JP2007239009A - Method for manufacturing grain-oriented silicon steel sheet - Google Patents

Method for manufacturing grain-oriented silicon steel sheet Download PDF

Info

Publication number
JP2007239009A
JP2007239009A JP2006062023A JP2006062023A JP2007239009A JP 2007239009 A JP2007239009 A JP 2007239009A JP 2006062023 A JP2006062023 A JP 2006062023A JP 2006062023 A JP2006062023 A JP 2006062023A JP 2007239009 A JP2007239009 A JP 2007239009A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
concentration
grain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006062023A
Other languages
Japanese (ja)
Other versions
JP4784347B2 (en
Inventor
Makoto Watanabe
誠 渡辺
Toshito Takamiya
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006062023A priority Critical patent/JP4784347B2/en
Publication of JP2007239009A publication Critical patent/JP2007239009A/en
Application granted granted Critical
Publication of JP4784347B2 publication Critical patent/JP4784347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the film characteristics of an inhibitorless grain-oriented silicon steel sheet. <P>SOLUTION: When manufacturing the grain-oriented silicon steel sheet by using a steel slab having a composition containing, by mass%, 0.01-0.10% C, 1.0-5.0 % Si, ≤0.5% Mn, and 0.01-0.2% Cr, and <50 ppm S, Se. and O respectively, <100 ppm sol.Al and <60 ppm N and the balance Fe and inevitable impurities as a raw material, the Cr concentration on the surface is adjusted in such a manner that the Cr concentration on the extreme surface of the steel sheet prior to primary recrystallization annealing becomes 0.5 to 0.8 times the Cr concentration in ferrite. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、方向性電磁鋼板の製造方法に関し、特に被膜特性に優れた方向性電磁鋼板を低コストで得ようとするものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet, and in particular, intends to obtain a grain-oriented electrical steel sheet having excellent coating properties at a low cost.

方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料であり、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、最終仕上焼鈍の際にいわゆるゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。   Oriented electrical steel sheet is a soft magnetic material used as an iron core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned with the rolling direction of the steel sheet. is there. Such a texture preferentially grows crystal grains of (110) [001] orientation, so-called Goss orientation, preferentially during final finish annealing during the production process of grain-oriented electrical steel sheet, Formed through secondary recrystallization.

従来、このような方向性電磁鋼板は、Siを4.5 mass%以下で含有し、かつMnS,MnSe,AlNなどのインヒビター成分を含有する鋼スラブを、1300℃以上に加熱し、インヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼鈍を施して一次再結晶および脱炭を行い、マグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2、特許文献3参照)。
米国特許第1965559号明細書 特公昭40-15611号公報 特公昭51-13469号公報
Conventionally, such a grain-oriented electrical steel sheet heats a steel slab containing Si in an amount of 4.5 mass% or less and containing an inhibitor component such as MnS, MnSe, or AlN to 1300 ° C. or higher to temporarily fix the inhibitor component. After being melted, it is hot-rolled and, if necessary, hot-rolled sheet annealing is performed, and then the final thickness is obtained by one or more cold rollings sandwiching intermediate annealing, followed by primary in a wet hydrogen atmosphere. After recrystallization annealing, primary recrystallization and decarburization are performed, and after applying an annealing separator mainly composed of magnesia (MgO), secondary recrystallization and inhibitor components are purified at 1200 ° C for about 5 hours. Has been manufactured by performing final finish annealing (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
U.S. Pat. No. 1,965,559 Japanese Patent Publication No. 40-15611 Japanese Patent Publication No.51-13469

上記した従来の方向性電磁鋼板では、MnS,MnSe,AlNなどの析出物(インヒビター成分)をスラブ段階で含有させ、1300℃を超える高温スラブ加熱により、これらのインヒビター成分を一旦固溶させ、その後の工程で微細に分散析出させることにより、二次再結晶を発現させる工程を採用していた。
このように、従来の方向性電磁鋼板の製造工程では、1300℃を超える高温でのスラブ加熱が不可欠であったため、その製造コストは極めて高いものにならざるを得なかった。すなわち、スラブにインヒビター成分を含有させる従来の方向性電磁鋼板では、その製造工程において高温のスラブ加熱が必要であったため、近年の製造コスト低減の要求には応えることができなかった。
In the conventional grain-oriented electrical steel sheet described above, precipitates (inhibitor components) such as MnS, MnSe, and AlN are contained in the slab stage, and these inhibitor components are once solid-dissolved by high-temperature slab heating exceeding 1300 ° C. In this step, a step of causing secondary recrystallization by finely dispersing and precipitating was employed.
Thus, in the conventional manufacturing process of grain-oriented electrical steel sheets, slab heating at a high temperature exceeding 1300 ° C. was indispensable, and the manufacturing cost had to be extremely high. That is, in the conventional grain-oriented electrical steel sheet in which the inhibitor component is contained in the slab, high-temperature slab heating is required in the production process, and thus it has not been possible to meet the recent demand for production cost reduction.

ところで、最近、発明者らは、ゴス方位粒の二次再結晶の本質は、一次再結晶組織の制御にあり、インヒビター成分の有無は、一次再結晶組織制御を通して間接的に二次再結晶に作用しているものであり、二次再結晶の発現そのものには直接的には無関係であることを解明した(例えば特許文献4)。
特開2000-129356号公報
By the way, recently, the inventors have found that the essence of secondary recrystallization of Goss-oriented grains is the control of the primary recrystallization structure, and the presence or absence of the inhibitor component is indirectly controlled by secondary recrystallization through the control of the primary recrystallization structure. It was elucidated that it is acting and is not directly related to the expression of secondary recrystallization itself (for example, Patent Document 4).
JP 2000-129356 A

その結果、インヒビター成分の添加ひいてはそれを固溶させるための高温でのスラブ加熱が不要となり、低コストで方向性電磁鋼板を製造することが可能となった。   As a result, the addition of the inhibitor component, and hence slab heating at a high temperature for dissolving it, is no longer necessary, and a grain-oriented electrical steel sheet can be produced at a low cost.

しかしながら、上記したようなインヒビター成分を含有させない方向性電磁鋼板の製造技術の実用化が進むにつれて、被膜が従来よりも劣るという問題が新たに発生してきた。これは、鋼中の微量含有分が従来鋼とは異なるため、特異な被膜形成挙動を示し、従来どおりの製造条件では被膜形態が不良となるためと考えられた。   However, as the manufacturing technology of grain-oriented electrical steel sheets not containing the inhibitor component described above has been put into practical use, a new problem has arisen in that the coating is inferior to the conventional one. This is thought to be because the trace content in the steel is different from that of the conventional steel, and thus a unique film forming behavior is exhibited, and the film form becomes poor under the conventional manufacturing conditions.

従来の被膜改善の考え方としては、脱炭焼鈍により形成されるサブスケールを改善する方法や、焼鈍分離剤の主剤に用いられるMgOや副剤等の各種添加物を改善する方法のほかに、特許文献5〜9に見られるような、中間焼鈍で生成する脱珪層や残存スケールを所定の範囲以下に制御する方法など様々な手段で解決が図られてきたが、未だ十分な被膜特性は得られていない。
特開平7-188757号公報 特開平9-143562号公報 特開平10-199536号公報 特開平11-140546号公報 特開平10-8133号公報
In addition to the method of improving the subscale formed by decarburization annealing and the method of improving various additives such as MgO and auxiliary agents used as the main agent of the annealing separator, there are patents as a conventional way of improving the coating film. Although various means such as a desiliconized layer generated by intermediate annealing and a method of controlling the residual scale to be within a predetermined range as seen in documents 5 to 9 have been solved, sufficient film properties are still obtained. It is not done.
JP-A-7-188757 JP-A-9-143562 JP-A-10-199536 Japanese Patent Laid-Open No. 11-140546 Japanese Patent Laid-Open No. 10-8133

本発明は、上記したインヒビター成分を含有しない方向性電磁鋼板(以下、インヒビターレス方向性電磁鋼板と呼ぶ)の製造技術の改良に係るもので、被膜特性に優れた方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention relates to an improvement in manufacturing technology of grain-oriented electrical steel sheets that do not contain the inhibitor component described above (hereinafter referred to as inhibitor-less grain-oriented electrical steel sheets), and is advantageous for producing grain-oriented electrical steel sheets having excellent coating properties. The purpose is to propose a method.

さて、発明者らは、インヒビターレス方向性電磁鋼板に関し、被膜を改善するための方法について鋭意検討を行った結果、一次再結晶焼鈍前の鋼板表面の元素濃度分布の微妙な変化によって、被膜特性が大きく変化することを新たに見出した。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies on the method for improving the coating on the inhibitorless grain-oriented electrical steel sheet, the inventors have found that the coating characteristics are improved by subtle changes in the element concentration distribution on the steel sheet surface before the primary recrystallization annealing. Found a new change.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、
C:0.01〜0.10%、
Si:1.0〜5.0%、
Mn:0.5%以下および
Cr:0.01%以上 0.2%以下
を含有し、かつ
S,Se,Oをそれぞれ50ppm未満、
sol.Alを100ppm未満および
Nを60ppm未満
に抑制し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、熱間圧延後、熱延板焼鈍を施し、ついで1回または中間焼鈍を含む2回以上の冷間圧延を施して最終板厚に仕上げたのち、一次再結晶焼鈍ついで二次再結晶焼鈍を施すことからなる方向性電磁鋼板の製造方法において、
一次再結晶焼鈍前の鋼板の最表面のCr濃度が地鉄中のCr濃度の0.5〜0.8倍となるように表面のCr濃度を調整することを特徴とする方向性電磁鋼板の製造方法。
なお、ここで、鋼板の最表面と地鉄部のCr濃度とはそれぞれ、表面をGDSで深さ方向分析したときの最表面でのCrピーク強度と、スパッタ時間:100〜150秒間のCrピーク強度の平均値で定義するものとする。
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.01-0.10%,
Si: 1.0-5.0%
Mn: 0.5% or less and
Cr: 0.01% or more and 0.2% or less, and each of S, Se and O is less than 50 ppm,
Steel slab with sol.Al less than 100ppm and N less than 60ppm with the balance being Fe and inevitable impurities, hot-rolled and then hot-rolled sheet annealed, followed by one or intermediate annealing In the manufacturing method of the grain-oriented electrical steel sheet, which is subjected to cold rolling at least twice and finished to the final sheet thickness, followed by primary recrystallization annealing and then secondary recrystallization annealing.
A method for producing a grain-oriented electrical steel sheet, comprising adjusting the Cr concentration on the surface so that the Cr concentration on the outermost surface of the steel plate before primary recrystallization annealing is 0.5 to 0.8 times the Cr concentration in the ground iron.
Here, the Cr concentration in the outermost surface of the steel sheet and the iron core part is the Cr peak intensity at the outermost surface when the surface is analyzed in the depth direction by GDS, and the Cr peak at the sputtering time: 100 to 150 seconds. It shall be defined by the average value of intensity.

(2)前記(1)において、鋼板が、さらに質量%で、Ni:0.01〜1.50%、Sn:0.01〜0.50%、Sb:0.005〜0.50%、P:0.005〜0.50%、Te:0.003〜1.50%、Bi:0.003〜1.50%、Pb:0.003〜1.50%およびCu:0.01〜0.3%のうちから選んだ1種または2種以上を含有することを特徴とする方向性電磁鋼板の製造方法。 (2) In the above (1), the steel sheet is further mass%, Ni: 0.01 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50%, P: 0.005 to 0.50%, Te: 0.003 to 1.50. %, Bi: 0.003-1.50%, Pb: 0.003-1.50%, and Cu: 0.01-0.3%.

本発明によれば、インヒビターレス方向性電磁鋼板の製造に際し、一次再結晶焼鈍前の鋼板最表面のCr濃度を適正に調整することにより、従来よりも被膜特性を格段に向上させることができる。   According to the present invention, when producing an inhibitorless grain-oriented electrical steel sheet, the coating film characteristics can be remarkably improved by adjusting the Cr concentration on the outermost surface of the steel sheet before primary recrystallization annealing appropriately.

以下、本発明を由来するに至った実験結果について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.03%、Si:3.0%、Mn:0.10%、S:40ppm、Se:2ppm、Cr:0.01%、0:10ppm、N:25ppmおよびsol.Al:20ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、熱間圧延により板厚:2.0mmの熱延板とし、ついで1000℃で1分間の熱延板焼鈍を施したのち、濃度:5%、温度:80℃の塩酸を用いて60秒または150秒の2条件で酸洗を行い表面スケールを除去した。その後、板厚:0.27mmまで冷間圧延し、850℃、100秒の脱炭・一次再結晶焼鈍を施したのち、焼鈍分離剤を塗布してから、1200℃、10hの二次再結晶焼鈍を施した。ついで、残留焼鈍分離剤を除去後、絶縁コーティング処理液を塗布し、焼付けとヒートフラットニング処理と兼ねて850℃,30秒の焼鈍を行い、最終製品とした。
Hereinafter, the experimental results that led to the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
Contains C: 0.03%, Si: 3.0%, Mn: 0.10%, S: 40ppm, Se: 2ppm, Cr: 0.01%, 0: 10ppm, N: 25ppm and sol.Al: 20ppm, the balance being Fe and inevitable Steel slab with a composition of mechanical impurities is hot rolled into a hot rolled sheet with a thickness of 2.0 mm, then annealed at 1000 ° C. for 1 minute, then concentration: 5%, temperature: 80 ° C. The surface scale was removed by pickling using 2 ml of hydrochloric acid under two conditions of 60 seconds or 150 seconds. After that, cold rolling to 0.27mm thickness, decarburization and primary recrystallization annealing at 850 ℃ for 100 seconds, and after applying annealing separator, secondary recrystallization annealing at 1200 ℃ for 10h Was given. Next, after removing the residual annealing separation agent, an insulating coating treatment solution was applied, and annealing was performed at 850 ° C. for 30 seconds in combination with baking and heat flattening treatment to obtain a final product.

このようにして得られた製品の被膜密着性を、サンプルを円筒状の棒に巻きつけて被膜が剥離しなかった最小の曲げ径により評価した。
その結果、酸洗時間が短い条件では剥離径が20mmφと良好であったのに対し、酸洗時間が長い条件では50mmφと著しく劣化することが判明した。
The film adhesion of the product thus obtained was evaluated by the minimum bending diameter at which the sample was wound around a cylindrical rod and the film did not peel off.
As a result, it was found that when the pickling time was short, the peeled diameter was as good as 20 mmφ, but when the pickling time was long, it was significantly deteriorated to 50 mmφ.

従来の冷延工程と被膜特性との関連に関する知見では、例えば特許文献5に記載されているように、中間焼鈍により生成される脱珪層が被膜に影響を及ぼすことや、特許文献7に記載されているように、中間焼鈍により生成されるスケールが被膜に悪影響を及ぼすことが知られていた。   In the knowledge about the relationship between the conventional cold rolling process and the film characteristics, for example, as described in Patent Document 5, the desiliconized layer generated by the intermediate annealing affects the film, or described in Patent Document 7 As has been known, it has been known that the scale produced by the intermediate annealing has an adverse effect on the coating.

そこで、GDSで深さ方向分析を行うことにより、これらの点を確かめた。
すなわち、上記した2条件で処理した一次再結晶焼鈍前のサンプルについて、脱珪層の評価成分としてのSi濃度および脱スケール層の評価成分としてのO濃度を測定した。
得られた結果を図1(a),(b)に示す。
Therefore, these points were confirmed by analyzing the depth direction with GDS.
That is, the Si concentration as an evaluation component of the desiliconization layer and the O concentration as an evaluation component of the descaling layer were measured for the sample before the primary recrystallization annealing treated under the above two conditions.
The obtained results are shown in FIGS. 1 (a) and 1 (b).

図1(a),(b)から明らかなとおり、酸洗時間を変更することによる脱珪層の変化はほとんど認められなかった。これは、今回の実験では熱延板焼鈍後に高圧下率で圧延しているため、熱延板焼鈍で生成した脱珪層がほとんど問題とならない程度まで薄くなったものと考えられる。また、脱スケール層については、酸洗時間が長い方が少なくなるはずであるが、それにもかかわらず被膜は劣化するという従来とは異なる結果となった。   As apparent from FIGS. 1 (a) and 1 (b), almost no change in the desiliconized layer was observed by changing the pickling time. In this experiment, it is considered that the desiliconization layer produced by hot-rolled sheet annealing has become thin enough to cause no problem because it is rolled at a high pressure reduction rate after hot-rolled sheet annealing. Further, with respect to the descaling layer, the longer the pickling time should be, the less the result, but the result is different from the conventional one that the film deteriorates nevertheless.

従って、従来の知見では今回の実験結果を説明できないことから、他の元素のプロファイルについても調査した。
その結果、図2(a),(b)に示すように、Crが酸洗時間の影響を受けており、Crは最表面で濃度が低下する傾向にあるものの、酸洗時間が長いとこの低下が小さくなることが認められた。
以上の結果から、最表面のCr濃度が被膜の良否に影響を及ぼしているのではないかと考えられたので、次にこれを確認する実験を行った。
Therefore, the conventional findings cannot explain the experimental results, so the profiles of other elements were also investigated.
As a result, as shown in FIGS. 2 (a) and 2 (b), Cr is affected by the pickling time, and although Cr tends to decrease in concentration at the outermost surface, It was observed that the decrease was small.
From the above results, it was considered that the Cr concentration on the outermost surface had an effect on the quality of the coating film. Next, an experiment was conducted to confirm this.

前記と同じ成分組成になる鋼スラブを、熱間圧延により板厚:2.0mmの熱延板とし、ついで1000℃で1分間の熱延板焼鈍を施したのち、濃度:7%の硫酸を用いて温度:40〜90℃、時間:10〜150秒の各種条件で酸洗を行うことにより表面スケールを除去した。その後、板厚:0.27mmまで冷間圧延し、850℃、100秒の脱炭・一次再結晶焼鈍を施したのち、焼鈍分離剤を塗布し、1200℃、10hの二次再結晶焼鈍を施した。その後、残留焼鈍分離剤を除去したのち、絶縁コーティング処理液を塗布し、焼付けとヒートフラットニング処理と兼ねて850℃30秒の焼鈍を行い、最終製品とした。また、同時に、一次再結晶焼鈍前の鋼板についてGDSで深さ方向分析を行い、最表面のCr濃度を測定した。   A steel slab having the same composition as described above is hot-rolled into a hot-rolled sheet having a thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 1000 ° C. for 1 minute, and then using sulfuric acid with a concentration of 7%. The surface scale was removed by pickling under various conditions of temperature: 40 to 90 ° C. and time: 10 to 150 seconds. After that, cold rolled to a thickness of 0.27mm, decarburized and primary recrystallized annealing at 850 ℃ for 100 seconds, then applied with an annealing separator, and subjected to secondary recrystallization annealing at 1200 ℃ for 10h. did. Then, after removing the residual annealing separator, an insulating coating treatment solution was applied, and annealing was performed at 850 ° C. for 30 seconds in combination with baking and heat flattening treatment to obtain a final product. At the same time, the steel sheet before the primary recrystallization annealing was analyzed in the depth direction by GDS to measure the Cr concentration on the outermost surface.

図3に、最表面のCr濃度と製品の被膜密着性との関係について調べた結果を示す。なお、同図において、横軸は、最表面のCr濃度と地鉄部の濃度の比で示す。
同図から明らかなとおり、最表面のCr農度が地鉄中のCr濃度の0.5〜0.8倍の範囲を満足する場合に、優れた被膜密着性が得られることが分かる。
FIG. 3 shows the results of examining the relationship between the Cr concentration on the outermost surface and the film adhesion of the product. In the figure, the horizontal axis represents the ratio between the Cr concentration on the outermost surface and the concentration on the ground iron part.
As is clear from the figure, it is understood that excellent film adhesion can be obtained when the Cr farming degree on the outermost surface satisfies the range of 0.5 to 0.8 times the Cr concentration in the ground iron.

上記のような結果が得られた理由については、まだ明確に解明されたわけではないが、発明者らは、次のように考えている。
すなわち、Crの被膜に及ぼす影響としては、一次再結晶焼鈍後に形成されるサブスケール中にスピネルを形成させて仕上焼鈍後のフォルステライト被膜のアンカーを発達させることが知られている。従って、このCrを、意図的に添加して鋼中に存在させ、これを利用することによりフォルステライト被膜の形態が適正化され、良好な被膜特性を得ることができるものと考えられる。このようなCrの効果は、いずれも鋼板表面から数μm内部の、サブスケールやフォルステライト被膜と地鉄との界面に主に作用するものであり、この深さの領域で適量のCr濃度を持つことが重要である。
一方、鋼板最表層では、Crは酸化を促進する作用があるが、今回のようなインヒビターを含まない系では、SやAlなどの酸化を抑制する効果をもつ元素が存在しないために、鋼板内部への酸化が進行し易く、その結果、従来鋼よりも膜厚が厚く、酸化物がデンドライト状に発達した耐追加酸化性の低いサブスケールが形成される。このようなサブスケールの場合、得られるフォルステライト被膜は分厚く平坦な構造となるが、これが剥離することにより被膜欠陥が発生し易くなる。
従って、このような内部への酸化を抑制するために、最表面のCr濃度を低下させることが有効なのである。
The reason why the above results were obtained has not yet been clearly clarified, but the inventors consider as follows.
That is, it is known that the influence of Cr on the coating film develops the anchor of the forsterite film after finish annealing by forming spinel in the subscale formed after the primary recrystallization annealing. Therefore, it is considered that the Cr is intentionally added to exist in the steel, and by utilizing this Cr, the form of the forsterite coating is optimized and good coating properties can be obtained. All of these Cr effects mainly act on the interface between the subscale and forsterite coating and the ground iron within a few μm from the surface of the steel sheet. An appropriate amount of Cr concentration can be achieved in this depth region. It is important to have.
On the other hand, in the steel plate outermost layer, Cr has an action of promoting oxidation, but in a system not containing an inhibitor like this time, there is no element having an effect of suppressing oxidation such as S and Al. As a result, a subscale having a low additional oxidation resistance is formed in which the film thickness is thicker than that of the conventional steel and the oxide is developed in a dendrite shape. In the case of such a subscale, the obtained forsterite film has a thick and flat structure, but when it is peeled off, film defects are likely to occur.
Therefore, in order to suppress such oxidation to the inside, it is effective to reduce the Cr concentration on the outermost surface.

なお、前掲した特許文献5〜9には、中間焼鈍後の表層残存スケール量や脱珪層の厚みを特定する技術が示されているが、熱延板焼鈍の表面状態が被膜に及ぼす影響についての知見は今までなかった。すなわち、中間焼鈍後の冷延圧下率は比較的低いために、中間焼鈍で生成するスケールや脱珪層は脱炭焼鈍前にも影響を及ぼすことが知られていたが、熱延板焼鈍後は冷延圧下率が高いために脱珪層や残存スケールが存在しても冷延後には無視できる程度に薄く延ばされてしまい、サブスケール形成には影響しないと考えられてきた。
しかしながら、今回の実験で、熱延板焼鈍や熱延で生成されるスケールが脱炭焼鈍前まで残存してサブスケール形成に影響を与えること、また熱延板焼鈍後の酸洗条件により、被膜の良否が変化すること、がはじめて解明されたのである。
In addition, although the patent documents 5-9 mentioned above have shown the technique which specifies the surface layer residual scale amount and intermediate thickness after intermediate annealing, about the influence which the surface state of hot-rolled sheet annealing has on a film There has never been any knowledge. That is, since the cold rolling reduction ratio after intermediate annealing is relatively low, it was known that the scale and desiliconization layer produced by intermediate annealing had an effect even before decarburization annealing. Since the cold rolling reduction ratio is high, even if there is a desiliconized layer or residual scale, it has been considered that it is thinned to a negligible extent after cold rolling and does not affect the formation of subscales.
However, in this experiment, the scale produced by hot-rolled sheet annealing or hot-rolling remains before decarburization annealing, affecting the formation of subscales, and the film thickness depends on the pickling conditions after hot-rolled sheet annealing. For the first time, it was clarified that the quality of the changes in the quality.

以下、本発明の方向性電磁鋼板の製造方法に関して、本発明の効果を得るための要件とその範囲および作用について述べる。
まず、本発明において、鋼スラブの成分組成を前記の範囲に限定した理由について説明する。
C:0.01〜0.10%
Cは、変態を利用して熱延組織を改善するのに有効に寄与するだけでなく、ゴス方位結晶粒の発生にも有用な元素であり、0.01%以上の含有を必要とするが、0.10%を超えると効果が強くなりすぎて却って集合組織が劣化してしまうため、Cは0.01〜0.10%の範囲に限定した。
Hereinafter, with respect to the method for producing a grain-oriented electrical steel sheet according to the present invention, requirements for obtaining the effect of the present invention, its range and action will be described.
First, the reason why the component composition of the steel slab is limited to the above range in the present invention will be described.
C: 0.01-0.10%
C is an element that not only effectively contributes to improving the hot-rolled structure using transformation, but is also useful for the generation of goth-oriented crystal grains, and needs to be contained in an amount of 0.01% or more. If the content exceeds 50%, the effect becomes too strong and the texture deteriorates, so C is limited to a range of 0.01 to 0.10%.

Si:1.0〜5.0%
Siは、電気抵抗を高めて鉄損を低下させるだけでなく、鉄のα相を安定化させて高温の熱処理を可能とするために必要な元素であり、少なくとも1.0%を必要とするが、5.0%を超えると冷延が困難となるので、Siは1.0〜5.0の範囲に限定した。
Si: 1.0-5.0%
Si is an element necessary not only to increase the electric resistance and decrease the iron loss, but also to stabilize the α phase of iron and enable high-temperature heat treatment, and requires at least 1.0%. If it exceeds 5.0%, cold rolling becomes difficult, so Si is limited to a range of 1.0 to 5.0.

Mn:0.5%以下
Mnは、製造時の熱間加工性を向上させる効果がある。この目的のためには、少なくとも0.01%のMnを含有させることが好ましいが、0.5%を超えて含有させた場合には、一次再結晶集合組織が劣化し、Goss方位に高度に集積した二次再結晶粒が得られず、磁気特性が劣化するため、上限を0.5%とした。
Mn: 0.5% or less
Mn has the effect of improving the hot workability during production. For this purpose, it is preferable to contain at least 0.01% of Mn, but when it exceeds 0.5%, the primary recrystallized texture deteriorates and the secondary is highly accumulated in the Goss orientation. Since no recrystallized grains were obtained and the magnetic properties deteriorated, the upper limit was made 0.5%.

Cr:0.01%以上 0.2%以下
本発明では、被膜形成に関与する元素としてCrを含有させるが、含有量が0.01%に満たないと被膜の改善効果に乏しく、一方0.2%を超えると磁束密度の低下を招くので、Crは 0.01%以上 0.2%以下の範囲に限定した。
Cr: 0.01% or more and 0.2% or less In the present invention, Cr is contained as an element involved in film formation. However, if the content is less than 0.01%, the effect of improving the film is poor. Since this causes a decrease, Cr is limited to the range of 0.01% to 0.2%.

本発明ではインヒビターを使用しないので、インヒビター構成成分であるS,Se,Oやsol.Al,Nなどの各元素は含有させる必要がない。従って、それぞれ以下の範囲に制限した。
S, Se, O:各々50ppm未満
S, Se, Oがそれぞれ、50ppm以上含有された場合、二次再結晶が困難となり、磁気特性が劣化する。そのため、これらの元素は、50ppm未満に低減するものとした。
In the present invention, since an inhibitor is not used, it is not necessary to contain each element such as S, Se, O, sol. Therefore, it was limited to the following ranges, respectively.
S, Se, O: less than 50 ppm each When S, Se, O is contained in an amount of 50 ppm or more, secondary recrystallization becomes difficult and magnetic properties deteriorate. Therefore, these elements were reduced to less than 50 ppm.

sol.Al:100ppm未満
Alは、過剰に存在すると二次再結晶が困難となる。特にsol.Alが100ppm以上になると二次再結晶が生じ難くなり、磁気特性が劣化するため、sol.Alは100ppm未満に抑制する必要がある。
sol.Al: less than 100ppm
If Al is present in excess, secondary recrystallization becomes difficult. In particular, when sol.Al is 100 ppm or more, secondary recrystallization hardly occurs and magnetic properties are deteriorated, so sol.Al must be suppressed to less than 100 ppm.

N:60ppm未満
また、Nが60ppm以上含有された場合も、 同様に二次再結晶が困難となり、磁気特性が劣化する。そのため、N含有量は60ppm未満に制限する。
N: less than 60 ppm Also, when N is contained in an amount of 60 ppm or more, secondary recrystallization is similarly difficult and the magnetic properties are deteriorated. Therefore, the N content is limited to less than 60 ppm.

以上、必須成分および抑制成分について説明したが、本発明ではその他にも、集合組織を改善して磁気特性を向上させる観点から、以下の元素を適宜含有させることができる。
Ni:0.01〜1.50%
Niは、熱延板組織を改善して磁気特性を向上させる上で有用な元素である。しかしながら、含有量が0.01%未満では磁気特性の向上量が小さく、一方1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するので、Niは0.01〜1.50%の範囲で含有させることが好ましい。
As described above, the essential component and the suppressing component have been described. In addition, in the present invention, the following elements can be appropriately contained from the viewpoint of improving the texture by improving the texture.
Ni: 0.01-1.50%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.01%, the amount of improvement in magnetic properties is small. On the other hand, if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so Ni is contained in the range of 0.01 to 1.50%. It is preferable.

Sn:0.01〜0.50%
Snは、磁気特性の向上・安定化作用を有する元素であるが、含有量が0.01%に満たないとその添加効果に乏しく、一方0.50%を超えると良好な一次再結晶組織が得られないので、Sn量は0.01〜0.50%の範囲にするのが好ましい。
Sn: 0.01-0.50%
Sn is an element that improves and stabilizes magnetic properties. However, if the content is less than 0.01%, the effect of addition is poor. On the other hand, if it exceeds 0.50%, a good primary recrystallized structure cannot be obtained. , Sn content is preferably in the range of 0.01 to 0.50%.

Sb:0.005〜0.50%
Sbは、最終仕上焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して、磁気特性を向上させる有用元素である。そのためには、0.005%以上含有させることが望ましい。一方、Sbが0.50%を超えて含有されると、冷間圧延性が劣化するため、Sbは0.50%を上限として含有させることが望ましい。
Sb: 0.005-0.50%
Sb is a useful element that suppresses nitriding and oxidation of the steel sheet during final finish annealing, promotes secondary recrystallization of crystal grains having a good crystal orientation, and improves magnetic properties. For that purpose, it is desirable to make it contain 0.005% or more. On the other hand, if the Sb content exceeds 0.50%, the cold rollability deteriorates, so Sb is desirably contained at an upper limit of 0.50%.

P:0.005〜0.50%
Pは、粒界偏析により冷延−再結晶後の集合組織を改善して磁束密度を向上させる働きがある。しかしながら、含有量が0.005%未満では十分な効果が得られず、一方0.50%を超えると良好な一次再結晶組織が得られないので、P量は0.005〜0.50%の範囲にするのが好ましい。
P: 0.005-0.50%
P has a function of improving the magnetic flux density by improving the texture after cold rolling and recrystallization by grain boundary segregation. However, if the content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 0.50%, a good primary recrystallized structure cannot be obtained. Therefore, the P content is preferably in the range of 0.005 to 0.50%.

Te:0.003〜1.50%、Bi:0.003〜1.50%、Pb:0.003〜1.50%
Te,BiおよびPbはそれぞれ、粒界に偏析して一次再結晶組織を改善させる働きがあるが、そのためには、0.003%以上含有させることが望ましい。一方、それぞれが1.50%を超えて含有されると、熱間加工性が損なわれるため、1.50%を上限として含有させることが望ましい。
Te: 0.003-1.50%, Bi: 0.003-1.50%, Pb: 0.003-1.50%
Te, Bi, and Pb each have a function of segregating at the grain boundary to improve the primary recrystallization structure. For this purpose, it is desirable to contain 0.003% or more. On the other hand, if each content exceeds 1.50%, the hot workability is impaired, so it is desirable to contain 1.50% as the upper limit.

Cu:0.01〜0.3%
Cuは、最終仕上焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して、磁気特性を向上させる有用元素である。そのためには、0.01%以上含有させることが望ましい。一方、Cuが0.3%を超えて含有されると、熱間圧延性が劣化するため、Cuは0.3%を上限として含有させることが望ましい。
Cu: 0.01-0.3%
Cu is a useful element that suppresses nitriding and oxidation of the steel sheet during final finish annealing, promotes secondary recrystallization of crystal grains having a good crystal orientation, and improves magnetic properties. For that purpose, it is desirable to make it contain 0.01% or more. On the other hand, if Cu is contained in excess of 0.3%, the hot rollability deteriorates, so it is desirable to contain Cu with 0.3% as the upper limit.

次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整したスラブを、通常の造塊法、連続鋳造法で製造する。また、100 mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
次に、スラブを加熱したのち、熱間圧延により熱延板とする。
ついで、熱延板焼鈍を施したのち、1回または中間焼鈍を含む2回以上の冷間圧延により最終板厚に仕上げる。ここで、熱延板焼鈍は、800〜1100℃で1〜120秒程度とすることが好ましい。この熱板焼鈍は、コイル長手方向での磁気特性を均一化させる働きがあるが、800℃未満または1秒未満ではその効果がなく、一方1100℃超または120秒超では粒径が大きくなりすぎて、その後の冷延性を損ねる。
Next, the manufacturing method of this invention is demonstrated.
The slab adjusted to the above suitable component composition range is produced by a normal ingot-making method and a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method.
Next, after heating a slab, it is set as a hot rolled sheet by hot rolling.
Next, after performing hot-rolled sheet annealing, it is finished to the final sheet thickness by one or more cold rolling processes including intermediate annealing. Here, the hot-rolled sheet annealing is preferably performed at 800 to 1100 ° C. for about 1 to 120 seconds. This hot plate annealing works to homogenize the magnetic properties in the longitudinal direction of the coil, but there is no effect at less than 800 ° C or less than 1 second, while at 1100 ° C or more than 120 seconds the particle size becomes too large. The subsequent cold rolling property is impaired.

ついで、一次再結晶焼鈍を施すが、本発明では、この一次再結晶焼鈍前における鋼板の最表面のCr濃度が地鉄中のCr濃度の0.5〜0.8倍となるように表面のCr濃度を調整することが肝要である。ここに、表面のCr濃度が地鉄の0.8倍よりも高いと一次再結晶焼鈍中に鋼板表面の酸化が進行しすぎ厚膜となって被膜劣化を生じ、一方表面のCr濃度が地鉄の0.5倍よりも低いと一次再結晶焼鈍中に鋼板表面の酸化が抑制されすぎ薄膜となって、やはり被膜劣化を生じる。   Next, primary recrystallization annealing is performed. In the present invention, the surface Cr concentration is adjusted so that the Cr concentration on the outermost surface of the steel sheet before this primary recrystallization annealing is 0.5 to 0.8 times the Cr concentration in the ground iron. It is important to do. Here, if the Cr concentration on the surface is higher than 0.8 times that of the ground iron, oxidation of the steel sheet surface will progress excessively during the primary recrystallization annealing, resulting in film deterioration, while the surface Cr concentration is If it is lower than 0.5 times, oxidation of the steel sheet surface is suppressed too much during the primary recrystallization annealing, resulting in a thin film, which also causes film deterioration.

本発明において、鋼板表面のCr濃度を調整する方法としては、熱延板焼鈍後のスケール除去をリン酸、塩酸、硝酸、硫酸、もしくはこれらの混酸を用いて酸洗することによる化学的研削方法、もしくはショットブラスト、エアブラスト、グラインダ砥石、バフロール、ベルトサンダーによる機械研削方法、あるいはこれらを併用する方法により行うことができる。熱延板焼鈍でCrが表面に拡散して酸化される結果、脱Cr層ができるが、酸化物を除去する一方脱Cr層は除去されない程度に研磨を行う。   In the present invention, as a method of adjusting the Cr concentration on the surface of the steel sheet, a chemical grinding method by removing the scale after the hot-rolled sheet annealing by pickling using phosphoric acid, hydrochloric acid, nitric acid, sulfuric acid, or a mixed acid thereof. Alternatively, it can be performed by a mechanical grinding method using shot blasting, air blasting, a grinder grindstone, a baffle or a belt sander, or a method using a combination thereof. As a result of Cr being diffused and oxidized on the surface by hot-rolled sheet annealing, a Cr removal layer is formed, but polishing is performed to such an extent that the oxide is removed while the Cr removal layer is not removed.

一次再結晶焼鈍における均熱領域の温度は750〜950℃が好ましい。950℃を超えると一次再結晶粒の粒成長が進行しすぎて二次再結晶不良となり、一方750℃未満では逆に一次再結晶粒の粒成長が進まずに二次再結晶粒方位が不安定になる原因となる。また、均熱時間は20〜240sとすることが好ましい。20s未満では一次再結晶不良となり、240sを超えると一次再結晶粒成長が進行していずれも磁気特性劣化の要因となる。さらに、焼鈍時の雰囲気酸化性P(H2O)/P(H2)は0.15〜0.75とすることが好ましい。0.15未満では良好な酸化膜が得られず被膜が劣化し、0.75超ではFeOを主体とする過酸化な膜が形成されやはり被膜が劣化する。 The temperature in the soaking area in the primary recrystallization annealing is preferably 750 to 950 ° C. If the temperature exceeds 950 ° C, the primary recrystallized grains grow too much, resulting in secondary recrystallization failure.On the other hand, if the temperature is lower than 750 ° C, the primary recrystallized grains do not progress and the orientation of the secondary recrystallized grains is not good. Causes stability. The soaking time is preferably 20 to 240 s. If it is less than 20 s, primary recrystallization failure occurs, and if it exceeds 240 s, primary recrystallization grain growth proceeds and both cause deterioration of magnetic characteristics. Furthermore, the atmospheric oxidizing P (H 2 O) / P (H 2 ) during annealing is preferably 0.15 to 0.75. If it is less than 0.15, a good oxide film cannot be obtained and the film deteriorates, and if it exceeds 0.75, a peroxide film mainly composed of FeO is formed and the film also deteriorates.

一次再結晶焼鈍後、焼鈍分離剤を塗布する。焼純分離剤の主剤には少なくとも50%以上のマグネシアを用いる。焼鈍分離剤の添加剤としては、公知の添加剤として、TiO2や、Mg,Sr,Sb,Cu,Zn等の硫酸塩、Li,Na等のホウ酸塩、その他水酸化物、塩化物など様々な化合物が用いられるが、本発明ではこれらを用いることも可能である。これらの化合物の添加量としてはマグネシア:100質量部に対して0.5〜15質量部程度とするのが好適である。その他、焼鈍分離剤の塗布量や水和量は、従来通り、5〜15g/m2(両面)、0.5〜5%程度でよい。 After the primary recrystallization annealing, an annealing separator is applied. At least 50% or more of magnesia is used as the main component of the sinter separating agent. The additives of the annealing separating agent, as known additives, TiO 2 and, Mg, Sr, Sb, Cu, sulfates such as Zn, Li, borates such as Na, other hydroxides, chlorides, etc. Various compounds are used, and these can also be used in the present invention. The addition amount of these compounds is preferably about 0.5 to 15 parts by mass with respect to 100 parts by mass of magnesia. In addition, the application amount and hydration amount of the annealing separator may be about 5 to 15 g / m 2 (both sides) and about 0.5 to 5% as usual.

焼鈍分離剤を塗布したのち、最終仕上焼鈍を施すが、これについては特に制限はなく、公知の方法に従えばよい。
最終仕上焼鈍の後、必要に応じて張力付与コーティングや絶縁コーティングを鋼板表面に焼き付けたのち、平坦化焼鈍を施して製品とする。
また、磁区細分化による鉄損低減を目的として、平坦化焼鈍後の鋼板にプラズマジェットやレーザー照射を線状に施したり、突起ロールによる線状に凹みを設けたりする処理や最終冷延後にエッチングなどにより圧延方向とほぼ直行する溝を形成させる処理を施すこともできる。
さらに、最終仕上焼鈍後、ゾルゲル法やTiN蒸着など公知の方法で張力被膜を形成させる技術を組み合わせることも鉄損低減のために有効である。
After the annealing separator is applied, final finish annealing is performed, but there is no particular limitation on this, and any known method may be followed.
After final finish annealing, if necessary, a tension-imparting coating or an insulating coating is baked on the surface of the steel sheet, followed by flattening annealing to obtain a product.
Also, for the purpose of reducing iron loss due to magnetic domain subdivision, the steel plate after flattening annealing is subjected to a plasma jet or laser irradiation in a linear manner, a process of providing a dent in a linear shape by a protruding roll, or etching after the final cold rolling It is also possible to perform a process for forming a groove substantially perpendicular to the rolling direction.
Furthermore, it is also effective for reducing iron loss to combine techniques for forming a tension film by a known method such as a sol-gel method or TiN deposition after final finish annealing.

実施例1
C:0.06%、Si:3.35%、Mn:0.07%およびCr:0.01%を含有し、かつSを30ppm、Seを1ppm、Oを10ppm、Alを50ppmおよびNを35ppmに抑制し、残部はFeおよび不可避混入不純物の組成になる珪素鋼スラブ(鋼種A)およびC:0.06%、Si:3.25%、Mn:0.06%、Cr:0.07%およびCu:0.01%を含有し、かつSを20ppm、Seを2ppm、Oを12ppm、Alを20ppmおよびNを29ppmに抑制し、残部はFeおよび不可避混入不純物の組成になる珪素鋼スラブ(鋼種B)をそれぞれ、ガス加熱炉に装入して1230℃まで加熱し、60分保定後、熱間圧延により2.0mm厚の熱延板としたのち、1000℃,1分の熱延板焼鈍を施した。
ついで、表1に示す各種の条件でスケールを除去したのち、冷間圧延をにより0.30mmの最終板厚に仕上げ、ついで酸化性がP(H2O)/P(H2)=0.40の雰囲気中にて850℃,100秒間で脱炭焼鈍したのち、MgO:100質量部、TiO2:2質量部、水酸化ストロンチウム:3質量部の組成の焼鈍分離剤を、鋼板両面当たりの塗布量で14g/m2塗布してから、コイルに巻き取り、最終仕上焼鈍を行った。
Example 1
C: 0.06%, Si: 3.35%, Mn: 0.07% and Cr: 0.01%, S is suppressed to 30ppm, Se is 1ppm, O is 10ppm, Al is 50ppm and N is suppressed to 35ppm, the balance is Fe Silicon steel slab (steel grade A) and C: 0.06%, Si: 3.25%, Mn: 0.06%, Cr: 0.07% and Cu: 0.01%, and S: 20 ppm, Se Is controlled to 2ppm, O is 12ppm, Al is 20ppm and N is 29ppm, and the balance is Fe and silicon steel slab (steel grade B) with inevitable impurities, respectively. After heating and holding for 60 minutes, a hot-rolled sheet having a thickness of 2.0 mm was formed by hot rolling, followed by annealing at 1000 ° C. for 1 minute.
Next, after removing the scale under various conditions shown in Table 1, it was cold rolled to a final thickness of 0.30 mm, and then the atmosphere was oxidized with P (H 2 O) / P (H 2 ) = 0.40. After decarburizing and annealing at 850 ° C. for 100 seconds in the inside, an annealing separator having a composition of MgO: 100 parts by mass, TiO 2 : 2 parts by mass, and strontium hydroxide: 3 parts by mass was applied in a coating amount per both sides of the steel sheet. After 14 g / m 2 was applied, it was wound around a coil and subjected to final finish annealing.

その後、未反応の焼鈍分離剤を水洗により除去したのち、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁張力コーティング液を塗布し、平坦化焼鈍の後、製品とした。
かくして得られた製品の外観、曲げ密着性、磁束密度B8および鉄損W17/50について調査した結果を、表2に示す。
なお、曲げ密着性は、サンプルを円筒状の棒に巻きつけて被膜が剥離しなかった最小の曲げ径により評価した。また、磁束密度B8および鉄損W17/50はエプスタイン試験法により測定した。
Then, after removing the unreacted annealing separating agent by washing with water, an insulating tension coating liquid containing magnesium phosphate containing colloidal silica as a main component was applied, and a product was obtained after flattening annealing.
Table 2 shows the results of investigation on the appearance, bending adhesion, magnetic flux density B 8 and iron loss W 17/50 of the product thus obtained.
The bending adhesion was evaluated based on the minimum bending diameter at which the sample was wound around a cylindrical rod and the coating did not peel off. Further, the magnetic flux density B 8 and the iron loss W 17/50 were measured by the Epstein test method.

Figure 2007239009
Figure 2007239009

Figure 2007239009
Figure 2007239009

同表に示したとおり、本発明に従い、一次再結晶焼鈍前の鋼板最表面のCr濃度を適正に調整したものはいずれも、磁気特性に優れるのは勿論、優れた被膜特性を得ることができた。   As shown in the table, according to the present invention, any steel sheet that has been appropriately adjusted for the Cr concentration on the outermost surface of the steel sheet before the primary recrystallization annealing can be obtained with excellent coating properties as well as excellent magnetic properties. It was.

実施例2
表3に示す種々の成分組成になる珪素鋼スラブを、ガス加熱炉に装入して1210℃まで加熱し、60分保定後、熱間圧延により2.0mm厚の熱延板としたのち、1000℃,1分の熱延板焼鈍を施した。
ついで、表1にNo.5で示す条件でスケールを除去したのち、冷間圧延により0.30mmの最終板厚に仕上げ、ついで酸化性がP(H2O)/P(H2)=0.46の雰囲気中にて850℃,120秒間で脱炭焼鈍したのち、MgO:100質量部、TiO2:2質量部、硫酸マグネシウム:3質量部の組成の焼鈍分離剤を、鋼板両面当たりの塗布量で13g/m2塗布してから、コイルに巻き取り、最終仕上焼鈍を行った。
Example 2
Silicon steel slabs with various composition shown in Table 3 were charged into a gas heating furnace, heated to 1210 ° C, held for 60 minutes, hot rolled into a hot rolled sheet of 2.0 mm thickness, and 1000 Hot-rolled sheet annealing was performed at 1 ° C. for 1 minute.
Next, after removing the scale under the condition shown in No. 5 in Table 1, it was finished to a final thickness of 0.30 mm by cold rolling, and then the oxidation property was P (H 2 O) / P (H 2 ) = 0.46. After decarburizing and annealing in an atmosphere at 850 ° C. for 120 seconds, an annealing separator having a composition of MgO: 100 parts by mass, TiO 2 : 2 parts by mass, and magnesium sulfate: 3 parts by mass is applied to both sides of the steel sheet. After applying 13 g / m 2 , it was wound around a coil and subjected to final finish annealing.

その後、未反応の焼鈍分離剤を水洗により除去したのち、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁張力コーティング液を塗布し、平坦化焼鈍の後、製品とした。
かくして得られた製品の外観、曲げ密着性、磁束密度B8および鉄損W17/50について調査した結果を、表3に併記する。
なお、曲げ密着性は、サンプルを円筒状の棒に巻きつけて被膜が剥離しなかった最小の曲げ径により評価した。また、磁束密度B8および鉄損W17/50はエプスタイン試験法により測定した。
Then, after removing the unreacted annealing separating agent by washing with water, an insulating tension coating liquid containing magnesium phosphate containing colloidal silica as a main component was applied, and a product was obtained after flattening annealing.
The results of investigations on the appearance, bending adhesion, magnetic flux density B 8 and iron loss W 17/50 of the product thus obtained are also shown in Table 3.
The bending adhesion was evaluated based on the minimum bending diameter at which the sample was wound around a cylindrical rod and the coating did not peel off. Further, the magnetic flux density B 8 and the iron loss W 17/50 were measured by the Epstein test method.

Figure 2007239009
Figure 2007239009

同表に示したとおり、本発明の成分組成範囲を満足し、かつ一次再結晶焼鈍前の鋼板最表面のCr濃度を適正に調整したものはいずれも、磁気特性だけでなく被膜特性に優れた製品が得られている。   As shown in the table, both the composition composition range of the present invention and the Cr concentration on the outermost surface of the steel sheet before the primary recrystallization annealing were appropriately adjusted were excellent not only in magnetic properties but also in coating properties. The product has been obtained.

酸洗時間を変更して脱スケール処理したときの一次再結晶焼鈍前の鋼板中のSi,OをGDS測定したときの深さ方向分析結果を示す図である。It is a figure which shows the depth direction analysis result when Si and O in the steel plate before the primary recrystallization annealing at the time of descaling by changing pickling time are measured. 酸洗時間を変更して脱スケール処理したときの一次再結晶焼鈍前の鋼板中のCrをGDS測定したときの深さ方向分析結果を示す図である。It is a figure which shows the depth direction analysis result when carrying out GDS measurement of Cr in the steel plate before the primary recrystallization annealing when descaling processing is performed by changing the pickling time. 一次再結晶焼鈍前の鋼板の最表面の地鉄部のCr濃度比と被膜密着性との関係を示す図である。It is a figure which shows the relationship between Cr density | concentration ratio of the iron-base part of the outermost surface of the steel plate before primary recrystallization annealing, and film adhesiveness.

Claims (2)

質量%で、
C:0.01〜0.10%、
Si:1.0〜5.0%、
Mn:0.5%以下および
Cr:0.01%以上 0.2%以下
を含有し、かつ
S,Se,Oをそれぞれ50ppm未満、
sol.Alを100ppm未満および
Nを60ppm未満
に抑制し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、熱間圧延後、熱延板焼鈍を施し、ついで1回または中間焼鈍を含む2回以上の冷間圧延を施して最終板厚に仕上げたのち、一次再結晶焼鈍ついで二次再結晶焼鈍を施すことからなる方向性電磁鋼板の製造方法において、
一次再結晶焼鈍前の鋼板の最表面のCr濃度が地鉄中のCr濃度の0.5〜0.8倍となるように表面のCr濃度を調整することを特徴とする方向性電磁鋼板の製造方法。
% By mass
C: 0.01-0.10%,
Si: 1.0-5.0%
Mn: 0.5% or less and
Cr: 0.01% or more and 0.2% or less, and each of S, Se and O is less than 50 ppm,
Steel slab with sol.Al less than 100ppm and N less than 60ppm with the balance being Fe and inevitable impurities, hot-rolled and then hot-rolled sheet annealed, followed by one or intermediate annealing In the manufacturing method of the grain-oriented electrical steel sheet, which is subjected to cold rolling at least twice and finished to the final sheet thickness, followed by primary recrystallization annealing and then secondary recrystallization annealing.
A method for producing a grain-oriented electrical steel sheet, comprising adjusting the Cr concentration on the surface so that the Cr concentration on the outermost surface of the steel plate before primary recrystallization annealing is 0.5 to 0.8 times the Cr concentration in the ground iron.
請求項1において、鋼板が、さらに質量%で、Ni:0.01〜1.50%、Sn:0.01〜0.50%、Sb:0.005〜0.50%、P:0.005〜0.50%、Te:0.003〜1.50%、Bi:0.003〜1.50%、Pb:0.003〜1.50%およびCu:0.01〜0.3%のうちから選んだ1種または2種以上を含有することを特徴とする方向性電磁鋼板の製造方法。
2. The steel sheet according to claim 1, further comprising, in mass%, Ni: 0.01 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50%, P: 0.005 to 0.50%, Te: 0.003 to 1.50%, Bi: A method for producing a grain-oriented electrical steel sheet, comprising one or more selected from 0.003 to 1.50%, Pb: 0.003 to 1.50%, and Cu: 0.01 to 0.3%.
JP2006062023A 2006-03-08 2006-03-08 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4784347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062023A JP4784347B2 (en) 2006-03-08 2006-03-08 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062023A JP4784347B2 (en) 2006-03-08 2006-03-08 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2007239009A true JP2007239009A (en) 2007-09-20
JP4784347B2 JP4784347B2 (en) 2011-10-05

Family

ID=38584833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062023A Expired - Fee Related JP4784347B2 (en) 2006-03-08 2006-03-08 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4784347B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068968A (en) * 2009-09-28 2011-04-07 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2012161139A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Motor core having small deterioration in iron loss under compressive stress and method of manufacturing the same
JP2014500399A (en) * 2010-12-23 2014-01-09 ポスコ Oriented electrical steel sheet excellent in magnetism and method for producing the same
JP2014091839A (en) * 2012-10-31 2014-05-19 Jfe Steel Corp Oriented electromagnetic steel sheet and its manufacturing method
JP2014129585A (en) * 2012-12-28 2014-07-10 Jfe Steel Corp Manufacturing method of grain oriented silicon steel sheet and primary recrystallization steel sheet for manufacturing grain oriented silicon steel sheet
JP2014196559A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method thereof
CN105051231A (en) * 2013-03-29 2015-11-11 株式会社神户制钢所 Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
WO2018110676A1 (en) * 2016-12-14 2018-06-21 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
EP3257958B1 (en) * 2015-02-13 2020-04-15 JFE Steel Corporation Grain-oriented electrical steel sheet and method for producing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068968A (en) * 2009-09-28 2011-04-07 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2014500399A (en) * 2010-12-23 2014-01-09 ポスコ Oriented electrical steel sheet excellent in magnetism and method for producing the same
US9997283B2 (en) 2010-12-23 2018-06-12 Posco Grain-oriented electric steel sheet having superior magnetic property
US9240265B2 (en) 2010-12-23 2016-01-19 Posco Method for manufacturing grain-oriented electrical steel sheet having superior magnetic property
JP2012161139A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Motor core having small deterioration in iron loss under compressive stress and method of manufacturing the same
JP2014091839A (en) * 2012-10-31 2014-05-19 Jfe Steel Corp Oriented electromagnetic steel sheet and its manufacturing method
JP2014129585A (en) * 2012-12-28 2014-07-10 Jfe Steel Corp Manufacturing method of grain oriented silicon steel sheet and primary recrystallization steel sheet for manufacturing grain oriented silicon steel sheet
JP2014196559A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method thereof
CN105051231B (en) * 2013-03-29 2016-12-07 株式会社神户制钢所 Corrosion resistance and the steel of having excellent magnetic properties and manufacture method thereof
CN105051231A (en) * 2013-03-29 2015-11-11 株式会社神户制钢所 Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
US10593451B2 (en) 2013-03-29 2020-03-17 Kobe Steel, Ltd. Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
EP3257958B1 (en) * 2015-02-13 2020-04-15 JFE Steel Corporation Grain-oriented electrical steel sheet and method for producing same
WO2018110676A1 (en) * 2016-12-14 2018-06-21 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JPWO2018110676A1 (en) * 2016-12-14 2019-04-11 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN110073019A (en) * 2016-12-14 2019-07-30 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacturing method
CN110073019B (en) * 2016-12-14 2021-08-17 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US11566302B2 (en) 2016-12-14 2023-01-31 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP4784347B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4784347B2 (en) Method for producing grain-oriented electrical steel sheet
WO2017006955A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2006152387A (en) Grain oriented silicon steel sheet having excellent magnetic characteristic
JP6119959B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008106367A (en) Double oriented silicon steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP4873770B2 (en) Unidirectional electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3536812B2 (en) Method for producing grain-oriented electrical steel sheet with few edge cracks and good coating properties and excellent magnetic properties
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
WO2022250160A1 (en) Method for producing grain-oriented electrical steel sheet
WO2022250161A1 (en) Method for producing grain-oriented electrical steel sheet
JP2007262436A (en) Method for producing grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4784347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees