBが大きく、その結果平均のBも低位である。またH濃度や雰囲気酸化性条件を満たしていない条件M、O、SおよびTでは、平均のB等、いずれも良好な磁気特性を得られていない。 As apparent from Table 3, neither the present invention satisfies conditions L, N and R represents a good magnetic flux density, the variation .DELTA.B 8 was small. On the other hand, conditions J, K, P and Q that do not satisfy the condition of surface roughness Ra tend to have a small increase in nitrogen itself, but the obtained magnetic flux density variation ΔB 8 is large, resulting in an average of B 8 also is low. In addition, under conditions M, O, S, and T that do not satisfy the H 2 concentration and atmospheric oxidizing conditions, none of the average magnetic properties such as B 8 has been obtained.

Claims (3)

質量%で、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S、SeおよびOをそれぞれ50質量ppm未満、sol.Alを100質量ppm以下、Nを80質量ppm以下に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくあるいは再加熱後、1300℃以下で熱間圧延し、熱延板焼鈍を施した後、あるいは熱延板焼鈍を施すことなく、一回の冷間圧延で最終板厚の冷間圧延板とし、さらに、一次再結晶焼鈍を施して焼鈍分離剤を塗布し、二次再結晶焼鈍を施す一連の方向性電磁鋼板の製造工程において、
上記冷間圧延板の表面の平均粗さRa を0.20μm 以上にすると共に、
上記一次再結晶焼鈍中、焼鈍後のいずれかのタイミングでアンモニアガスを主体とする増窒処理を施すに際し、該増窒処理の雰囲気酸化性:PH20/PH2を0.05以下、水素濃度を10vol%以上とし、さらに、上記増窒処理の窒素増量(ΔN)を50質量ppm以上1000質量ppm以下とする方向性電磁鋼板の製造方法。
In mass%, C: 0.08% or less, Si: 2.0 to 4.5% and Mn: 0.5% or less, S, Se and O are each less than 50 mass ppm, sol.Al is 100 mass ppm or less, and N is After restraining to 80 mass ppm or less, the balance is a steel slab composed of Fe and inevitable impurities, without reheating or after reheating, after hot rolling at 1300 ° C or less, and hot-rolled sheet annealing Alternatively, without performing hot-rolled sheet annealing, a cold-rolled sheet with the final thickness is obtained by a single cold rolling, and further, a primary recrystallization annealing is applied and an annealing separator is applied, and a secondary recrystallization annealing is performed. In the manufacturing process of a series of grain-oriented electrical steel sheets to be applied,
The average roughness Ra of the surface of the cold rolled plate is 0.20 μm or more,
During the above-mentioned primary recrystallization annealing, when performing the nitrification treatment mainly composed of ammonia gas at any timing after the annealing, the atmospheric oxidation property of the nitrification treatment: PH 2 0 / PH 2 is 0.05 or less, the hydrogen concentration is A method for producing a grain-oriented electrical steel sheet with 10% by volume or more and further a nitrogen increase (ΔN) in the above nitrous treatment of 50 to 1000 ppm by mass.
さらに、前記鋼スラブが、質量%で、
Ni:0.005〜1.50%、
Sn:0.01〜0.50%、
Sb:0.005〜0.50%、
Cu:0.01〜0.50%、
Cr:0.01〜1.50%
P:0.0050〜0.50%
Mo:0.01〜0.50%および
Nb:0.0005〜0.0100%
のうちから選んだ1種または2種以上を含有する請求項1に記載の方向性電磁鋼板の製造方法。
Furthermore, the said steel slab is mass%,
Ni: 0.005-1.50%,
Sn: 0.01 to 0.50%,
Sb: 0.005-0.50%,
Cu: 0.01 to 0.50%,
Cr: 0.01 to 1.50%
P: 0.0050-0.50%
Mo: 0.01-0.50% and
Nb: 0.0005-0.0100%
The manufacturing method of the grain-oriented electrical steel sheet according to claim 1, comprising one or more selected from among the above.
前記冷間圧延板の表面の平均粗さRa を、さらに0.25μm 以上とする請求項1または2に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the average roughness Ra of the surface of the cold-rolled sheet is further 0.25 µm or more.
JP2014066742A 2013-03-27 2014-03-27 Method for producing grain-oriented electrical steel sheet Active JP5907202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066742A JP5907202B2 (en) 2013-03-27 2014-03-27 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013066823 2013-03-27
JP2013066823 2013-03-27
JP2014066742A JP5907202B2 (en) 2013-03-27 2014-03-27 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014208907A true JP2014208907A (en) 2014-11-06
JP5907202B2 JP5907202B2 (en) 2016-04-26

Family

ID=51903283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066742A Active JP5907202B2 (en) 2013-03-27 2014-03-27 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5907202B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094797A1 (en) * 2015-12-04 2017-06-08 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
CN107460293A (en) * 2017-08-04 2017-12-12 北京首钢股份有限公司 A kind of production method of low temperature high magnetic induction grain-oriented silicon steel
WO2020149342A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717961B2 (en) * 1988-04-25 1995-03-01 新日本製鐵株式会社 Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH1129824A (en) * 1997-07-14 1999-02-02 Nippon Steel Corp Manufacture of grain oriented silicon steel sheet with excellent glass film
JP2001107147A (en) * 1999-10-12 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicons steel sheet
JP2003213335A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property in longitudinal direction and cross direction
JP2005281737A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for manufacturing grain oriented silicon steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717961B2 (en) * 1988-04-25 1995-03-01 新日本製鐵株式会社 Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH1129824A (en) * 1997-07-14 1999-02-02 Nippon Steel Corp Manufacture of grain oriented silicon steel sheet with excellent glass film
JP2001107147A (en) * 1999-10-12 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicons steel sheet
JP2003213335A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property in longitudinal direction and cross direction
JP2005281737A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for manufacturing grain oriented silicon steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094797A1 (en) * 2015-12-04 2017-06-08 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
JPWO2017094797A1 (en) * 2015-12-04 2018-04-05 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN107460293A (en) * 2017-08-04 2017-12-12 北京首钢股份有限公司 A kind of production method of low temperature high magnetic induction grain-oriented silicon steel
WO2020149342A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet
JPWO2020149342A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Directional electrical steel sheet
RU2771036C1 (en) * 2019-01-16 2022-04-25 Ниппон Стил Корпорейшн Isotropic electrical steel sheet
JP7151791B2 (en) 2019-01-16 2022-10-12 日本製鉄株式会社 Oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5907202B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5983777B2 (en) Method for producing grain-oriented electrical steel sheet
KR101223115B1 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
WO2016199423A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
JP6808830B2 (en) Electrical steel sheet and its manufacturing method
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7365414B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP6209999B2 (en) Method for producing grain-oriented electrical steel sheet
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
KR101223108B1 (en) Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same
KR100340495B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP6011586B2 (en) Method for producing grain-oriented electrical steel sheet
JP6209998B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014129585A (en) Manufacturing method of grain oriented silicon steel sheet and primary recrystallization steel sheet for manufacturing grain oriented silicon steel sheet
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5928362B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
JP5999040B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020509209A (en) Grain-oriented electrical steel sheet and its manufacturing method
KR20130056420A (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JP5434438B2 (en) Manufacturing method of unidirectional electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250