JP2001107147A - Method for producing grain-oriented silicons steel sheet - Google Patents

Method for producing grain-oriented silicons steel sheet

Info

Publication number
JP2001107147A
JP2001107147A JP28952399A JP28952399A JP2001107147A JP 2001107147 A JP2001107147 A JP 2001107147A JP 28952399 A JP28952399 A JP 28952399A JP 28952399 A JP28952399 A JP 28952399A JP 2001107147 A JP2001107147 A JP 2001107147A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
ppm
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28952399A
Other languages
Japanese (ja)
Other versions
JP4123653B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28952399A priority Critical patent/JP4123653B2/en
Publication of JP2001107147A publication Critical patent/JP2001107147A/en
Application granted granted Critical
Publication of JP4123653B2 publication Critical patent/JP4123653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an advantageous method for producing a grain-oriented silicon steel sheet in which various problems incidental to high temperature slab heating before hot rolling and high temperature purification annealing after secondary recrystallization which have been apprehended in the case of using inhibitors are advantageously evaded. SOLUTION: At the time of producing a grain-oriented silicon steel sheet, the content of Al as impurities in the steel is reduced to <100 ppm, moreover, the contents of Se, S, O and N are respectively reduced to <=30 ppm, and furthermore, after the completion of primary recrystallization, in the meanwhile, till the steel sheet temperature reaches 850 deg.C at the time of final finish annealing, the content of nitrogen in the steel is increased to >=30 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として電力用変
圧器の鉄心材料に用いられる方向性電磁鋼板の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet mainly used for a core material of a power transformer.

【0002】[0002]

【従来の技術】方向性電磁鋼板の製造に際しては、イン
ヒビターと呼ばれる析出物を利用して最終仕上焼鈍中に
二次再結晶させることが一般的な技術として使用されて
いる。例えば、特公昭40−15644 号公報に記載のAlN,
MnSを使用する方法および特公昭51−13469 号公報に記
載のMnS、MnSeを使用する方法等はその代表的なもの
で、いずれも工業的に実用化されている。また、かかる
インヒビターの使用については、その他にも、CuSeとB
Nを添加する技術(特公昭58−42244 号公報)や、Ti,
Zr,Vの窒化物を使用する方法(特公昭46−40855 号公
報)など数多くの技術が知られている。
2. Description of the Related Art In the production of grain-oriented electrical steel sheets, it is a general technique to utilize precipitates called inhibitors to perform secondary recrystallization during final finish annealing. For example, AlN, described in Japanese Patent Publication No. 40-15644,
The method using MnS and the method using MnS and MnSe described in JP-B-51-13469 are typical ones, and all of them are industrially practically used. In addition, regarding the use of such inhibitors, CuSe and B
Technology for adding N (Japanese Patent Publication No. 58-42244), Ti,
Many techniques are known, such as a method using a nitride of Zr, V (Japanese Patent Publication No. 46-40855).

【0003】これらのインヒビターを用いる方法は、安
定して二次再結晶粒を発達させるのに有用な方法ではあ
るが、析出物を微細に分散させる必要があるので、熱延
前のスラブ加熱を1300℃以上の高温で行わなければなら
ない。しかしながら、スラブの高温加熱は、加熱を実現
する上での設備コストが嵩み、また熱延時に生成するス
ケール量も多大になるので、歩留りが低下するだけでな
く、設備のメンテナンス等の問題も多くなる。
[0003] The method using these inhibitors is a useful method for stably developing secondary recrystallized grains, but it is necessary to disperse precipitates finely. It must be performed at a high temperature of 1300 ° C or higher. However, the high-temperature heating of the slab increases the equipment cost for realizing the heating, and also increases the amount of scale generated during hot rolling, so that not only the yield decreases, but also problems such as equipment maintenance are caused. More.

【0004】また、結晶組織の観点からすると、このよ
うなスラブの高温加熱は、スラブ結晶組織の過度な粗大
化を引き起こすという問題がある。すなわち、スラブの
結晶組織は、熱延安定方位でしかも再結晶しにくい{1
00}<011>方位に集積しているので、このような
スラブ組織の粗大化は、結果的に二次再結晶を大きく阻
害し、磁気特性を大きく劣化させる原因となる。
Further, from the viewpoint of the crystal structure, there is a problem that such high-temperature heating of the slab causes excessively coarsening of the slab crystal structure. That is, the crystal structure of the slab has a stable hot rolling orientation and is hard to recrystallize.
Since the slab structure is accumulated in the 00 ° <011> direction, such a coarsening of the slab structure results in a large hindrance to secondary recrystallization and a large deterioration in magnetic characteristics.

【0005】上記の問題を解決する方法として、鋼中に
Alは含有させるものの、N量を低減することによって、
スラブの高温加熱を省略し、二次再結晶前の窒化処理に
より(Si,Al)Nを形成させ、インヒビターとして機能さ
せることによって、二次再結晶させる方法が、特公昭62
−45285 号公報において提案された。この方法で良好な
鉄損を得るためには、インヒビターとして機能した(S
i,Al)Nを鋼中から除去するために、二次再結晶完了に
引き続いて1100℃以上の水素雰囲気中で数時間にわたる
純化焼鈍を行う必要がある。しかしながら、このような
高温純化焼鈍のために、鋼板の機械強度が低下してコイ
ルの下部が座屈し、製品の歩留りが著しく低下するいう
問題がある。 また、純化焼鈍により、(Si,Al)N析出物
は鋼中からは除去されるものの、表面酸化被膜中からは
完全には除去されず、このようにして表面に残存する
(Si,Al)N析出物は、たとえ少量であっても磁壁の移動
を著しく妨害するのでので、鉄損の劣化を余儀なくされ
る。
[0005] As a method for solving the above-mentioned problems, a method for reducing
Although Al is contained, by reducing the amount of N,
A method of omitting high-temperature heating of the slab, forming (Si, Al) N by nitriding treatment before secondary recrystallization, and functioning as an inhibitor to perform secondary recrystallization is disclosed in
-45285. In order to obtain good iron loss by this method, it worked as an inhibitor (S
In order to remove i, Al) N from the steel, it is necessary to carry out several hours of purification annealing in a hydrogen atmosphere at 1100 ° C. or higher following completion of the secondary recrystallization. However, due to such high-temperature annealing, there is a problem that the mechanical strength of the steel sheet is reduced, the lower part of the coil buckles, and the yield of the product is significantly reduced. Further, the (Si, Al) N precipitate is removed from the steel by the purification annealing, but is not completely removed from the surface oxide film, and thus remains on the surface (Si, Al). Even a small amount of N precipitates significantly hinders the movement of the domain wall, so that the core loss must be deteriorated.

【0006】上記の問題を解決するために、インヒビタ
ーを使用しないで方向性電磁鋼板を製造する方法が、特
開昭64−55339 号、特開平2−57635 号、特開平7−76
732号および特開平7−197126号各公報に提案されてい
る。これらの技術に共通していることは、表面エネルギ
ーを駆動力として{110}面を優先的に成長させるこ
とを意図していることである。ここに、表面エネルギー
差を有効に利用するためには、表面の寄与を大きくする
ために板厚を薄くすることが必然的に要求される。
In order to solve the above-mentioned problems, a method for producing a grain-oriented electrical steel sheet without using an inhibitor is disclosed in JP-A-64-55339, JP-A-2-57635, and JP-A-7-76.
732 and JP-A-7-197126. What is common to these techniques is that the {110} plane is preferentially grown using surface energy as a driving force. Here, in order to effectively use the surface energy difference, it is inevitably required to reduce the plate thickness in order to increase the contribution of the surface.

【0007】例えば特開昭64−55339 号公報に開示の技
術では、板厚が 0.2mm以下、特開平2−57635 号公報に
開示の技術では、板厚が0.15mm以下にそれぞれ制限され
ている。特開平7−76732 号公報に開示の技術では、板
厚は制限されていないが、実施例1によると板厚:0.30
mmの場合における磁束密度はB8 で 1.700T以下と方位
集積度は極端に低い。そして、実施例中で良好な磁束密
度を得られている板厚は全て0.10mmに限られている。特
開平7−197126号公報に開示の技術でも、板厚は制限さ
れていないが、この技術は50〜75%の三次冷間圧延を施
す技術であるため、板厚は必然的に薄くなり、実施例で
は0.10mm厚である。 現行使用されている方向性電磁鋼板の板厚は0.20mm以上
がほとんどであるので、通常の製品を上記のような表面
エネルギーを使用する方法で得ることは困難である。
For example, in the technique disclosed in JP-A-64-55339, the thickness is limited to 0.2 mm or less, and in the technique disclosed in JP-A-2-57635, the thickness is limited to 0.15 mm or less. . According to the technique disclosed in Japanese Patent Application Laid-Open No. 7-76732, the thickness is not limited, but according to Example 1, the thickness is 0.30.
The magnetic flux density in the case of mm is 1.700 T or less at B 8 , and the azimuth integration degree is extremely low. The thicknesses of the examples in which good magnetic flux density is obtained are all limited to 0.10 mm. Even in the technique disclosed in Japanese Patent Application Laid-Open No. 7-197126, the sheet thickness is not limited, but since this technique is a technique of performing 50 to 75% tertiary cold rolling, the sheet thickness is inevitably reduced. In the embodiment, the thickness is 0.10 mm. Since the thickness of grain-oriented electrical steel sheet currently used is almost 0.20 mm or more, it is difficult to obtain a normal product by the method using surface energy as described above.

【0008】また、表面エネルギーを使用するために
は、表面酸化物の生成を抑制した状態で高温の最終仕上
焼鈍を行わなければならない。例えば特開昭64−55339
号公報に開示の技術では、1180℃以上の温度で、上記焼
鈍の雰囲気として、真空中、不活性ガス中、水素ガス中
または水素ガスと窒素ガスの混合ガス中で行うことが記
載されている。特開平2−57635 号公報に開示の技術で
は、 950〜1100℃の温度で、不活性ガス雰囲気、水素ガ
ス雰囲気または水素ガスと不活性ガスの混合雰囲気で、
しかもこれらを減圧することが推奨されている。特開平
7−197126号公報に開示の技術でも、1000〜1300℃の温
度で、酸素分圧が0.5 Pa以下の非酸化性雰囲気または真
空中で最終仕上焼鈍を行っている。
In order to use surface energy, high-temperature final finish annealing must be performed in a state where formation of surface oxides is suppressed. For example, JP-A-64-55339
In the technology disclosed in Japanese Patent Application Laid-Open Publication No. H11-260, it is described that the annealing is performed at a temperature of 1180 ° C. or more, in a vacuum, an inert gas, a hydrogen gas, or a mixed gas of a hydrogen gas and a nitrogen gas, as the annealing atmosphere. . According to the technique disclosed in Japanese Patent Application Laid-Open No. 2-57635, at a temperature of 950 to 1100 ° C., in an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed atmosphere of hydrogen gas and an inert gas,
Moreover, it is recommended to reduce the pressure. In the technique disclosed in Japanese Patent Application Laid-Open No. 7-197126, the final finish annealing is performed at a temperature of 1000 to 1300 ° C. in a non-oxidizing atmosphere or a vacuum with an oxygen partial pressure of 0.5 Pa or less.

【0009】上述したように、表面エネルギーを利用し
て良好な磁気特性を得ようとする場合、最終仕上焼鈍の
雰囲気としては不活性ガスや水素が用いられ、さらに推
奨される条件としては真空とすることであるが、高温と
真空の両立は設備的に極めて難しく、コスト高となる。
また、表面エネルギーを利用した場合、原理的には{1
10}面の選択のみが可能で、圧延方向に<001>方
向が揃ったゴス粒のみの成長が選択されるわけではな
い。方向性電磁鋼板は、圧延方向に磁化容易軸<001
>を揃えてこそ、磁気特性の向上が望めるのであるか
ら、{110}面の選択のみでは原理的に良好な磁気特
性は得られない。そのため、表面エネルギーを利用する
方法で良好な磁気特性を得ることができる圧延条件や焼
鈍条件は限られたものとなり、その結果、磁気特性は不
安定とならざるを得なかった。
As described above, in order to obtain good magnetic properties by utilizing surface energy, an inert gas or hydrogen is used as an atmosphere for the final finish annealing, and further, a recommended condition is a vacuum or the like. However, it is extremely difficult to achieve both high temperature and vacuum in terms of equipment, resulting in high costs.
Also, when surface energy is used, in principle, {1
Only the 10 ° plane can be selected, and the growth of only goth grains whose <001> direction is aligned with the rolling direction is not necessarily selected. The grain-oriented electrical steel sheet has an easy axis <001 in the rolling direction.
>, The improvement of the magnetic properties can be expected. Therefore, good magnetic properties cannot be obtained in principle only by selecting the {110} plane. Therefore, the rolling conditions and annealing conditions under which good magnetic properties can be obtained by a method using surface energy are limited, and as a result, the magnetic properties have to be unstable.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑み開発されたもので、素材中にインヒビター成分を
含有させないことにより、インヒビターを含有させた方
向性電磁鋼板の製造時に生じる、熱延前の高温スラブ加
熱、さらには二次再結晶後の高温純化焼鈍に付随する種
々の問題を有利に回避した、方向性電磁鋼板の有利な製
造方法を提案することを目的とする。また、本発明は、
インヒビターを使用せず、表面エネルギーを利用した場
合に必然的に付随する、鋼板板厚の制約や二次再結晶方
位集積度の劣化をも効果的に解決したものである。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned circumstances, and does not contain an inhibitor component in a material, so that the heat generated during the production of a grain-oriented electrical steel sheet containing an inhibitor is eliminated. An object of the present invention is to propose an advantageous method for manufacturing a grain-oriented electrical steel sheet, which advantageously avoids various problems associated with high-temperature slab heating before elongation and high-temperature purification annealing after secondary recrystallization. Also, the present invention
The present invention has also effectively solved the limitations on the thickness of the steel sheet and the deterioration of the degree of secondary recrystallization orientation integration, which are inevitably involved when surface energy is used without using an inhibitor.

【0011】[0011]

【課題を解決するための手段】以下、本発明の解明経緯
について説明する。さて、発明者らは、従来から、ゴス
方位粒が二次再結晶する機構について鋭意研究を重ねた
結果、一次再結晶組織における方位差角(隣り合う結晶
の格子を重ねるのに必要な最小回転角)が20〜45°であ
る粒界が重要な役割を果たしていることを見出し、Acta
Material 45巻 (1997) 85ページに報告した。
The details of the present invention will be described below. By the way, the present inventors have conducted intensive studies on the mechanism of secondary recrystallization of Goss-oriented grains. As a result, the present inventors have found that the misorientation angle in the primary recrystallized structure (the minimum rotation required for overlapping the lattices of adjacent crystals). Acta) found that grain boundaries with an angle of 20-45 ° played an important role.
Material 45 (1997) Reported on page 85.

【0012】図1に、方向性電磁鋼板の一次再結晶直前
の状態である一次再結晶組織を解析し、様々な結晶方位
を持つ各々の結晶粒周囲の粒界について、粒界方位差角
が20〜45°である粒界の全体に対する割合(%)を調査
した結果を示す。図1において、結晶方位空間はオイラ
ー角(Φ1 ,Φ, Φ2 )のΦ2 =45°断面を用いて表
示しており、ゴス方位など主な方位を模式的に表示して
ある。同図によれば、ゴス方位粒周囲において、方位差
角が20〜45°である粒界の存在頻度が最も高い(約80
%)ことが分かる。
FIG. 1 shows an analysis of a primary recrystallized structure, which is a state immediately before the primary recrystallization of a grain-oriented electrical steel sheet. The result which investigated the ratio (%) with respect to the whole of the grain boundary which is 20-45 degrees is shown. In FIG. 1, the crystal orientation space is displayed using a section of Φ 2 = 45 ° at Euler angles (Φ 1 , Φ, Φ 2 ), and the main directions such as Goss direction are schematically displayed. According to the figure, the frequency of the presence of the grain boundary having the misorientation angle of 20 to 45 ° around the Goss grain is the highest (about 80 degrees).
%).

【0013】方位差角:20〜45°の粒界は、C.G.Dunnら
による実験データ(AIME Transaction 188巻 (1949) P.
368 )によれば、高エネルギー粒界である。高エネルギ
ー粒界は、粒界内の自由空間が大きく乱雑な構造をして
いる。粒界拡散は、粒界を通じて原子が移動する過程で
あるので、粒界中の自由空間の大きい高エネルギー粒界
の方が粒界拡散が速い。二次再結晶は、インヒビターと
呼ばれる析出物の拡散律速による成長に伴って発現する
ことが知られている。高エネルギー粒界上の析出物は、
仕上焼鈍中に優先的に粗大化が進行するので、優先的に
ピン止めがはずれて、粒界移動を開始しゴス粒が成長す
ると考えられる。
A misorientation angle: a grain boundary of 20 to 45 ° is obtained from experimental data by CGDunn et al. (AIME Transaction vol. 188 (1949) p.
According to 368), it is a high energy grain boundary. The high energy grain boundary has a large free space in the grain boundary and has a random structure. Since the grain boundary diffusion is a process in which atoms move through the grain boundary, the high energy grain boundary having a large free space in the grain boundary has a faster grain boundary diffusion. It is known that secondary recrystallization develops with the growth of a precipitate called an inhibitor by diffusion control. The precipitate on the high energy grain boundary is
It is considered that the coarsening preferentially proceeds during the finish annealing, so that the pinning is preferentially released, the grain boundary starts to move, and the goth grains grow.

【0014】発明者らは、この研究をさらに発展させ
て、二次再結晶発現のための本質的要因は、一次再結晶
組織中の高エネルギー粒界の分布状態にあり、インヒビ
ターの役割は、高エネルギー粒界と他の粒界の移動速度
差を生じさせることにあることを突き止めた。従って、
この理論に従えば、インヒビターを用いなくとも、粒界
の移動速度差を生じさせることができれば、二次再結晶
させることが可能となる。
The present inventors have further developed this research, and the essential factor for the appearance of secondary recrystallization is the distribution of high-energy grain boundaries in the primary recrystallized structure, and the role of the inhibitor is as follows. It has been found that a difference in the moving speed between a high energy grain boundary and another grain boundary is caused. Therefore,
According to this theory, secondary recrystallization can be performed without using an inhibitor if a difference in the moving speed of the grain boundary can be generated.

【0015】鋼中に存在する不純物元素は、粒界特に高
エネルギー粒界に偏析し易いため、不純物元素を多く含
む場合には、高エネルギー粒界と他の粒界の移動速度に
差がなくなっているものと考えられる。従って、素材の
高純度化によって、このような不純物元素の影響を排除
してやれば、高エネルギー粒界の構造に依存する本来的
な移動速度差が顕在化して、ゴス方位粒の二次再結晶が
可能になることが期待される。
[0015] Since impurity elements existing in steel tend to segregate at grain boundaries, especially at high energy grain boundaries, when there are many impurity elements, there is no difference in the moving speed between the high energy grain boundaries and other grain boundaries. It is thought that it is. Therefore, if the influence of such an impurity element is eliminated by purifying the material, a difference in the original moving speed depending on the structure of the high-energy grain boundary becomes apparent, and the secondary recrystallization of the Goss-oriented grains is performed. It is expected to be possible.

【0016】以上の考察に基づいて、さらに研究を進め
た結果、発明者らは、インヒビター成分を含まない成分
系において、素材の高純度化と、一次再結晶完了後、最
終仕上焼鈍時の鋼板温度が 850℃に到達するまでの間に
鋼中窒素量の増加を図ることによって、二次再結晶が効
果的に生じることを全く新規に知見し、本発明を完成さ
せるに至ったものである。
As a result of further research based on the above considerations, the present inventors have found that, in a component system containing no inhibitor component, the inventors purify the material, and after completing the primary recrystallization, complete the steel plate during final finish annealing. By completely increasing the amount of nitrogen in the steel until the temperature reaches 850 ° C, the inventors have found out completely that secondary recrystallization effectively occurs, and have completed the present invention. .

【0017】すなわち、本発明の要旨構成は次のとおり
である。 1.C:0.12wt%以下, Si:2.0 〜8.0 wt%およびMn:
0.005 〜1.0 wt%を含有し、かつAlを 100 ppm未満、S
e, S, OおよびNをそれぞれ 30ppm以下に低減した成
分組成になる鋼スラブを、熱間圧延し、必要に応じて熱
延板焼鈍を施したのち、1回または中間焼鈍を挟む2回
以上の冷間圧延を施し、ついで一次再結晶焼鈍を施した
のち、必要に応じて焼鈍分離剤を塗布してから、最終仕
上焼鈍によって二次再結晶を生じさせる、一連の工程か
らなる方向性電磁鋼板の製造方法において、 一次再結
晶完了後、最終仕上焼鈍工程において鋼板温度が 850℃
に到達するまでの間に、鋼中窒素量を 30ppm以上に増加
させることを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows. 1. C: 0.12 wt% or less, Si: 2.0 to 8.0 wt% and Mn:
Contains 0.005 to 1.0 wt%, Al is less than 100 ppm, S
e, S, O, and N are each reduced to 30 ppm or less. A steel slab having a component composition of 30 ppm or less is hot-rolled and, if necessary, subjected to hot-rolled sheet annealing. Cold rolling, followed by primary recrystallization annealing, then applying an annealing separator if necessary, and then producing a secondary recrystallization by final finish annealing. In the steel sheet manufacturing method, after the primary recrystallization is completed, the steel sheet temperature is 850 ° C in the final finish annealing process.
A method for producing a grain-oriented electrical steel sheet, wherein the nitrogen content in the steel is increased to 30 ppm or more before the steel reaches the temperature.

【0018】2.鋼中窒素量の増加手段が、最終仕上焼
鈍時の窒素分圧を高めること、焼鈍分離剤中に窒化能の
ある化合物を添加すること、一次再結晶完了後、窒化能
のある雰囲気で焼鈍を行うことのいずれかまたはそれら
の組み合わせであることを特徴とする上記1記載の方向
性電磁鋼板の製造方法。
2. The means for increasing the amount of nitrogen in the steel is to increase the nitrogen partial pressure during the final finish annealing, to add a compound having a nitriding ability to the annealing separator, and after the primary recrystallization is completed, perform annealing in an atmosphere having a nitriding ability. 2. The method for producing a grain-oriented electrical steel sheet according to the above item 1, wherein the method is any one of the steps or a combination thereof.

【0019】3.一次再結晶焼鈍後の鋼板表面の酸素目
付量を、片面当たり 1.0 g/m2 以下とすることを特徴と
する上記1または2記載の方向性電磁鋼板の製造方法。
3. 3. The method for producing a grain-oriented electrical steel sheet according to 1 or 2, wherein the basis weight of oxygen on the steel sheet surface after the primary recrystallization annealing is 1.0 g / m 2 or less per one side.

【0020】4.最終冷延前の平均結晶粒径を 150μm
以下、かつ最終冷延圧下率を70%以上91%以下として、
{110}<001>組織を成長させることを特徴とす
る上記1,2または3記載の方向性電磁鋼板の製造方
法。
4. 150μm average grain size before final cold rolling
Below, and the final cold rolling reduction is 70% or more and 91% or less,
The method for producing a grain-oriented electrical steel sheet according to the above 1, 2, or 3, wherein a {110} <001> structure is grown.

【0021】5.最終冷延前の平均結晶粒径を 200μm
以上、かつ最終冷延圧下率を60%以上90%以下として、
{100}<001>組織を成長させることを特徴とす
る上記1,2または3記載の方向性電磁鋼板の製造方
法。
5. 200μm average grain size before final cold rolling
And the final cold rolling reduction is 60% or more and 90% or less,
4. The method for producing a grain-oriented electrical steel sheet according to the above 1, 2, or 3, wherein a {100} <001> structure is grown.

【0022】6.鋼中に、さらにNi:0.01〜1.50wt%,
Sn:0.01〜0.50wt%, Sb:0.005 〜0.50wt%, Cu:0.01
〜0.50wt%, Mo:0.005 〜0.50wt%およびCr:0.01〜1.
50wt%のうちから選んだ少なくとも一種を含有させるこ
とを特徴とする上記1〜5のいずれかに記載の方向性電
磁鋼板の製造方法。
6. In steel, Ni: 0.01-1.50 wt%,
Sn: 0.01 to 0.50 wt%, Sb: 0.005 to 0.50 wt%, Cu: 0.01
~ 0.50wt%, Mo: 0.005 ~ 0.50wt% and Cr: 0.01 ~ 1.
6. The method for producing a grain-oriented electrical steel sheet according to any one of the above items 1 to 5, wherein at least one selected from 50 wt% is contained.

【0023】この発明は、インヒビター成分を含有しな
い素材を用いており、結晶粒界における析出物や不純物
を排除する点で従来の二次再結晶手法と全く逆の思想で
あり、また表面エネルギーを利用する技術とも異なるの
で、鋼板表面に酸化物が存在しても二次再結晶を生じさ
せることが可能である。
The present invention uses a material that does not contain an inhibitor component, is a concept completely opposite to the conventional secondary recrystallization technique in that precipitates and impurities at crystal grain boundaries are eliminated, and has a low surface energy. Since the technology used is also different, it is possible to cause secondary recrystallization even if an oxide is present on the steel sheet surface.

【0024】[0024]

【発明の実施の形態】以下、本発明を成功に導くに至っ
た実験結果について説明する。実験1 C:0.007 wt%, Si:3.44wt%およびMn:0.054 wt%を
含み、かつ不純物元素をN:5 ppm, Al:15 ppm, Se:
3 ppm, S:18 ppm, O:10 ppmまで低減した鋼Aおよ
びC:0.005 wt%, Si:3.33wt%, Mn:0.062 wt%,
N:0.0090wt%を含み、不純物元素をAl:15 ppm, Se:
3 ppm, S:18 ppm, O:10 ppmまで低減した鋼Bのス
ラブをそれぞれ、連続鋳造にて製造した。ついで、1120
℃に加熱後、熱間圧延により 2.7mm厚の熱延板としたの
ち、1020℃の窒素雰囲気中で30秒間均熱した後、急冷し
た。ついで、冷間圧延を行って0.35mmの最終板厚に仕上
げたのち、雰囲気露点が−20℃の乾燥Ar雰囲気にて 920
℃, 15秒間の一次再結晶焼鈍を施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the results of experiments which led to the success of the present invention will be described. Experiment 1 C: 0.007 wt%, Si: 3.44 wt% and Mn: 0.054 wt%, and N: 5 ppm, Al: 15 ppm, Se:
Steels A and C reduced to 3 ppm, S: 18 ppm, O: 10 ppm A and C: 0.005 wt%, Si: 3.33 wt%, Mn: 0.062 wt%,
N: 0.0090wt%, impurity element: Al: 15ppm, Se:
Slabs of steel B reduced to 3 ppm, S: 18 ppm, and O: 10 ppm were each manufactured by continuous casting. Then 1120
After heating to ° C., a hot-rolled sheet having a thickness of 2.7 mm was formed by hot rolling, and then soaked in a nitrogen atmosphere at 1020 ° C. for 30 seconds, followed by rapid cooling. Then, after performing cold rolling to finish to a final thickness of 0.35 mm, the atmosphere dew point is 920 ° C. in a dry Ar atmosphere at −20 ° C.
Primary recrystallization annealing was performed at ℃ for 15 seconds.

【0025】ついで、最終仕上焼鈍を、20℃/hの速度で
1050℃まで昇温する方法で行った。この時、仕上焼鈍時
における窒素分圧を種々に変化させる実験を行った。そ
の結果、鋼Aでは、窒素分圧がほぼ10%以上の条件で行
った時に鋼板全面に二次再結晶が生じたが、鋼Bでは、
どのような窒素分圧でも二次再結晶は生じなかった。
Next, the final finish annealing is performed at a rate of 20 ° C./h.
The test was performed by raising the temperature to 1050 ° C. At this time, experiments were conducted in which the nitrogen partial pressure during the finish annealing was varied. As a result, in steel A, secondary recrystallization occurred on the entire surface of the steel sheet when the nitrogen partial pressure was about 10% or more, but in steel B,
No secondary recrystallization occurred at any nitrogen partial pressure.

【0026】この知見を基に、さらに研究を進めた結
果、Si, Mn以外の不純物元素、特にN,Al, Se, Sなど
のインヒビター形成元素とOを低減した高純度の素材を
用い、一次再結晶完了後、最終仕上焼鈍時の鋼板温度が
850℃に到達するまでの間に、鋼中窒素量を適切に増加
させることによって、二次再結晶が効果的に発現するこ
とが新たに究明された。
Based on this finding, as a result of further research, it was found that primary elements using impurity elements other than Si and Mn, in particular, high-purity materials with a reduced amount of O and inhibitor-forming elements such as N, Al, Se, and S were used. After recrystallization is completed, the steel sheet temperature during final finish annealing
It was newly determined that secondary recrystallization was effectively developed by appropriately increasing the amount of nitrogen in steel before reaching 850 ° C.

【0027】図2に、最終仕上焼鈍時に鋼板の温度が 8
50℃に到達した時点で試料を取り出して調査した鋼中窒
素量と最終仕上焼鈍終了後の鋼板の二次再結晶完了面積
率との関係について調べた結果を示す。同図に示したと
おり、鋼Aでは、鋼中窒素量が 30ppm以上の範囲で二次
再結晶完了面積率が 100%となっている。これに対し、
素材段階からNを含有している鋼Bでは、鋼中に窒素が
存在していても、二次再結晶が完了していない。
FIG. 2 shows that the temperature of the steel sheet was 8 at the time of final finish annealing.
The results obtained by examining the relationship between the amount of nitrogen in the steel, which was taken out and examined when the temperature reached 50 ° C., and the secondary recrystallization completion area ratio of the steel sheet after the final finish annealing, are shown. As shown in the figure, in steel A, the secondary recrystallization completion area ratio is 100% when the nitrogen content in the steel is 30 ppm or more. In contrast,
In steel B containing N from the material stage, the secondary recrystallization is not completed even if nitrogen is present in the steel.

【0028】次に、発明者らは、さらに安定した二次再
結晶条件を見出すべく、一次再結晶焼鈍条件について鋭
意検討を加えた。実験2 すなわち、上述の実験1における鋼Aのスラブを用い
て、同じ工程で冷間圧延まで終了させた後、一次再結晶
焼鈍の雰囲気酸化性を種々に変化させる実験を行った。
最終仕上焼鈍は、露点:−20℃の窒素雰囲気において20
℃/hの速度で1050℃まで加熱して終了させた。この実験
により、一次再結晶焼鈍後の酸素目付量を低減すること
により、特に良好に二次再結晶することが新たに知見さ
れた。
Next, the present inventors have made intensive studies on the primary recrystallization annealing conditions in order to find more stable secondary recrystallization conditions. Experiment 2 That is, using the slab of steel A in Experiment 1 described above, after finishing up to cold rolling in the same process, an experiment was conducted in which the atmosphere oxidizability of the primary recrystallization annealing was variously changed.
The final finish annealing is performed in a nitrogen atmosphere at a dew point of -20 ° C.
The heating was completed at a rate of 10 ° C./h up to 1050 ° C. Through this experiment, it was newly found that secondary recrystallization was particularly favorably performed by reducing the basis weight of oxygen after primary recrystallization annealing.

【0029】図3に、一次再結晶焼鈍後の酸素目付量と
二次再結晶完了面積率および二次再結晶粒径との関係に
ついて調べた結果を示す。同図に示したとおり、酸素目
付量が1.0 g/m2以下で二次再結晶完了率が 100%とな
り、また二次再結晶粒は酸素目付量が少なくなるほど大
きくなり、良好に二次再結晶することが判明した。
FIG. 3 shows the results of a study on the relationship between the basis weight of oxygen after primary recrystallization annealing, the secondary recrystallization completion area ratio, and the secondary recrystallization particle size. As shown in the figure, the secondary recrystallization completion rate becomes 100% when the oxygen basis weight is 1.0 g / m 2 or less, and the secondary recrystallized grains become larger as the oxygen basis weight decreases, and the secondary recrystallization is favorably performed. It was found to crystallize.

【0030】さらに、発明者らは、インヒビターを含有
しない高純度素材を用いて、二次再結晶により得られる
集合組織と冷延工程との関係を明らかにすべく、以下の
ような実験を行った。実験3 C:0.022 wt%, Si:3.32wt%およびMn:0.050 wt%を
含み、かつ不純物元素をAl:39 ppm, Se:6 ppm, S:
13 ppm, O:10 ppm, N:5ppm まで低減した鋼スラブ
を、連続鋳造にて製造した。ついで、1050℃に加熱後、
熱間圧延により2.8 mm厚の熱延板としたのち、熱延板焼
鈍を水素雰囲気中にて種々の温度、均熱条件下で行っ
た。ついで、200 ℃の温度の冷間圧延にて0.30mmの最終
板厚に仕上げたのち、露点:30℃の水素雰囲気中にて 9
50℃, 20秒間の一次再結晶焼鈍を行った。この時、一次
再結晶焼鈍後の酸素目付量は0.4 g/m2であった。その
後、窒素中にて10℃/hの速度で1020℃まで昇温する最終
仕上焼鈍を行った。 この実験では、最終仕上焼鈍時の鋼
板温度が 850℃に到達した時の鋼中窒素量は40〜60 ppm
の範囲であり、また全ての熱延板焼鈍条件で二次再結晶
を 100%完了させることができた。
Further, the inventors conducted the following experiment to clarify the relationship between the texture obtained by secondary recrystallization and the cold rolling step using a high-purity material containing no inhibitor. Was. Experiment 3 C: 0.022 wt%, Si: 3.32 wt% and Mn: 0.050 wt%, and the impurity elements are Al: 39 ppm, Se: 6 ppm, S:
Steel slabs reduced to 13 ppm, O: 10 ppm and N: 5 ppm were produced by continuous casting. Then, after heating to 1050 ° C,
After a hot-rolled sheet having a thickness of 2.8 mm was formed by hot rolling, the hot-rolled sheet was annealed in a hydrogen atmosphere at various temperatures and soaking conditions. Then, after finishing to a final thickness of 0.30 mm by cold rolling at a temperature of 200 ° C, the dew point is set to 30 ° C in a hydrogen atmosphere.
Primary recrystallization annealing was performed at 50 ° C for 20 seconds. At this time, the basis weight of oxygen after primary recrystallization annealing was 0.4 g / m 2 . Thereafter, final finish annealing was performed in nitrogen at 10 ° C./h at a rate of 1020 ° C. In this experiment, when the steel plate temperature during final annealing reached 850 ° C, the nitrogen content in the steel was 40-60 ppm.
, And 100% secondary recrystallization could be completed under all hot-rolled sheet annealing conditions.

【0031】この実験で得られた二次再結晶組織につい
て調査したところ、最終冷延前の粒径と二次再結晶組織
との間には密接な関連があることが見い出された。図4
に、二次再結晶方位における、ゴス組織{110}<0
01>とキューブ組織{100}<001>の存在頻度
を示す。なお、いずれも、理想方位からの方位差角が15
°以内である二次再結晶粒の面積率で表示した。同図に
よれば、冷延前粒径が 150μm 以下と小さい場合にはゴ
ス組織が、一方冷延前粒径が 200μm 以上と大きい場合
にはキューブ組織がそれぞれ発達することが全く新たに
知見された。
When the secondary recrystallized structure obtained in this experiment was examined, it was found that there was a close relationship between the particle size before final cold rolling and the secondary recrystallized structure. FIG.
In addition, Goss structure {110} <0 in secondary recrystallization orientation
01> and the cube organization {100} <001>. In each case, the azimuth difference angle from the ideal azimuth is 15
It was indicated by the area ratio of secondary recrystallized grains within °. According to the figure, it is completely newly found that the goss structure develops when the grain size before cold rolling is as small as 150 μm or less, while the cube structure develops when the grain size before cold rolling is as large as 200 μm or more. Was.

【0032】ゴス組織は、一方向性電磁鋼板として主に
変圧機用の鉄心材料として、一方キューブ組織は、二方
向性電磁鋼板として主に大型発電機やモーターの鉄心材
料として有用な結晶方位であり、これらの異なる方向性
電磁鋼板を同一の素材を用いて、容易に制御できる冷延
前粒径を調整することによって製造できる点は、従来に
ない全く新規な技術であると言える。
The Goss structure is a unidirectional magnetic steel sheet mainly used as an iron core material for transformers, while the cube structure is a bidirectional electromagnetic steel sheet mainly used as a core material for large generators and motors. The fact that these differently oriented magnetic steel sheets can be manufactured by using the same material and adjusting the grain size before cold rolling, which can be easily controlled, can be said to be a completely new technology that has not been available before.

【0033】さらに、高度に集積したゴス組織およびキ
ューブ組織を得るべく、冷延圧下率について調査した結
果を、図5,図6に示す。図5は、冷延前の粒径が98μ
m のものについて、冷延圧下率と製品板の圧延方向の磁
束密度との関係を示したもの、一方図6は、冷延前の粒
径が 222μm のものについて、冷延圧下率と製品板の圧
延方向および圧延直角方向の平均磁束密度との関係を示
したものである。図5によれば、冷延前粒径が98μm の
場合、冷延圧下率が70%以上,91%以下の範囲で好適に
ゴス組織が発達し、圧延方向の磁束密度B8 が1.80T以
上という良好な特性値が得られている。一方、図6によ
れば、冷延前粒径が 222μm の場合、冷延圧下率が60%
以上,90%以下の範囲で好適にキューブ組織が発達し、
圧延方向と圧延直角方向の平均磁束密度B50が 1.825T
以上という良好な特性値が得られている。
Further, FIGS. 5 and 6 show the results of investigations on the cold rolling reduction in order to obtain a highly integrated Goss structure and cube structure. FIG. 5 shows that the particle size before cold rolling was 98 μm.
6 shows the relationship between the reduction ratio of the cold rolling and the magnetic flux density in the rolling direction of the product sheet for the steel sheet having a grain size of 222 μm before cold rolling. 2 shows the relationship between the rolling direction and the average magnetic flux density in the direction perpendicular to the rolling direction. According to FIG. 5, when the grain size before cold rolling is 98 μm, a goss structure is suitably developed when the rolling reduction is 70% or more and 91% or less, and the magnetic flux density B 8 in the rolling direction is 1.80 T or more. That is, a good characteristic value. On the other hand, according to FIG. 6, when the grain size before cold rolling is 222 μm, the rolling reduction of the cold rolling is 60%.
More than 90% or less of the cube structure develops favorably,
The average magnetic flux density B 50 in the rolling direction and the direction perpendicular to the rolling direction is 1.825T
Good characteristic values as described above are obtained.

【0034】[0034]

【作用】インヒビター成分を含まない成分系において、
素材を高純度化すると共に、最終仕上焼鈍時の鋼板温度
が 850℃に到達するまでの間に鋼中窒素量を30ppm 以上
に増加させることによって、良好な二次再結晶が生じ、
高い磁束密度が得られる理由については、必ずしもまだ
明確に解明されたわけではないが、発明者らは以下のよ
うに考えている。本発明におけるインヒビターを含まな
い高純度材では、粒界の動き易さは粒界構造を反映した
ものであると考えられる。この点、不純物元素は、粒界
特に高エネルギー粒界に優先的に偏析し易いため、不純
物元素を多く含む場合には、高エネルギー粒界と他の粒
界との移動速度に差がなくなるものと考えられる。素材
の高純度化によって、そのような不純物元素の影響を排
除すれば、高エネルギー粒界の移動速度の優位性が生じ
て、ゴス方位粒の二次再結晶が可能になるものと推定さ
れる。
[Action] In a component system containing no inhibitor component,
By purifying the material and increasing the nitrogen content in the steel to 30 ppm or more by the time the temperature of the steel plate during final annealing reaches 850 ° C, favorable secondary recrystallization occurs.
Although the reason why a high magnetic flux density can be obtained has not yet been clearly elucidated, the inventors consider as follows. In the high-purity material containing no inhibitor according to the present invention, it is considered that the easiness of movement of the grain boundaries reflects the grain boundary structure. In this regard, the impurity element is likely to segregate preferentially at the grain boundary, especially at the high energy grain boundary, so that when the impurity element is contained in a large amount, there is no difference in the moving speed between the high energy grain boundary and another grain boundary. it is conceivable that. It is presumed that if the influence of such impurity elements is eliminated by purifying the material, the superiority of the moving speed of the high-energy grain boundaries will occur, and the secondary recrystallization of Goss-oriented grains will be possible. .

【0035】また、微量Nの影響については次のように
考えている。本発明における一次再結晶完了後、最終仕
上焼鈍時の鋼板温度が 850℃に到達するまでに増加した
窒素の存在形態は、Al, B, Nb, V等のインヒビター形
成元素を含んでいないこと、また唯一の窒化物形成元素
と考えられる窒化珪素は 800℃以上の高温では安定して
存在できないことを考慮すると、850 ℃以上の温度域で
は、ほぼ固溶して作用を及ぼしているものと考えられ
る。素材の高純度化により粒界移動は促進されるため
に、一次再結晶後の粒径はインヒビターの存在する場合
と比較して5〜10倍の30〜100 μm 程度になる。再結晶
完了後、最終仕上焼鈍時の鋼板温度が 850℃に到達する
までにN量を増加させない場合には、850 ℃以上の粒界
移動が可能となる温度域で粒成長が抑制されず、二次再
結晶の駆動力としての粒界エネルギーが不足しがちにな
るため、二次再結晶が起こらないものと考えている。固
溶窒素の効果は、粒成長を抑えて、二次再結晶の駆動力
を確保する効果であると推定している。また、最終仕上
焼鈍時の 850℃到達までに窒素量を増加させることが肝
要な理由については、粒界移動が開始する温度域以下に
おいて速い粒界拡散により、粒界を選択的に窒化して粒
界移動を抑制する必要があるためであると推定してい
る。
The influence of the trace N is considered as follows. After the completion of the primary recrystallization in the present invention, the presence form of nitrogen increased until the steel sheet temperature at the time of final finish annealing reaches 850 ° C. does not contain inhibitor-forming elements such as Al, B, Nb, and V; Considering that silicon nitride, which is considered to be the only nitride-forming element, cannot stably exist at high temperatures of 800 ° C or higher, it is thought that it acts almost as a solid solution in the temperature range of 850 ° C or higher. Can be Since the grain boundary movement is promoted by the purification of the material, the particle size after the primary recrystallization is about 30 to 100 μm, which is 5 to 10 times as large as that in the case where the inhibitor is present. If the amount of N is not increased after the completion of recrystallization until the steel sheet temperature during final finish annealing reaches 850 ° C, grain growth is not suppressed in the temperature range where grain boundary movement of 850 ° C or more is possible, It is considered that secondary recrystallization does not occur because the grain boundary energy as a driving force for secondary recrystallization tends to be insufficient. It is presumed that the effect of solute nitrogen is an effect of suppressing grain growth and securing a driving force for secondary recrystallization. The reason why it is important to increase the amount of nitrogen before reaching 850 ° C at the time of final finish annealing is because the grain boundaries are selectively nitrided by rapid grain boundary diffusion below the temperature range where grain boundary migration starts. It is presumed that it is necessary to suppress grain boundary movement.

【0036】なお、本発明の技術は、特公昭62−45285
号公報に開示のような素材成分にAlを含有させ二次再結
晶前までに窒化処理を施すことによって二次再結晶させ
る方法とは、次の点で異なる。すなわち、窒化後の窒素
の存在形態は、特公昭62−45285 号公報に開示の技術の
場合、(Si,Al)Nという析出状態で存在し、さらに鋼中
における窒化物の分布はほぼ一様であり、粒界、粒内に
おける差異は小さい。また、素材成分にAlを含有させ二
次再結晶前までに窒化処理を施すことにより二次再結晶
させる方法において形成される(Si,Al)N析出物をイン
ヒビターとして機能させるためには、素材段階でMnSま
たはMnSeをインヒビターとしてAlNと併用する従来技術
の場合に必要とされる60〜100ppmのN量よりもさらに多
い量が必要とされている。例えば、特公昭62−45285 号
公報の例では、850 ℃における窒化量は148ppm,145ppm
(同公報第7頁左欄第13行) であり、また特開平5−15
631 号公報には、N量を0.01wt%(100ppm)以上含有させ
ることが明記されている。
The technique of the present invention is disclosed in JP-B-62-45285.
The method differs from the method disclosed in Japanese Patent Application Publication No. JP-A-2003-175572 in which Al is contained in a material component and nitriding treatment is performed before secondary recrystallization to perform secondary recrystallization. That is, in the case of the technique disclosed in Japanese Patent Publication No. Sho 62-45285, the existence form of nitrogen after nitriding exists in a precipitated state of (Si, Al) N, and the distribution of nitride in steel is almost uniform. And the difference between the grain boundaries and within the grains is small. Further, in order to make the (Si, Al) N precipitate formed in the method of secondary recrystallization by containing Al in the material component and performing a nitriding treatment before the secondary recrystallization function as an inhibitor, There is a need for an amount of N that is greater than the 60 to 100 ppm N required in the prior art where MnS or MnSe is used in combination with AlN as an inhibitor at the stage. For example, in the example of Japanese Patent Publication No. 62-45285, the nitriding amount at 850 ° C. is 148 ppm and 145 ppm.
(P. 7, left column, line 13).
No. 631 stipulates that the N content be 0.01 wt% (100 ppm) or more.

【0037】これに対し、本発明では、固溶窒素を主に
活用することから、Nの必要量は30ppm 程度で十分であ
る。本技術では、素材中に予めNを含有させている場合
には二次再結晶が起こらないので、素材中におけるNの
混入は極力低減しなければならない。一次再結晶焼鈍前
からNが 30ppm以上存在している場合には、鋼中に窒化
珪素の析出物が生成しており、一次再結晶完了後、最終
仕上焼鈍の途中でN量を増加させた場合には、再結晶焼
鈍前から存在している窒化珪素の析出物を核として新た
に窒化珪素が析出し、粒界における選択窒化が起きなく
なると推定される。粒界における選択窒化が起こらない
場合には、30 ppm程度の窒素量では粒成長の抑制効果が
不足するだけでなく、高温で窒化珪素は(Si,Al)N析出
物に比較して不安定であるので、たとえ80 ppm程度窒素
が存在していても二次再結晶が起こらないものと推定さ
れる。
On the other hand, in the present invention, since the solid solution nitrogen is mainly used, the necessary amount of N is about 30 ppm is sufficient. In the present technology, when N is contained in the material in advance, secondary recrystallization does not occur, so that the incorporation of N in the material must be reduced as much as possible. When N was present at 30 ppm or more before the primary recrystallization annealing, a precipitate of silicon nitride was formed in the steel, and after the primary recrystallization was completed, the N content was increased during the final finish annealing. In this case, it is presumed that silicon nitride newly precipitates with the precipitate of silicon nitride existing before recrystallization annealing as a nucleus, and selective nitridation at the grain boundary does not occur. If selective nitridation at the grain boundaries does not occur, the effect of suppressing the grain growth will not be sufficient with a nitrogen amount of about 30 ppm, and silicon nitride will be unstable at high temperatures compared to (Si, Al) N precipitates. Therefore, it is estimated that secondary recrystallization does not occur even if about 80 ppm of nitrogen is present.

【0038】さらに、固溶窒素は、製品板中に残留して
いても、窒化析出物と異なり磁壁移動に対する障害とは
ならないので、高温純化焼鈍を施して特に除去する必要
がない。それ故、本発明では、二次再結晶の完了あるい
はフォルステライト被膜の形成時点で、最終仕上焼鈍を
終了することができ、生産性の向上はいうまでもなく、
設備の簡略化、さらには高温焼鈍時におけるコイル下部
の座屈防止を実現できる点で、従来技術よりもはるかに
優れている。
Further, even if the solid solution nitrogen remains in the product plate, it does not hinder the domain wall movement unlike the nitride precipitate, so that it is not particularly necessary to remove the solid solution nitrogen by performing high-temperature purification annealing. Therefore, in the present invention, at the time of completion of the secondary recrystallization or the formation of the forsterite film, the final finish annealing can be completed, and it goes without saying that the productivity is improved.
This is far superior to the prior art in that the equipment can be simplified and the lower part of the coil can be prevented from buckling during high-temperature annealing.

【0039】また、本発明の技術は、次の点で表面エネ
ルギーを利用する技術に対して優位性を持つ。まず、粒
界エネルギーを駆動力とした二次再結晶であるので、板
厚の制限がない。例えば、板厚が1mm以上のものも二次
再結晶が可能であり、そのような板厚の厚い製品は鉄損
値は劣化するものの、透磁率が高いので磁気シールド材
として使用することができる。また、表面酸化物が生成
している状態で 850〜950 ℃という一般的な熱処理が施
される温度での二次再結晶が可能である。さらに、最終
仕上焼鈍の雰囲気も真空や高価な不活性ガスを用いる必
要がなく、最も通常的に用いられている安価な窒素を主
体として行うことができる。
The technology of the present invention is superior to the technology utilizing surface energy in the following points. First, since the secondary recrystallization is performed using the grain boundary energy as a driving force, there is no restriction on the thickness of the sheet. For example, secondary recrystallization is possible even for a plate with a thickness of 1 mm or more, and such a thick product can be used as a magnetic shielding material because its iron loss value is deteriorated but its magnetic permeability is high. . In addition, secondary recrystallization can be performed at a temperature of 850 to 950 ° C. where a general heat treatment is performed while the surface oxide is generated. Furthermore, the atmosphere for the final finish annealing does not need to use vacuum or expensive inert gas, and can be performed mainly using inexpensive nitrogen, which is most commonly used.

【0040】次に、本発明において、素材スラブの成分
組成を前記の範囲に限定した理由について説明する。 C:0.12wt%以下 Cは、二次再結晶の発現自体には影響を及ぼさないが、
含有量が0.12wt%を超えると熱延板でのγ相の生成量が
増え、その結果、再結晶焼鈍での集合組織の発達に悪影
響を与えて二次再結晶方位の集積度を低下させるだけで
なく、一次再結晶焼鈍時に磁気時効を起こさない範囲で
ある50 ppm以下に低減することが困難になるので, C量
は0.12wt%以下に制限した。
Next, the reason why the composition of the material slab is limited to the above range in the present invention will be described. C: 0.12 wt% or less C does not affect the appearance of secondary recrystallization itself,
If the content exceeds 0.12 wt%, the generation amount of the γ phase in the hot-rolled sheet increases, and as a result, it adversely affects the development of the texture during recrystallization annealing and decreases the degree of integration of the secondary recrystallization orientation. In addition, since it becomes difficult to reduce the magnetic aging during primary recrystallization annealing to 50 ppm or less, which is a range that does not cause magnetic aging, the C content is limited to 0.12 wt% or less.

【0041】Si:2.0 〜8.0 wt% Siは、電気抵抗を高め、鉄損を改善する有用元素である
が、含有量が 2.0wt%に満たないとその効果に乏しく、
またγ変態を生じ、熱延組織が大きく変化する他、最終
仕上焼鈍において変態し、良好な磁気特性を得ることが
できない。一方、Si量が 8.0wt%を超えると、製品の二
次加工性が悪化し、さらに飽和磁束密度も低下するの
で、Si量は 2.0〜8.0 wt%の範囲に制限した。
Si: 2.0 to 8.0 wt% Si is a useful element for increasing electric resistance and improving iron loss, but its effect is poor if the content is less than 2.0 wt%.
In addition, γ transformation occurs and the hot-rolled structure changes significantly, and it transforms in the final finish annealing, so that good magnetic properties cannot be obtained. On the other hand, if the Si content exceeds 8.0 wt%, the secondary workability of the product deteriorates and the saturation magnetic flux density also decreases, so the Si content was limited to the range of 2.0 to 8.0 wt%.

【0042】Mn:0.005 〜1.0 wt% Mnは、熱間加工性を良好にするために必要な元素である
が、0.005 wt%未満ではその添加効果に乏しく、一方
1.0wt%を超えると磁束密度が低下するので、Mn量は 0.
005〜1.0 wt%の範囲に制限した。
Mn: 0.005 to 1.0 wt% Mn is an element necessary for improving hot workability, but if it is less than 0.005 wt%, the effect of its addition is poor.
If it exceeds 1.0 wt%, the magnetic flux density will decrease, so the Mn content will be
It was limited to the range of 005 to 1.0 wt%.

【0043】Al:100 ppm 未満、Se,S,OおよびN:
30 ppm以下 これらの元素はいずれも、二次再結晶の発現を阻害し、
しかも地鉄中に残存して鉄損を劣化させる有害元素であ
る。そこで、Alは 100 ppm未満、またSe,S,OおびN
はいずれも 30ppm以下(望ましくは20ppm 以下)に低減
するものとした。
Al: less than 100 ppm, Se, S, O and N:
30 ppm or less All of these elements inhibit the appearance of secondary recrystallization,
Moreover, it is a harmful element that remains in the base iron and deteriorates iron loss. Therefore, Al is less than 100 ppm, Se, S, O and N
Were reduced to 30 ppm or less (preferably 20 ppm or less).

【0044】以上、必須成分および抑制成分について説
明したが、本発明ではその他、以下に述べる元素を適宜
含有させることができる。まず、磁束密度を向上させる
ためにNiを添加することができる。しかしながら、添加
量が0.01wt%に満たないと磁気特性の向上量が小さく、
一方1.50wt%を超えると二次再結晶粒の発達が不十分で
満足いく磁気特性が得られないので、添加量は0.01〜1.
50wt%とする。また、鉄損を向上するために、Sn:0.01
〜0.50wt%、Sb:0.005 〜0.50wt%、Cu:0.01〜0.50wt
%、Mo:0.005 〜0.50wt%、Cr:0.01〜1.50wt%を添加
することができる。これらの元素はいずれも、上記の範
囲より添加量が少ない場合には鉄損改善効果がなく、一
方添加量が多い場合には二次再結晶粒が発達しなくなり
鉄損の劣化を招く。
Although the essential components and the suppressing components have been described above, the present invention may contain other elements as described below. First, Ni can be added to improve the magnetic flux density. However, if the addition amount is less than 0.01 wt%, the improvement amount of the magnetic properties is small,
On the other hand, if the content exceeds 1.50 wt%, secondary recrystallized grains are insufficiently developed and satisfactory magnetic properties cannot be obtained.
50 wt%. In addition, in order to improve iron loss, Sn: 0.01
~ 0.50wt%, Sb: 0.005 ~ 0.50wt%, Cu: 0.01 ~ 0.50wt
%, Mo: 0.005 to 0.50 wt%, and Cr: 0.01 to 1.50 wt%. Any of these elements has no effect of improving iron loss when the added amount is less than the above range, while when the added amount is large, secondary recrystallized grains do not develop and lead to deterioration of iron loss.

【0045】次に、本発明の製造条件について説明す
る。上記の好適成分組成に調整した溶鋼を、通常、造塊
法や連続鋳造法によりスラブとする。また、直接鋳造法
を用いて 100mm以下の厚さの薄鋳片を直接製造してもよ
い。スラブは、通常の方法で加熱して熱間圧延するが、
鋳造後、加熱せずに直ちに熱延に供してもよい。また、
薄鋳片の場合には、熱間圧延を行っても良いし、熱間圧
延を省略してそのまま以後の工程に進めてもよい。スラ
ブ加熱温度は、素材成分にインヒビター成分を含まない
ので、熱間圧延が可能な最低温度の1100℃程度で十分で
ある。
Next, the manufacturing conditions of the present invention will be described. The molten steel adjusted to the above preferable component composition is usually made into a slab by an ingot-making method or a continuous casting method. Further, a thin slab having a thickness of 100 mm or less may be directly manufactured using a direct casting method. The slab is heated and hot rolled in the usual way,
After casting, it may be subjected to hot rolling immediately without heating. Also,
In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed to the subsequent steps. Since the slab heating temperature does not include the inhibitor component in the raw material component, a minimum temperature of about 1100 ° C. at which hot rolling is possible is sufficient.

【0046】ついで、必要に応じて熱延板焼鈍を施した
のち、必要に応じて中間焼鈍を挟む1回以上の冷延を施
し、しかるのち一次再結晶焼鈍を行う。熱延板焼鈍は、
磁気特性の向上に有用である。同様に、中間焼鈍を冷間
圧延の間に挟むことは、磁気特性の安定化に有用であ
る。しかしながら、いずれも生産コストを上昇させるこ
とになるので、経済的観点および一次再結晶粒径を適正
範囲にする必要から、熱延板焼鈍や中間焼鈍の取捨選択
および焼鈍温度と時間が決定される。なお、最終冷間圧
延後あるいは一次再結晶焼鈍後に、浸珪法によってにSi
量を増加させる技術を併用してもよい。
Next, after hot-rolled sheet annealing is performed as necessary, one or more cold-rolling steps including intermediate annealing are performed as necessary, and then primary recrystallization annealing is performed. Hot rolled sheet annealing
It is useful for improving magnetic properties. Similarly, sandwiching intermediate annealing between cold rollings is useful for stabilizing magnetic properties. However, since both increase the production cost, the selection of hot-rolled sheet annealing and intermediate annealing, and the annealing temperature and time are determined from the economical viewpoint and the necessity of setting the primary recrystallized grain size to an appropriate range. . After the final cold rolling or primary recrystallization annealing, the silicon
Techniques for increasing the amount may be used in combination.

【0047】ついで、一次再結晶完了後、必要に応じて
焼鈍分離剤を塗布してから、最終仕上焼鈍に供するが、
本発明では、上記の最終仕上焼鈍工程において、鋼板温
度が850℃に到達するまでの間に、鋼中窒素量を30 ppm
以上に増加させることが特に重要である。鋼中窒素量を
増加させる方法としては、 a)最終仕上焼鈍時の窒素分圧を高めること、 b)焼鈍分離剤中に窒化能のある化合物を添加するこ
と、 c)一次再結晶完了後、窒化能のある雰囲気で焼鈍を行
うこと のいずれかまたはそれらの組み合わせが好適である。
Then, after the completion of the primary recrystallization, an annealing separator is applied as required, and then subjected to final finish annealing.
In the present invention, in the final finish annealing step, until the steel sheet temperature reaches 850 ℃, the nitrogen content in the steel 30 ppm
It is particularly important to increase the above. Methods for increasing the amount of nitrogen in steel include: a) increasing the partial pressure of nitrogen during the final finish annealing; b) adding a compound capable of nitriding into the annealing separator; c) after completion of the primary recrystallization. Performing annealing in an atmosphere having a nitriding ability or a combination thereof is preferable.

【0048】ここに、最終仕上焼鈍時に窒素分庄を高め
ることにより鋼中窒素量を増加させるためには、鋼板温
度が 850℃に到達するまでの雰囲気中の窒素分圧を10%
以上とすることが好ましい。また、焼鈍分離剤中に添加
する窒化能のある化合物としては、特に限定されること
はないが、フェロ窒化マンガン、窒化マンガン、窒化チ
タンおよび窒化モリブデン等が有利に適合する。さら
に、窒化能のある雰囲気についても、特に限定されるこ
とはないが、アンモニア等が有利に適合する。
Here, in order to increase the nitrogen content in the steel by increasing the nitrogen content during the final finish annealing, the nitrogen partial pressure in the atmosphere until the steel plate temperature reaches 850 ° C. is increased by 10%.
It is preferable to make the above. The compound having nitriding ability to be added to the annealing separator is not particularly limited, but ferromanganese nitride, manganese nitride, titanium nitride, molybdenum nitride, and the like are advantageously suitable. Further, the atmosphere having a nitriding ability is not particularly limited, but ammonia or the like is advantageously suitable.

【0049】上記した最終仕上焼鈍において、鋼中窒素
量を30 ppm以上へと増加させる鋼板温度の上限を 850℃
としたのは、鋼板温度が 850℃を超えると、粒界移動が
開始してマトリックスの粒成長が起き、二次再結晶が不
安定となり磁気特性が劣化するからである。また、この
温度での窒素量が30 ppmに満たないと、固溶窒素による
粒界移動の抑制効果が不十分で二次再結晶が不安定とな
るので、窒素量は30 ppm以上に増加させることが必要で
ある。
In the above-mentioned final finish annealing, the upper limit of the steel sheet temperature for increasing the nitrogen content in the steel to 30 ppm or more is 850 ° C.
The reason is that if the temperature of the steel sheet exceeds 850 ° C., the movement of the grain boundary starts, the grain growth of the matrix occurs, the secondary recrystallization becomes unstable, and the magnetic properties deteriorate. If the nitrogen content at this temperature is less than 30 ppm, the effect of suppressing the grain boundary movement by solid solution nitrogen is insufficient and secondary recrystallization becomes unstable, so the nitrogen content should be increased to 30 ppm or more. It is necessary.

【0050】最終仕上焼鈍は、二次再結晶完了温度がほ
ぼ 850〜1050℃の範囲であるので、この温度まで任意の
速度で昇温し、この温度範囲に20時間以上滞留させて行
うことが望ましい。この時、焼鈍雰囲気については、鋼
中N量を増加または維持するのに必要な非酸化性雰囲気
であれば良く、窒素、水素、Arやそれらの混合雰囲気な
どを使用することができる。
In the final finish annealing, since the secondary recrystallization completion temperature is in a range of approximately 850 to 1,050 ° C., the temperature can be raised to this temperature at an arbitrary rate and kept at this temperature range for at least 20 hours. desirable. At this time, the annealing atmosphere may be any non-oxidizing atmosphere necessary to increase or maintain the N content in the steel, and may be nitrogen, hydrogen, Ar, or a mixed atmosphere thereof.

【0051】なお、一次再結晶焼鈍の雰囲気は非酸化性
であれば良く、窒素、水素、Arやそれらの混合雰囲気な
ど使用できるが、良好な二次再結晶組織を得るために
は、一次再結晶焼鈍後の鋼板表面の酸素目付量を片面当
たり 1.0 g/m2 以下とすることが好適である。一次再結
晶焼鈍後の酸素目付量を低減することによって、特に良
好に二次再結晶がもたらされる理由については、表層の
酸化層を減少させることにより、一次再結晶完了後、最
終仕上焼鈍中において容易に鋼中N量を増加できる効果
が得られる他、表面酸化物が酸素の供給源として内部酸
化を進行させることによって、板厚表層から発生すると
考えられている二次再結晶核の形成に影響を与えている
ことなどが考えられる。
The atmosphere for the primary recrystallization annealing may be any non-oxidizing atmosphere, such as nitrogen, hydrogen, Ar or a mixed atmosphere thereof. However, in order to obtain a good secondary recrystallization structure, the primary recrystallization It is preferable that the oxygen basis weight of the steel sheet surface after the crystal annealing is 1.0 g / m 2 or less per one side. By reducing the oxygen basis weight after the primary recrystallization annealing, the reason why secondary recrystallization is particularly favorably brought about is to reduce the oxide layer on the surface layer, after the completion of the primary recrystallization, during the final finish annealing. In addition to the effect of easily increasing the amount of N in steel, the surface oxide promotes internal oxidation as a supply source of oxygen, thereby forming secondary recrystallization nuclei that are considered to be generated from the surface layer of the plate. It is thought that it is affecting.

【0052】さらに、この発明において、二次再結晶に
より発達したゴス組織を得るためには、最終冷延前の平
均結晶粒径を 150μm 以下とし、かつ最終冷延圧下率を
70%以上91%以下とすることが好適であり、この範囲外
では二次再結晶組織におけるゴス組織の集積度が低下し
て圧延方向の磁束密度が低下する。また、二次再結晶に
より発達したキューブ組織を得るためには、最終冷延前
の平均結晶粒径を 200μm 以上とし、かつ最終冷延圧下
率を60%以上90%以下とすることが好適であり、この範
囲外では二次再結晶組織におけるキューブ組織の集積度
が低下して、圧延方向と圧延直角方向の平均の磁束密度
が低下する。
Further, in the present invention, in order to obtain a Goss structure developed by secondary recrystallization, the average crystal grain size before final cold rolling is set to 150 μm or less, and the final cold rolling reduction is reduced.
It is preferable to be 70% or more and 91% or less, and outside this range, the degree of integration of the Goss structure in the secondary recrystallized structure decreases, and the magnetic flux density in the rolling direction decreases. In order to obtain a cube structure developed by secondary recrystallization, it is preferable that the average crystal grain size before final cold rolling is 200 μm or more, and the final cold rolling reduction is 60% or more and 90% or less. Outside this range, the degree of integration of the cube structure in the secondary recrystallized structure decreases, and the average magnetic flux density in the rolling direction and the direction perpendicular to the rolling decreases.

【0053】上記したように、最終冷延前粒径を 150μ
m 以下とし、かつ最終冷延圧下率を70〜91%とすること
によって、二次再結晶によりゴス組織が得られる理由と
しては、最終冷延前粒径を小さく抑えると共に、冷延圧
下率を高くすることにより、再結晶焼鈍時に粒界からの
再結晶核形成が促進され、ゴス方位との方位差角が20〜
45°の範囲にある{111}再結晶粒が増加し、最終仕
上焼鈍時に方位差角が20〜45°である高エネルギー粒界
の優先的移動によって、ゴス方位粒が二次再結晶するの
に有利な集合組織が形成されるためであると考えられ
る。また、最終冷延前粒径を 200μm 以上とし、かつ最
終冷延圧下率を60〜90%とすることによって、二次再結
晶によりキューブ組織({100}<001>組織)が
得られる理由としては、最終冷延前粒径を大きくすると
共に、冷延圧下率をやや低めにすることにより、再結晶
焼鈍時に粒界からの再結晶核形成を抑制し、粒内の変形
帯からの再結晶核生成を促進させ、キューブ方位との方
位差角が20〜45°の範囲にある{411}<148>再
結晶粒およびゴス方位再結晶粒を増加させ、最終仕上焼
鈍時に方位差角が20〜45°である高エネルギー粒界の優
先的移動によって、キューブ方位粒が二次再結晶するの
に有利な集合組織が形成されるためであると考えられ
る。
As described above, the particle size before final cold rolling was 150 μm.
m or less and a final cold rolling reduction of 70 to 91%, the reason why a Goss structure is obtained by secondary recrystallization is that the grain diameter before final cold rolling is kept small and the cold rolling reduction is reduced. By increasing the height, recrystallization nucleation from the grain boundary during recrystallization annealing is promoted, and the azimuth difference angle from the Goss orientation is 20 to
The {111} recrystallized grains in the range of 45 ° increase, and the Goss oriented grains undergo secondary recrystallization due to preferential movement of high-energy grain boundaries in which the misorientation angle is 20 to 45 ° during final finish annealing. It is considered that a texture advantageous to the above is formed. The reason why the cube structure ({100} <001> structure) can be obtained by secondary recrystallization by setting the particle size before final cold rolling to 200 μm or more and the final rolling reduction to 60 to 90%. Is to reduce the recrystallization nucleation from grain boundaries during recrystallization annealing by increasing the grain size before final cold rolling and making the cold rolling reduction slightly lower, and recrystallizing from the deformation zone in the grains. It promotes nucleation, increases {411} <148> recrystallized grains and goss oriented recrystallized grains whose misorientation angle with the cube orientation is in the range of 20 to 45 °, and has a misorientation angle of 20 during the final finish annealing. It is considered that the preferential movement of the high-energy grain boundary of about 45 ° forms a texture advantageous for secondary recrystallization of the cube-oriented grains.

【0054】なお、鋼板を積層して使用する場合には、
上記の最終仕上焼鈍後、鉄損を改善するために、鋼板表
面に絶縁コーティングを施すことが有効である。この目
的のためには、2種類以上の被膜からなる多層膜であっ
ても良いし、また用途に応じて樹脂等を混合させたコー
ティングを施しても良い。
When the steel sheets are laminated and used,
After the above-mentioned final finish annealing, it is effective to apply an insulating coating to the steel sheet surface in order to improve iron loss. For this purpose, a multilayer film composed of two or more kinds of films may be used, or a coating mixed with a resin or the like may be applied according to the application.

【0055】[0055]

【実施例】実施例1 C:40 ppm, Si:3.45wt%, Mn:0.25wt%, Al:30 pp
m, Se:4 ppm, S:5ppm , N:7 ppmおよびO:7
ppmを含み、残部は実質的にFeの組成になる鋼スラブ
を、連続鋳造にて製造した。ついで、1150℃, 300分間
のスラブ加熱後、熱間圧延により 2.5mm厚の熱延板とし
たのち、 950℃, 60秒間の熱延板焼鈍を施し、ついで冷
間圧延により0.35mmの最終板厚に仕上げた。冷間圧延前
の平均粒径は70μm であった。ついで、露点を種々に変
更したAr雰囲気中にて 900℃, 30秒間の一次再結晶焼鈍
を施した後、最終仕上焼鈍を、表1に示す種々の雰囲気
中にて15℃/hの速度で1050℃まで昇温する方法で行っ
た。なお、最終仕上焼鈍の途中、鋼板温度が850℃に到
達した時点で試料を採取して鋼中窒素量を調査した。そ
の後、重クロム酸アルミニウム、エマルジョン樹脂、エ
チレングリコールを混合したコーティング液を塗布し、
300 ℃で焼き付けて製品とした。表1に、一次再結晶焼
鈍時の雰囲気露点および一次再結晶焼鈍後の鋼板表面に
おける酸素目付量ならびに最終仕上焼鈍の雰囲気、850
℃到達時における鋼中窒素量および得られた製品の磁気
特性について調べた結果を示す。
EXAMPLES Example 1 C: 40 ppm, Si: 3.45 wt%, Mn: 0.25 wt%, Al: 30 pp
m, Se: 4 ppm, S: 5 ppm, N: 7 ppm and O: 7
A steel slab containing ppm and the balance substantially consisting of Fe was manufactured by continuous casting. Then, after slab heating at 1150 ° C for 300 minutes, a hot-rolled sheet with a thickness of 2.5 mm was formed by hot rolling, followed by annealing at 950 ° C for 60 seconds, and then a 0.35 mm final sheet by cold rolling. Finished thick. The average particle size before cold rolling was 70 μm. Then, after performing primary recrystallization annealing at 900 ° C. for 30 seconds in an Ar atmosphere with variously changed dew points, final finish annealing was performed at a rate of 15 ° C./h in various atmospheres shown in Table 1. The test was performed by raising the temperature to 1050 ° C. During the final annealing, a sample was taken when the temperature of the steel sheet reached 850 ° C., and the amount of nitrogen in the steel was investigated. After that, apply a coating liquid mixed with aluminum dichromate, emulsion resin and ethylene glycol,
The product was baked at 300 ° C. Table 1 shows the dew point of the atmosphere during the primary recrystallization annealing, the oxygen basis weight on the steel sheet surface after the primary recrystallization annealing, and the atmosphere of the final finish annealing.
The result of having investigated about the amount of nitrogen in steel at the time of reaching ° C and the magnetic properties of the obtained product is shown.

【0056】[0056]

【表1】 [Table 1]

【0057】表1に示したとおり、最終仕上焼鈍の途
中、鋼板温度が 850℃の時点で鋼中窒素量が 30ppm以上
となっていたものはいずれも、良好な磁気特性が得られ
た。特に、一次再結晶焼鈍後の酸素目付量が低い場合に
は、より優れた磁気特性が得られている。
As shown in Table 1, during the final finish annealing, when the steel sheet temperature was 850 ° C. and the nitrogen content in the steel was 30 ppm or more, good magnetic properties were obtained. In particular, when the oxygen basis weight after the primary recrystallization annealing is low, more excellent magnetic properties are obtained.

【0058】実施例2 表2に示す成分組成になる鋼スラブを、連続鋳造にて製
造した。ついで、スラブを加熱することなく、直接熱間
圧延により 3.8mmに仕上げ、 900℃, 30秒間の熱延板焼
鈍後、1回目の冷間圧延により 2.0mmの中間板厚とし、
ついで 950℃,60秒間の中間焼鈍後、最終冷間圧延によ
り0.23mmの最終板厚に仕上げた。最終冷延前の粒径は80
〜120 μm の範囲であった。ついで、露点が−20℃の水
素:98%,アンモニア:2%の混合雰囲気中にて、950
℃,30秒間の一次再結晶焼鈍を施した後、鋼板表面に焼
鈍分離剤としてMgOを塗布してから、最終仕上焼鈍を、
乾燥水素雰囲気中にて5 ℃/hの速度で1120℃まで昇温す
る方法で行った。なお、最終仕上焼鈍の途中、鋼板温度
が 850℃に到達した時点で試料を採取して窒素量を調査
した。その後、リン酸塩を主体とする無機コーティング
液を塗布し、800 ℃で平坦化焼鈍を施して製品とした。
表3に、850 ℃到達時における鋼中窒素量および得られ
た製品の磁気特性について調べた結果を示す。
Example 2 A steel slab having the composition shown in Table 2 was produced by continuous casting. Then, without heating the slab, it was finished by direct hot rolling to 3.8 mm, hot rolled sheet annealing at 900 ° C for 30 seconds, the first cold rolling to 2.0 mm intermediate sheet thickness,
Then, after intermediate annealing at 950 ° C. for 60 seconds, a final sheet thickness of 0.23 mm was obtained by final cold rolling. Particle size before final cold rolling is 80
It was in the range of 120120 μm. Then, in a mixed atmosphere of hydrogen: 98% and ammonia: 2% with a dew point of −20 ° C., 950 ° C.
After primary recrystallization annealing at 30 ° C for 30 seconds, MgO was applied as an annealing separator on the steel sheet surface, and then final finish annealing was performed.
The method was carried out in a dry hydrogen atmosphere by increasing the temperature to 1120 ° C. at a rate of 5 ° C./h. During the final finish annealing, when the temperature of the steel plate reached 850 ° C, a sample was taken to investigate the nitrogen content. Thereafter, an inorganic coating solution mainly composed of phosphate was applied, and flattening annealing was performed at 800 ° C. to obtain a product.
Table 3 shows the results of examining the nitrogen content in steel when the temperature reached 850 ° C. and the magnetic properties of the obtained product.

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】表3に示したとおり、素材として、Alが 1
00 ppm未満で、かつSe,S,N,Oがそれぞれ 30 ppm
以下の鋼スラブを用いた場合には、圧延方向の磁束密度
8が1.85T以上の優れた磁気特性の製品を得ることが
できた。
As shown in Table 3, as a material, Al was 1
Less than 00 ppm, and each of Se, S, N and O is 30 ppm
Following the case of using a steel slab, the magnetic flux density B 8 in the rolling direction is able to obtain a product of more excellent magnetic properties 1.85 T.

【0062】実施例3 C:230ppm, Si:3.20wt%, Mn:0.35wt%, Al:70 pp
m, Se:2 ppm, S:6ppm , N:5 ppmおよびO:9
ppmを含み、残部は実質的にFeの組成になる板厚:5.5 m
mの薄鋳片を、直接鋳造法で製造した。ついで、1100℃
で 300分間加熱したのち、熱間圧延により 3.0mm厚の熱
延板とした。ついで、表4に示す条件で熱延板焼鈍後、
250 ℃の温度で冷間圧延を行い、0.50mmの最終板厚に仕
上げた。この時の冷延圧下率は83%である。ついで、露
点:35℃の水素雰囲気にて 950℃, 30秒間の一次再結晶
焼鈍を施した。この時、一次再結晶焼鈍後の鋼板表面の
酸素目付量は 0.4 g/m2 であった。その後、鋼板表面
に、焼鈍分離剤として、MgO 中に5wt%のフェロ窒化マ
ンガンを含有させた分離剤を塗布してから、最終仕上焼
鈍を、−30℃の乾燥水素雰囲気にて15℃/hの速度で1050
℃まで昇温する方法で行った。 最終仕上焼鈍の途中、鋼
板温度が 850℃に到達した時点で試料を採取して窒素量
を調査したところ、40〜60 ppmの範囲であった。表4
に、熱延板焼鈍条件、最終冷延前の平均粒径および得ら
れた製品の磁気特性について調べた結果を示す。
Example 3 C: 230 ppm, Si: 3.20 wt%, Mn: 0.35 wt%, Al: 70 pp
m, Se: 2 ppm, S: 6 ppm, N: 5 ppm and O: 9
Containing ppm, the balance is substantially Fe composition.
m thin slabs were produced by direct casting. Then 1100 ° C
After hot rolling for 300 minutes, a hot-rolled sheet having a thickness of 3.0 mm was formed by hot rolling. Then, after hot-rolled sheet annealing under the conditions shown in Table 4,
Cold rolling was performed at a temperature of 250 ° C. to finish to a final thickness of 0.50 mm. The cold rolling reduction at this time is 83%. Next, primary recrystallization annealing was performed at 950 ° C. for 30 seconds in a hydrogen atmosphere with a dew point of 35 ° C. At this time, the basis weight of oxygen on the steel sheet surface after the primary recrystallization annealing was 0.4 g / m 2 . Then, after applying a separating agent containing 5 wt% of ferromanganese nitride in MgO as an annealing separating agent to the surface of the steel sheet, the final finish annealing is performed at -30 ° C in a dry hydrogen atmosphere at 15 ° C / h. At a speed of 1050
The method was carried out by raising the temperature to ° C. During the final finish annealing, when the steel sheet temperature reached 850 ° C, a sample was taken to examine the nitrogen content, which was in the range of 40 to 60 ppm. Table 4
Table 2 shows the results of investigations on the hot-rolled sheet annealing conditions, the average particle size before final cold rolling, and the magnetic properties of the obtained product.

【0063】[0063]

【表4】 [Table 4]

【0064】表4に示したとおり、最終冷延前の粒径が
150μm 以下の場合には、圧延方向の磁束密度が良好な
製品が、一方、最終冷延前の粒径が 200μm 以上の場合
には圧延方向と圧延直角方向の平均で良好な磁気特性が
得られている。
As shown in Table 4, the particle size before final cold rolling was
When the particle size is 150 μm or less, the product has good magnetic flux density in the rolling direction.On the other hand, when the particle size before final cold rolling is 200 μm or more, good magnetic properties are obtained on average in the rolling direction and the direction perpendicular to the rolling direction. ing.

【0065】[0065]

【発明の効果】かくして、本発明に従い、インヒビター
成分を含まない高純度素材を用いて、一次再結晶完了
後、最終仕上焼鈍時に鋼板温度が 850℃に到達するまで
の間に、鋼中窒素量を 30ppm以上に増加させることによ
り、最終仕上焼鈍時に効果的に二次再結晶を生じさせる
ことができ、従って、本発明によれば、簡略された工程
で磁気特性に優れた方向性電磁鋼板を得ることができ
る。
Thus, according to the present invention, using a high-purity material that does not contain an inhibitor component, after the completion of the primary recrystallization, the amount of nitrogen in the steel during the final finish annealing until the steel plate temperature reaches 850 ° C. Is increased to 30 ppm or more, secondary recrystallization can be effectively generated at the time of final finish annealing.Accordingly, according to the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained by a simplified process. Obtainable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 方向性電磁鋼板の一次再結晶組織における方
位差角が20〜45°である粒界の存在頻度を示した図であ
る。
FIG. 1 is a diagram showing the frequency of the presence of grain boundaries having a misorientation angle of 20 to 45 ° in a primary recrystallized structure of a grain-oriented electrical steel sheet.

【図2】 鋼板温度が 850℃到達時における鋼中窒素量
と二次再結晶完了面積率との関係を示したグラフであ
る。
FIG. 2 is a graph showing the relationship between the amount of nitrogen in steel and the area ratio of completed secondary recrystallization when the temperature of a steel sheet reaches 850 ° C.

【図3】 一次再結晶焼鈍後の酸素目付量と二次再結晶
完了面積率および二次再結晶粒径との関係を示したグラ
フである。
FIG. 3 is a graph showing the relationship between the basis weight of oxygen after primary recrystallization annealing, the secondary recrystallization completion area ratio, and the secondary recrystallization particle size.

【図4】 最終冷延前の粒径とゴス組織およびキューブ
組織の二次再結晶粒面積率との関係を示したグラフであ
る。
FIG. 4 is a graph showing the relationship between the particle size before final cold rolling and the area ratio of secondary recrystallized grains of a Goss structure and a cube structure.

【図5】 冷延前粒径が98μm のものについて、冷延圧
下率と製品板の圧延方向の磁束密度との関係を示したグ
ラフである。
FIG. 5 is a graph showing the relationship between the reduction ratio of cold rolling and the magnetic flux density in the rolling direction of a product sheet when the particle size before cold rolling is 98 μm.

【図6】 冷延前粒径が 222μm のものについて、冷延
圧下率と製品板の圧延方向および圧延直角方向の平均磁
束密度との関係を示したグラフである。
FIG. 6 is a graph showing the relationship between the reduction ratio of cold rolling and the average magnetic flux density in the rolling direction and the direction perpendicular to the rolling direction of a product sheet for a particle size before cold rolling of 222 μm.

フロントページの続き Fターム(参考) 4K033 AA02 CA01 CA02 CA03 CA04 CA07 CA09 HA06 JA07 LA01 MA03 RA04 SA03 TA02 Continuation of the front page F term (reference) 4K033 AA02 CA01 CA02 CA03 CA04 CA07 CA09 HA06 JA07 LA01 MA03 RA04 SA03 TA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 C:0.12wt%以下, Si:2.0 〜8.0 wt%
およびMn:0.005 〜1.0wt%を含有し、かつAlを 100 pp
m未満、Se, S, OおよびNをそれぞれ 30ppm以下に低
減した成分組成になる鋼スラブを、熱間圧延し、必要に
応じて熱延板焼鈍を施したのち、1回または中間焼鈍を
挟む2回以上の冷間圧延を施し、ついで一次再結晶焼鈍
を施したのち、必要に応じて焼鈍分離剤を塗布してか
ら、最終仕上焼鈍によって二次再結晶を生じさせる、一
連の工程からなる方向性電磁鋼板の製造方法において、 一次再結晶完了後、最終仕上焼鈍工程において鋼板温度
が 850℃に到達するまでの間に、鋼中窒素量を 30ppm以
上に増加させることを特徴とする方向性電磁鋼板の製造
方法。
1. C: 0.12% by weight or less, Si: 2.0 to 8.0% by weight
And Mn: 0.005 to 1.0 wt%, and 100 pp of Al
A steel slab having a composition of less than 30 m and Se, S, O and N each reduced to 30 ppm or less is hot-rolled, subjected to hot-rolled sheet annealing if necessary, and then sandwiched once or intermediately. A series of steps of performing cold rolling two or more times, then performing primary recrystallization annealing, applying an annealing separator as needed, and then performing secondary recrystallization by final finish annealing. In the method for producing grain-oriented electrical steel sheets, the nitrogen content in the steel is increased to 30 ppm or more after the primary recrystallization is completed and before the steel sheet temperature reaches 850 ° C in the final finish annealing step. Manufacturing method of electrical steel sheet.
【請求項2】 鋼中窒素量の増加手段が、最終仕上焼鈍
時の窒素分圧を高めること、焼鈍分離剤中に窒化能のあ
る化合物を添加すること、一次再結晶完了後、窒化能の
ある雰囲気で焼鈍を行うことのいずれかまたはそれらの
組み合わせであることを特徴とする請求項1記載の方向
性電磁鋼板の製造方法。
2. The means for increasing the amount of nitrogen in steel includes increasing the partial pressure of nitrogen during final finish annealing, adding a compound having a nitriding ability to the annealing separator, and reducing the nitriding ability after the completion of the primary recrystallization. 2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the annealing is performed in any atmosphere or a combination thereof.
【請求項3】 一次再結晶焼鈍後の鋼板表面の酸素目付
量を、片面当たり 1.0 g/m2 以下とすることを特徴とす
る請求項1または2記載の方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the basis weight of oxygen on the surface of the steel sheet after the primary recrystallization annealing is 1.0 g / m 2 or less per one side.
【請求項4】 最終冷延前の平均結晶粒径を 150μm 以
下、かつ最終冷延圧下率を70%以上91%以下として、
{110}<001>組織を成長させることを特徴とす
る請求項1,2または3記載の方向性電磁鋼板の製造方
法。
4. An average crystal grain size before final cold rolling is 150 μm or less, and a final cold rolling reduction is 70% or more and 91% or less.
4. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the {110} <001> structure is grown.
【請求項5】 最終冷延前の平均結晶粒径を 200μm 以
上、かつ最終冷延圧下率を60%以上90%以下として、
{100}<001>組織を成長させることを特徴とす
る請求項1,2または3記載の方向性電磁鋼板の製造方
法。
5. An average crystal grain size before final cold rolling is 200 μm or more, and a final cold rolling reduction is 60% or more and 90% or less,
4. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the {100} <001> structure is grown.
【請求項6】 鋼中に、さらにNi:0.01〜1.50wt%, S
n:0.01〜0.50wt%, Sb:0.005 〜0.50wt%, Cu:0.01
〜0.50wt%, Mo:0.005 〜0.50wt%およびCr:0.01〜1.
50wt%のうちから選んだ少なくとも一種を含有させるこ
とを特徴とする請求項1〜5のいずれかに記載の方向性
電磁鋼板の製造方法。
6. The steel further contains Ni: 0.01-1.50 wt%, S
n: 0.01 to 0.50 wt%, Sb: 0.005 to 0.50 wt%, Cu: 0.01
~ 0.50wt%, Mo: 0.005 ~ 0.50wt% and Cr: 0.01 ~ 1.
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein at least one selected from 50 wt% is contained.
JP28952399A 1999-10-12 1999-10-12 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4123653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28952399A JP4123653B2 (en) 1999-10-12 1999-10-12 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28952399A JP4123653B2 (en) 1999-10-12 1999-10-12 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001107147A true JP2001107147A (en) 2001-04-17
JP4123653B2 JP4123653B2 (en) 2008-07-23

Family

ID=17744367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28952399A Expired - Fee Related JP4123653B2 (en) 1999-10-12 1999-10-12 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4123653B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181803A (en) * 1999-12-22 2001-07-03 Kawasaki Steel Corp Silicon steel sheet excellent in noise characteristic and producing method therefor
WO2004040024A1 (en) * 2002-10-29 2004-05-13 Jfe Steel Corporation Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP2006152387A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Grain oriented silicon steel sheet having excellent magnetic characteristic
WO2014104394A1 (en) * 2012-12-28 2014-07-03 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
WO2014104391A1 (en) * 2012-12-28 2014-07-03 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
WO2014104393A1 (en) * 2012-12-28 2014-07-03 Jfeスチール株式会社 Process for producing grain-oriented electromagnetic steel sheet
JP2014156620A (en) * 2013-02-14 2014-08-28 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
JP2014156619A (en) * 2013-02-14 2014-08-28 Jfe Steel Corp METHOD FOR PRODUCING GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET, AND MgO FOR ANNEALING SEPARATING AGENT
JP2014156633A (en) * 2013-02-15 2014-08-28 Jfe Steel Corp Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
EP2775007A1 (en) * 2013-03-08 2014-09-10 Voestalpine Stahl GmbH A process for the production of a grain-oriented electrical steel
JP2014194050A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Method of producing grain-oriented electrical steel sheet
JP2014208907A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
JP2014208895A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
JP2015004091A (en) * 2013-06-19 2015-01-08 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet and cold rolling sheet for grain-oriented electrical steel sheet
JP2015021153A (en) * 2013-07-18 2015-02-02 Jfeスチール株式会社 Method of producing grain oriented magnetic steel sheet
JP2015021162A (en) * 2013-07-19 2015-02-02 Jfeスチール株式会社 Method of producing grain oriented magnetic steel sheet and primarily recrystallized steel sheet for producing grain oriented magnetic steel sheet
JP2015042778A (en) * 2013-07-24 2015-03-05 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
JP2015172223A (en) * 2014-03-11 2015-10-01 Jfeスチール株式会社 Method of producing grain oriented silicon steel sheet
JP2015172222A (en) * 2014-03-11 2015-10-01 Jfeスチール株式会社 Method of producing grain oriented silicon steel sheet
JP2015200002A (en) * 2014-04-10 2015-11-12 Jfeスチール株式会社 Method for producing grain oriented magnetic steel sheet
JP2018095900A (en) * 2016-12-09 2018-06-21 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
RU2676199C2 (en) * 2014-10-30 2018-12-26 ДжФЕ СТИЛ КОРПОРЕЙШН Method of production of textured electrical steel
CN110066908A (en) * 2019-05-15 2019-07-30 武汉钢铁有限公司 For improving the production method of high magnetic induction grain-oriented silicon steel edge crystalline form
CN116103574A (en) * 2021-11-10 2023-05-12 宝山钢铁股份有限公司 Steel plate for magnetic shielding and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539274C2 (en) 2010-06-18 2015-01-20 ДжФЕ СТИЛ КОРПОРЕЙШН Method of sheet fabrication from textured electric steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129356A (en) * 1998-10-28 2000-05-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129356A (en) * 1998-10-28 2000-05-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181803A (en) * 1999-12-22 2001-07-03 Kawasaki Steel Corp Silicon steel sheet excellent in noise characteristic and producing method therefor
WO2004040024A1 (en) * 2002-10-29 2004-05-13 Jfe Steel Corporation Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
KR100655678B1 (en) * 2002-10-29 2006-12-11 제이에프이 스틸 가부시키가이샤 Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
US7465361B2 (en) 2002-10-29 2008-12-16 Jfe Steel Corporation Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP2006152387A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Grain oriented silicon steel sheet having excellent magnetic characteristic
KR20170055564A (en) * 2012-12-28 2017-05-19 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
CN104870666A (en) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
WO2014104393A1 (en) * 2012-12-28 2014-07-03 Jfeスチール株式会社 Process for producing grain-oriented electromagnetic steel sheet
CN104884644B (en) * 2012-12-28 2017-03-15 杰富意钢铁株式会社 The manufacture method of grain-oriented magnetic steel sheet
JPWO2014104391A1 (en) * 2012-12-28 2017-01-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JPWO2014104394A1 (en) * 2012-12-28 2017-01-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JPWO2014104393A1 (en) * 2012-12-28 2017-01-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101980940B1 (en) * 2012-12-28 2019-05-21 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101977440B1 (en) * 2012-12-28 2019-05-10 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
WO2014104394A1 (en) * 2012-12-28 2014-07-03 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101950620B1 (en) * 2012-12-28 2019-02-20 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101949626B1 (en) * 2012-12-28 2019-02-18 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
US9953752B2 (en) 2012-12-28 2018-04-24 Jfe Steel Corporation Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
US9905343B2 (en) 2012-12-28 2018-02-27 Jfe Steel Corporation Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP5692479B2 (en) * 2012-12-28 2015-04-01 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR20150095911A (en) * 2012-12-28 2015-08-21 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet
KR20150096752A (en) * 2012-12-28 2015-08-25 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
WO2014104391A1 (en) * 2012-12-28 2014-07-03 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
CN104870665A (en) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR20150099575A (en) * 2012-12-28 2015-08-31 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
CN104884644A (en) * 2012-12-28 2015-09-02 杰富意钢铁株式会社 Process for producing grain-oriented electromagnetic steel sheet
US9708682B2 (en) 2012-12-28 2017-07-18 Jfe Steel Corporation Production method for grain-oriented electrical steel sheet
RU2617308C2 (en) * 2012-12-28 2017-04-24 ДжФЕ СТИЛ КОРПОРЕЙШН Method for producing textured electrical steel sheet and primary-recrystallized steel plate for the manufacture of textured electrical steel sheet
KR20170054578A (en) * 2012-12-28 2017-05-17 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101651797B1 (en) * 2012-12-28 2016-08-26 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet
JP5983777B2 (en) * 2012-12-28 2016-09-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5983776B2 (en) * 2012-12-28 2016-09-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
RU2608258C1 (en) * 2012-12-28 2017-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Method of texturized electric steel sheet production
RU2608250C1 (en) * 2012-12-28 2017-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Method of texturized electric steel sheet production and primary recrystallized steel sheet for production of texturized electric steel sheet
JP2014156619A (en) * 2013-02-14 2014-08-28 Jfe Steel Corp METHOD FOR PRODUCING GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET, AND MgO FOR ANNEALING SEPARATING AGENT
JP2014156620A (en) * 2013-02-14 2014-08-28 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
JP2014156633A (en) * 2013-02-15 2014-08-28 Jfe Steel Corp Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
EP2775007A1 (en) * 2013-03-08 2014-09-10 Voestalpine Stahl GmbH A process for the production of a grain-oriented electrical steel
JP2014208895A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
JP2014208907A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
JP2014194050A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Method of producing grain-oriented electrical steel sheet
JP2015004091A (en) * 2013-06-19 2015-01-08 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet and cold rolling sheet for grain-oriented electrical steel sheet
JP2015021153A (en) * 2013-07-18 2015-02-02 Jfeスチール株式会社 Method of producing grain oriented magnetic steel sheet
JP2015021162A (en) * 2013-07-19 2015-02-02 Jfeスチール株式会社 Method of producing grain oriented magnetic steel sheet and primarily recrystallized steel sheet for producing grain oriented magnetic steel sheet
JP2015042778A (en) * 2013-07-24 2015-03-05 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
JP2015172223A (en) * 2014-03-11 2015-10-01 Jfeスチール株式会社 Method of producing grain oriented silicon steel sheet
JP2015172222A (en) * 2014-03-11 2015-10-01 Jfeスチール株式会社 Method of producing grain oriented silicon steel sheet
JP2015200002A (en) * 2014-04-10 2015-11-12 Jfeスチール株式会社 Method for producing grain oriented magnetic steel sheet
RU2676199C2 (en) * 2014-10-30 2018-12-26 ДжФЕ СТИЛ КОРПОРЕЙШН Method of production of textured electrical steel
JP2018095900A (en) * 2016-12-09 2018-06-21 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
CN110066908A (en) * 2019-05-15 2019-07-30 武汉钢铁有限公司 For improving the production method of high magnetic induction grain-oriented silicon steel edge crystalline form
CN116103574A (en) * 2021-11-10 2023-05-12 宝山钢铁股份有限公司 Steel plate for magnetic shielding and manufacturing method thereof

Also Published As

Publication number Publication date
JP4123653B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP2001107147A (en) Method for producing grain-oriented silicons steel sheet
JP3707268B2 (en) Method for producing grain-oriented electrical steel sheet
US6309473B1 (en) Method of making grain-oriented magnetic steel sheet having low iron loss
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
WO2004040024A1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2017111509A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP6160649B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2003087420A1 (en) Oriented electrical steel sheet with excellent film adhesion and method for producing the same
JP2001158950A (en) Silicon steel sheet for small-size electrical equipment, and its manufacturing method
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP3956621B2 (en) Oriented electrical steel sheet
JP3846064B2 (en) Oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3896937B2 (en) Method for producing grain-oriented electrical steel sheet
JP6191564B2 (en) Method for producing grain-oriented electrical steel sheet and nitriding equipment
JP2003201517A (en) Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP5999040B2 (en) Method for producing grain-oriented electrical steel sheet
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP5928362B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4123653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees