JP2014196559A - Grain-oriented electrical steel sheet and production method thereof - Google Patents

Grain-oriented electrical steel sheet and production method thereof Download PDF

Info

Publication number
JP2014196559A
JP2014196559A JP2014044312A JP2014044312A JP2014196559A JP 2014196559 A JP2014196559 A JP 2014196559A JP 2014044312 A JP2014044312 A JP 2014044312A JP 2014044312 A JP2014044312 A JP 2014044312A JP 2014196559 A JP2014196559 A JP 2014196559A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
concentration
oriented electrical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014044312A
Other languages
Japanese (ja)
Other versions
JP5954347B2 (en
Inventor
松田 広志
Hiroshi Matsuda
広志 松田
早川 康之
Yasuyuki Hayakawa
康之 早川
渡辺 誠
Makoto Watanabe
渡辺  誠
之啓 新垣
Yukihiro Aragaki
之啓 新垣
山口 広
Hiroshi Yamaguchi
山口  広
有衣子 脇阪
Yuiko WAKISAKA
有衣子 脇阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014044312A priority Critical patent/JP5954347B2/en
Publication of JP2014196559A publication Critical patent/JP2014196559A/en
Application granted granted Critical
Publication of JP5954347B2 publication Critical patent/JP5954347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stably obtain a grain-oriented electrical steel sheet which is excellent in film adhesiveness of a substrate film and thus in magnetic characteristics by advantageously eliminating unstable formation of the substrate film which may occur in production by using a sulfur increasing method.SOLUTION: In the analysis of ingredient profiles of Mg and Mn from the surface to the center of the sheet thickness of a forsterite substrate film-provided grain-oriented electrical steel sheet, the concentration change of Mg shows a peak in the steel sheet surface layer part. For the concentration change of Mn, when the concentration of the steel sheet surface layer part shows a peak lower than that of the base iron in the central part of the sheet thickness or shows a peak higher than that of the base iron in the central part of the sheet thickness in the steel sheet surface layer part, the grain-oriented electrical steel sheet meets the relationship t(Mn)>t(Mg), where t(Mn) is the distance from the surface of the steel sheet to the concentration peak position of Mn, and t(Mg) is the distance from the surface of the steel sheet to the concentration peak position of Mg.

Description

本発明は、変圧器およびその他の電気機器の鉄心などに用いて好適な、被膜密着性に優れた方向性電磁鋼板およびその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet excellent in film adhesion and suitable for use in transformers and iron cores of other electrical equipment, and a method for producing the same.

方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、いわゆる二次再結晶を通じて形成される。   A grain-oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. . Such a texture preferentially grows crystal grains with a (110) [001] orientation, which is referred to as a so-called Goss orientation, during secondary recrystallization annealing during the production process of grain-oriented electrical steel sheets. It is formed through so-called secondary recrystallization.

従来、このような方向性電磁鋼板は、4.5質量%以下のSiと、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃以上の高温に加熱してインヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼鈍を施して、一次再結晶と脱炭を行い、ついでマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2、特許文献3)。   Conventionally, such a grain-oriented electrical steel sheet is heated to a high temperature of 1300 ° C. or higher by heating a slab containing 4.5% by mass or less of Si and an inhibitor component such as MnS, MnSe, and AlN to once dissolve the inhibitor component. After that, after hot rolling and performing hot-rolled sheet annealing as necessary, the final sheet thickness is obtained by cold rolling at least once with one or two intermediate sandwiches, followed by primary recrystallization in a wet hydrogen atmosphere. After annealing, primary recrystallization and decarburization, and after applying an annealing separator mainly composed of magnesia (MgO), the secondary recrystallization and inhibitor components are purified at 1200 ° C for about 5 hours. Have been manufactured by performing final finish annealing (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

上述したとおり、従来の方向性電磁鋼板の製造に際しては、MnS,MnSe,AlNなどの析出物(インヒビター成分)をスラブ段階で含有させ、1300℃以上の高温のスラブ加熱により、これらのインヒビター成分を一旦固溶させ、後工程で微細に析出させることにより、二次再結晶を発現させるという工程が採用されてきた。
しかしながら、スラブの高温加熱は、加熱を実現する上で設備コストが嵩むだけでなく、熱延時に生成するスケール量が増大して歩留りが低下し、さらには設備のメンテナンスが煩雑になる等の問題があり、近年の製造コスト低減の要求に応えることができないところに問題を残していた。
As described above, in manufacturing conventional grain-oriented electrical steel sheets, precipitates (inhibitor components) such as MnS, MnSe, and AlN are included in the slab stage, and these inhibitor components are added by heating at a high temperature of 1300 ° C or higher. A process of causing secondary recrystallization by once forming a solid solution and precipitating finely in a subsequent process has been adopted.
However, the high-temperature heating of the slab not only increases the equipment cost in realizing the heating, but also increases the amount of scale generated during hot rolling, lowers the yield, and further complicates the maintenance of the equipment. However, the problem remains in that it cannot meet the recent demand for manufacturing cost reduction.

この問題を解決するために、スラブにインヒビター成分を含有させずに二次再結晶を生じさせる技術について検討が進められた。
その結果、スラブにインヒビター成分を含有させない場合であっても、二次再結晶を発現させることができる技術(インヒビターレス法)が開発され、特許文献4において開示された。このインヒビターレス法は、より高純度化した鋼を利用し、テクスチャー(集合組織の制御)によって二次再結晶を発現させる技術である。
In order to solve this problem, studies have been made on a technique for causing secondary recrystallization without containing an inhibitor component in the slab.
As a result, even when no inhibitor component is contained in the slab, a technique (inhibitorless method) capable of expressing secondary recrystallization has been developed and disclosed in Patent Document 4. This inhibitorless method is a technology that uses secondary steel with higher purity and develops secondary recrystallization by texture (control of texture).

一方、インヒビターレス法を用いた場合には、フォルステライト被膜(いわゆる下地被膜)の形成に問題が生じることがあった。
これに対し、特許文献5では、Sr化合物を焼鈍分離剤中に添加し、かつ最終仕上げ焼鈍工程においてフォルステライト被膜の形成に必要な温度条件を規定することにより、密着性の高いフォルステライト被膜の形成に成功している。
On the other hand, when the inhibitorless method is used, there is a problem in forming a forsterite film (so-called undercoat film).
On the other hand, in Patent Document 5, the Sr compound is added to the annealing separator, and the temperature condition necessary for forming the forsterite film in the final finish annealing process is defined, thereby providing a highly adherent forsterite film. Successfully formed.

また、インヒビターレス法では、高温のスラブ加熱が不要であるため、低コストでの方向性電磁鋼板の製造が可能であるとはいえ、インヒビターを含有しないが故に製造時、途中工程での温度ばらつきなどの影響を受け、製品でも磁気特性がばらつくという問題が生じる場合があった。
これに対しては、二次再結晶を安定して発現させる技術として、一次再結晶焼鈍後、二次再結晶焼鈍前に、地鉄中のS量を増加させる、いわゆる増硫処理を施す技術が開発され、特許文献6において開示された。この増硫法によれば、一次再結晶から二次再結晶までの間に増硫処理を施すことにより、一次再結晶粒界に偏析するS量が増すため、インヒビターレス技術で最も重要な集合組織に起因する結晶の粒界性格の差異を強めることとなり、ゴス方位以外の方位粒を囲む粒界の移動が適度に抑制され、その結果、二次再結晶が安定化するものと考えられる。
In addition, the inhibitorless method does not require high-temperature slab heating, and although it is possible to manufacture grain-oriented electrical steel sheets at low cost, it does not contain an inhibitor, and therefore, temperature fluctuations during the manufacturing process. In some cases, there is a problem that the magnetic characteristics of the product vary.
For this, as a technique for stably expressing secondary recrystallization, a technique for performing a so-called vulcanization process for increasing the amount of S in the steel after the primary recrystallization annealing and before the secondary recrystallization annealing. Was developed and disclosed in US Pat. According to this vulcanization method, the amount of sulfur segregated at the primary recrystallized grain boundary is increased by performing the vulcanization process from the primary recrystallization to the secondary recrystallization, so the most important assembly in the inhibitorless technology. It is considered that the difference in grain boundary character of the crystal due to the structure is strengthened, and the movement of the grain boundary surrounding the orientation grain other than the Goth orientation is moderately suppressed, and as a result, the secondary recrystallization is stabilized.

しかしながら、二次再結晶の安定化のために増硫法を用いた場合には、再び下地被膜の形成が不安定となって被膜密着性が劣化する場合があるという新たな問題を生じ、工業的生産という観点から、その改善が求められていた。   However, when the vulcanization method is used to stabilize the secondary recrystallization, a new problem arises that the formation of the undercoat becomes unstable and the adhesion of the coat may deteriorate. From the viewpoint of efficient production, the improvement was demanded.

米国特許第1965559号明細書U.S. Patent No. 1965559 特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No.51-13469 特開2000−129356号公報JP 2000-129356 JP 特許第4258185号公報Japanese Patent No. 4258185 特許第4321120号公報Japanese Patent No. 4321120

本発明は、上記の問題を有利に解決するもので、増硫法を用いる製造技術において、下地被膜の被膜密着性を効果的に改善した方向性電磁鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention advantageously solves the above problems, and proposes a grain-oriented electrical steel sheet that effectively improves the adhesion of the undercoat in the production technique using the vulcanization method, together with its advantageous production method. For the purpose.

さて、発明者らは、上記の問題を解決するために、下地被膜の形成状況と被膜密着性との関係について研究を重ねた。
その結果、被膜密着性には、表層の下地被膜から鋼板中にいたるMnおよびMgの分布状態が大きく影響を及ぼしていることを突き止め、その最適制御により下地被膜の密着性が安定して向上するとの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, in order to solve the above problems, the inventors have repeatedly studied the relationship between the formation state of the base film and the film adhesion.
As a result, it has been found that the distribution of Mn and Mg from the surface undercoat to the steel sheet has a great influence on the film adhesion, and the optimum control improves the adhesion of the undercoat stably. I got the knowledge.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、Si:4.5%以下およびMn:0.5%以下を含有する組成からなるフォルステライト下地被膜付き方向性電磁鋼板であって、
上記下地被膜付き方向性電磁鋼板の表面から板厚中心方向へのMgおよびMnの成分プロファイル分析において、
Mgの濃度変化が鋼板表層部においてピークを呈し、
一方、Mnの濃度変化は、鋼板表層部の濃度が板厚中心部の地鉄に比べて低いか、または鋼板表層部に板厚中心部の地鉄に比べて高い濃度ピークを有する場合には、鋼板表面からMnおよびMgの濃度ピーク位置までの距離をそれぞれt(Mn)、t(Mg)とするとき、t(Mn)>t(Mg)の関係を満足する
ことを特徴とする方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
(1) A grain-oriented electrical steel sheet with a forsterite undercoat comprising a composition containing, by mass%, Si: 4.5% or less and Mn: 0.5% or less,
In the component profile analysis of Mg and Mn from the surface of the grain-oriented electrical steel sheet with the undercoat to the thickness center direction,
Mg concentration change shows a peak in the steel sheet surface layer,
On the other hand, if the concentration of Mn is low in the steel plate surface layer compared to the steel plate at the center of the plate thickness, or if the steel plate surface layer has a high concentration peak compared to the steel plate at the center of the plate thickness. The directionality characterized by satisfying the relationship of t (Mn)> t (Mg) where t (Mn) and t (Mg) are the distances from the steel sheet surface to the Mn and Mg concentration peak positions, respectively. Electrical steel sheet.

(2)前記鋼板が、さらに質量%で、
Cu:0.005〜0.20%、
Ti:0.0005〜0.0050%、
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%および
Na:0.0001〜0.0050%
のうちから選んだ少なくとも一種を含有することを特徴とする前記(1)に記載の方向性電磁鋼板。
(2) The steel sheet is further mass%,
Cu: 0.005-0.20%,
Ti: 0.0005-0.0050%,
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050% and
Na: 0.0001 to 0.0050%
The grain-oriented electrical steel sheet according to (1) above, which contains at least one selected from the above.

(3)前記鋼板が、さらに質量%で、
Ni:0.02〜0.50%、
Sn:0.01〜0.50%、
Sb:0.005〜0.20%、
Cr:0.005〜1.5%および
P:0.005〜0.20%
のうちから選んだ少なくとも一種を含有することを特徴とする前記(1)または(2)に記載の方向性電磁鋼板。
(3) The steel sheet is further mass%,
Ni: 0.02-0.50%,
Sn: 0.01 to 0.50%,
Sb: 0.005-0.20%,
Cr: 0.005-1.5% and P: 0.005-0.20%
The grain-oriented electrical steel sheet according to (1) or (2) above, which contains at least one selected from among the above.

(4)質量%で、C:0.08%以下、Si:4.5%以下およびMn:0.5%以下を含有し、sol.Alを100ppm未満およびNを60ppm未満ならびにS,SeおよびOをそれぞれ50ppm未満に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、熱間圧延後、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施し、ついで酸洗後、脱炭を兼ねた一次再結晶焼鈍を施したのち、MgOを主体とする焼鈍分離剤を塗布してから、最終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
一次再結晶焼鈍前の鋼板の最表面のMn濃度が板厚中心部のMn濃度の0.85倍以下となるように、酸洗処理により表面のMn濃度を調整し、かつ焼鈍分離剤中に硫化物および/または硫酸塩を0.2〜15質量%の範囲で含有させ、さらに最終仕上焼鈍での最高到達温度を1250℃以下とすることを特徴とする方向性電磁鋼板の製造方法。
(4) By mass%, C: 0.08% or less, Si: 4.5% or less and Mn: 0.5% or less, sol.Al less than 100ppm, N less than 60ppm, and S, Se and O less than 50ppm respectively Suppress, and after the steel slab consisting of the composition of Fe and inevitable impurities is hot-rolled and then subjected to hot-rolled sheet annealing as necessary, it is cold-rolled twice or more with one or intermediate annealing in between , Electrical pickling, followed by primary recrystallization annealing that also serves as decarburization, and after applying an annealing separator mainly composed of MgO, a grain-oriented electrical steel sheet comprising a series of processes for final finishing annealing In the manufacturing method of
The Mn concentration on the surface is adjusted by pickling so that the Mn concentration on the outermost surface of the steel plate before the primary recrystallization annealing is 0.85 times or less the Mn concentration at the center of the plate thickness, and sulfide in the annealing separator. A method for producing a grain-oriented electrical steel sheet characterized by containing sulfate in the range of 0.2 to 15% by mass and further setting the maximum temperature reached in final finish annealing to 1250 ° C. or lower.

(5)前記鋼板が、さらに質量%で、
Cu:0.005〜0.20%、
Ti:0.0005〜0.0050%、
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%および
Na:0.0001〜0.0050%
のうちから選んだ少なくとも一種を含有することを特徴とする前記(4)に記載の方向性電磁鋼板の製造方法。
(5) The steel sheet is further mass%,
Cu: 0.005-0.20%,
Ti: 0.0005-0.0050%,
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050% and
Na: 0.0001 to 0.0050%
The method for producing a grain-oriented electrical steel sheet according to (4) above, comprising at least one selected from the above.

(6)前記鋼スラブが、さらに質量%で、
Ni:0.02〜0.50%、
Sn:0.01〜0.50%、
Sb:0.005〜0.20%、
Cr:0.005〜1.5%および
P:0.005〜0.20%
のうちから選んだ少なくとも一種を含有することを特徴とする前記(4)または(5)に記載の方向性電磁鋼板の製造方法。
(6) The steel slab is further mass%,
Ni: 0.02-0.50%,
Sn: 0.01 to 0.50%,
Sb: 0.005-0.20%,
Cr: 0.005-1.5% and P: 0.005-0.20%
The method for producing a grain-oriented electrical steel sheet according to the above (4) or (5), comprising at least one selected from the above.

本発明によれば、下地被膜の不安定形成を有利に解消して、下地被膜の被膜密着性ひいては磁気特性に優れた方向性電磁鋼板を安定して得ることができ、その工業的価値は極めて高い。   According to the present invention, the unstable formation of the undercoat can be advantageously eliminated, and the grain-oriented electrical steel sheet excellent in the adhesion of the undercoat and thus in the magnetic properties can be stably obtained, and its industrial value is extremely high. high.

GDSで測定した、一次再結晶焼鈍前の冷延板の表面から鋼板内部へ向けてのMn濃度の変化を示すグラフである。It is a graph which shows the change of Mn density | concentration from the surface of the cold rolled sheet before the primary recrystallization annealing measured toward the inside of a steel plate by GDS. GDSで測定した、製品板の絶縁被膜を剥離した下地被膜表面から鋼板内部へ向けてのMg,Mn濃度の変化を示すグラフである。It is a graph which shows the change of Mg and Mn density | concentration from the surface of the base film which peeled the insulation coating of the product board to the steel plate inside measured by GDS. GDSで測定した、製品板の絶縁被膜を剥離した下地被膜表面から鋼板内部へ向けてのMg,Mn濃度の変化の他の例を示すグラフである。It is a graph which shows the other example of the change of Mg and Mn density | concentration measured from GDS to the steel plate inside from the base film surface which peeled the insulating coating of the product board.

以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験結果について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
実験1
C:0.03%、Si:3.4%、Mn:0.05%、sol.Al:45ppm、N:35ppm、S:20ppm、Se:20ppmおよびO:10ppmを含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1200℃に加熱後、熱間圧延により板厚:2.5mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。この時、熱延板焼鈍後の鋼板表面をショットブラスト処理したのち、80℃の5%塩酸水溶液を用いて60秒または150秒の2条件で酸洗を行って表面スケールを除去した。ついで、冷間圧延により板厚:0.30mmとしたのち、840℃で120秒間均熱する脱炭を兼ねた一次再結晶焼鈍を、水素分圧:50%、窒素分圧:50%、露点(DP):45℃の条件で行った。
Hereinafter, the present invention will be specifically described.
First, the experimental results that led to the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
Experiment 1
Contains C: 0.03%, Si: 3.4%, Mn: 0.05%, sol.Al: 45ppm, N: 35ppm, S: 20ppm, Se: 20ppm and O: 10ppm, the balance from the composition of Fe and inevitable impurities The resulting continuous cast slab was heated to 1200 ° C., and hot rolled into a hot rolled sheet having a thickness of 2.5 mm, and then subjected to hot rolled sheet annealing at 1050 ° C. for 30 seconds. At this time, the surface of the steel sheet after hot-rolled sheet annealing was shot blasted and then pickled using a 5% hydrochloric acid aqueous solution at 80 ° C. for 60 seconds or 150 seconds to remove the surface scale. Next, after cold rolling to a plate thickness of 0.30 mm, primary recrystallization annealing that also serves as a decarburization soaking at 840 ° C for 120 seconds was carried out. Hydrogen partial pressure: 50%, nitrogen partial pressure: 50%, dew point ( DP): Performed at 45 ° C.

その後、MgOを主剤とし、MgSO4を10%含有する焼鈍分離剤を、一次再結晶板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2ガス、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。なお、最高到達温度(板温)は1190℃とした。
ついで、残留した焼鈍分離剤を除去後、絶縁コーティング処理液を塗布し、焼付けとヒートフラットニング処理を兼ねた850℃、30秒の焼鈍を施して、最終製品とした。
Thereafter, an annealing separator containing MgO as a main component and containing 10% MgSO 4 was applied to the surface of the primary recrystallization plate at 12.5 g / m 2 , dried, and then the rate of temperature increase: 15 ° C./h, atmosphere gas: Secondary recrystallization annealing was performed under conditions of N 2 gas up to 900 ° C., H 2 gas above 900 ° C., soaking treatment: 1160 ° C., 5 hours. The maximum temperature reached (plate temperature) was 1190 ° C.
Next, after removing the remaining annealing separator, an insulating coating treatment liquid was applied, and annealing was performed at 850 ° C. for 30 seconds, which was combined with baking and heat flattening treatment, to obtain a final product.

かくして得られた製品絶縁被膜を除去したのち、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、下地被膜の被膜密着性について調査した。この被膜密着性は、試験片を種々の径を有する丸棒に押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。
その結果、酸洗時間が60秒と短い条件では最小径は20mmと良好であったのに対し、酸洗時間が150秒と長い条件では最小径が55mmと大幅に劣化することが判明した。
After removing the product insulation film thus obtained, a test piece having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling was collected, and the film adhesion of the undercoat was investigated. The film adhesion was evaluated by bending the test piece against a round bar having various diameters by bending 180 ° and by the minimum diameter at which the bent portion does not peel off.
As a result, it was found that the minimum diameter was as good as 20 mm when the pickling time was as short as 60 seconds, whereas the minimum diameter was greatly deteriorated to 55 mm when the pickling time was as long as 150 seconds.

そこで、発明者らは、これらの現象が如何なる機構により生じるのかを明らかにするために、上記の実験で得られた一次再結晶焼鈍前の冷延板および下地被膜付き鋼板の表層を種々の方法で調査した。
その結果、酸洗条件の違いにより冷延板表層のMn分布に差異が認められること、また製品板の表層ではMnとMgの分布状態が大きく異なることが判明した。そして、形成された下地被膜の密着性の良否は、この製品板の表層におけるMnおよびMgの濃度分布と強い相関があることが究明された。
Therefore, in order to clarify the mechanism by which these phenomena occur, the inventors have used various methods to obtain the surface layer of the cold-rolled sheet and the steel sheet with the base coating before the primary recrystallization annealing obtained in the above experiment. We investigated in.
As a result, it was found that the Mn distribution on the surface of the cold-rolled sheet was different depending on the pickling conditions, and that the distribution state of Mn and Mg was significantly different on the surface of the product sheet. And it was investigated that the quality of adhesion of the formed undercoat had a strong correlation with the concentration distribution of Mn and Mg in the surface layer of this product plate.

図1に、一次再結晶焼鈍前の冷延板の表面から鋼板内部へ向けてのMn濃度の変化をGDS(Glow Discharge Spectrometer)で測定した結果を示す。図1(a)は酸洗時間が60秒の場合、(b)は酸洗時間が150秒の場合である。
図1に示したとおり、Mn濃度の分布は酸洗時間の影響を受けており、Mnは最表面で濃度が低下する傾向にあるものの、酸洗時間が長くなると濃度低下の程度が小さくなることが認められた。
FIG. 1 shows the result of GDS (Glow Discharge Spectrometer) measurement of the change in Mn concentration from the surface of the cold rolled sheet before the primary recrystallization annealing to the inside of the steel sheet. FIG. 1A shows the case where the pickling time is 60 seconds, and FIG. 1B shows the case where the pickling time is 150 seconds.
As shown in FIG. 1, the distribution of Mn concentration is affected by the pickling time, and although Mn tends to decrease in concentration at the outermost surface, the decrease in concentration decreases with increasing pickling time. Was recognized.

次に、図2に、製品板の絶縁被膜を剥離した下地被膜表面から鋼板内部へ向けてのMg,Mn濃度の変化をGDSで測定した結果を示す。
いずれの酸洗条件においても、下地被膜から鋼板にかけてMg,Mnの濃度分布にピークが認められたが、酸洗時間が60秒と短い条件では、表層近傍にMgのピークが存在し、このMgのピークよりさらに鋼板内部側に入ったところでMnのピークを存在していたのに対して、酸洗時間が150秒と長い条件では、表層近傍におけるMgのピークよりもさらに表面側にMnのピークが存在していることが判明した。
Next, FIG. 2 shows the results of GDS measurement of changes in Mg and Mn concentrations from the surface of the base coating from which the insulating coating on the product plate was peeled to the inside of the steel plate.
Under any pickling conditions, a peak was observed in the Mg and Mn concentration distribution from the undercoat to the steel sheet. However, when the pickling time was as short as 60 seconds, there was a Mg peak near the surface layer. Whereas the Mn peak was present at the inner side of the steel plate, the Mn peak was further on the surface side than the Mg peak near the surface layer when the pickling time was 150 seconds. Was found to exist.

なお、Mn強度およびMg強度のピーク位置は、GDSを用い板厚方向の強度分布を調べることによって測定したが、測定法としてはこのGDSのみに限るものではなく、Mn強度やMg強度のピーク位置を評価できる測定法であれば、SIMS(Secondary Ion Mass Spectroscopy)等の物理分析やその他の化学分析であってもかまわない。   The peak positions of Mn intensity and Mg intensity were measured by examining the intensity distribution in the plate thickness direction using GDS, but the measurement method is not limited to this GDS alone, and peak positions of Mn intensity and Mg intensity are measured. As long as it is a measurement method that can evaluate the above, physical analysis such as SIMS (Secondary Ion Mass Spectroscopy) or other chemical analysis may be used.

以上の結果から、製品板におけるこのようなMg,Mnの濃度分布の差が下地被膜の密着性に影響を及ぼしていること、そしてこの変化は一次再結晶前の冷延板のMn濃度プロファイルの影響を受けることが考えられた。
そのため、次に、これを確認する実験を行った。
From the above results, it can be seen that the difference in Mg and Mn concentration distribution on the product plate affects the adhesion of the undercoat, and this change is due to the Mn concentration profile of the cold-rolled plate before primary recrystallization. It was thought to be affected.
Therefore, next, an experiment was conducted to confirm this.

実験2
C:0.03%、Si:3.4%、Mn:0.05%、sol.Al:45ppm、N:35ppm、S:20ppm、Se:20ppmおよびO:10ppmを含有し、残部はFeおよび不可避的不純物の組成からなる連鋳スラブを、1200℃に加熱後、熱間圧延により板厚:2.2mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。この時、熱延板焼鈍後の鋼板表面に対してショットブラストを施したのち、表1に示す7条件(条件A〜G)で表面スケールの除去状態の異なる鋼板を作製した。ついで冷間圧延により板厚:0.30mmとしたのち、840℃で120秒間均熱する脱炭・一次再結晶焼鈍を、水素分圧:50%、窒素分圧:50%、露点:45℃の条件で行った。
Experiment 2
Contains C: 0.03%, Si: 3.4%, Mn: 0.05%, sol.Al: 45ppm, N: 35ppm, S: 20ppm, Se: 20ppm and O: 10ppm, the balance from the composition of Fe and inevitable impurities The resulting continuous cast slab was heated to 1200 ° C., and then hot rolled into a hot rolled sheet having a thickness of 2.2 mm, and then subjected to hot rolled sheet annealing at 1050 ° C. for 30 seconds. At this time, shot blasting was performed on the surface of the steel sheet after the hot-rolled sheet annealing, and then steel sheets having different surface scale removal states were produced under the seven conditions shown in Table 1 (conditions A to G). Next, after cold rolling to a plate thickness of 0.30 mm, decarburization and primary recrystallization annealing, soaking at 840 ° C for 120 seconds, hydrogen partial pressure: 50%, nitrogen partial pressure: 50%, dew point: 45 ° C Performed under conditions.

Figure 2014196559
Figure 2014196559

その後、MgOを主剤とし、MgSO4を10%含有する焼鈍分離剤を、一次再結晶板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:15℃/h、雰囲気ガス:900℃までN2ガス、900℃以上はH2ガス、均熱処理:1160℃,5hの条件で二次再結晶焼鈍を施した。なお、最高到達温度(板温)は1190℃とした。
ついで、残留した焼鈍分離剤を除去後、絶縁コーティング処理液を塗布し、焼付けとヒートフラットニング処理を兼ねた850℃、30秒の焼鈍を施し、最終製品とし、評価試験に供した。
Thereafter, an annealing separator containing MgO as a main component and containing 10% MgSO 4 was applied to the surface of the primary recrystallization plate at 12.5 g / m 2 , dried, and then the rate of temperature increase: 15 ° C./h, atmosphere gas: Secondary recrystallization annealing was performed under conditions of N 2 gas up to 900 ° C., H 2 gas above 900 ° C., soaking treatment: 1160 ° C., 5 hours. The maximum temperature reached (plate temperature) was 1190 ° C.
Next, after removing the remaining annealing separator, an insulating coating treatment solution was applied, and annealing was performed at 850 ° C. for 30 seconds, which was combined with baking and heat flattening treatment, to obtain a final product, which was subjected to an evaluation test.

下地被膜の密着性は、実験1と同様に、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。なお、曲げ剥離最小径が小さいほど下地被膜の密着性が良好ということであり、通常の用途では50mm以下が求められている。
また、一次再結晶焼鈍前の冷延板表層のMn濃度プロファイルと、製品板表層のMn,Mg濃度プロファイルをGDSで測定した。なお、製品板表層の測定は、絶縁被膜を剥離した後に行った。
As in Experiment 1, the adhesion of the undercoat was taken from a test piece having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling direction, and bent 180 ° while pressing the test piece against a round bar having various diameters. The evaluation was performed with the minimum diameter at which the bent portion did not peel off. In addition, the smaller the minimum peel peel diameter is, the better the adhesion of the undercoat is, and 50 mm or less is required for normal use.
Moreover, the Mn concentration profile of the cold rolled sheet surface layer before the primary recrystallization annealing and the Mn and Mg concentration profiles of the product sheet surface layer were measured by GDS. In addition, the measurement of the product board surface layer was performed after peeling an insulating film.

図3に、製品板の絶縁被膜を剥離した下地被膜表面から鋼板内部へ向けてのMg,Mnの濃度の変化をGDSで測定した結果を示す。
図3に示したとおり、Mnの濃度プロファイルは、図2で得られたような表層近傍でピークを有する結果の他に、表層近傍では明確なピークが認められないものの地鉄に比べて低下している結果も得られた。
そして、この表層近傍で明確なピークが認められないものの地鉄に比べてMn濃度が低下している状態が実現されている場合には、酸洗時間が60秒と短い条件で処理し、表層近傍にMgのピークが存在し、幾分鋼板内部側に入ったところでMnのピークが存在している場合と同様に、十分な密着性が得られることが判明した。
FIG. 3 shows the results of GDS measurement of changes in Mg and Mn concentrations from the surface of the base coating from which the insulating coating on the product plate was peeled to the inside of the steel plate.
As shown in FIG. 3, the Mn concentration profile is lower than that of the ground iron, although a clear peak is not recognized near the surface layer in addition to the result having a peak near the surface layer as obtained in FIG. The results are also obtained.
And if a clear peak is not recognized near the surface layer, but a state where the Mn concentration is lower than that of the ground iron is realized, the pickling time is 60 seconds, and the surface layer is processed. It has been found that there is a Mg peak in the vicinity, and that sufficient adhesion can be obtained as in the case where the Mn peak is present somewhere inside the steel plate.

表2に、得られた結果をまとめて示す。
表中の一次再結晶焼鈍前の冷延板最表面と地鉄内部のMn濃度は、表面をGDSで深さ方向分析した時の最表面でのMn強度と、スパッタ時間120〜150秒間のMn強度の平均値で定義し、その強度比から濃度比を評価した。また、表2には、下地被膜付き鋼板の被膜外観について調べた結果も併せて示す。
Table 2 summarizes the results obtained.
In the table, the Mn concentration in the outermost surface of the cold rolled sheet and the inside of the iron core before the primary recrystallization annealing is the Mn intensity at the outermost surface when the surface is analyzed in the depth direction by GDS and the Mn with a sputtering time of 120 to 150 seconds. It was defined by the average value of intensity, and the concentration ratio was evaluated from the intensity ratio. Table 2 also shows the results of examining the coating appearance of the steel sheet with the base coating.

Figure 2014196559
Figure 2014196559

表2に示したとおり、鋼板最表面のMn濃度が地鉄内部のMn濃度の0.85倍を超える場合は被膜密着性は劣っているが、最表面のMn濃度が地鉄内部のMn濃度の0.85倍以下の場合には、被膜密着性は大幅に改善されていることが分かる。しかも、この被膜密着性の安定化に伴って、磁気特性も良好なレベルに到達していることが分かる。さらに、被膜外観も改善されていることが分かる。
そして、下地被膜の被膜密着性が劣る材料では、Mgの濃度ピーク位置よりも表面側にMn濃度のピークが存在していた。これに対し、被膜密着性が良好であった材料では、Mnの濃度変化は鋼板表層部の濃度が板厚中心部の地鉄に比べて低いか、または表層部に板厚中心部の地鉄に比べて高い濃度ピークを有する場合は、Mgのピーク位置よりも鋼板内部側にMnのピーク位置が存在していた。
As shown in Table 2, when the Mn concentration on the outermost surface of the steel sheet exceeds 0.85 times the Mn concentration inside the steel, the film adhesion is poor, but the Mn concentration on the outermost surface is 0.85 of the Mn concentration inside the steel. In the case of less than twice, it can be seen that the film adhesion is greatly improved. Moreover, it can be seen that with the stabilization of the film adhesion, the magnetic properties have reached a good level. Further, it can be seen that the appearance of the film is also improved.
And in the material with poor film adhesion of the undercoat, a peak of Mn concentration was present on the surface side of the Mg concentration peak position. On the other hand, in the material with good film adhesion, the Mn concentration change is lower in the steel plate surface layer than the steel plate in the center of the plate thickness, or the steel plate in the plate thickness center in the surface layer. In the case of having a higher concentration peak than Mn, the Mn peak position was present on the inner side of the steel plate than the Mg peak position.

すなわち、Mnの濃度変化は、鋼板表層部の濃度が板厚中心部の地鉄に比べて低いか、または表層部に板厚中心部の地鉄に比べて高いMn濃度ピークを有するときは、表面からMn強度のピーク位置およびMg強度のピーク位置までの距離をそれぞれt(Mn)、t(Mg)とするとき、これらがt(Mn)>t(Mg)の関係を満足する場合に、良好な被膜密着性が得られることが判明したのである。
本発明において鋼板表層部とは、下地被膜付き鋼板の最表面から0.5μm〜8μmの深さ位置までの領域を指し、おおよそ下地被膜の厚みに相当する。
That is, when the concentration change of Mn is lower than that of the steel plate surface layer, or when the surface layer has a higher Mn concentration peak than that of the plate thickness center, When the distance from the surface to the peak position of the Mn intensity and the peak position of the Mg intensity is t (Mn) and t (Mg), respectively, when these satisfy the relationship of t (Mn)> t (Mg), It has been found that good film adhesion can be obtained.
In the present invention, the surface layer portion of the steel sheet refers to a region from the outermost surface of the steel sheet with an undercoat to a depth position of 0.5 μm to 8 μm, and roughly corresponds to the thickness of the undercoat.

鋼板表層部におけるMnおよびMgの濃度プロファイルが、上記した要件を満足する場合に被膜密着性が良好となる理由は、まだ明確に解明されたわけではないが、発明者らは次のように推察している。
フォルステライト被膜(Mg2SiO4)形成の際には、(Mg,Mn)2SiO4や(Mg,Fe)2SiO4のような固溶体を経由することで、フォルステライト被膜の形成がより速やかに進行することが知られている。酸化雰囲気では、鋼板の極表層近傍のMnは安定なMnOを形成するために表層側へ拡散し、その後上述したような固溶体を形成することで被膜形成にも有効に働く。
一般的には、フォルステライト被膜形成時に鋼板表層のMn量が高いという状態(t(Mn)<t(Mg))は、このような固溶体を作りやすく、被膜形成が促進されることを意味すると考えられる。しかしながら、増硫処理によって浸硫を行った場合、MnとSの親和力も高いため、鋼板に浸入しようとするSの一部がMnと結合し、MnSとして固定され、さらに表層近傍で成長し、粗大なMnSが形成される可能性が考えられる。しかも、最終仕上焼鈍は、1100℃を超える高温で実施されるが、この際に粗大に成長したMnSが一部固溶することで、フォルステライト被膜中に欠陥が生じることが懸念される。このことは、増硫法を適用しようとした場合にのみ、被膜不良が生じやすくなることと一致する。Mnは、熱間圧延時における圧延性を確保するために、相当量スラブ中に含有されることから、形成されるMnSは粗大に成長しやすくなり、問題となると予想される。
The reason why the coating adhesion is good when the concentration profile of Mn and Mg in the steel sheet surface layer satisfies the above requirements has not yet been clearly clarified, but the inventors speculate as follows. ing.
When forming a forsterite film (Mg 2 SiO 4 ), the forsterite film can be formed more quickly by passing through a solid solution such as (Mg, Mn) 2 SiO 4 or (Mg, Fe) 2 SiO 4. It is known to progress to. In an oxidizing atmosphere, Mn near the extreme surface layer of the steel sheet diffuses to the surface layer side to form stable MnO, and then effectively forms a film by forming a solid solution as described above.
In general, the state that the Mn content of the steel sheet surface layer is high (t (Mn) <t (Mg)) at the time of forming the forsterite film means that it is easy to form such a solid solution and that the film formation is promoted. Conceivable. However, when vulcanization is carried out by the vulcanization treatment, the affinity between Mn and S is high, so a part of S that wants to enter the steel sheet is bonded to Mn, fixed as MnS, and grows near the surface layer. There is a possibility that coarse MnS is formed. Moreover, although the final finish annealing is performed at a high temperature exceeding 1100 ° C., there is a concern that defects may occur in the forsterite film due to partial solid solution of coarsely grown MnS. This is consistent with the fact that coating failure tends to occur only when the vulcanization method is applied. Mn is contained in the slab in a considerable amount in order to ensure the rollability at the time of hot rolling, so that the formed MnS tends to grow coarsely and is expected to be a problem.

本発明は、表層近傍に、本来被膜形成に有用なMnの欠乏層をあえて残すことにより、フォルステライト被膜形成中におけるMnSの析出とその成長を抑制し、その効果を介して、MnSに起因したフォルステライト被膜の欠陥を抑制することにより、被膜密着性の改善を図るものである。
このようにして得られたフォルステライト被膜は、Mnのフォルステライト被膜中への取り込みが抑制される結果、鋼板表面からMnおよびMgの濃度ピーク位置までの距離をそれぞれt(Mn)、t(Mg)とするとき、t(Mn)>t(Mg)の関係を有するフォルステライト被膜を有することとなる。
The present invention suppresses the precipitation and growth of MnS during the formation of forsterite film by leaving an Mn-deficient layer originally useful for film formation in the vicinity of the surface layer. By suppressing defects in the forsterite film, the adhesion of the film is improved.
The forsterite film obtained in this way is inhibited from incorporating Mn into the forsterite film. As a result, the distances from the steel sheet surface to the Mn and Mg concentration peak positions are t (Mn) and t (Mg), respectively. ), A forsterite film having a relationship of t (Mn)> t (Mg) is provided.

上記の仮説を証明するものではないが、MnよりもSとの親和力が強い元素、たとえばCu(Cu2S)、Ti(TiS)、Ca(CaS)、Mg(MgS)、Na(NaS)を鋼中に微量に含有させた場合、フォルステライト被膜の密着性が改善されることが新たに知見された。これらは、Sが鋼中へ拡散する際、より親和力の強い元素と結びつくことが予想されるが、対象となる元素を極微量とすることにより、析出物を微細に析出させ、最終的にフォルステライト被膜に生じる欠陥を小さくすることができたためと考えられる。 Although the above hypothesis is not proved, elements having stronger affinity with S than Mn, such as Cu (Cu 2 S), Ti (TiS), Ca (CaS), Mg (MgS), Na (NaS) It was newly found that the adhesion of the forsterite film is improved when it is contained in a small amount in steel. These are expected to be combined with elements with stronger affinity when S diffuses into the steel, but by making the target elements extremely small, the precipitates are finely precipitated, and eventually This is probably because defects generated in the stellite film could be reduced.

次に、本発明の鋼板および素材である鋼スラブの成分組成を、前記の範囲に限定した理由について説明する。
まず、本発明鋼板の成分組成について説明すると、次のとおりである。
Next, the reason why the composition of the steel slab, which is the steel plate and material of the present invention, is limited to the above range will be described.
First, the component composition of the steel sheet of the present invention will be described as follows.

Si:4.5 %以下
Siは、鋼の電気抵抗を高めて鉄損の低減に有効に寄与するが、含有量が4.5%を超えると加工性が著しく劣化して冷間圧延が困難になるので、Si量は4.5%以下に限定した。鉄損の観点から望ましい添加量は2.0〜4.0%の範囲である。なお、要求される鉄損レベルによっては、Siを添加しなくても良い。
Si: 4.5% or less
Si increases the electrical resistance of steel and contributes effectively to reducing iron loss. However, if the content exceeds 4.5%, the workability deteriorates significantly and cold rolling becomes difficult, so the Si content is 4.5%. Limited to: A desirable addition amount from the viewpoint of iron loss is in the range of 2.0 to 4.0%. Depending on the required iron loss level, Si may not be added.

Mn:0.5%以下
Mnは、熱間加工性を改善するために有用な元素であるが、含有量が0.5%を超えると一次再結晶集合組織が悪化して磁気特性の劣化を招くので、Mn量は0.5%以下に限定した。
Mn: 0.5% or less
Mn is a useful element for improving hot workability. However, if the content exceeds 0.5%, the primary recrystallization texture deteriorates and the magnetic properties deteriorate, so the Mn content is 0.5% or less. Limited to.

また、本発明では、上記した成分以外に、被膜密着性改善成分として、次に述べる元素を含有させることが有用である。
Cu:0.005〜0.20%、Ti:0.0005〜0.0050%、Ca:0.0001〜0.0050%、Mg:0.0001〜0.0050%およびNa:0.0001〜0.0050%のうちから選んだ少なくとも一種
これらの元素はいずれも、増硫処理を行う際の浸硫温度域において、MnSよりも熱力学的に安定な硫化物を形成することができる元素であり、これらの元素を適正量添加することにより、フォルステライト被膜の鋼板との密着性を改善することができる。一方で、インヒビターレス鋼においては、これらの元素は鋼中に存在する微量のSと析出物を形成し、インヒビターのような挙動を呈して特性を劣化させることがあるため、過剰の添加は差し控える必要がある。また、過剰に添加した場合には、MnがMnSを形成する場合と同じく、フォルステライト被膜中に粗大な硫化物を形成することにつながり、最終的にフォルステライト被膜の欠陥を促進することになるため、それぞれ上記の範囲に限定した。
これらの元素群のうち、特にCuは、他の元素に比べて添加量が多くても同様な効果が得られ、磁気特性の改善効果も認められた。その詳細なメカニズムは明確ではないが、析出形態がCu2Sのように他の元素とは異なり、置換型元素で拡散速度が速くないCuの役割が強く影響し、粗大析出しにくいことが原因と推察している。
In the present invention, in addition to the above-described components, it is useful to contain the following elements as a film adhesion improving component.
Cu: 0.005 to 0.20%, Ti: 0.0005 to 0.0050%, Ca: 0.0001 to 0.0050%, Mg: 0.0001 to 0.0050%, and Na: 0.0001 to 0.0050% It is an element that can form a sulfide that is thermodynamically more stable than MnS in the sulfurating temperature range when performing the treatment. By adding an appropriate amount of these elements, it is possible to form a forsterite-coated steel sheet. Adhesion can be improved. On the other hand, in inhibitorless steels, these elements form precipitates with trace amounts of S present in the steel, and may behave like inhibitors and deteriorate their properties. It is necessary to Further, when excessively added, as in the case where Mn forms MnS, it leads to the formation of coarse sulfides in the forsterite film, and ultimately promotes defects in the forsterite film. Therefore, each is limited to the above range.
Among these element groups, Cu, in particular, was able to obtain the same effect even when added in a larger amount than other elements, and an effect of improving magnetic properties was also observed. Although the detailed mechanism is not clear, the precipitation form is different from other elements like Cu 2 S, and the role of Cu, which is a substitutional element and does not have a high diffusion rate, is strongly influenced, and it is difficult to coarsely precipitate I guess.

さらに、本発明では、上記した成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.02〜0.50%、Sn:0.01〜0.50%、Sb:0.005〜0.20%、Cr:0.005〜1.5%およびP:0.005〜0.20%のうちから選んだ少なくとも一種
Niは、熱延板組織を改善して磁気特性を向上させる有用元素である。しかしながら、含有量が0.02%未満では磁気特性の改善効果が小さく、一方0.50%を超えると二次再結晶が不安定になり磁気特性が劣化するので、Ni量は0.02〜0.50%とした。
また、Sn,Sb,CrおよびPはそれぞれ、鉄損の向上に有用な元素であるが、いずれも上記範囲の下限値に満たないと鉄損の向上効果が小さく、一方上限量を超えると二次再結晶粒の発達が阻害されるので、それぞれSn:0.01〜0.50%、Sb:0.005〜0.20%、Cr:0.005〜1.5%、P:0.005〜0.20%の範囲で含有させるものとした。
Furthermore, in the present invention, in addition to the above-described components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.02-0.50%, Sn: 0.01-0.50%, Sb: 0.005-0.20%, Cr: 0.005-1.5% and P: 0.005-0.20%
Ni is a useful element that improves the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.02%, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 0.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so the Ni content is set to 0.02 to 0.50%.
Sn, Sb, Cr, and P are elements useful for improving the iron loss. However, if any of the elements does not satisfy the lower limit of the above range, the effect of improving the iron loss is small. Since the development of the next recrystallized grains is hindered, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.20%, Cr: 0.005 to 1.5%, and P: 0.005 to 0.20%, respectively.

次に、鋼スラブの成分組成について説明すると、次のとおりである。
なお、Si含有量およびMn含有量は、本発明鋼板について規定した成分組成範囲と同じである。
また、上記した任意成分についても、本発明鋼板の場合と同じである。
Next, the component composition of the steel slab will be described as follows.
In addition, Si content and Mn content are the same as the component composition range prescribed | regulated about this invention steel plate.
The above-mentioned optional components are also the same as in the case of the steel sheet of the present invention.

C:0.08%以下
Cは、一次再結晶組織の改善に有効に寄与するが、含有量が0.08%を超えると、製品板において磁気時効の起こらない0.0050%(50ppm)以下まで低減することが困難になるので、C量は0.08%以下に制限した。なお、C量が0.02%に満たないと、一次再結晶組織の劣化によって磁気特性が劣化するおそれがあるので、Cは0.02%以上含有させることが好ましい。
C: 0.08% or less C contributes effectively to the improvement of the primary recrystallized structure, but if the content exceeds 0.08%, it is difficult to reduce it to 0.0050% (50ppm) or less where magnetic aging does not occur in the product plate. Therefore, the C content is limited to 0.08% or less. If the amount of C is less than 0.02%, the magnetic properties may be deteriorated due to the deterioration of the primary recrystallization structure. Therefore, C is preferably contained in an amount of 0.02% or more.

sol.Al:100ppm未満
Alは、過剰に存在すると二次再結晶を困難とする。特に、sol.Al量が100ppm以上になると、低温スラブ加熱条件では二次再結晶し難くなり、磁気特性が劣化するので、Alはsol.Al量で100ppm未満に抑制するものとした。
sol.Al: less than 100ppm
If Al is present in excess, secondary recrystallization becomes difficult. In particular, when the amount of sol.Al is 100 ppm or more, secondary recrystallization becomes difficult under low-temperature slab heating conditions, and magnetic properties deteriorate. Therefore, Al is suppressed to less than 100 ppm in terms of the amount of sol.Al.

N:60ppm未満
Nも、Alと同様、過剰に存在すると二次再結晶を困難にする。特にN量が60ppm以上になると、二次再結晶が生じ難くなり、磁気特性が劣化するので、Nは60ppm未満に抑制するものとした。
N: Less than 60 ppm N, like Al, makes secondary recrystallization difficult if it is present in excess. In particular, when the N content is 60 ppm or more, secondary recrystallization hardly occurs and the magnetic properties are deteriorated. Therefore, N is suppressed to less than 60 ppm.

S,SeおよびO:それぞれ50ppm未満
S,SeおよびO量がそれぞれ50ppm以上になると、二次再結晶が困難となる。この理由は、粗大な酸化物や、スラブ加熱によって粗大化したMnSやMnSeが一次再結晶組織を不均一にするためである。従って、S,SeおよびOはいずれも50ppm未満に抑制するものとした。好ましくはいずれも40ppm以下である。
S, Se, and O: each less than 50 ppm When the amounts of S, Se, and O are each 50 ppm or more, secondary recrystallization becomes difficult. The reason for this is that coarse oxides and MnS and MnSe coarsened by slab heating make the primary recrystallized structure non-uniform. Accordingly, S, Se, and O are all suppressed to less than 50 ppm. Preferably, both are 40 ppm or less.

その他、窒化物形成元素であるNb,B,TaおよびV等についても、それぞれ60ppm以下に低減することが、鉄損の劣化を防止し、良好な加工性を確保する上で有効である。   In addition, Nb, B, Ta, V, and the like, which are nitride forming elements, are each effectively reduced to 60 ppm or less in order to prevent deterioration of iron loss and ensure good workability.

次に、本発明の製造方法について説明する。
上記の好適成分組成に調整した溶鋼を、転炉、電気炉などを用いる公知の方法で精錬し、必要に応じて真空処理などを施したのち、通常の造塊法や連続鋳造法を用いてスラブを製造する。また、直接鋳造法を用いて100mm以下の厚さの薄鋳片を直接製造してもよい。スラブは、通常の方法で加熱して熱間圧延を行うが、鋳造後、加熱せずに直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、熱間圧延を行っても良いし、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of this invention is demonstrated.
The molten steel adjusted to the above preferred component composition is refined by a known method using a converter, an electric furnace, etc., and subjected to vacuum treatment as necessary, and then using a normal ingot forming method or a continuous casting method. Manufacture slabs. Further, a thin cast piece having a thickness of 100 mm or less may be directly produced using a direct casting method. The slab is hot-rolled by heating by a normal method, but may be immediately subjected to hot-rolling without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is.

本発明では、スラブ中にインヒビター成分を含有していないため、熱間圧延前のスラブ加熱温度は1250℃以下に抑えることが、熱延時に生成するスケール量を低減する上で特に有効である。また、結晶組織の微細化および不可避的に混入するインヒビター成分の弊害を無害化して、均一な整粒一次再結晶組織を実現する意味でもスラブ加熱温度の低温化が望ましい。   In the present invention, since an inhibitor component is not contained in the slab, it is particularly effective to reduce the scale amount generated during hot rolling to suppress the slab heating temperature before hot rolling to 1250 ° C. or less. Also, it is desirable to lower the slab heating temperature in order to realize a uniform sized primary recrystallized structure by making the crystal structure finer and harming the unavoidable effects of inhibitor components.

ついで、必要に応じて熱延板焼鈍を施す。ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度は800〜1100℃の範囲が好適である。というのは、熱延板焼鈍温度が800℃未満では熱延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になる結果、二次再結晶の発達が阻害され、一方熱延板焼鈍温度が1100℃を超えると、不可避的に混入するインヒビター成分が固溶し冷却時に不均一に再析出するため、整粒一次再結晶組織を実現することが困難となり、やはり二次再結晶の発達が阻害されるからである。また、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎることも、整粒の一次再結晶組織を実現する上で不利である。   Next, hot-rolled sheet annealing is performed as necessary. The hot-rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C. in order to develop a goth structure at a high level in the product sheet. This is because when the annealing temperature of the hot-rolled sheet is less than 800 ° C, the band structure in the hot-rolling remains and it becomes difficult to realize the primary recrystallized structure of the sized particles. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C, the unavoidably mixed inhibitor components are solid-solved and re-deposited non-uniformly during cooling, making it difficult to achieve a sized primary recrystallized structure. This is because the development of secondary recrystallization is inhibited. Further, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is too coarse, which is disadvantageous for realizing a primary recrystallized structure of sized particles.

その後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終冷延板とする。
上記の冷間圧延において、圧延温度を100〜250℃に上昇させて圧延を行うことや、冷間圧延の途中で100〜250℃の範囲での時効処理を1回または複数回行うことは、ゴス組織を発達させる上で有効である。
Then, it cold-rolls twice or more across 1 time or intermediate annealing, and is set as a final cold rolled sheet.
In the cold rolling described above, the rolling temperature is raised to 100 to 250 ° C., or the aging treatment in the range of 100 to 250 ° C. is performed once or a plurality of times during the cold rolling, It is effective in developing Gothic tissue.

ついで、酸洗を施すが、本発明では、この酸洗工程が重要である。
すなわち、この酸洗により、一次再結晶焼鈍前の冷延板の最表面のMn濃度が、板厚中心部のMn濃度の0.85倍以下となるように表面のMn濃度を調整するのである。
上記の規定を満足するのであれば、処理液や処理時間は特に規定しないが、好適な処理液およびその濃度ならびに酸洗時間については、次のとおりである。
(1) 処理液
HCl,H2SO4,HNO3
(2) 処理液の濃度
3〜18%水溶液
(3) 酸洗時間
2〜120秒
Next, pickling is performed. In the present invention, this pickling step is important.
That is, by this pickling, the Mn concentration on the surface is adjusted so that the Mn concentration on the outermost surface of the cold rolled sheet before the primary recrystallization annealing is 0.85 times or less of the Mn concentration at the center of the plate thickness.
If the above-mentioned regulations are satisfied, the treatment liquid and the treatment time are not particularly defined, but suitable treatment liquids, their concentrations, and pickling times are as follows.
(1) Treatment liquid
HCl, H 2 SO 4 , HNO 3
(2) Treatment solution concentration 3-18% aqueous solution
(3) Pickling time 2 to 120 seconds

上記の酸洗後、脱炭・一次再結晶焼鈍を施して、Cを磁気時効の起こらない50ppm以下好ましくは30ppm以下まで低減する。
この脱炭・一次再結晶焼鈍は、湿潤雰囲気を使用して700〜1000℃の温度で行うことが好適である。なお、脱炭・一次再結晶焼鈍後に浸珪法によってSi量を増加させる技術を併用してもよい。
After the above pickling, decarburization and primary recrystallization annealing are performed to reduce C to 50 ppm or less, preferably 30 ppm or less, at which magnetic aging does not occur.
This decarburization and primary recrystallization annealing is preferably performed at a temperature of 700 to 1000 ° C. using a humid atmosphere. In addition, you may use together the technique which increases Si amount by a siliconization method after decarburization and primary recrystallization annealing.

その後、MgOを主成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を施すことにより二次再結晶組織を発達させると共に下地被膜を形成させる。
この際、増硫処理によって地鉄中のS量を増加させ磁気特性の向上を図るために、焼鈍分離剤中に、硫化物および/または硫酸塩を0.2〜15%含有させることが重要である。
なお、上記の硫化物や硫酸塩としては、Ag,Al,Ba,Ca,Co,Cr,Cu,Fe,In,K,Li,Mg,Mn,Na,Ni,Sn,Sb,Sr,ZnおよびZrの硫化物や硫酸塩などが有利に適合する。これらは、単独で添加しても複合で添加してもいずれでも良い。
Then, after applying the annealing separation agent which has MgO as a main component, a secondary recrystallization structure is developed and a base film is formed by performing final finishing annealing.
At this time, it is important to contain 0.2 to 15% of sulfide and / or sulfate in the annealing separator in order to increase the amount of S in the base iron by the vulcanization treatment and improve the magnetic properties. .
In addition, as said sulfide and sulfate, Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, Zn and Zr sulfides and sulfates are advantageously suitable. These may be added alone or in combination.

また、最終仕上焼鈍における最高到達温度を1100℃以上、1250℃以下とすることも重要である。
というのは、最高到達温度が上記の範囲から外れると、鋼板表層部におけるMnおよびMgの濃度プロファイルが発明の適正範囲を満たさなくなり、その結果、良好な被膜密着性ひいては良好な磁気特性が得られないからである。
上記の最終仕上焼鈍は、二次再結晶発現のために800℃以上の温度で行う必要があるが、800℃までの加熱速度は、磁気特性に大きな影響を与えないので任意の条件でよい。
It is also important that the maximum temperature reached in the final finish annealing is 1100 ° C or higher and 1250 ° C or lower.
This is because if the maximum temperature is out of the above range, the Mn and Mg concentration profiles in the steel sheet surface layer portion do not satisfy the appropriate range of the invention, and as a result, good film adhesion and consequently good magnetic properties can be obtained. Because there is no.
The above final finish annealing needs to be performed at a temperature of 800 ° C. or higher for the purpose of secondary recrystallization. However, the heating rate up to 800 ° C. does not greatly affect the magnetic properties, and may be under any conditions.

なお、上記の増硫効果により磁気特性が向上する現象は、スラブ中にインヒビター成分を含有しない鋼の場合に特有な現象である。すなわち、鋼中にAlNやMnSなどのインヒビター成分(析出物)が存在しない場合、一次再結晶組織中のゴス方位粒を囲む粒界は、他の方位の粒を囲む粒界に比べて易動度が大きくなり、その結果ゴス方位が優先成長(二次再結晶)するのである。   The phenomenon that the magnetic properties are improved by the above vulcanization effect is a phenomenon peculiar to the case of steel that does not contain an inhibitor component in the slab. In other words, when there are no inhibitor components (precipitates) such as AlN or MnS in the steel, the grain boundaries surrounding the goth-oriented grains in the primary recrystallized structure are more mobile than the grain boundaries surrounding the grains of other orientations. As a result, the Goss orientation preferentially grows (secondary recrystallization).

その後、平坦化焼鈍を施して鋼板の形状を矯正する。
ついで、上記の平坦化焼鈍後、鉄損の改善を目的として、鋼板表面に張力を付与する絶縁コーティングを施すことが有利である。
さらに、公知の磁区細分化技術を適用できることはいうまでもない。
Thereafter, flattening annealing is performed to correct the shape of the steel sheet.
Then, after the above-described flattening annealing, for the purpose of improving the iron loss, it is advantageous to provide an insulating coating that imparts tension to the steel sheet surface.
Furthermore, it goes without saying that known magnetic domain refinement techniques can be applied.

(実施例1)
表3に示す種々の成分組成からなる連鋳スラブを、1230℃に加熱後、熱間圧延により板厚:2.2mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。この時、熱延板焼鈍後の鋼板表面をショットブラスト処理したのちに、80℃の5%塩酸水溶液を用い80秒間の酸洗を行って表面スケールを除去した。ついで、冷間圧延により板厚:0.23mmとしたのち、850℃、180sの脱炭・一次再結晶焼鈍を施した。ついで、MgO:87%、MgSO4:10%、TiO2:3%の組成からなる焼鈍分離剤を、一次再結晶板の表面に12.5g/m2塗布し、乾燥したのち、昇温速度:10℃/h、雰囲気ガス:950℃まではArガス、950℃以上はH2ガス、均熱処理:1100℃、10hの条件で二次再結晶焼鈍を施した。その際の最高到達温度は1150℃とした。
その後、リン酸塩とコロイダルシリカを主成分とする張力被膜処理液を塗布し、800℃で焼き付けて、張力被膜を被成したのち、平坦化焼鈍を施した。
Example 1
Continuously cast slabs with various composition shown in Table 3 are heated to 1230 ° C and hot rolled to a hot rolled sheet with a thickness of 2.2mm, and then subjected to hot rolled sheet annealing at 1050 ° C for 30 seconds. did. At this time, the surface of the steel sheet after hot-rolled sheet annealing was shot blasted and then pickled for 80 seconds using a 5% hydrochloric acid aqueous solution at 80 ° C. to remove the surface scale. Next, after cold rolling to a sheet thickness of 0.23 mm, decarburization and primary recrystallization annealing were performed at 850 ° C. for 180 s. Then, MgO: 87%, MgSO 4 : 10%, TiO 2: an annealing separating agent consisting of 3% of the composition, and 12.5 g / m 2 coated on the surface of the primary recrystallization plate, after drying, heating rate: Secondary recrystallization annealing was performed under conditions of 10 ° C / h, atmospheric gas: Ar gas up to 950 ° C, H 2 gas above 950 ° C, soaking treatment: 1100 ° C, 10h. In this case, the maximum temperature reached 1150 ° C.
Thereafter, a tension coating treatment liquid mainly composed of phosphate and colloidal silica was applied and baked at 800 ° C. to form a tension coating, followed by flattening annealing.

かくして得られた製品板の磁気特性および下地被膜密着性を調べた。また、冷延板表層のMn濃度プロファイルを求め、最表面と内部のMn濃度比(最表面/内部)を調べた。さらに、製品板表層のMn,Mg濃度プロファイルについても調査した。
得られた結果を、表3に併記する。
The magnetic properties and the undercoat adhesion of the product plates thus obtained were examined. Further, the Mn concentration profile of the surface layer of the cold rolled sheet was obtained, and the Mn concentration ratio (outermost surface / inner) between the outermost surface and the inner surface was examined. Furthermore, the Mn and Mg concentration profiles on the surface of the product plate were also investigated.
The obtained results are also shown in Table 3.

なお、磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで励磁したときの鉄損W17/50で評価した。
また、下地被膜密着性は、実験1と同様、圧延方向に300mm、圧延直角方向に30mmの長さを有する試験片を採取し、種々の径を有する丸棒に試験片を押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径で評価した。なお、曲げ剥離最小径が小さいほど下地被膜の密着性が良好ということであり、通常の用途では50mm以下が求められている。好ましくは30mm以下である。
さらに、冷延板表層のMn濃度プロファイルと、製品板表層のMn,Mg濃度プロファイルは、GDSで測定した。なお、製品板表層のGDS測定は、絶縁被膜を剥離した後に行った。
The magnetic characteristics were evaluated by the magnetic flux density B 8 when excited at 800 A / m and the iron loss W 17/50 when excited up to 1.7 T at 50 Hz after performing stress relief annealing at 800 ° C. for 3 hours. did.
In addition, as in Experiment 1, the adhesion of the undercoat was taken from a test piece having a length of 300 mm in the rolling direction and 30 mm in the direction perpendicular to the rolling direction, and bent 180 ° while pressing the test piece against a round bar having various diameters. The evaluation was performed with the minimum diameter at which the bent portion did not peel off. In addition, the smaller the minimum peel peel diameter is, the better the adhesion of the undercoat is, and 50 mm or less is required for normal use. Preferably it is 30 mm or less.
Furthermore, the Mn concentration profile of the cold rolled sheet surface layer and the Mn and Mg concentration profiles of the product sheet surface layer were measured by GDS. The GDS measurement on the surface of the product plate was performed after the insulating coating was peeled off.

Figure 2014196559
Figure 2014196559

同表から明らかなように、本発明に従い得られた方向性電磁鋼板はいずれも、下地被膜の被膜密着性に優れるだけでなく、優れた磁気特性が得られている。   As is apparent from the table, all the grain-oriented electrical steel sheets obtained according to the present invention not only have excellent film adhesion of the undercoat, but also have excellent magnetic properties.

(実施例2)
表4に示す種々の成分組成からなる連鋳スラブを、1150℃に加熱後、熱間圧延により板厚:2.0mmの熱延板としたのち、1000℃で60秒の熱延板焼鈍を施した。この時、熱延板焼鈍後の鋼板表面をショットブラスト処理したのちに、実施例1と同様のMn濃度比(最表面/内部)が得られるように、80℃の5%塩酸水溶液を用い80秒間の酸洗を行って表面スケールを除去し、いずれもMn濃度比(最表面/内部)が0.6〜0.7の範囲にあることを確認した。
ついで、冷間圧延により板厚:0.27mmとしたのち、830℃、120sの脱炭・一次再結晶焼鈍を施した。得られた実機コイルから100mm×400mmの試験片を切り出し、ラボにて、MgO:87%、TiO2:3%の組成に加え、増硫用添加剤としてMgSを9%、12%、15%の3水準で添加した焼鈍分離剤を、一次再結晶板の表面に12.5g/m2塗布し、乾燥した。その後、昇温速度:12℃/h、雰囲気ガス:950℃まではN2ガス、950℃以上はH2ガス、均熱処理:1100℃、10hの条件で二次再結晶焼鈍を施した。その際の最高到達温度は1150℃とした。
その後、リン酸塩とコロイダルシリカを主成分とする張力被膜処理液を塗布し、800℃で焼き付けて、張力被膜を被成したのち、平坦化焼鈍を施した。
(Example 2)
Continuously cast slabs with various composition shown in Table 4 are heated to 1150 ° C, hot rolled into a hot rolled sheet with a thickness of 2.0mm, and then subjected to hot rolled sheet annealing at 1000 ° C for 60 seconds. did. At this time, using a 5% hydrochloric acid aqueous solution at 80 ° C. so that the same Mn concentration ratio (outermost surface / inside) as in Example 1 can be obtained after shot blasting the surface of the steel sheet after hot-rolled sheet annealing. The surface scale was removed by pickling for 2 seconds, and it was confirmed that the Mn concentration ratio (outermost surface / inner) was in the range of 0.6 to 0.7.
Next, after cold rolling to a sheet thickness of 0.27 mm, decarburization and primary recrystallization annealing at 830 ° C. for 120 s were performed. A test piece of 100 mm × 400 mm was cut out from the obtained actual coil, and in the laboratory, in addition to the composition of MgO: 87% and TiO 2 : 3%, MgS was added as an additive for sulfur increase 9%, 12%, 15% 12.5 g / m 2 was applied to the surface of the primary recrystallized plate and dried. Thereafter, secondary recrystallization annealing was performed under conditions of N 2 gas up to 950 ° C., N 2 gas up to 950 ° C., H 2 gas up to 950 ° C. and above, soaking heat treatment: 1100 ° C. and 10 h. In this case, the maximum temperature reached 1150 ° C.
Thereafter, a tension coating treatment liquid mainly composed of phosphate and colloidal silica was applied and baked at 800 ° C. to form a tension coating, followed by flattening annealing.

かくして得られた試験片の中央部から30mm×300mmのサンプルを切り出し、下地被膜密着性を調べた。なお、下地被膜密着性は、実施例1と同様の方法で評価した。また、800℃、3hの歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8について調査した。
得られた結果を表4に併記する。
A 30 mm × 300 mm sample was cut out from the center of the test piece thus obtained, and the undercoat adhesion was examined. The undercoat adhesion was evaluated by the same method as in Example 1. In addition, after performing strain relief annealing at 800 ° C. for 3 hours, the magnetic flux density B 8 when excited at 800 A / m was investigated.
The obtained results are also shown in Table 4.

Figure 2014196559
Figure 2014196559

同表から明らかなように、本発明に従い得られた方向性電磁鋼板はいずれも、40mmφ以下の被膜密着性に優れた下地被膜が得られており、特に適正量の添加元素を加えることにより、増硫量の多い条件下でも優れた被膜密着性を確保できることが確認された。
As is clear from the table, all the grain-oriented electrical steel sheets obtained according to the present invention have obtained an undercoat excellent in film adhesion of 40 mmφ or less, particularly by adding an appropriate amount of additive elements, It was confirmed that excellent film adhesion could be secured even under conditions with a large amount of vulcanization.

Claims (6)

質量%で、Si:4.5%以下およびMn:0.5%以下を含有する組成からなるフォルステライト下地被膜付き方向性電磁鋼板であって、
上記下地被膜付き方向性電磁鋼板の表面から板厚中心方向へのMgおよびMnの成分プロファイル分析において、
Mgの濃度変化が鋼板表層部においてピークを呈し、
一方、Mnの濃度変化は、鋼板表層部の濃度が板厚中心部の地鉄に比べて低いか、または鋼板表層部に板厚中心部の地鉄に比べて高い濃度ピークを有する場合には、鋼板表面からMnおよびMgの濃度ピーク位置までの距離をそれぞれt(Mn)、t(Mg)とするとき、t(Mn)>t(Mg)の関係を満足する
ことを特徴とする方向性電磁鋼板。
A grain-oriented electrical steel sheet with a forsterite undercoating comprising a composition containing, by mass%, Si: 4.5% or less and Mn: 0.5% or less,
In the component profile analysis of Mg and Mn from the surface of the grain-oriented electrical steel sheet with the undercoat to the thickness center direction,
Mg concentration change shows a peak in the steel sheet surface layer,
On the other hand, if the concentration of Mn is low in the steel plate surface layer compared to the steel plate at the center of the plate thickness, or if the steel plate surface layer has a high concentration peak compared to the steel plate at the center of the plate thickness. The directionality characterized by satisfying the relationship of t (Mn)> t (Mg) where t (Mn) and t (Mg) are the distances from the steel sheet surface to the Mn and Mg concentration peak positions, respectively. Electrical steel sheet.
前記鋼板が、さらに質量%で、
Cu:0.005〜0.20%、
Ti:0.0005〜0.0050%、
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%および
Na:0.0001〜0.0050%
のうちから選んだ少なくとも一種を含有することを特徴とする請求項1に記載の方向性電磁鋼板。
The steel sheet is further mass%,
Cu: 0.005-0.20%,
Ti: 0.0005-0.0050%,
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050% and
Na: 0.0001 to 0.0050%
The grain-oriented electrical steel sheet according to claim 1, comprising at least one selected from the group consisting of
前記鋼板が、さらに質量%で、
Ni:0.02〜0.50%、
Sn:0.01〜0.50%、
Sb:0.005〜0.20%、
Cr:0.005〜1.5%および
P:0.005〜0.20%
のうちから選んだ少なくとも一種を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板。
The steel sheet is further mass%,
Ni: 0.02-0.50%,
Sn: 0.01 to 0.50%,
Sb: 0.005-0.20%,
Cr: 0.005-1.5% and P: 0.005-0.20%
The grain-oriented electrical steel sheet according to claim 1 or 2, comprising at least one selected from the group consisting of
質量%で、C:0.08%以下、Si:4.5%以下およびMn:0.5%以下を含有し、sol.Alを100ppm未満およびNを60ppm未満ならびにS,SeおよびOをそれぞれ50ppm未満に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、熱間圧延後、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施し、ついで酸洗後、脱炭を兼ねた一次再結晶焼鈍を施したのち、MgOを主体とする焼鈍分離剤を塗布してから、最終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
一次再結晶焼鈍前の鋼板の最表面のMn濃度が板厚中心部のMn濃度の0.85倍以下となるように、酸洗処理により表面のMn濃度を調整し、かつ焼鈍分離剤中に硫化物および/または硫酸塩を0.2〜15質量%の範囲で含有させ、さらに最終仕上焼鈍での最高到達温度を1250℃以下とすることを特徴とする方向性電磁鋼板の製造方法。
Containing, by mass%, C: 0.08% or less, Si: 4.5% or less, and Mn: 0.5% or less, and suppressing sol.Al to less than 100 ppm and N to less than 60 ppm and S, Se and O to less than 50 ppm, The remainder is a steel slab composed of Fe and unavoidable impurities, and after hot rolling, after subjecting to hot rolling as necessary, it is subjected to one or more cold rolling sandwiching intermediate annealing, Next, after pickling, after performing primary recrystallization annealing that also serves as decarburization, after applying an annealing separator mainly composed of MgO, a method for producing a grain-oriented electrical steel sheet comprising a series of steps of final finishing annealing In
The Mn concentration on the surface is adjusted by pickling so that the Mn concentration on the outermost surface of the steel plate before the primary recrystallization annealing is 0.85 times or less the Mn concentration at the center of the plate thickness, and sulfide in the annealing separator. A method for producing a grain-oriented electrical steel sheet characterized by containing sulfate in the range of 0.2 to 15% by mass and further setting the maximum temperature reached in final finish annealing to 1250 ° C. or lower.
前記鋼板が、さらに質量%で、
Cu:0.005〜0.20%、
Ti:0.0005〜0.0050%、
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%および
Na:0.0001〜0.0050%
のうちから選んだ少なくとも一種を含有することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
The steel sheet is further mass%,
Cu: 0.005-0.20%,
Ti: 0.0005-0.0050%,
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050% and
Na: 0.0001 to 0.0050%
The method for producing a grain-oriented electrical steel sheet according to claim 4, comprising at least one selected from the group consisting of:
前記鋼スラブが、さらに質量%で、
Ni:0.02〜0.50%、
Sn:0.01〜0.50%、
Sb:0.005〜0.20%、
Cr:0.005〜1.5%および
P:0.005〜0.20%
のうちから選んだ少なくとも一種を含有することを特徴とする請求項4または5に記載の方向性電磁鋼板の製造方法。
The steel slab is further mass%,
Ni: 0.02-0.50%,
Sn: 0.01 to 0.50%,
Sb: 0.005-0.20%,
Cr: 0.005-1.5% and P: 0.005-0.20%
The method for producing a grain-oriented electrical steel sheet according to claim 4 or 5, comprising at least one selected from the group consisting of:
JP2014044312A 2013-03-07 2014-03-06 Oriented electrical steel sheet and manufacturing method thereof Active JP5954347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044312A JP5954347B2 (en) 2013-03-07 2014-03-06 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013045714 2013-03-07
JP2013045714 2013-03-07
JP2014044312A JP5954347B2 (en) 2013-03-07 2014-03-06 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014196559A true JP2014196559A (en) 2014-10-16
JP5954347B2 JP5954347B2 (en) 2016-07-20

Family

ID=52357548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044312A Active JP5954347B2 (en) 2013-03-07 2014-03-06 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5954347B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073615A1 (en) * 2015-10-26 2017-05-04 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and decarburized steel sheet used for producing same
JP2017101292A (en) * 2015-12-02 2017-06-08 Jfeスチール株式会社 Production method of grain oriented electrical steel sheet
WO2018025941A1 (en) 2016-08-05 2018-02-08 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, production method for non-oriented electromagnetic steel sheet, and production method for motor core
KR20180073332A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
JP2019099827A (en) * 2017-11-28 2019-06-24 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet
WO2020067136A1 (en) * 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149331A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2021125857A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Double-oriented electrical steel sheet, and method for producing same
EP3859038A4 (en) * 2018-09-27 2021-11-24 Posco Doubly oriented electrical steel sheet and manufacturing method therefor
WO2021261515A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Method for producing electromagnetic steel sheet
WO2021261517A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet
RU2779376C1 (en) * 2019-01-16 2022-09-06 Ниппон Стил Корпорейшн Electrical steel sheet with oriented grain structure and its manufacturing method
WO2022211053A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electric steel sheet and method for manufacturing non-oriented electric steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101869455B1 (en) * 2016-12-19 2018-06-20 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076146A (en) * 2002-08-22 2004-03-11 Jfe Steel Kk Grain oriented magnetic steel sheet having excellent film adhesion and method for producing the same
JP2007239009A (en) * 2006-03-08 2007-09-20 Jfe Steel Kk Method for manufacturing grain-oriented silicon steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076146A (en) * 2002-08-22 2004-03-11 Jfe Steel Kk Grain oriented magnetic steel sheet having excellent film adhesion and method for producing the same
JP2007239009A (en) * 2006-03-08 2007-09-20 Jfe Steel Kk Method for manufacturing grain-oriented silicon steel sheet

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907234B2 (en) 2015-10-26 2021-02-02 Nippon Steel Corporation Grain-oriented electrical steel sheet and decarburized steel sheet used for manufacturing the same
CN108138291A (en) * 2015-10-26 2018-06-08 新日铁住金株式会社 Grain-oriented magnetic steel sheet and the decarburization steel plate for its manufacture
JPWO2017073615A1 (en) * 2015-10-26 2018-08-16 新日鐵住金株式会社 Oriented electrical steel sheet and decarburized steel sheet used for manufacturing the same
EP3369834A4 (en) * 2015-10-26 2019-07-10 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet and decarburized steel sheet used for producing same
WO2017073615A1 (en) * 2015-10-26 2017-05-04 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and decarburized steel sheet used for producing same
JP2017101292A (en) * 2015-12-02 2017-06-08 Jfeスチール株式会社 Production method of grain oriented electrical steel sheet
WO2018025941A1 (en) 2016-08-05 2018-02-08 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, production method for non-oriented electromagnetic steel sheet, and production method for motor core
KR20190003783A (en) 2016-08-05 2019-01-09 신닛테츠스미킨 카부시키카이샤 Non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet and manufacturing method of motor core
US11295881B2 (en) 2016-08-05 2022-04-05 Nippon Steel Corporation Non-oriented electrical steel sheet, manufacturing method of non-oriented electrical steel sheet, and manufacturing method of motor core
KR20180073332A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR101887605B1 (en) * 2016-12-22 2018-08-10 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
JP2019099827A (en) * 2017-11-28 2019-06-24 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet
WO2020067136A1 (en) * 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2020067136A1 (en) * 2018-09-27 2021-01-07 Jfeスチール株式会社 Electrical steel sheet and its manufacturing method
CN112771182A (en) * 2018-09-27 2021-05-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
EP3859038A4 (en) * 2018-09-27 2021-11-24 Posco Doubly oriented electrical steel sheet and manufacturing method therefor
CN112771182B (en) * 2018-09-27 2023-03-28 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
JP7265187B2 (en) 2019-01-16 2023-04-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
WO2020149331A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2020149331A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
RU2779376C1 (en) * 2019-01-16 2022-09-06 Ниппон Стил Корпорейшн Electrical steel sheet with oriented grain structure and its manufacturing method
KR102271299B1 (en) * 2019-12-19 2021-06-29 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
CN115053005A (en) * 2019-12-19 2022-09-13 Posco公司 Dual-orientation electrical steel sheet and method for manufacturing the same
WO2021125857A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Double-oriented electrical steel sheet, and method for producing same
WO2021261517A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet
CN115135780A (en) * 2020-06-24 2022-09-30 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
KR20220134013A (en) 2020-06-24 2022-10-05 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20230006645A (en) 2020-06-24 2023-01-10 닛폰세이테츠 가부시키가이샤 Manufacturing method of electrical steel sheet
WO2021261515A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Method for producing electromagnetic steel sheet
RU2805665C1 (en) * 2020-06-24 2023-10-23 Ниппон Стил Корпорейшн Method for producing anisotropic electrical steel sheet
WO2022211053A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electric steel sheet and method for manufacturing non-oriented electric steel sheet
KR20230107900A (en) 2021-03-31 2023-07-18 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
US11970750B2 (en) 2021-03-31 2024-04-30 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5954347B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5954347B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10208372B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR101620763B1 (en) Grain-oriented electrical steel sheet and method of producing the same
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
KR102057126B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
RU2497956C1 (en) Method for making plate from electrical steel with oriented grain structure
JP6485554B2 (en) Directional electrical steel sheet and method for producing the same, and method for producing decarburized steel sheet for directionally oriented electrical steel sheet
CN111411294A (en) Grain-oriented electromagnetic steel sheet
JP5949813B2 (en) Method for producing grain-oriented electrical steel sheet
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP5011711B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
JP2017101311A (en) Manufacturing method of oriented electromagnetic steel sheet
JP6798474B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2011006738A (en) Method for winding nitridation-type grain-oriented electromagnetic steel sheet which has been nitrided into coil
JP2019099839A (en) Manufacturing method of oriented electromagnetic steel sheet
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4604827B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP4569353B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5011712B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2019085632A (en) Grain-oriented electrical steel sheet and production method for the same
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2805838C1 (en) Method for producing anisotropic electrical steel sheet
WO2021085421A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250