JP2017101292A - Production method of grain oriented electrical steel sheet - Google Patents

Production method of grain oriented electrical steel sheet Download PDF

Info

Publication number
JP2017101292A
JP2017101292A JP2015235728A JP2015235728A JP2017101292A JP 2017101292 A JP2017101292 A JP 2017101292A JP 2015235728 A JP2015235728 A JP 2015235728A JP 2015235728 A JP2015235728 A JP 2015235728A JP 2017101292 A JP2017101292 A JP 2017101292A
Authority
JP
Japan
Prior art keywords
coating
steel sheet
oriented electrical
electrical steel
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015235728A
Other languages
Japanese (ja)
Other versions
JP6455414B2 (en
Inventor
渡邉 誠
Makoto Watanabe
誠 渡邉
敬 寺島
Takashi Terajima
寺島  敬
龍一 末廣
Ryuichi Suehiro
龍一 末廣
俊人 ▲高▼宮
俊人 ▲高▼宮
Toshihito Takamiya
聡一郎 吉▲崎▼
Soichiro Yoshizaki
聡一郎 吉▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015235728A priority Critical patent/JP6455414B2/en
Publication of JP2017101292A publication Critical patent/JP2017101292A/en
Application granted granted Critical
Publication of JP6455414B2 publication Critical patent/JP6455414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a grain oriented electrical steel sheet by which a grain oriented electrical steel sheet excellent in film adhesion property is obtained.SOLUTION: Cr of 0.07 to 0.35 g/mis contained in a forsterite base film of finish-annealed sheet of the grain oriented electrical steel sheet, and coating liquid is applied including at least one kind of phosphate and silica selected by a group comprising Mg, Al, Ca, Sr, Fe, Cu, Mn and Zn so that P/MX is within a range of 1.002 to 1.035, where X is an ion valency of a metal element M of the phosphate, and P/M is a molar ratio of the phosphor element P and the metal element M in the formed coating, and flat annealing is performed to form coating on the base film, in the production method of the grain oriented electrical steel sheet.SELECTED DRAWING: Figure 1

Description

本発明は、方向性電磁鋼板の製造方法に関する。   The present invention relates to a method for producing a grain-oriented electrical steel sheet.

一般に、方向性電磁鋼板においては、絶縁性、加工性、防錆性等を付与するために、表面に被膜を設ける。かかる被膜は、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜(フォルステライト被膜)と、その上に形成されるリン酸塩系の上塗り被膜(コーティング)とからなる。   In general, in a grain-oriented electrical steel sheet, a coating is provided on the surface in order to provide insulation, workability, rust prevention, and the like. Such a film is composed of a base film (forsterite film) mainly composed of forsterite formed during final finish annealing, and a phosphate-based topcoat film (coating) formed thereon.

これらの被膜は高温で成膜され、しかも低い熱膨張率を持つことから、室温まで下がったときの鋼板と被膜との熱膨張率の違いにより鋼板に張力を付与し、鉄損を低減させる効果がある。この他、耐食性や絶縁性、耐電圧性等の多数の要求特性を全て満足させる必要がある。   These coatings are formed at high temperature and have a low coefficient of thermal expansion, so the effect of reducing the iron loss by applying tension to the steel sheet due to the difference in thermal expansion coefficient between the steel sheet and the coating when lowered to room temperature. There is. In addition, it is necessary to satisfy all of the many required characteristics such as corrosion resistance, insulation, and voltage resistance.

このような諸特性を満たすために、従来から種々のコーティングが提案されている。例えば、特許文献1にはリン酸マグネシウムとコロイド状シリカと無水クロム酸とを主体とするコーティングが提案され、特許文献2にはリン酸アルミニウムとコロイド状シリカと無水クロム酸とを主体とするコーティングが提案されている。   In order to satisfy such various characteristics, various coatings have been proposed conventionally. For example, Patent Document 1 proposes a coating mainly composed of magnesium phosphate, colloidal silica, and chromic anhydride, and Patent Document 2 discloses a coating mainly composed of aluminum phosphate, colloidal silica, and chromic anhydride. Has been proposed.

特公昭56−52117号公報Japanese Examined Patent Publication No. 56-52117 特公昭53−28375号公報Japanese Patent Publication No.53-28375 特許第4635347号公報Japanese Patent No. 4635347 特許第4731625号公報Japanese Patent No. 4731625 特許第5104128号公報Japanese Patent No. 5104128

ところで、方向性電磁鋼板をトランスの鉄心として巻きコアやEIコアなどに利用する際には、加工した際に導入される歪みを除去するため、800℃程度での歪取焼鈍が行なわれている。このとき、ユーザーによっては、歪取焼鈍の雰囲気を大気やDXガスなどの反応性の高い雰囲気にして焼鈍することが多い。
しかし、このような雰囲気で焼鈍した際、被膜が損傷して被膜密着性が劣化することがある。特にスリットした鋼板の端面近傍の被膜が剥離しやすく、もしも剥離すると、トランス使用時に鋼板が導通して、場合によってはコアが溶損してしまうという大きなトラブルに発展することもあった。
By the way, when a grain-oriented electrical steel sheet is used as a core of a transformer for a wound core, an EI core, or the like, strain relief annealing at about 800 ° C. is performed in order to remove strain introduced during processing. . At this time, depending on the user, annealing is often performed by changing the atmosphere of strain relief annealing to a highly reactive atmosphere such as air or DX gas.
However, when annealing is performed in such an atmosphere, the film may be damaged and the film adhesion may deteriorate. In particular, the coating in the vicinity of the end face of the slit steel plate is easy to peel off, and if peeled off, the steel plate becomes conductive when the transformer is used, which may lead to a serious trouble that the core may melt in some cases.

このような歪取焼鈍後の被膜密着性の劣化を防ぐための対策としては、例えば、特許文献3には、金属結合基を有する有機金属化合物を含有する塗布液を鋼板上に塗布し、焼付ける際の雰囲気の酸素分圧を特定するという技術が開示され、また、特許文献4には、リン酸アルミニウム、リン酸亜鉛、水酸化コバルト、水酸化ストロンチウム、ポリエステル樹脂エマルジョン、エポキシ樹脂エマルジョン、珪酸アルミニウム、チタンキレートを含むコーティング液を塗布するという技術が開示されている。   As a countermeasure for preventing such deterioration of film adhesion after strain relief annealing, for example, in Patent Document 3, a coating solution containing an organometallic compound having a metal bonding group is applied on a steel sheet and baked. A technique for specifying the oxygen partial pressure of the atmosphere at the time of application is disclosed, and Patent Document 4 discloses aluminum phosphate, zinc phosphate, cobalt hydroxide, strontium hydroxide, polyester resin emulsion, epoxy resin emulsion, silicic acid. A technique of applying a coating solution containing aluminum and titanium chelates is disclosed.

しかし、特許文献3に開示された技術は、主にフォルステライト質下地被膜を形成させない鋼板の上に直接コーティングを形成させる技術であり、従来主に用いられているフォルステライト付き鋼板とは異なる。そのうえ、高価なシランカップリング剤を用いるため、工業的に大量生産するには難点があった。
また、特許文献4に開示された技術は、主に無方向性電磁鋼板の上に形成させる技術であり、フォルステライト被膜付きの方向性電磁鋼板とは異なる。そのうえ、有機樹脂エマルジョンを大量に用いるため、歪取焼鈍で鋼中に炭素が浸入して磁気特性が劣化するという問題があった。
However, the technique disclosed in Patent Document 3 is a technique in which a coating is formed directly on a steel sheet on which a forsterite base film is not formed, and is different from a steel sheet with forsterite that has been mainly used conventionally. In addition, since an expensive silane coupling agent is used, there is a difficulty in industrial mass production.
The technique disclosed in Patent Document 4 is a technique mainly formed on a non-oriented electrical steel sheet, and is different from a directional electrical steel sheet with a forsterite film. In addition, since a large amount of the organic resin emulsion is used, there has been a problem that the carbon characteristics enter the steel by the strain relief annealing and the magnetic properties deteriorate.

本発明は、以上の点を鑑みてなされたものであり、被膜密着性に優れた方向性電磁鋼板が得られる方向性電磁鋼板の製造方法を提供することを目的とする。   This invention is made | formed in view of the above point, and it aims at providing the manufacturing method of the grain-oriented electrical steel plate from which the grain-oriented electrical steel plate excellent in film adhesiveness is obtained.

本発明者らは、上記目的を達成するために鋭意検討した結果、フォルステライト質の下地被膜中に特定量のCrを含有させると共に、コーティング中のリン元素と金属元素との比率を特定することで、被膜密着性が優れることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above-mentioned object, the present inventors include a specific amount of Cr in the forsterite undercoat and specify the ratio of the phosphorus element to the metal element in the coating. Thus, the present inventors have found that the film adhesion is excellent and completed the present invention.

すなわち、本発明は、以下の[1]〜[3]を提供する。
[1]方向性電磁鋼板の仕上焼鈍板のフォルステライト質の下地被膜中にCrを0.07〜0.35g/m2含有させ、上記下地被膜の上層に、Mg、Al、Ca、Sr、Fe、Cu、MnおよびZnからなる群から選ばれる少なくとも1種のリン酸塩とシリカとを、上記リン酸塩の金属元素Mのイオン価をXとし、形成されるコーティング中のリン元素Pと金属元素Mとのモル比をP/Mとしたときに、P/MXが1.002〜1.035の範囲となるように含有させたコーティング液を塗布し、平坦化焼鈍を行なって、上記下地被膜上にコーティングを形成させる、方向性電磁鋼板の製造方法。
[2]上記コーティング液が、無水クロム酸、または、Mg、Al、Ca、FeおよびMnからなる群から選ばれる少なくとも1種の重クロム酸塩を更に含有する、上記[1]に記載の方向性電磁鋼板の製造方法。
[3]上記コーティング液が、Sb、Mn、Ti、FeおよびSnからなる群から選ばれる少なくとも1種を含む化合物を更に含有する、上記[1]に記載の方向性電磁鋼板の製造方法。
That is, the present invention provides the following [1] to [3].
[1] 0.07 to 0.35 g / m 2 of Cr is contained in the forsterite undercoat of the finish annealed sheet of grain-oriented electrical steel sheet, and Mg, Al, Ca, Sr, At least one phosphate selected from the group consisting of Fe, Cu, Mn, and Zn and silica, where the ion value of the metal element M of the phosphate is X, and the phosphorus element P in the coating formed When the molar ratio with the metal element M is P / M, the coating solution contained so that P / MX is in the range of 1.002 to 1.035 is applied, and planarization annealing is performed. A method for producing a grain-oriented electrical steel sheet, wherein a coating is formed on an undercoat.
[2] The direction according to [1], wherein the coating liquid further contains chromic anhydride or at least one dichromate selected from the group consisting of Mg, Al, Ca, Fe, and Mn. Method for producing an electrical steel sheet.
[3] The method for producing a grain-oriented electrical steel sheet according to [1], wherein the coating liquid further contains a compound containing at least one selected from the group consisting of Sb, Mn, Ti, Fe, and Sn.

本発明によれば、被膜密着性に優れた方向性電磁鋼板が得られる方向性電磁鋼板の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the grain-oriented electrical steel plate from which the grain-oriented electrical steel plate excellent in film adhesiveness is obtained can be provided.

図1は、下地被膜中のCr量とコーティングのP/MXとが歪取焼鈍後の曲げ密着性に及ぼす影響を示すグラフである。FIG. 1 is a graph showing the influence of the amount of Cr in the undercoat and the P / MX of the coating on the bending adhesion after strain relief annealing. 図2は、歪取焼鈍後の曲げ密着性が不良であった鋼板断面を、EPMAを用いて分析した分析結果を示し、図2(a)は二次電子像であり、図2(b)はMgマッピング像であり、図2(c)はPマッピング像である。FIG. 2 shows an analysis result obtained by analyzing a cross section of a steel sheet having poor bending adhesion after strain relief annealing using EPMA, FIG. 2 (a) is a secondary electron image, and FIG. 2 (b). Is an Mg mapping image, and FIG. 2C is a P mapping image.

[本発明者らが得た知見]
本発明者らは、歪取焼鈍後の被膜密着性を改善するための種々の方法を鋭意検討した結果、フォルステライト質の下地被膜中に特定量のCrを含有させると共に、コーティング中のリン元素と金属元素との比率を特定することで、優れた被膜密着性が得られることを新たに見出した。以下に、この知見を得るに至った実験について述べる。
[Knowledge obtained by the present inventors]
As a result of intensive studies on various methods for improving the film adhesion after strain relief annealing, the present inventors have included a specific amount of Cr in the forsterite undercoating and a phosphorus element in the coating. It was newly found out that excellent film adhesion can be obtained by specifying the ratio of the metal element to the metal element. The following describes the experiments that led to this finding.

後掲の表2に示す、素材のCr濃度が異なる方向性けい素鋼スラブ(Cr以外の成分は、C:0.04質量%、Si:3.4質量%、Mn:0.07質量%、Al:0.006質量%、P:0.04質量%、S:0.003質量%、N:0.004質量%、Sb:0.03質量%、残部不可避的不純物)を用いて、常法で仕上焼鈍まで実施した。これにより、フォルステライト質の下地被膜を有する方向性電磁鋼板の仕上焼鈍板を得た。次に、これを300mm×100mmのサイズにせん断し、リン酸で酸洗を行なった。その後、特許文献5に記載された、リン酸マグネシウム100質量部と、コロイド状シリカ100質量部と、チタン化合物としてのチタンラクテート50質量部とを配合したコーティング液を、乾燥質量が両面で10g/m2となるように塗布した。
このとき、原料として使用するリン酸マグネシウムを製造する際に、リンとマグネシウムとの比率を変えるために、リン酸とマグネシアとの比率を変更することによって、後述する比率P/2Mgを各種変更した。
その後、乾N2雰囲気で800℃の平坦化焼鈍を行ない、下地被膜の上にコーティングを形成して、製品板を得た。
Directional silicon steel slabs with different Cr concentrations in the materials shown in Table 2 below (components other than Cr are C: 0.04 mass%, Si: 3.4 mass%, Mn: 0.07 mass%) Al: 0.006% by mass, P: 0.04% by mass, S: 0.003% by mass, N: 0.004% by mass, Sb: 0.03% by mass, and the balance inevitable impurities) It carried out to finish annealing by a conventional method. As a result, a finish-annealed sheet of grain-oriented electrical steel sheet having a forsterite base coating was obtained. Next, this was sheared to a size of 300 mm × 100 mm, and pickled with phosphoric acid. Thereafter, a coating liquid described in Patent Document 5 in which 100 parts by mass of magnesium phosphate, 100 parts by mass of colloidal silica, and 50 parts by mass of titanium lactate as a titanium compound were mixed at a dry mass of 10 g / d on both sides. It was applied as a m 2.
At this time, when manufacturing the magnesium phosphate used as a raw material, the ratio P / 2Mg described later was variously changed by changing the ratio of phosphoric acid and magnesia in order to change the ratio of phosphorus and magnesium. .
Thereafter, planarization annealing at 800 ° C. was performed in a dry N 2 atmosphere, and a coating was formed on the base film to obtain a product plate.

これとは別に、仕上焼鈍板の下地被膜を酸洗で除去し、その前後(下地被膜の有り無し)におけるサンプルをそれぞれ酸溶解した後、原子吸光分析を用いて、Cr濃度を化学分析して、その測定値から下地被膜中に含まれるCr量を目付け量換算で求めた。
また、製品板のコーティングをアルカリで溶解し、溶解液中のリン元素Pおよびマグネシウム元素Mgの濃度を、Pは吸光光度計、Mgは原子吸光分析装置を用いた化学分析により測定し、コーティング中のPとMgとのモル比P/Mgを算出し、これに基づいて、比率P/2Mgを求めた(2はMgのイオン価)。
Separately, the base film of the finish annealing plate is removed by pickling, and the samples before and after (with or without the base film) are each acid-dissolved, and then the Cr concentration is chemically analyzed using atomic absorption spectrometry. From the measured value, the amount of Cr contained in the undercoat was determined in terms of basis weight.
In addition, the coating on the product plate is dissolved with alkali, and the concentrations of phosphorus element P and magnesium element Mg in the solution are measured by chemical analysis using an absorptiometer and Mg is an atomic absorption spectrometer. The P / Mg molar ratio P / Mg was calculated, and based on this, the ratio P / 2Mg was determined (2 is the ionic value of Mg).

この比率P/2Mgは、コーティング液に用いたリン酸塩の金属元素Mのイオン価(価数)をXとし、コーティング中のリン元素Pと金属元素Mとのモル比をP/Mとした場合における比率P/MXに相当する。   In this ratio P / 2Mg, the ionic value (valence) of the metal element M of the phosphate used in the coating solution is X, and the molar ratio of the phosphorus element P to the metal element M in the coating is P / M. This corresponds to the ratio P / MX in the case.

かくして得られた鋼板を、850℃×3hrのDXガス雰囲気(露点:10℃、CO:1%、H2:1%、CO2:12%、残部窒素)で歪取焼鈍を行ない、曲げ密着性を評価した。曲げ密着性は、10mm刻みで径が異なる丸棒に鋼板を巻きつけて、被膜が剥離しなかった最大径(単位:mm)を求めた。結果を図1のグラフに示す。
なお、図1のグラフにおいては、被膜が剥離しなかった最大径が40mm以下の場合は「○」を、50〜60mmの場合は「△」を、70mm以上の場合は「×」をプロットした。「○」であれば、被膜密着性に優れるものとして評価できる。
The steel sheet thus obtained is subjected to strain relief annealing in a DX gas atmosphere (dew point: 10 ° C., CO: 1%, H 2 : 1%, CO 2 : 12%, balance nitrogen) at 850 ° C. × 3 hr, and is bent and adhered. Sex was evaluated. The bending adhesion was obtained by winding a steel plate around a round bar having a different diameter every 10 mm, and obtaining the maximum diameter (unit: mm) at which the film did not peel off. The results are shown in the graph of FIG.
In the graph of FIG. 1, “◯” is plotted when the maximum diameter at which the coating is not peeled is 40 mm or less, “Δ” is plotted when 50 to 60 mm, and “X” is plotted when 70 mm or more. . If it is "(circle)", it can be evaluated as what is excellent in film adhesiveness.

図1に示すグラフから、下地被膜中のCr量と、P/MX(P/2Mg)とを特定の範囲に収めることにより、DXガス雰囲気での歪取焼鈍後の被膜密着性が良好となることが分かる。   From the graph shown in FIG. 1, the film adhesion after strain relief annealing in the DX gas atmosphere is improved by keeping the amount of Cr in the undercoat and P / MX (P / 2Mg) within a specific range. I understand that.

この原因を調査するため、歪取焼鈍後の被膜密着性が不良であった鋼板(下地被膜中のCr量=0.05g/m2、P/MX(P/2Mg)=1.045)の断面を、EPMA(電子線マイクロアナライザ)を用いて分析した。このときの分析結果を、図2(a)〜図2(c)に示す。 In order to investigate this cause, the steel sheet (the amount of Cr in the undercoat = 0.05 g / m 2 , P / MX (P / 2Mg) = 1.045) in which the film adhesion after strain relief annealing was poor was used. The cross section was analyzed using EPMA (electron beam microanalyzer). The analysis results at this time are shown in FIGS. 2 (a) to 2 (c).

図2(a)は二次電子像であり、図2(b)はMgマッピング像であり、図2(c)はPマッピング像である。例えば、Mgマッピング像である図2(b)を見ると、Mgの強度の濃淡から、上層と下層との二層の被膜となっていることがわかる。すなわち、下層は、フォルステライトを主体とする下地被膜である。上層には、コーティングに用いたリン酸マグネシウム起因のMgが現れている。
また、Pマッピング像である図2(c)を見ると、Pは、Mgマッピングの上層のコーティング部分に濃化しているが、一部は、下地被膜と地鉄との界面まで濃化していることが分かる。コーティングが形成される前の下地被膜中にはリンはほとんど含まれていないので、このリンの濃化は、コーティング中のリンが下地被膜を通過して地鉄界面まで到達したものと考えられる。
2A is a secondary electron image, FIG. 2B is an Mg mapping image, and FIG. 2C is a P mapping image. For example, referring to FIG. 2 (b), which is an Mg mapping image, it can be seen from the intensity of Mg that the film is a two-layer film consisting of an upper layer and a lower layer. That is, the lower layer is an undercoat mainly composed of forsterite. In the upper layer, Mg derived from magnesium phosphate used for coating appears.
Moreover, when FIG.2 (c) which is a P mapping image is seen, P is concentrated in the coating part of the upper layer of Mg mapping, However, A part is concentrated to the interface of a base film and a ground iron. I understand that. Since phosphorus is hardly contained in the undercoat before the coating is formed, it is considered that the phosphorus concentration is that the phosphorus in the coating has passed through the undercoat and has reached the base iron interface.

以上のことから、下地被膜中のCr量を高め、かつ、コーティング中のリン酸塩のリンと金属との比率を一定範囲にすることによって歪取焼鈍後の被膜密着性が改善される結果について、本発明者らは、以下のとおり考えた。   From the above, about the result that the film adhesion after strain relief annealing is improved by increasing the Cr amount in the base film and keeping the ratio of phosphorus and metal of the phosphate in the coating within a certain range. The present inventors considered as follows.

まず、通常のコーティングの場合、リン酸塩の金属とシリカとが反応して架橋しているが、一部には、非架橋のリン酸分が存在している。湿潤雰囲気や酸素含有雰囲気などの強い酸化性雰囲気で歪取焼鈍すると、このような非架橋のリン酸分が増大する。これが焼鈍中に拡散し、地鉄と下地被膜との界面まで浸入し、そこで鉄と反応して化合物を形成する。これにより、下地被膜と地鉄との複雑な界面形状によるアンカー効果が消失して、被膜剥離が生じる。ところが、下地被膜中にCrが存在する場合、Crが下地被膜中に濃化してリンの被膜地鉄界面への浸入をシャットアウトする。これによりアンカー効果が消失することなく、被膜密着性が保たれる。   First, in the case of a normal coating, the metal of the phosphate and silica react and crosslink, but a part of the non-crosslinked phosphoric acid exists. When strain relief annealing is performed in a strong oxidizing atmosphere such as a humid atmosphere or an oxygen-containing atmosphere, such non-crosslinked phosphoric acid content increases. This diffuses during annealing and penetrates to the interface between the ground iron and the underlying coating, where it reacts with iron to form a compound. As a result, the anchor effect due to the complicated interface shape between the base coating and the ground iron disappears and the coating peels off. However, when Cr is present in the undercoating film, Cr is concentrated in the undercoating film and shuts out the intrusion of phosphorus into the coating base metal interface. As a result, the adhesion of the film is maintained without losing the anchor effect.

このとき、単に、Crを下地被膜中に存在させるだけでなく、コーティング(コーティング液)において、P/MXを所定範囲にしておくことが重要である。これが高すぎると、非架橋のリン酸が多くなる。   At this time, it is important not only to make Cr exist in the base film but also to keep P / MX within a predetermined range in the coating (coating liquid). When this is too high, non-crosslinked phosphoric acid increases.

しかし、P/MXが低すぎてもやはり密着性劣化が生じることが今回新たに明らかになった。これは、P/MXを低めることによって原料のリン酸塩の液の安定性が損なわれるためと考えられる。
一般に、リン酸塩のコーティングを形成させる際には、第一リン酸マグネシウム、第一リン酸アルミニウムなどの第一リン酸塩の水溶液と、コロイド状シリカなどのシリカとを混合して塗布し、焼き付けるが、このとき、P/MXが低すぎると、第一リン酸塩の水溶液が不安定となり、ゲル化したり固結したりしやすくなる。これがコーティング液を塗布する際に巻き込まれて微細な突起物が生じる。このような状態で積層して歪取焼鈍を行うと、この突起物のために鋼板間にごくわずかな隙間が生じる。この隙間を焼鈍時のガスが流通することによってコーティングはより雰囲気ガスに曝されやすくなり、その結果、非架橋のリン酸分が却って増大して密着性に悪影響を及ぼす。
However, it has been newly clarified that adhesion deterioration occurs even if P / MX is too low. This is considered to be because the stability of the raw material phosphate solution is impaired by lowering P / MX.
In general, when forming a phosphate coating, an aqueous solution of a primary phosphate such as primary magnesium phosphate or primary aluminum phosphate and silica such as colloidal silica are mixed and applied, At this time, if P / MX is too low, the aqueous solution of the primary phosphate becomes unstable, and it becomes easy to gel or solidify. This is entrained when applying the coating liquid, resulting in fine protrusions. When the layers are laminated in such a state and subjected to strain relief annealing, a very slight gap is generated between the steel plates due to the protrusions. When the gas during annealing flows through the gap, the coating is more easily exposed to the atmospheric gas. As a result, the non-crosslinked phosphoric acid content increases and adversely affects the adhesion.

以上の点から、下地被膜中のCr量と、コーティングのP/MXとを適正な範囲に収めることにより、酸化性の高い歪取焼鈍雰囲気でも被膜密着性の劣化が防がれる。   From the above points, by keeping the amount of Cr in the undercoat and the P / MX of the coating within an appropriate range, deterioration of the coating adhesion can be prevented even in a highly oxidative strain relief annealing atmosphere.

次に、改めて、本発明の方向性電磁鋼板の製造方法について、説明する。   Next, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention will be described again.

[方向性電磁鋼板の製造方法]
本発明の方向性電磁鋼板の製造方法は、方向性電磁鋼板の仕上焼鈍板のフォルステライト質の下地被膜中にCrを0.07〜0.35g/m2含有させ、上記下地被膜の上層に、Mg、Al、Ca、Sr、Fe、Cu、MnおよびZnからなる群から選ばれる少なくとも1種のリン酸塩とシリカとを、上記リン酸塩の金属元素Mのイオン価をXとし、形成されるコーティング中のリン元素Pと金属元素Mとのモル比をP/Mとしたときに、P/MXが1.002〜1.035の範囲となるように含有させたコーティング液を塗布し、平坦化焼鈍を行なって、上記下地被膜上にコーティングを形成させる、方向性電磁鋼板の製造方法である。
[Method of manufacturing grain-oriented electrical steel sheet]
In the method for producing a grain-oriented electrical steel sheet according to the present invention, 0.07 to 0.35 g / m 2 of Cr is contained in the forsterite base coating of the finish annealed plate of the grain-oriented electrical steel, and the upper layer of the base coating is included. And at least one phosphate selected from the group consisting of Mg, Al, Ca, Sr, Fe, Cu, Mn and Zn, and silica, where the ion value of the metal element M of the phosphate is X, A coating solution containing P / MX in the range of 1.002 to 1.035 when the molar ratio of the phosphorus element P to the metal element M in the coating is P / M. This is a method for producing a grain-oriented electrical steel sheet in which flattening annealing is performed to form a coating on the undercoat.

本発明においては、素材として例えば含珪素鋼が用いられる。含珪素鋼としては、方向性珪素鋼用素材であれば、特に鋼種を問わない。これを公知の方法で熱延し、1回もしくは複数回の焼鈍、および冷延により最終板厚に仕上げた後、一次再結晶焼鈍を施し、焼鈍分離剤を塗布して最終仕上焼鈍する。これによりフォルステライトを主成分とする下地被膜が形成される。   In the present invention, for example, silicon-containing steel is used as a material. The silicon-containing steel is not particularly limited as long as it is a directional silicon steel material. This is hot-rolled by a known method, finished to the final plate thickness by one or more annealings and cold rolling, and then subjected to primary recrystallization annealing, and an annealing separator is applied and final finishing annealing is performed. As a result, a base coating mainly composed of forsterite is formed.

この下地被膜中に、Crを適量含有させることが、本発明の特徴の一つである。
下地被膜中にCrを含有させる方法としては、例えば、出鋼成分中にあらかじめCrを含有させておく方法;出鋼後から下地被膜を形成させる前のいずれかの段階で、Crを電着処理によって付着させたり、Cr化合物を含有する塗膜を形成させたりし、その後の下地被膜形成時の焼鈍により下地被膜層に濃化させる方法;焼鈍分離剤中にCr化合物を添加する方法;等が挙げられる。いずれの方法も適用可能である。また、使用するCr化合物は、特に限定されず、各種のCr化合物を使用できる。
下地被膜中のCr量としては、両面合計の目付け量換算で、0.07〜0.35g/m2である。0.07g/m2より少ないと被膜密着性の効果が得られない。0.35g/m2より多いと下地被膜が分厚くなり、それが部分的に剥落して被膜欠陥となると共に、全体的に被膜密着性も劣化する。
It is one of the features of the present invention that an appropriate amount of Cr is contained in the undercoat.
Examples of a method for containing Cr in the undercoat include, for example, a method in which Cr is added in advance in the steel output component; and an electrodeposition treatment of Cr at any stage before the undercoat is formed after the steel is extracted. Or by forming a coating film containing a Cr compound and then concentrating the underlying coating layer by annealing at the time of forming the underlying coating; a method of adding a Cr compound in the annealing separator; Can be mentioned. Either method is applicable. Moreover, the Cr compound to be used is not particularly limited, and various Cr compounds can be used.
The amount of Cr in the undercoat is 0.07 to 0.35 g / m 2 in terms of the weight per unit area of both sides. If it is less than 0.07 g / m 2 , the effect of film adhesion cannot be obtained. If it is more than 0.35 g / m 2 , the undercoat becomes thick, and it partially peels off, resulting in a film defect, and the film adhesion is also deteriorated as a whole.

このようにして下地被膜を形成させた後、好ましくは、未反応の焼鈍分離剤を水洗や軽酸洗などで除去してから、コーティング液を塗布する。   After forming the base film in this manner, preferably, the unreacted annealing separator is removed by washing with water or light pickling, and then the coating liquid is applied.

コーティング液は、少なくとも、リン酸塩およびシリカを含有する。   The coating liquid contains at least a phosphate and silica.

リン酸塩の金属種としては、Mg、Al、Ca、Sr、Fe、Cu、MnおよびZnからなる群から選ばれる少なくとも1種であれば特に限定されない。
リン酸塩は、1種単独で用いてもよく、2種以上を併用してもよい。
リン酸塩としては、入手容易性の観点からは、第一リン酸塩(重リン酸塩)が好適に用いられる。
The metal species of the phosphate is not particularly limited as long as it is at least one selected from the group consisting of Mg, Al, Ca, Sr, Fe, Cu, Mn, and Zn.
A phosphate may be used individually by 1 type and may use 2 or more types together.
As the phosphate, primary phosphate (heavy phosphate) is preferably used from the viewpoint of availability.

シリカとしては、通常、コロイド状シリカが使用される。コロイド状シリカの平均粒子径は、5〜200nmが好ましく、10〜100nmがより好ましい。なお、コロイド状のシリカの平均粒子径は、BET法(吸着法による比表面積から換算)により測定できる。また、電子顕微鏡写真から実測した平均値で代用することも可能である。
また、シリカの含有量は、固形分換算で、リン酸塩100質量部に対して、50〜150質量部が好ましい。シリカ含有量は、少なすぎるとコーティングの鋼板への張力付与による鉄損低減の効果が低くなる場合があり、多すぎると表面に微細なクラックが発生して耐食性に劣る場合があるが、上記範囲内であれば、鉄損低減の効果および耐食性が良好となる。
As the silica, colloidal silica is usually used. The average particle size of the colloidal silica is preferably 5 to 200 nm, more preferably 10 to 100 nm. The average particle diameter of colloidal silica can be measured by the BET method (converted from the specific surface area by the adsorption method). It is also possible to substitute an average value actually measured from an electron micrograph.
Moreover, the content of silica is preferably 50 to 150 parts by mass with respect to 100 parts by mass of phosphate in terms of solid content. If the silica content is too small, the effect of reducing iron loss by applying tension to the steel sheet of the coating may be low, and if it is too high, fine cracks may be generated on the surface and the corrosion resistance may be inferior. If it is inside, the effect of reducing iron loss and corrosion resistance will be good.

そして、本発明においては、コーティング液中のリン酸塩の金属元素Mのイオン価(価数)をXとし、形成されるコーティング中のリン元素Pと金属元素Mとのモル比をP/Mとした場合において、P/MXで表される比率を1.002〜1.035の範囲とする。
この比率が1.002よりも低いと、コーティング液の安定性が損なわれて被膜密着性が劣化する。また、1.035よりも高いと、形成されるコーティングにおいて、非架橋のリン酸分が増大して、やはり被膜密着性が劣化する。
In the present invention, the ion valence (valence) of the metal element M of the phosphate in the coating solution is X, and the molar ratio of the phosphorus element P and the metal element M in the coating to be formed is P / M. In this case, the ratio represented by P / MX is set in the range of 1.002 to 1.035.
When this ratio is lower than 1.002, the stability of the coating liquid is impaired and the film adhesion is deteriorated. On the other hand, if it is higher than 1.035, the non-crosslinked phosphoric acid content increases in the coating to be formed, and the film adhesion is also deteriorated.

なお、コーティング液には、上述したように、複数種のリン酸塩を使用できる。その場合、例えば、P、Mg、Alのモル比が5:1:1の場合であれば、P/MX=P/(2Mg+3Al)=5/(1×2+1×3)=1 とすればよい。   In addition, as above-mentioned, multiple types of phosphate can be used for a coating liquid. In this case, for example, when the molar ratio of P, Mg, and Al is 5: 1: 1, P / MX = P / (2Mg + 3Al) = 5 / (1 × 2 + 1 × 3) = 1 .

比率P/MXを調整する方法としては、特に限定されないが、例えば、第一リン酸塩を製造する際の原料のリン酸や金属イオンの比率を変更する方法;コーティング液中にリン酸や金属イオン化合物を後添加する方法;等が挙げられる。   The method for adjusting the ratio P / MX is not particularly limited. For example, a method of changing the ratio of phosphoric acid and metal ions of the raw material when producing the primary phosphate; phosphoric acid and metal in the coating solution And a method of adding an ionic compound later.

なお、コーティング液には、目的に応じて、その他、種々の成分を配合することができ、その場合でも、下地被膜にCrを含有した効果が損なわれるものではない。例えば、特許文献1もしくは2に示された技術、または、特許文献5に示されたクロムレス被膜などの技術は特に好適に適用できる。
コーティング液には、更に、無水クロム酸、または、Mg、Al、Ca、FeおよびMnからなる群から選ばれる少なくとも1種の重クロム酸塩を含有させることができる。これらを含有するコーティング液を用いることで、得られる方向性電磁鋼板の耐食性を良好にできる。
コーティング液における無水クロム酸または重クロム酸塩の含有量は、固形分換算(乾固分比率)で、リン酸塩100質量部に対して、10〜50質量部が好ましい。この含有量が少なすぎると耐食性が良化する効果が小さくなる場合があり、多すぎると成膜が困難となって、吸湿性が劣化しやすくなる場合があるが、上記範囲内であれば、耐食性の効果が十分に得られ、吸湿性にも優れる。
In addition, according to the objective, other various components can be mix | blended with a coating liquid, Even in that case, the effect which contained Cr in the base film is not impaired. For example, the technique disclosed in Patent Document 1 or 2 or the technique such as the chromeless coating disclosed in Patent Document 5 can be applied particularly preferably.
The coating liquid can further contain chromic anhydride or at least one dichromate selected from the group consisting of Mg, Al, Ca, Fe and Mn. By using the coating liquid containing these, the corrosion resistance of the grain-oriented electrical steel sheet obtained can be made favorable.
The content of chromic anhydride or dichromate in the coating solution is preferably 10 to 50 parts by mass with respect to 100 parts by mass of phosphate in terms of solid content (dry solids ratio). If this content is too low, the effect of improving the corrosion resistance may be reduced, and if it is too high, film formation may be difficult and the hygroscopicity may be easily deteriorated. The effect of corrosion resistance is sufficiently obtained, and the hygroscopicity is also excellent.

また、人体に有害な6価クロムを製品だけでなく、製造工程でもできるだけ避けるという観点で開発されているCr化合物(クロム化合物)を含有しないコーティング液も使用できる。その際には、Cr化合物に代替して、Sb、Mn、Ti、FeおよびSnからなる群から選ばれる少なくとも1種を含む化合物を更に含有することが好ましい。
上記化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
上記化合物の配合量は、少なすぎると効果が不十分で、多すぎると成膜性が劣る場合があることから、例えば、固形分換算で、リン酸塩100質量部に対して、10〜50質量部程度である。
Moreover, the coating liquid which does not contain the Cr compound (chromium compound) developed from the viewpoint of avoiding hexavalent chromium harmful to the human body as much as possible in the production process as well as the product can be used. In that case, it is preferable to further contain a compound containing at least one selected from the group consisting of Sb, Mn, Ti, Fe and Sn instead of the Cr compound.
The said compound may be used individually by 1 type, and may use 2 or more types together.
If the compounding amount of the compound is too small, the effect is insufficient, and if it is too large, the film formability may be inferior. For example, in terms of solid content, 10 to 50 parts per 100 parts by mass of phosphate. About mass parts.

また、これらに、さらにシリカ粉末、アルミナ粉末などの無機鉱物粒子を添加して、耐熱性を改善することも可能である。無機鉱物粒子の含有量は、例えば、固形分換算で、リン酸塩100質量部に対して、0.1〜10質量部程度である。   Further, it is possible to improve heat resistance by further adding inorganic mineral particles such as silica powder and alumina powder. Content of an inorganic mineral particle is about 0.1-10 mass parts with respect to 100 mass parts of phosphates in conversion of solid content, for example.

コーティングの目付け量は、少なすぎると張力効果が低下して磁気特性が劣化する場合があり、多すぎると占積率が低下する場合があることから、両面合計で、5〜15g/m2とすることが好ましい。 If the coating weight is too small, the tension effect may be reduced and the magnetic properties may be deteriorated. If the coating weight is too large, the space factor may be reduced. Therefore, the total amount on both sides is 5 to 15 g / m 2 . It is preferable to do.

このコーティング液を塗布し、必要に応じて乾燥を行なった後、焼付けを兼ねて平坦化焼鈍する。
塗布方法としては、特に限定されず、従来公知の方法を用いることができる。
乾燥は、例えば、コーティング液を塗布した鋼板を、乾燥炉に装入して、150〜450℃で、0.25〜2分間、乾燥を行なうことが挙げられるが、これに限定されるものではない。
This coating solution is applied and dried as necessary, and then flattening annealing is performed also for baking.
It does not specifically limit as a coating method, A conventionally well-known method can be used.
Drying includes, for example, charging a steel plate coated with a coating solution into a drying furnace and drying at 150 to 450 ° C. for 0.25 to 2 minutes, but is not limited thereto. Absent.

平坦化焼鈍の条件としては、焼鈍温度が低すぎるとコーティングが十分に形成されず耐食性や磁気特性が劣る場合があり、高過ぎると鋼板が変形して磁気特性劣化しやすくなる場合があることから、焼鈍温度は750〜900℃の温度範囲とすることが好ましい。
焼鈍雰囲気は、N2、Ar、H2等いずれを用いることも可能であるが、コスト面、安全面からN2を主体とすることが好ましい。
焼鈍時間は特に限定されないが、例えば、3〜120秒間とする。
As conditions for flattening annealing, if the annealing temperature is too low, the coating may not be sufficiently formed and the corrosion resistance and magnetic properties may be inferior, and if it is too high, the steel plate may be deformed and the magnetic properties may be easily deteriorated. The annealing temperature is preferably in the temperature range of 750 to 900 ° C.
As the annealing atmosphere, any of N 2 , Ar, H 2 and the like can be used, but it is preferable that N 2 is mainly used from the viewpoint of cost and safety.
Although annealing time is not specifically limited, For example, it shall be 3 to 120 seconds.

以上の諸条件を満たすことにより、酸化性雰囲気での歪取焼鈍後の被膜密着性の良好な方向性電磁鋼板を得ることができる。   By satisfying the above various conditions, it is possible to obtain a grain oriented electrical steel sheet having good film adhesion after strain relief annealing in an oxidizing atmosphere.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

[実験例1]
下記表2に示す、鋼中にCrを0.01質量%未満から0.2質量%まで含有させたけい素鋼スラブ(Cr以外の成分は、C:0.04質量%、Si:3.4質量%、Mn:0.07質量%、Al:0.006質量%、P:0.04質量%、S:0.003質量%、N:0.004質量%、Sb:0.03質量%、残部不可避的不純物)を、常法で仕上焼鈍まで行ない、板厚0.23mmの方向性電磁鋼板の仕上焼鈍板を作製した。この後、未反応分離剤を除去し、これをリン酸で酸洗処理した後に、下記表1に示すNo.1〜10の成分組成を持つコーティング液を、乾燥後に両面で10g/m2となるように塗布、乾燥(300℃、1分間)し、焼付けを兼ねた平坦化焼鈍(800℃、20秒間、N2100%雰囲気)を施して、コーティングを形成した。
なお、コロイド状シリカとしては、ADEKA社製AT−30(平均粒子径:10nm)を使用した。
[Experimental Example 1]
As shown in Table 2 below, a silicon steel slab containing Cr in an amount of less than 0.01% by mass to 0.2% by mass (components other than Cr are C: 0.04% by mass, Si: 3. 4 mass%, Mn: 0.07 mass%, Al: 0.006 mass%, P: 0.04 mass%, S: 0.003 mass%, N: 0.004 mass%, Sb: 0.03 mass% %, The remaining inevitable impurities) were subjected to finish annealing by a conventional method to produce a finish annealed sheet of a grain-oriented electrical steel sheet having a thickness of 0.23 mm. After this, the unreacted separating agent was removed, and this was pickled with phosphoric acid. A coating liquid having a component composition of 1 to 10 is applied and dried (300 ° C., 1 minute) so that both sides are 10 g / m 2 after drying, and flattening annealing (800 ° C., 20 seconds, combined with baking) N 2 100% atmosphere) to form a coating.
As colloidal silica, AT-30 manufactured by ADEKA (average particle size: 10 nm) was used.

このとき、仕上焼鈍後の鋼板について、下地被膜を酸洗で除去し、その前後(下地被膜の有り無し)におけるサンプルをそれぞれ酸溶解した後、原子吸光分析を用いて、Cr濃度を化学分析して、その測定値から下地被膜中に含まれるCr量を目付け量換算で求めた。結果を下記表2に示す。   At this time, for the steel sheet after the finish annealing, the base film is removed by pickling, the samples before and after (with or without the base film) are acid-dissolved, and then the Cr concentration is chemically analyzed using atomic absorption spectrometry. Then, the amount of Cr contained in the undercoat was determined from the measured value in terms of basis weight. The results are shown in Table 2 below.

また、平坦化焼鈍後の鋼板のコーティングをアルカリで溶解し、溶解液中のリン元素Pおよびマグネシウムなどの金属元素Mの濃度を、Pは吸光光度計、Mは原子吸光分析装置を用いた化学分析により測定し、コーティング中のPとMとのモル比P/Mを算出し、これに基づいて、比率P/MXを求めた(Xは、Mのイオン価)。P/MXの値は、下記表1および表2に示す。
なお、原料の第一リン酸塩の製造工程中に金属イオンとリンの配合比率を各種変更することによりP/MXの値を調整した。
Further, the coating of the steel plate after the flattening annealing is dissolved with an alkali, and the concentration of the metal element M such as phosphorus element P and magnesium in the solution, P is an absorptiometer, and M is a chemical using an atomic absorption analyzer. The molar ratio P / M of P and M in the coating was calculated by analysis, and based on this, the ratio P / MX was obtained (X is the ionic value of M). The values of P / MX are shown in Table 1 and Table 2 below.
In addition, the value of P / MX was adjusted by changing various mixing ratios of metal ions and phosphorus during the manufacturing process of the raw material primary phosphate.

次に、得られた鋼板を、DXガス雰囲気(露点:10℃、CO:1%、H2:1%、CO2:12%、残部窒素)で歪取焼鈍(850℃、3時間)を行ない、その後、曲げ密着性を評価した。曲げ密着性は、10mm刻みで径が異なる丸棒に鋼板を巻きつけて、被膜が剥離しなかった最大径(単位:mm)を求めた。このときの結果を下記表2に示す。
被膜が剥離しなかった最大径が40mm以下であれば、被膜密着性に優れるものとして評価できる。
Next, the obtained steel sheet is subjected to strain relief annealing (850 ° C., 3 hours) in a DX gas atmosphere (dew point: 10 ° C., CO: 1%, H 2 : 1%, CO 2 : 12%, remaining nitrogen). After that, the bending adhesion was evaluated. The bending adhesion was obtained by winding a steel plate around a round bar having a different diameter every 10 mm, and obtaining the maximum diameter (unit: mm) at which the film did not peel off. The results at this time are shown in Table 2 below.
If the maximum diameter at which the coating did not peel is 40 mm or less, it can be evaluated as having excellent coating adhesion.

上記表2示す結果から、下地被膜中のCr量とコーティングのP/MXとを適正範囲に収めることにより、歪取焼鈍後の被膜密着性が良好であることが分かる。   From the results shown in Table 2 above, it can be seen that coating adhesion after strain relief annealing is good by keeping the amount of Cr in the base coating and the P / MX of the coating within an appropriate range.

[実験例2]
C:0.04質量%、Si:3.4質量%、Mn:0.07質量%、Al:0.006質量%、P:0.04質量%、S:0.003質量%、N:0.004質量%、Sb:0.03質量%、Cr:<0.01質量%、残部不可避的不純物の鋼塊を用いて、常法で脱炭焼鈍まで行ない、その後、MgO:100質量部に対して下記表3に示すCr化合物を下記表3に示す添加量で添加した焼鈍分離剤のスラリーを塗布し、乾燥し、仕上焼鈍を行なった。その後、未反応分離剤を除去し、リン酸で酸洗処理した後に、上記表1に示したNo.10〜24の成分組成を持つコーティング液を、実験例1と同様にして、塗布、乾燥し、焼付けを兼ねた平坦化焼鈍を施して、コーティングを形成した。
なお、実験例1と同様にして、下地被膜中のCr量を目付け量に換算して求めた。また、実験例1と同様にして、P/MXを求めた。
次に、得られた鋼板を、DXガス雰囲気(露点:10℃、CO:1%、H2:1%、CO2:12%、残部窒素)で歪取焼鈍(850℃、3時間)を行ない、その後、実験例1と同様にして、曲げ密着性を評価した。結果を下記表3に示す。被膜が剥離しなかった最大径が40mm以下であれば、被膜密着性に優れるものとして評価できる。
[Experiment 2]
C: 0.04 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Al: 0.006 mass%, P: 0.04 mass%, S: 0.003 mass%, N: 0.004% by mass, Sb: 0.03% by mass, Cr: <0.01% by mass, steel ingot of the remaining inevitable impurities is used to perform decarburization annealing in a conventional manner, and then MgO: 100 parts by mass On the other hand, the slurry of the annealing separator added with the Cr compound shown in the following Table 3 in the addition amount shown in the following Table 3 was applied, dried, and finish-annealed. Then, after removing the unreacted separating agent and pickling with phosphoric acid, No. 1 shown in Table 1 above was obtained. A coating solution having a component composition of 10 to 24 was applied and dried in the same manner as in Experimental Example 1, and was subjected to flattening annealing also serving as baking to form a coating.
In addition, it carried out similarly to Experimental example 1, and calculated | required by converting the Cr amount in a base film into a fabric weight. Further, P / MX was determined in the same manner as in Experimental Example 1.
Next, the obtained steel sheet is subjected to strain relief annealing (850 ° C., 3 hours) in a DX gas atmosphere (dew point: 10 ° C., CO: 1%, H 2 : 1%, CO 2 : 12%, balance nitrogen). Thereafter, the bending adhesion was evaluated in the same manner as in Experimental Example 1. The results are shown in Table 3 below. If the maximum diameter at which the coating did not peel is 40 mm or less, it can be evaluated as having excellent coating adhesion.

上記表3に示す結果から、焼鈍分離剤にCr化合物を添加して下地被膜中のCr量を高めても、歪取焼鈍後の被膜密着性が良好であることが分かる。   From the results shown in Table 3 above, it can be seen that even if the Cr compound is added to the annealing separator to increase the amount of Cr in the base coating, the coating adhesion after strain relief annealing is good.

Claims (3)

方向性電磁鋼板の仕上焼鈍板のフォルステライト質の下地被膜中にCrを0.07〜0.35g/m2含有させ、前記下地被膜の上層に、Mg、Al、Ca、Sr、Fe、Cu、MnおよびZnからなる群から選ばれる少なくとも1種のリン酸塩とシリカとを、前記リン酸塩の金属元素Mのイオン価をXとし、形成されるコーティング中のリン元素Pと金属元素Mとのモル比をP/Mとしたときに、P/MXが1.002〜1.035の範囲となるように含有させたコーティング液を塗布し、平坦化焼鈍を行なって、前記下地被膜上にコーティングを形成させる、方向性電磁鋼板の製造方法。 The Cr in the base coat finish annealed sheet forsterite of oriented electrical steel sheet 0.07~0.35g / m 2 is contained, the upper layer of the underlying film, Mg, Al, Ca, Sr , Fe, Cu , Mn and Zn, and at least one phosphate selected from the group consisting of silica and silica, where the ion value of the metal element M of the phosphate is X, the phosphorus element P and the metal element M in the coating formed The coating solution containing P / MX in the range of 1.002 to 1.035 is applied, and planarization annealing is performed on the base film. A method of manufacturing a grain-oriented electrical steel sheet in which a coating is formed. 前記コーティング液が、無水クロム酸、または、Mg、Al、Ca、FeおよびMnからなる群から選ばれる少なくとも1種の重クロム酸塩を更に含有する、請求項1に記載の方向性電磁鋼板の製造方法。   The grain-oriented electrical steel sheet according to claim 1, wherein the coating liquid further contains chromic anhydride or at least one dichromate selected from the group consisting of Mg, Al, Ca, Fe and Mn. Production method. 前記コーティング液が、Sb、Mn、Ti、FeおよびSnからなる群から選ばれる少なくとも1種を含む化合物を更に含有する、請求項1に記載の方向性電磁鋼板の製造方法。   The method for manufacturing a grain-oriented electrical steel sheet according to claim 1, wherein the coating liquid further contains a compound containing at least one selected from the group consisting of Sb, Mn, Ti, Fe and Sn.
JP2015235728A 2015-12-02 2015-12-02 Method for producing grain-oriented electrical steel sheet Active JP6455414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235728A JP6455414B2 (en) 2015-12-02 2015-12-02 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235728A JP6455414B2 (en) 2015-12-02 2015-12-02 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2017101292A true JP2017101292A (en) 2017-06-08
JP6455414B2 JP6455414B2 (en) 2019-01-23

Family

ID=59018022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235728A Active JP6455414B2 (en) 2015-12-02 2015-12-02 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6455414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656025A (en) * 2022-11-22 2023-01-31 西南交通大学 Evaluation method for corrosion resistance of iron core of offshore transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124628A (en) * 1997-10-17 1999-05-11 Nippon Steel Corp Production of grain oriented silicon steel sheet of which product sheet is thick
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP2009057591A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Treatment liquid for forming chromium-free insulation film on grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet provided with insulation film
JP2014091839A (en) * 2012-10-31 2014-05-19 Jfe Steel Corp Oriented electromagnetic steel sheet and its manufacturing method
JP2014196559A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124628A (en) * 1997-10-17 1999-05-11 Nippon Steel Corp Production of grain oriented silicon steel sheet of which product sheet is thick
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP2009057591A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Treatment liquid for forming chromium-free insulation film on grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet provided with insulation film
JP2014091839A (en) * 2012-10-31 2014-05-19 Jfe Steel Corp Oriented electromagnetic steel sheet and its manufacturing method
JP2014196559A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656025A (en) * 2022-11-22 2023-01-31 西南交通大学 Evaluation method for corrosion resistance of iron core of offshore transformer
CN115656025B (en) * 2022-11-22 2024-03-12 西南交通大学 Evaluation method for corrosion resistance of offshore transformer core

Also Published As

Publication number Publication date
JP6455414B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP5181571B2 (en) Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film
US8535455B2 (en) Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating
RU2407818C2 (en) Sheet of grain-oriented electro-technical steel of high tensile strength, insulation film and method of such insulation film treatment
KR101175059B1 (en) Solution for treatment of insulating coating film for oriented electromagnetic steel sheet, and method for production of oriented electromagnetic steel sheet having insulating coating film thereon
WO2017057513A1 (en) Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
EP3276043A1 (en) Insulating-coated oriented magnetic steel sheet and method for manufacturing same
JP6031951B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2006051923A1 (en) Grain oriented electromagnetic steel plate and method for producing the same
EP3346025B1 (en) Insulative coating processing liquid and method for manufacturing metal having insulative coating
JP2007217758A (en) Grain oriented magnetic steel sheet and insulating film treatment method therefor
WO2019013348A1 (en) Oriented electromagnetic steel sheet
JP6682888B2 (en) Insulating coating agent for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for treating grain-oriented electrical steel sheet
RU2698234C1 (en) Sheet from textured electrical steel having a chromium-free insulating coating creating a tension, and methods of making such a steel sheet
JP2010013692A (en) Insulating film treatment agent, grain-oriented electrical steel sheet coated with the film treatment agent and insulating film treatment method therefor
JP6455414B2 (en) Method for producing grain-oriented electrical steel sheet
JP4983334B2 (en) Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP5098466B2 (en) Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating
WO2019106976A1 (en) Oriented electrical steel sheet and method for producing same
JPH101779A (en) High tensile strength insulating coating film forming agent, its formation and grain oriented silicon steel sheet having high tensile strength insulating coating film
JP2005240157A (en) Grain-oriented electromagnetic steel sheet with phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium, and method for forming phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium
JP2006137972A (en) Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor
JP4321181B2 (en) Method for forming an overcoat insulating film containing no chromium
WO2021100867A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
WO2022250163A1 (en) Oriented electromagnetic steel sheet
WO2023188594A1 (en) Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6455414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250