JPH11124628A - Production of grain oriented silicon steel sheet of which product sheet is thick - Google Patents

Production of grain oriented silicon steel sheet of which product sheet is thick

Info

Publication number
JPH11124628A
JPH11124628A JP9285631A JP28563197A JPH11124628A JP H11124628 A JPH11124628 A JP H11124628A JP 9285631 A JP9285631 A JP 9285631A JP 28563197 A JP28563197 A JP 28563197A JP H11124628 A JPH11124628 A JP H11124628A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
hot rolling
final
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9285631A
Other languages
Japanese (ja)
Inventor
Tomoji Kumano
知二 熊野
Nobunori Fujii
宣憲 藤井
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP9285631A priority Critical patent/JPH11124628A/en
Publication of JPH11124628A publication Critical patent/JPH11124628A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain good magnetism even in the case of a low carbon content in a steel sheet by using a grain oriented silicon steel sheet stock having a specified compsn. and specifying the draft in the final stand in hot rolling, the final cold rolling ratio, the temp. in the hot rolling and the product sheet thickness. SOLUTION: A slab contg., by weight, 0.010 to 0.040% C, 2.5 to 4.0% Si, 0.020 to 0.040% acid soluble Al, 0.005 to 0.010% N, one or more kinds of S and Se by 0.005 to 0.015%, 0.05 to 0.8% Mn, and the balance Fe is heated at <1,280 deg.C, is subjected to hot rolling, is subjected to hot rolled sheet annealing, is subjected to descaling, is thereafter subjected to cold rolling for one time and is subjected to decarburizing annealing, subsequently, the strip is subjected to nitriding treatment in a gaseous mixture of H2 , N2 and NH3 in a running state, is thereafter coated with an MgO series separation agent for annealing and is subjected to final finish annealing, where the product thickness (t: mm) is regulated to 0.30 to 0.65 mm, and the upper limit of the range of the final cold rolling ratio Rc(%) is limited by the inequality I and the lower limit by the inequalities II to V (R: the draft in the final stand in the hot rolling).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として使用される製品厚の厚い一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick grain-oriented electrical steel sheet used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが、機器の
小型化、エネルギー損失の減少のために要求される。励
磁特性を表す特性値として、磁場の強さ800A/mに
おける磁束密度B8 がJISで規格化されて通常使用さ
れる。又、エネルギー損失を示す特性値としては、周波
数50Hzで1.7テスラ−(T)まで磁化したときの鋼
板1kg当たりのエネルギー損失(鉄損)W17/50もJI
Sで規格化されている。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material of transformers and other electric devices, and has excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. Required for reduced energy loss. As a characteristic value representing the excitation characteristics, magnetic flux density B 8 in the strength of 800A / m of the magnetic field standardized by JIS it is normally used. Further, as the characteristic value indicating the energy loss, the energy loss (iron loss) W 17/50 per kg of the steel sheet when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is also JI.
Standardized by S.

【0003】磁束密度は鉄損の最大支配因子であり、一
般的に磁束密度が高い(大きい)ほど鉄損特性が良好に
なる。又、一般的に磁束密度が高くなると二次再結晶粒
が大きくなり、鉄損が悪化する場合がある。この場合
は、既に広く知られているように、磁区を制御すること
により、二次再結晶の粒径に拘らず鉄損を改善すること
ができる。
[0003] The magnetic flux density is the largest controlling factor of iron loss. Generally, the higher (larger) the magnetic flux density, the better the iron loss characteristics. In general, as the magnetic flux density increases, the size of the secondary recrystallized grains increases, and iron loss may deteriorate. In this case, as already widely known, by controlling the magnetic domain, the iron loss can be improved irrespective of the grain size of the secondary recrystallization.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板表面に{110}、圧
延方向に〈001〉軸をもったいわゆるゴス組織を有し
ている。良好な磁気特性を得るためには、磁化容易軸で
ある〈001〉を圧延方向に高度に揃えることが必要で
ある。このような高磁束密度一方向性電磁鋼板の製造技
術は古くから開発され、わが国ではいわゆるインヒビタ
ーとしてMnS,AlNを用いる方法(特開昭40−1
5644号公報)、MnS,MnSe,Sb等を用いる
方法(特開昭51−13469号公報)等がある。これ
らの場合は、熱延板段階でのインヒビターの完全固溶が
求められ、実際の熱間圧延時は鋼塊(スラブ)の加熱温
度を1350℃以上にすることが必要である。
[0004] This unidirectional electrical steel sheet has a so-called goss structure having a {110} axis on the steel sheet surface and a <001> axis in the rolling direction caused by secondary recrystallization in the final finish annealing step. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction. The manufacturing technology of such high magnetic flux density unidirectional magnetic steel sheet has been developed for a long time, and in Japan, a method using MnS or AlN as a so-called inhibitor (Japanese Patent Laid-Open No. 40-1).
5644), a method using MnS, MnSe, Sb, and the like (Japanese Patent Application Laid-Open No. 51-13469). In these cases, complete solid solution of the inhibitor is required in the hot-rolled sheet stage, and it is necessary to set the heating temperature of the steel ingot (slab) to 1350 ° C. or more during actual hot rolling.

【0005】この高温度の加熱には数々の不利、不便な
点がある。このため、この熱延時の鋼塊(スラブ)の加
熱温度を下げる試みが行われている。その一つを開示し
たものとして特開昭59−56522号公報がある。こ
の技術の発展として多くの発明がなされ、インヒビター
形成のために脱炭焼鈍から最終仕上焼鈍の昇温過程で窒
化を行う方法(特開昭62−45285号公報、特開昭
60−179855号公報)、更にはストリップを走行
せしめる状態下での水素、窒素、アンモニアの混合ガス
を用いた窒化処理を行う方法(特開平2−77525号
公報、特開平1−82400号公報、特開平3−180
460号公報、特開平1−317592号公報)が提案
された。
[0005] This high temperature heating has a number of disadvantages and disadvantages. For this reason, attempts have been made to lower the heating temperature of the steel ingot (slab) during hot rolling. JP-A-59-56522 discloses one of them. A number of inventions have been made as a development of this technology, and a method of performing nitridation in the process of increasing the temperature from decarburizing annealing to final finish annealing to form inhibitors (Japanese Patent Application Laid-Open Nos. 62-45285 and 60-179855). ), And a method of performing a nitriding treatment using a mixed gas of hydrogen, nitrogen and ammonia while the strip is running (JP-A-2-77525, JP-A-1-82400, JP-A-3-180).
460, JP-A-1-317592) have been proposed.

【0006】又、脱炭焼鈍時の一次再結晶完了後から最
終仕上焼鈍時の二次再結晶完了前までの途中段階での一
次再結晶粒径を制御する方法(特開平3−294425
号公報、特開平2−96275号公報、特開平2−59
020号公報、特開平1−82393号公報)も提案さ
れた。ところで、一方向性電磁鋼板は、主に変圧器の鉄
心として積層して使用される。特に大型のパワートラン
スは、その鉄心の積層作業は、手作業となるので、一方
向性電磁鋼板の板厚が厚い程、作業性(生産性)が向上
する。このため厚手(例えば0.40mm超)で、磁気特
性が優れた一方向性電磁鋼板の製造が強く求められてい
た。しかし、一方向性電磁鋼板の製造においては、製鋼
段階で炭素をある程度含有させることが従来の技術では
必須であった。炭素を含有させる目的は高温度(135
0℃以上)のスラブ加熱の場合にはスラブ加熱時の異
常粒成長の防止、一次再結晶の集合組織調整のための
変態相の確保、インヒビターの固溶量確保等がある。
この場合、連続鋳造のままでスラブを製造する条件下で
は、C量は0.060%以上必要であった。また、本発
明のごとく1280℃未満でのスラブ加熱でストリップ
を走行せしめる状態での窒化処理をする場合でも上記
,の目的のため炭素をある程度含有することが求め
られている。この場合は、Cは、0.040%を越えて
必要である。
A method of controlling the primary recrystallized grain size at an intermediate stage from the completion of the primary recrystallization at the time of decarburizing annealing to the completion of the secondary recrystallization at the time of final finishing annealing (Japanese Patent Laid-Open No. 3-294425).
JP, JP-A-2-96275, JP-A-2-59
020, JP-A-1-82393) have also been proposed. By the way, the grain-oriented electrical steel sheets are mainly used by being laminated as an iron core of a transformer. In particular, in the case of a large-sized power transformer, the work of laminating the iron cores is performed manually, and thus the workability (productivity) is improved as the thickness of the unidirectional magnetic steel sheet is increased. Therefore, there has been a strong demand for the production of a unidirectional magnetic steel sheet which is thick (for example, more than 0.40 mm) and has excellent magnetic properties. However, in the production of the grain-oriented electrical steel sheet, it has been essential in the prior art to contain carbon to some extent at the steel making stage. The purpose of containing carbon is high temperature (135
In the case of slab heating at a temperature of 0 ° C. or more, there are prevention of abnormal grain growth at the time of slab heating, securing of a transformed phase for adjusting texture of primary recrystallization, securing of solid solution amount of inhibitor, and the like.
In this case, the C amount was required to be 0.060% or more under the condition that the slab was manufactured with continuous casting. Further, even in the case of performing the nitriding treatment in a state where the strip is run by heating the slab at a temperature lower than 1280 ° C. as in the present invention, it is required to contain carbon to some extent for the above-mentioned purpose. In this case, C needs to exceed 0.040%.

【0007】一方、一方向性電磁鋼板の最終製品に炭素
が30ppm 以上存在すると磁気時効が生じ商品価値が無
くなる。このため脱炭焼鈍工程で強制的に炭素含有量を
30ppm 以下とする。この場合、板厚が厚いと脱炭に時
間を要し、生産性が著しく低下し、引いては、コスト高
となる。このため現在、一方向性電磁鋼板の製品厚は
0.35mmを最大としてJIS等で規格されている。
又、炭素含有量を減ずる方法として上記の代替とし
て、熱延加熱前に一度プレローリーング(ブレイクダウ
ン)という結晶粒を細かくする方法が採用されている。
しかしこの場合もコストアップが必然的に生じる。従っ
て、低C化には限界があった。
On the other hand, if carbon is present in the final product of the grain-oriented electrical steel sheet in an amount of 30 ppm or more, magnetic aging occurs and the commercial value is lost. Therefore, the carbon content is forcibly reduced to 30 ppm or less in the decarburization annealing step. In this case, if the sheet thickness is large, decarburization takes time, productivity is significantly reduced, and the cost is high. For this reason, the product thickness of the grain-oriented electrical steel sheet is currently specified by JIS or the like with a maximum of 0.35 mm.
As a method for reducing the carbon content, as an alternative to the above method, a method of once making a crystal grain called pre-rolling (breakdown) before hot rolling and heating is adopted.
However, also in this case, the cost is inevitably increased. Therefore, there is a limit to the reduction in C.

【0008】また、特開平4−323号および特開平4
−324号公報においては厚手方向性電磁鋼板の熱延板
焼鈍をしない場合の熱間圧延時の条件を規定している。
もちろんこの方法によっても厚い方向性電磁鋼板は製造
可能である。この場合は、方向性電磁鋼板の製造におけ
る一次再結晶集合組織の改質のみを行なっているのであ
るが、インヒビターの調整は熱間圧延工程のみで行って
おり磁気特性の安定性及び鉄損の向上に限界があった。
Further, Japanese Patent Application Laid-Open Nos. Hei 4-323 and Hei 4-
Japanese Patent Application Laid-Open No. 324-324 stipulates conditions during hot rolling when hot-rolled sheet annealing of a thick grain-oriented electrical steel sheet is not performed.
Of course, a thick grain-oriented electrical steel sheet can also be manufactured by this method. In this case, only the primary recrystallization texture is modified in the production of the grain-oriented electrical steel sheet, but the adjustment of the inhibitor is performed only in the hot rolling step, and the stability of the magnetic properties and the reduction of iron loss are performed. There was a limit to improvement.

【0009】[0009]

【発明が解決しようとする課題】上述したように一方向
性電磁鋼板の製造において必然的に脱炭工程が存在する
ため、厚手材(0.30mm以上)の場合は、脱炭焼鈍前
の炭素含有量を極力減ずることがその生産性向上に重要
となる。本発明は磁気特性を確保してこの様な脱炭焼鈍
での負荷を軽減するために炭素含有量を減ずる方法を提
供するものである。
As described above, the production of a grain-oriented electrical steel sheet necessarily involves a decarburization step. Therefore, in the case of a thick material (0.30 mm or more), the carbon before the decarburization annealing is used. It is important to reduce the content as much as possible to improve the productivity. The present invention provides a method for reducing the carbon content in order to secure magnetic properties and reduce the load in such decarburizing annealing.

【0010】よく知られている様に、一方向性電磁鋼板
の脱炭焼鈍工程は連続的に行なわれ次の3つの機能を有
している。すなわち、(1)一次再結晶、(2)脱炭、
(3)表面酸化層の形成の3つの機能である。これら3
つの機能をうまく働かせるためには、注意深い操業が必
要となる。本発明の様に製品厚が厚い場合は、従来
(2)と(3)を経済的に両立させることが困難であっ
た。
[0010] As is well known, the decarburizing annealing process of the grain-oriented electrical steel sheet is performed continuously and has the following three functions. That is, (1) primary recrystallization, (2) decarburization,
(3) The three functions of the formation of the surface oxide layer. These three
Careful operation is required for the two functions to work well. When the product thickness is large as in the present invention, it has been difficult to make both (2) and (3) economically compatible.

【0011】即ち、板厚が厚い場合は、脱炭に要する時
間が長くなる(近似的に脱炭時間は、厚みの2乗に比例
して長くなる)。一方、脱炭雰囲気(酸化性雰囲気)に
長く鋼板を滞留させると表面の酸化層が厚くなり脱炭性
が減じて残存炭素を30ppm以下とすることは非常に困
難となる。また表面の酸化層が著しく厚くなると、2次
再結晶焼鈍後の一次皮膜(フォルステライトを主成分と
する皮膜)に欠陥が生じ商品価値が著しく減じる。この
ため脱炭焼鈍前の炭素含有量を減ずることが必要とな
る。
That is, when the plate thickness is large, the time required for decarburization becomes longer (approximately, the decarburization time becomes longer in proportion to the square of the thickness). On the other hand, if the steel sheet is retained for a long time in a decarburizing atmosphere (oxidizing atmosphere), the oxidized layer on the surface becomes thicker, the decarburizing property is reduced, and it is very difficult to reduce the residual carbon to 30 ppm or less. If the oxide layer on the surface becomes extremely thick, defects occur in the primary film (film containing forsterite as a main component) after the secondary recrystallization annealing, and the commercial value is significantly reduced. For this reason, it is necessary to reduce the carbon content before decarburization annealing.

【0012】更に、求められることは、磁気特性のうち
磁束密度のみでなく鉄損も良好な厚手方向性電磁鋼板を
得ることを低炭素含有量素材で製造することである。
Further, what is required is to produce a thick grain-oriented electrical steel sheet having good magnetic properties as well as iron loss among magnetic properties by using a material having a low carbon content.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
について鋭意検討したところ、スラブ加熱温度が128
0℃未満で、脱炭焼鈍後にストリップを走行せしめる状
態下で窒化処理を行なうことを主要技術とする一方向性
電磁鋼板の製造方法において、熱間圧延の最終スタンド
の圧下率、最終冷間圧延率、熱延時の温度及び製品板厚
を適切にすることにより炭素含有量が従来より低くても
良好な磁性を有する一方向性電磁鋼板が製造可能となる
ことを見い出した。
Means for Solving the Problems The present inventors diligently studied the above problems, and found that the slab heating temperature was 128 ° C.
In a method for producing a grain-oriented electrical steel sheet whose main technology is to perform nitriding treatment at a temperature of less than 0 ° C. and running a strip after decarburizing annealing, a reduction ratio of a final stand of hot rolling, a final cold rolling It has been found that by setting the rate, the temperature at the time of hot rolling and the product sheet thickness appropriately, it is possible to produce a unidirectional magnetic steel sheet having good magnetism even if the carbon content is lower than before.

【0014】その要旨は以下のとおりである。(1)重
量比で、C:0.010〜0.040%、Si:2.5
〜4.0%、酸可溶性Al:0.020〜0.040
%、N:0.005〜0.010%、S,Seの少なく
とも1種を0.005〜0.015%、Mn:0.05
〜0.8%、残部がFe及び不可避的不純物からなるス
ラブを1280℃未満の温度で加熱し、熱延を行ない、
熱延板焼鈍を行ない、その後のデスケリーング後、1回
の冷延を行ない、脱炭焼鈍後ストリップを走行せしめる
状態下で水素、窒素、アンモニアの混合ガス中で窒化処
理を行ない、次いでMgOを主成分とする焼鈍分離剤を
塗布して最終仕上焼鈍を施す一方向性電磁鋼板の製造方
法において、製品厚(t:mm)を0.30mm≦t≦0.
65mmとし最終冷間圧延率:RC (%)の範囲について
上下限を次の式で規定するものである。
The gist is as follows. (1) C: 0.010-0.040%, Si: 2.5 by weight ratio
To 4.0%, acid-soluble Al: 0.020 to 0.040
%, N: 0.005 to 0.010%, at least one of S and Se is 0.005 to 0.015%, Mn: 0.05
Slab consisting of Fe and inevitable impurities is heated at a temperature of less than 1280 ° C., and hot-rolled.
Hot-rolled sheet annealing is performed, after the subsequent deskelting, one cold rolling is performed, and after decarburizing annealing, the strip is allowed to run, then nitriding is performed in a mixed gas of hydrogen, nitrogen, and ammonia, and then MgO is mainly used. In a method for producing a grain-oriented electrical steel sheet in which an annealing separator as a component is applied and subjected to final finish annealing, the product thickness (t: mm) is set to 0.30 mm ≦ t ≦ 0.
The upper and lower limits of the range of the final cold rolling reduction: R C (%) are defined by the following formula.

【0015】 上限:RC ≦(300−50t)/3(%) 下限:熱間圧延の最終スタンドの圧下率RH (%)の関
係で 5≦RH ≦15%のとき RC ≧−75t/3+92.5(%) 15<RH ≦30%のとき RC ≧−100t/3+92.5(%) 30<RH ≦45%のとき RC ≧−125t/3+92.5(%) 45<RH ≦60%のとき RC ≧−150t/3+92.5(%) とすることを特徴とする製品板厚の厚い一方向性電磁鋼
板の製造方法であり、更に、(2)熱間圧延時の温度に
ついては、仕上げ入口温度を950〜1150℃、仕上
げ出口温度を800〜1050℃、巻き取り温度を50
0〜650℃とすることを特徴とする製品板厚が厚い一
方向性電磁鋼板の製造方法、である。
Upper limit: R C ≦ (300-50t) / 3 (%) Lower limit: When 5 ≦ R H ≦ 15% in relation to the reduction ratio R H (%) of the final stand of hot rolling, R C ≧ − 75t / 3 + 92.5 (%) 15 <R when H ≦ 30% R C ≧ -100t / 3 + 92.5 (%) 30 < when R H ≦ 45% R C ≧ -125t / 3 + 92.5 (%) 45 <R H ≦ 60% When R C ≧ −150 t / 3 + 92.5 (%), a method for producing a unidirectional magnetic steel sheet having a large product sheet thickness is provided. Regarding the temperature at the time of cold rolling, the finishing inlet temperature is 950 to 1150 ° C, the finishing outlet temperature is 800 to 1050 ° C, and the winding temperature is 50.
0 to 650 ° C., which is a method for producing a unidirectional magnetic steel sheet having a large product sheet thickness.

【0016】[0016]

【発明の実施の形態】以下に本発明を詳細に説明する。
先ず、本発明において炭素(C)の含有量の範囲を制限
する理由を述べる。前述のように、一方向性電磁鋼板の
製造においては、Cのある程度の含有が必須である。本
発明においては、この目的は、1)一次再結晶の集合組
織調整のための変態相の存在、2)γ相中でのインヒビ
ターの固溶量確保である。本発明においては、この目的
を従来のC含有量より少ない範囲で良好な磁気特性を得
るために熱延での最終スタンドの圧下率及び冷間圧延率
を規定している。しかし1),2)の変態相の存在のた
めには0.01%以上のCが必要となる。更に上限値は
磁気特性の立場からは0.10%の炭素まで含有しても
何ら問題は生じない。しかし本発明のように、製品板厚
が比較的厚い場合は、脱炭焼鈍での脱炭時間が著しく長
くなり工業生産に適していない。このため上限は0.0
4%とする。またこの関係を図1、図2に示している。
図1は、熱間圧延の最終スタンドの圧下率を40%、製
品厚0.50mm、Si%=3.0%の場合のC含有量及
び冷間圧延率並びに磁束密度の関係を示している。図2
は、冷間圧延率87%、製品厚0.50mm、Si%=
3.0%の場合のC含有量及び熱間圧延の最終スタンド
の圧下率並びに磁束密度の関係を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reason for limiting the range of the content of carbon (C) in the present invention will be described. As described above, in the production of a grain-oriented electrical steel sheet, the inclusion of C to some extent is essential. In the present invention, the objectives are 1) the presence of a transformed phase for adjusting the texture of the primary recrystallization, and 2) ensuring the solid solution amount of the inhibitor in the γ phase. In the present invention, the rolling reduction and the cold rolling reduction of the final stand in hot rolling are specified in order to obtain good magnetic properties in a range smaller than the conventional C content. However, 0.01% or more of C is required for the presence of the transformation phases 1) and 2). Further, from the viewpoint of magnetic properties, even if the upper limit is contained up to 0.10% of carbon, no problem occurs. However, when the product sheet thickness is relatively thick as in the present invention, the decarburization time in the decarburization annealing becomes extremely long, which is not suitable for industrial production. Therefore, the upper limit is 0.0
4%. This relationship is shown in FIGS.
FIG. 1 shows the relationship among the C content, the cold rolling reduction, and the magnetic flux density when the rolling reduction of the final stand of the hot rolling is 40%, the product thickness is 0.50 mm, and Si% = 3.0%. . FIG.
Is: cold rolling reduction 87%, product thickness 0.50mm, Si% =
The relationship between the C content at 3.0%, the rolling reduction of the final stand in hot rolling, and the magnetic flux density is shown.

【0017】次に、板厚を制限する理由を述べる。製品
板厚が0.30mm未満の場合C含有量を0.040%以
上としても0.070%以下であれば、脱炭焼鈍におい
て30ppm 以下の炭素までの脱炭は律速的でなく表面酸
化層形成が律速的であり、低炭素とするメリットは少な
い。このため板厚は、0.30mm以上とする。また板厚
が0.30mm未満であれば、炭素量が少ないと一次再結
晶集合組織を充分に適正にしないと、2次再結晶焼鈍時
のインヒビター(主にAlN)の劣化度が速くなり良好
なGoss方位粒が得られなくなる。もちろん、2次再
結晶時の雰囲気を制御してインヒビターの分解を抑制
し、良好なGoss方位粒を得ることは可能であるが、
この場合フォルステライトを主成分とする一次皮膜に欠
陥が多発して歩留が著しく低下する。
Next, the reason for limiting the plate thickness will be described. When the product sheet thickness is less than 0.30 mm, even if the C content is 0.040% or more, if the C content is 0.070% or less, decarburization to carbon of 30 ppm or less is not rate-limiting in decarburization annealing, and the surface oxide layer The formation is rate-limiting and there is little merit of low carbon. For this reason, the plate thickness is set to 0.30 mm or more. If the plate thickness is less than 0.30 mm, and if the amount of carbon is small, the primary recrystallization texture is not made sufficiently appropriate, the degree of deterioration of the inhibitor (mainly AlN) during the secondary recrystallization annealing is increased, which is favorable. No Goss-oriented grains can be obtained. Of course, it is possible to control the atmosphere during the secondary recrystallization to suppress the decomposition of the inhibitor and obtain good Goss orientation grains.
In this case, many defects occur in the primary film containing forsterite as a main component, and the yield is significantly reduced.

【0018】一方、板厚の上限の0.65mmは、これ以
上の板厚では、生産性を確保するためにはC含有量を
0.010%未満としなければならないためである。C
含有量を0.010%未満とすると、フォルステライト
を主成分とする一次皮膜の形成を良好に行なわしめてか
つ良好なGoss方位の2次再結晶を安定化することは
困難である。
On the other hand, the upper limit of the sheet thickness of 0.65 mm is that if the sheet thickness is more than this, the C content must be less than 0.010% in order to secure productivity. C
If the content is less than 0.010%, it is difficult to favorably form a primary film containing forsterite as a main component and to stabilize secondary recrystallization in a good Goss orientation.

【0019】次に、冷間圧延における最終圧延率につい
て述べる。そもそも、一方向性電磁鋼板の製造において
良好な磁気特性(方向性の良好なGoss方位を有する
2次再結晶集合組織)を得るためには、脱炭焼鈍後の一
次再結晶集合の適正化及びインヒビター強度の確保が必
要である。従来から一方向性電磁鋼板の製造において一
次再結晶集合組織を適正化するためには、熱間圧延後最
終冷間圧延の間にある程度の変態相が必要とされてい
た。このために炭素を含有させている。ところが、12
80℃未満のスラブ加熱法においては一次再結晶集合組
織の適正化の程度が少なくても良いことを見い出した。
この適正化程度は定量的には原勢らの対応粒界理論(例
えば特公平7−26155、日本金属学会誌第59号、
第9号(1995)917−924)によって評価でき
る。即ちGoss方位粒({110}〈011〉)とΣ
9対応方位粒がある少量でも存在しその値が全Σ9方位
関係の分布の中で一番大きい(強い)と良好なGoss
方位が2次再結晶する。しかし、このGoss方位発現
の安定性及びシャープさはインヒビターの強度に依存す
る。
Next, the final rolling reduction in cold rolling will be described. In the first place, in order to obtain good magnetic properties (secondary recrystallization texture having a good Goss orientation) in the production of a grain-oriented electrical steel sheet, it is necessary to optimize the primary recrystallization texture after decarburization annealing and Inhibitor strength must be ensured. Conventionally, in order to optimize the primary recrystallization texture in the production of a grain-oriented electrical steel sheet, a certain degree of transformation phase has been required during the final cold rolling after hot rolling. For this purpose, carbon is contained. However, 12
It has been found that in the slab heating method at less than 80 ° C., the degree of optimizing the primary recrystallization texture may be small.
This degree of optimization is quantitatively based on the corresponding grain boundary theory of the original group (for example, Japanese Patent Publication No. Hei 7-26155, Journal of the Japan Institute of Metals No. 59,
No. 9 (1995) 917-924). That is, Goss orientation grains ({110} <011>) and Σ
Good Goss if 9 corresponding orientation grains exist even in a small amount and the value is the largest (strong) in the distribution of all 方位 9 orientation relationships
The orientation undergoes secondary recrystallization. However, the stability and sharpness of the expression of the Goss orientation depend on the inhibitor strength.

【0020】本発明による方法では、このインヒビター
強度を任意にストリップ窒化として制御できるため良好
なGoss方位粒のみを選択的に発現できることを見い
出した。このGoss方位粒に対するΣ9値を全分布で
最大とする方法としては、主に冷間圧延前集合組織、粒
サイズ、及び冷間圧延率がある。このうち、冷間圧延率
は重要な因子であるが、冷間圧延前集合組織も重要であ
る。本発明者らは冷間圧延前集合組織を適正化すること
により、冷間圧延率も低減できることを見い出した。冷
間圧延前集合組織は、成分、熱延条件に大きく影響され
ることは周知である。本発明の重要な要素は上記原理に
基づいて、熱間圧延での最終圧下での圧下率を規定する
ことにより冷間圧延率を低減できることを見い出したこ
とである。
In the method according to the present invention, it has been found that since the inhibitor strength can be controlled arbitrarily as strip nitriding, only good Goss orientation grains can be selectively expressed. Methods for maximizing the Σ9 value for this Goss orientation grain in the entire distribution mainly include a texture before cold rolling, a grain size, and a cold rolling rate. Of these, the cold rolling reduction is an important factor, but the texture before cold rolling is also important. The present inventors have found that the cold rolling reduction can be reduced by optimizing the texture before cold rolling. It is well known that the texture before cold rolling is greatly affected by components and hot rolling conditions. An important element of the present invention is that, based on the above principle, it has been found that the cold rolling reduction can be reduced by defining the rolling reduction in the final rolling in hot rolling.

【0021】上記知見について、実験結果に基き詳細に
述べる。重量%で、C:0.025〜0.038%、S
i:2.80〜3.25%、Al:0.026〜0.0
29%、N:0.0070〜0.0085%をベースと
する成分のスラブを1100℃〜1200℃で加熱後、
通常の方法で熱延したが、その時の仕上げ最終スタンド
の圧下率(RH )を、8〜15%、18〜30%、33
〜45%、48〜60%とし、板厚:1.0〜12.0
mmに仕上げた。この場合、仕上入口温度は975〜10
75℃、仕上げ出口温度は850〜975℃、巻き取り
温度は540〜580℃であった。その後1120℃で
2分間の熱延板焼鈍を行ない、酸洗後180〜220℃
で最低2パスの温間圧延を行なって、板厚:0.20〜
0.70mmに圧延した。その後820〜860℃で
2 :25%、H2 :75%の雰囲気ガス中で、露点6
2℃で70秒〜150秒の脱炭一次再結晶を行なった。
その後全窒素含有量を195〜210ppm とするストリ
ップ窒化処理を行ない、MgOを主成分とする焼鈍分離
材を塗布し、仕上げ焼鈍を行なった。この仕上焼鈍は9
00〜1200℃間を10〜20℃/hrで昇温し、雰囲
気はN2 :25%、H2 :75%であった。その後、1
200℃で20時間、H2 :100%の純化焼鈍を行な
った。その後、通常用いられる張力コーティングの塗布
と平滑化処理を行なった。これらの工程を経て製造した
一方向性電磁鋼板の磁気特性の結果を図3〜図6に示し
た。
The above findings will be described in detail based on experimental results. % By weight, C: 0.025 to 0.038%, S
i: 2.80 to 3.25%, Al: 0.026 to 0.0
29%, N: After heating the slab of the component based on 0.0070-0.0085% at 1100 ° C-1200 ° C,
The hot rolling was performed by a normal method, but the rolling reduction ( RH ) of the final finishing stand at that time was 8 to 15%, 18 to 30%, 33
~ 45%, 48 ~ 60%, thickness: 1.0 ~ 12.0
mm. In this case, the finishing inlet temperature is 975-10
75 ° C, the finish outlet temperature was 850 to 975 ° C, and the winding temperature was 540 to 580 ° C. Thereafter, hot-rolled sheet annealing is performed at 1120 ° C. for 2 minutes, and after pickling, 180 to 220 ° C.
At least 2 passes of warm rolling at a thickness of 0.20 to 0.20
It was rolled to 0.70 mm. Thereafter, at 820 to 860 ° C., in an atmosphere gas of N 2 : 25% and H 2 : 75%, a dew point of 6
Decarburization primary recrystallization was performed at 2 ° C. for 70 seconds to 150 seconds.
Thereafter, strip nitriding treatment was performed so that the total nitrogen content was 195 to 210 ppm, an annealing separator containing MgO as a main component was applied, and finish annealing was performed. This finish annealing is 9
The temperature was raised from 00 to 1200 ° C. at 10 to 20 ° C./hr, and the atmosphere was N 2 : 25% and H 2 : 75%. Then 1
H 2 : 100% purification annealing was performed at 200 ° C. for 20 hours. Thereafter, application of a commonly used tension coating and smoothing treatment were performed. The results of the magnetic properties of the grain-oriented electrical steel sheet manufactured through these steps are shown in FIGS.

【0022】◎印は、B8≧1.91T、○印は1.8
6≦B8<1.91T、△印は、B8<1.86Tを示
す。本発明の範囲外でも◎印はあるが、この場合は、本
発明の範囲(製品厚の範囲)を満たさず従来の技術で製
造されたものである。即ち、薄い場合は脱炭焼鈍時間は
短かく、脱炭反応律速でなく、また、本発明の範囲より
更に厚い場合は、脱炭時間が異常に長くなり工業的生産
ベースに適していない。
The mark ◎ indicates B8 ≧ 1.91T, and the mark 11.8.
6 ≦ B8 <1.91T, Δ indicates B8 <1.86T. Although there are ◎ marks outside the range of the present invention, in this case, the product was manufactured by the conventional technique without satisfying the range of the present invention (the range of the product thickness). That is, when the thickness is thin, the decarburization annealing time is short, and the decarburization reaction is not rate-determining. When the thickness is larger than the range of the present invention, the decarburization time is unusually long, which is not suitable for an industrial production base.

【0023】本発明においては、最終冷間圧延率:RC
(%)を、板厚および熱間圧延の最終スタンドの圧下率
H (%)との関係で、以下のような式で上限および下
限を規定している。 上限:RC ≦(300−50t)/3(%) 下限:熱間圧延の最終スタンドの圧下率RH (%)の関
係で 5≦RH ≦15%のとき RC ≧−75t/3+92.5(%) 15<RH ≦30%のとき RC ≧−100t/3+92.5(%) 30<RH ≦45%のとき RC ≧−125t/3+92.5(%) 45<RH ≦60%のとき RC ≧−150t/3+92.5(%) 上述の各条件の上、下限を外れる最終冷間圧延率で製造
すると2次再結晶は良好なるも磁性、特にB8、が劣
る。
In the present invention, the final cold rolling reduction: R C
(%) Is related to the thickness and the rolling reduction R H (%) of the final stand of hot rolling, and the upper and lower limits are defined by the following equations. Limit: R C ≦ (300-50t) / 3 (%) lower: When 5 ≦ R H ≦ 15% in relation to the reduction rate of the final stand of the hot rolling R H (%) R C ≧ -75t / 3 + 92 0.5 (%) 15 <R H ≦ 30% RC ≧ −100t / 3 + 92.5 (%) 30 <R H ≦ 45% RC ≧ −125t / 3 + 92.5 (%) 45 <R When H ≦ 60%, R C ≧ −150 t / 3 + 92.5 (%) When the above conditions are satisfied and the final cold rolling ratio is out of the lower limit, the secondary recrystallization is good, but the magnetism, especially B8, is not good. Inferior.

【0024】最終冷間圧延率の上限も原理的には熱延の
最終スタンドの圧下率に依存するものであるが、本発明
のように熱延板焼鈍等最終冷間圧延前に焼鈍を行なうと
その依存性は著しく減じる。次に、熱延での最終スタン
ドの圧下率を規定している理由を述べる。特願平2−2
74811等では最終3スタンドの累積圧下率を規定し
ているが、実際の熱間圧延では、最終スタンド以前での
スタンド間時間は、最終スタンドと巻き取りの間の時間
と比べると短かく、その効果は小さく、最終スタンドの
圧下率が最も大きな影響を再結晶に及ぼす。
Although the upper limit of the final cold rolling rate also depends on the reduction rate of the final stand of hot rolling in principle, annealing is performed before final cold rolling such as hot rolling sheet annealing as in the present invention. And its dependencies are significantly reduced. Next, the reason for defining the rolling reduction of the final stand in hot rolling will be described. Japanese Patent Application 2-2
74811 and the like define the cumulative rolling reduction of the last three stands, but in actual hot rolling, the time between stands before the last stand is shorter than the time between the last stand and winding, and the The effect is small and the final stand draft has the greatest effect on recrystallization.

【0025】また、最終スタンドの圧下率を60%以下
としている理由は、実際の熱間圧延では、これ以上の圧
下は、熱延機の能力(ミルパワー)を考慮すると現実的
でないからである。また、下限を5%としている理由も
これより低い圧下率は実際的でないからである。製品板
厚が厚い方が冷延圧下率の下限が低くなっている。すな
わち、下限が広がっている理由は、2次再結晶域のイン
ヒビターの劣化程度が少なく、すなわち、劣化程度が劣
化時間に対して遅く、Goss方位の優先成長が起こり
やすくなるためである。
The reason why the reduction rate of the final stand is set to 60% or less is that in actual hot rolling, a reduction of more than this is not practical considering the capacity (mill power) of the hot rolling mill. Further, the reason why the lower limit is set to 5% is that a reduction ratio lower than this is not practical. The lower the product rolling thickness, the lower the lower limit of cold rolling reduction. That is, the reason why the lower limit is widened is that the degree of deterioration of the inhibitor in the secondary recrystallization region is small, that is, the degree of deterioration is slower than the deterioration time, and the preferential growth of the Goss orientation is likely to occur.

【0026】次に熱間圧延時の温度について述べる。本
発明では、スラブの加熱温度が1280℃未満と低く、
このためAlN等いわゆるインヒビターの大部分は析出
している。この析出を更に行なわしめるためには、仕上
入口温度を950〜1150℃、仕上げ出口温度を80
0〜1050℃、巻き取り温度を500〜650℃とす
る必要がある。望ましくは、AlNの析出挙動より仕上
入口温度は975〜1075℃、仕上げ出口温度は85
0〜975℃、巻き取り温度は525〜600℃であ
る。
Next, the temperature during hot rolling will be described. In the present invention, the heating temperature of the slab is lower than 1280 ° C,
Therefore, most of so-called inhibitors such as AlN are precipitated. In order to further carry out this precipitation, the finish inlet temperature is set to 950 to 1150 ° C., and the finish outlet temperature is set to 80
It is necessary to set the winding temperature to 0 to 1050 ° C and the winding temperature to 500 to 650 ° C. Preferably, the finishing inlet temperature is 975 to 1075 ° C. and the finishing outlet temperature is 85, based on the precipitation behavior of AlN.
0 to 975 ° C and the winding temperature is 525 to 600 ° C.

【0027】次に、本発明において出発材とする電磁鋼
スラブの成分組成の限定理由は、以下のとおりである。
Cは、0.010〜0.040%とした。0.010%
未満の場合は前述した。また0.040%を越えると脱
炭工程での生産性が著しく阻害され本発明の目的から外
れる。
Next, the reasons for limiting the component composition of the magnetic steel slab used as the starting material in the present invention are as follows.
C was set to 0.010 to 0.040%. 0.010%
If it is less than the above, it is described above. On the other hand, if it exceeds 0.040%, the productivity in the decarburization step is remarkably impaired, deviating from the object of the present invention.

【0028】Siはその含有量が2.5%未満になる
と、良好な鉄損が得られない。また40%を超えると、
脆性のために冷間圧延等室温での鋼板処理が困難にな
る。S及びSeは、0.015%以下、望ましくは0.
013%以下である。1280℃以下のスラブ加熱温度
で熱延板を製造し、その後熱延板焼鈍、冷間圧延の後で
の、ストリップ窒化等による脱炭焼鈍工程以降のインヒ
ビターの作り込みで製造する一方向性電磁鋼板では、多
量のS,Seは一次再結晶粒の粒成長を妨げ有害である
ためである。0.005%未満では、熱延での操業上の
不可避的変動要素(スキッド上及び間の温度履歴差、圧
延速度の加速による熱延温度の変動等)により、一次再
結晶粒の粒成長に場所的変動が生じ易くなり工業的に安
定的に製品が製造できない。
If the content of Si is less than 2.5%, good iron loss cannot be obtained. If it exceeds 40%,
The brittleness makes it difficult to treat the steel sheet at room temperature such as cold rolling. S and Se are 0.015% or less, preferably 0.1% or less.
013% or less. A one-way electromagnetic device manufactured by manufacturing a hot-rolled sheet at a slab heating temperature of 1280 ° C. or lower, and then manufacturing an inhibitor after a decarburizing annealing step by strip nitriding after hot-rolled sheet annealing and cold rolling. This is because, in a steel sheet, a large amount of S and Se hinders the growth of primary recrystallized grains and is harmful. If the content is less than 0.005%, primary recrystallized grains may grow due to unavoidable fluctuation factors in the operation of hot rolling (temperature difference on and between skids, fluctuation of hot rolling temperature due to acceleration of rolling speed, etc.). Locational fluctuations easily occur, and products cannot be manufactured industrially stably.

【0029】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより(Al,Si)Nを形成せしめるこ
とを必須としているから、フリーのAlが一定量以上必
要である。そのため、sol.Alとして0.020〜
0.040%添加する。Mnは、その含有量が少な過ぎ
ると二次再結晶が不安定となり、一方、多過ぎると高い
磁束密度をもつ製品を得難くなる。適正な含有量は0.
05〜0.8%である。好ましくは、0.070〜0.
3%である。
Al combines with N to form AlN,
In the present invention, since it is essential to form (Al, Si) N by nitriding the steel after the post-process, ie, after the completion of the primary recrystallization, a certain amount of free Al is required. Therefore, sol. 0.020 or more as Al
Add 0.040%. If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The appropriate content is 0.
05 to 0.8%. Preferably, 0.070-0.0.
3%.

【0030】Nは0.005%未満では二次再結晶粒の
発達が悪くなる。一方0.010%を超えるとブリスタ
ーと呼ばれる鋼板のふくれが発生する。Pは、一次再結
晶集合組織を改善する効果が報告されている。低Pで
は、この効果が少なく、また製鋼コスト的にコストアッ
プになるので下限は0.02%とする。上限について
は、0.30%を超えるとPは粒界偏析して脆性破壊を
起しやすくなり、工業的な生産が困難になる。好ましく
は0.30%以下である。
If N is less than 0.005%, the development of secondary recrystallized grains becomes worse. On the other hand, if it exceeds 0.010%, blisters of the steel plate called blisters are generated. It has been reported that P improves the primary recrystallization texture. At a low P, this effect is small and the cost of steelmaking increases, so the lower limit is made 0.02%. With respect to the upper limit, if it exceeds 0.30%, P segregates at the grain boundary and brittle fracture is likely to occur, and industrial production becomes difficult. Preferably it is 0.30% or less.

【0031】Sn,Sbは従来からいわれている如く、
一次再結晶集合組織において{110}〈001〉方位
粒を増加させる効果があるとともに、硫化物を均一に析
出する効果がある。従って、本発明では、Cu−S,M
n−Sの如き硫化物の析出を制御する効果が増長され
る。更に、Sn,Sbを多く添加すると、脱炭焼鈍時の
酸化がされ難く、また一次再結晶粒成長し難くなる傾向
がある。このため、脱炭焼鈍温度を従来の820〜84
0℃より20℃程度上げざるを得ない。このことは、一
方向性電磁鋼板の一次被膜形成を容易ならしめる方向で
ある。また、Sb,Sn添加により二次再結晶粒径が小
さくなるため、添加なしと比べて鉄損(特に低磁場鉄
損)が良好となる。一方、Sb又はSnが0.02%未
満であると、二次再結晶粒があまり小さくならない。ま
た、Sb又はSnが0.30%を超えると、脱炭焼鈍後
の窒化処理が困難となり、工業生産に適していない。
Sn and Sb are, as conventionally known,
The primary recrystallization texture has the effect of increasing the grain size of the {110} <001> orientation and has the effect of uniformly depositing sulfide. Therefore, in the present invention, Cu-S, M
The effect of controlling the precipitation of sulfides such as n-S is enhanced. Furthermore, when Sn and Sb are added in a large amount, there is a tendency that oxidation during decarburization annealing is hardly performed and primary recrystallized grains grow hardly. For this reason, the decarburization annealing temperature is set to 820 to 84
It has to be raised by about 20 ° C. from 0 ° C. This is a direction that facilitates the formation of the primary coating of the grain-oriented electrical steel sheet. In addition, since the secondary recrystallized grain size is reduced by adding Sb and Sn, iron loss (particularly, low magnetic field iron loss) is improved as compared with no addition. On the other hand, when Sb or Sn is less than 0.02%, the secondary recrystallized grains do not become too small. On the other hand, when Sb or Sn exceeds 0.30%, nitriding treatment after decarburizing annealing becomes difficult, which is not suitable for industrial production.

【0032】Crは、フォルステライト皮膜形成に必要
な脱炭焼鈍後の酸素量を確保するために添加される。
0.02%より少ないと酸素量が極端に少なくなる。ま
た0.30%を超えると酸素量が極端に増加し、良好な
フォルステライトが形成されなくなる。また磁束密度も
低下する。Cuが0.03%未満であると効果が少な
い。また0.5%を超えると、Cu−Sの析出物が粗大
化して、効果が減じる。更に、熱間圧延時に、いわゆる
“Cuヘゲ”という疵の発生頻度が急激に増大する。好
ましくは、0.05〜0.10%である。
[0032] Cr is added in order to secure an oxygen amount after decarburizing annealing necessary for forming a forsterite film.
If it is less than 0.02%, the amount of oxygen becomes extremely small. On the other hand, if it exceeds 0.30%, the amount of oxygen increases extremely, and good forsterite cannot be formed. Also, the magnetic flux density decreases. If Cu is less than 0.03%, the effect is small. On the other hand, when the content exceeds 0.5%, the precipitate of Cu-S becomes coarse, and the effect is reduced. Further, during hot rolling, the frequency of occurrence of so-called "Cu scab" flaws sharply increases. Preferably, it is 0.05 to 0.10%.

【0033】Niは0.03%未満だと効果が少なく
0.3%を超えても特開平5−306410号公報に示
されているように効果はあるが、高価となる。CrとN
iの添加は、本発明の効果を更に向上させるものであ
り、コスト的に見合う量だけの添加で良い。次に熱延板
焼鈍の必要性について述べる。既に述べた如く、特開平
4−323号公報および特開平4−324号公報におい
ては、熱延板焼鈍を施こさない場合の熱延条件を規定し
ている。この場合、熱延で、熱延板焼鈍を代替させてい
る。しかしこの場合、一次再結晶集合組織的にはGos
s方位が少なく、対応粒界理論によると最終製品の粒径
が大きくなり鉄損が劣る傾向がある。一次再結晶集合組
織でのGoss方位粒の量を確保し、最終製品の粒径を
小さくし、鉄損を向上させるのに有効な手段は、熱延板
焼鈍を行なうことである。事実、上述の両特許公報にお
いては磁束密度は向上するとの記載が有るが、鉄損向上
に関する記載はない。
If the content of Ni is less than 0.03%, the effect is small, and if it exceeds 0.3%, the effect is obtained as shown in JP-A-5-306410, but the cost is high. Cr and N
The addition of i further improves the effect of the present invention, and may be added only in an amount commensurate with cost. Next, the necessity of hot-rolled sheet annealing will be described. As described above, JP-A-4-323 and JP-A-4-324 specify the hot rolling conditions when hot-rolled sheet annealing is not performed. In this case, hot rolling is substituted for hot rolled sheet annealing. However, in this case, the primary recrystallization texture is Gos
The s orientation is small, and according to the corresponding grain boundary theory, the particle size of the final product tends to be large and iron loss tends to be inferior. An effective means for securing the amount of Goss orientation grains in the primary recrystallization texture, reducing the grain size of the final product, and improving iron loss is to perform hot-rolled sheet annealing. In fact, in both of the above-mentioned patent publications, there is a description that the magnetic flux density is improved, but there is no description about the iron loss improvement.

【0034】[0034]

【実施例】次に本発明の実施例を示す。表1に示す成分
の鋼塊を通常の方法で製造し1100〜1150℃でス
ラブを加熱後、仕上げ入口温度を975〜1125℃、
最終スタンドの圧下率を10〜55%とし、仕上げ出口
温度を825〜1025℃、巻き取り温度を525〜6
25℃とした熱間圧延で厚み1.4〜6.5mmに仕上げ
た。
Next, examples of the present invention will be described. After producing a steel ingot having the components shown in Table 1 by a usual method and heating the slab at 1100 to 1150 ° C, the finishing inlet temperature was set to 975 to 1125 ° C,
The rolling reduction of the final stand is 10 to 55%, the finishing outlet temperature is 825 to 1025 ° C, and the winding temperature is 525 to 6
Finished to a thickness of 1.4 to 6.5 mm by hot rolling at 25 ° C.

【0035】その後1120℃×2分の熱延板焼鈍を行
ない、酸洗後180〜220℃で最低2パスの温間圧延
を行なって0.22〜0.60mmに冷間圧延した。その
後820〜840℃で、N2 :25%、H2 :75%の
雰囲気ガス中で、露点62℃で70秒〜150秒の脱炭
一次再結晶焼鈍を行なった。その後、全窒素含有量を1
95〜210ppm とするストリップ窒化処理を行ないM
gOを主成分とする焼鈍分離材を塗布し、仕上焼鈍を行
なった。この仕上焼鈍は10〜20℃/時間で昇温し、
雰囲気は、N2 :25%、H2 :75%であった。
Thereafter, hot-rolled sheet annealing was performed at 1120 ° C. × 2 minutes, and after pickling, cold rolling was performed at a temperature of 180 to 220 ° C. and a minimum of two passes at a temperature of 0.22 to 0.60 mm. Thereafter, decarburization primary recrystallization annealing was performed at 820 to 840 ° C. in an atmosphere gas of N 2 : 25% and H 2 : 75% at a dew point of 62 ° C. for 70 seconds to 150 seconds. Thereafter, the total nitrogen content is reduced to 1
Strip nitriding to 95-210 ppm
An annealing separator containing gO as a main component was applied, and finish annealing was performed. This finish annealing raises the temperature at 10 to 20 ° C./hour,
Atmosphere, N 2: 25%, H 2: it was 75%.

【0036】その後1200℃で20時間、H2 :10
0%の純化焼鈍を行なった。その後、通常用いられる張
力コーティングの塗布と平滑化処理を行なった。本発明
実施例で得た磁気特性を、熱延条件、板厚、冷延条件と
ともに表1に示した。
Thereafter, H 2 : 10 at 1200 ° C. for 20 hours.
A 0% purification annealing was performed. Thereafter, application of a commonly used tension coating and smoothing treatment were performed. The magnetic properties obtained in the examples of the present invention are shown in Table 1 together with the hot rolling conditions, sheet thickness, and cold rolling conditions.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上説明したように、従来の一方向性電
磁鋼板の製造方法においては変態相確保のため、Cを幾
分多量に含有する必要があり、そのために製品板厚が厚
いものを製造しようとする場合には脱炭に時間がかか
り、コスト高になっていた。これに対し、本発明におい
ては、製品板厚が0.30mm〜0.65mmと厚手の場合
においても板厚と熱間圧延の最終スタンドの圧下率との
関係で決まる冷間圧延率を特定の範囲に収めることによ
り磁気特性の優れた厚手の一方向性電磁鋼板の製造が可
能になる。
As described above, in the conventional method for manufacturing a grain-oriented electrical steel sheet, it is necessary to contain a somewhat large amount of C in order to secure the transformation phase. In the case of production, decarburization took time and increased costs. On the other hand, in the present invention, even when the product sheet thickness is as thick as 0.30 mm to 0.65 mm, the cold rolling reduction determined by the relationship between the sheet thickness and the rolling reduction of the final stand of hot rolling is specified. When the thickness falls within the range, it is possible to manufacture a thick unidirectional magnetic steel sheet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間圧延の最終スタンドの圧下率を40%、製
品板厚0.50mm、Si%=3.0%の場合のC含有量
および冷間圧延率(RC )並びに磁束密度の関係を示す
図。
FIG. 1 shows the C content, the cold rolling reduction (R C ), and the magnetic flux density when the rolling reduction of the final stand of hot rolling is 40%, the product plate thickness is 0.50 mm, and Si% = 3.0%. The figure which shows a relationship.

【図2】冷間圧延率87%、製品板厚0.50mm、Si
%=3.0%の場合のC含有量および熱間圧延の最終ス
タンドの圧延率(RH )並びに磁束密度の関係を示す
図。
Fig. 2 Cold rolling reduction 87%, product thickness 0.50mm, Si
The figure which shows the relationship between the C content at the time of% = 3.0%, the rolling reduction ( RH ) of the final stand of hot rolling, and magnetic flux density.

【図3】熱間圧延の最終スタンドの圧下率(RH )が8
〜15%の場合における製品厚(t:mm)と最終冷間圧
延率(RC :%)との関係を示す図。
FIG. 3 shows a reduction ratio (R H ) of the final stand of hot rolling of 8
The figure which shows the relationship between the product thickness (t: mm) and the final cold rolling reduction ( RC :%) in the case of -15%.

【図4】熱間圧延の最終スタンドの圧下率(RH )が1
8〜30%の場合における製品厚(t:mm)と最終冷間
圧延率(RC :%)との関係を示す図。
FIG. 4 shows a reduction ratio (R H ) of the final stand of hot rolling of 1
The figure which shows the relationship between the product thickness (t: mm) and the final cold rolling reduction ( RC :%) in the case of 8-30%.

【図5】熱間圧延の最終スタンドの圧下率(RH )が3
3〜45%の場合における製品厚(t:mm)と最終冷間
圧延率(RC :%)との関係を示す図。
FIG. 5: Reduction ratio (R H ) of the final stand of hot rolling is 3
The figure which shows the relationship between the product thickness (t: mm) and the final cold rolling reduction ( RC :%) in the case of 3-45%.

【図6】熱間圧延の最終スタンドの圧下率(RH )が4
8〜60%の場合における製品厚(t:mm)と最終冷間
圧延率(RC :%)との関係を示す図。
FIG. 6: The reduction ratio (R H ) of the final stand of hot rolling is 4
The figure which shows the relationship between the product thickness (t: mm) and the final cold rolling reduction ( RC :%) in the case of 8-60%.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Katsuro Kuroki 59 Nippon Steel Plant Design Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C:0.010〜0.040%、 Si:2.5〜4.0%、 酸可溶性Al:0.020〜0.040%、 N:0.005〜0.010%、 S,Seの少なくとも1種を0.005〜0.015
%、 Mn:0.05〜0.8%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱間圧延を行ない、熱延板焼
鈍を行ない、その後のデスケリーング後、1回の冷間圧
延を行ない、脱炭焼鈍後ストリップを走行せしめる状態
下で水素、窒素、アンモニアの混合ガス中で窒化処理を
行ない、次いでMgOを主成分とする焼鈍分離剤を塗布
して最終仕上焼鈍を施す一方向性電磁鋼板の製造方法に
おいて、製品厚(t:mm)を0.30mm≦t≦0.65
mmとし最終冷間圧延率:RC (%)の範囲が、 上限:RC ≦(300−50t)/3(%) 下限:熱間圧延の最終スタンドの圧下率RH (%)の関
係で 5≦RH ≦15%のとき RC ≧−75t/3+92.5(%) 15<RH ≦30%のとき RC ≧−100t/3+92.5(%) 30<RH ≦45%のとき RC ≧−125t/3+92.5(%) 45<RH ≦60%のとき RC ≧−150t/3+92.5(%) とすることを特徴とする製品板厚の厚い一方向性電磁鋼
板の製造方法。
1. A weight ratio of C: 0.010 to 0.040%, Si: 2.5 to 4.0%, acid-soluble Al: 0.020 to 0.040%, N: 0.005 to 0.010%, at least one of S and Se is 0.005 to 0.015
%, Mn: 0.05 to 0.8%, the balance being 128 slabs composed of Fe and inevitable impurities.
After heating at a temperature of less than 0 ° C., hot rolling is performed, hot-rolled sheet annealing is performed, and then after deskelling, one cold rolling is performed, and after decarburizing annealing, hydrogen and nitrogen are allowed to run in a strip. In a method for producing a grain-oriented electrical steel sheet in which a nitriding treatment is performed in a mixed gas of ammonia and then an annealing separator containing MgO as a main component is applied and final finish annealing is performed, the product thickness (t: mm) is set to 0. .30mm ≦ t ≦ 0.65
mm and the range of the final cold rolling ratio: R C (%) is the upper limit: R C ≦ (300-50t) / 3 (%) The lower limit: The relationship of the reduction ratio R H (%) of the final stand of hot rolling When 5 ≦ RH ≦ 15%, RC ≧ −75t / 3 + 92.5 (%) When 15 < RH ≦ 30%, RC ≧ −100t / 3 + 92.5 (%) 30 < RH ≦ 45% When R C ≧ −125 t / 3 + 92.5 (%) When 45 <R H ≦ 60%, R C ≧ −150 t / 3 + 92.5 (%). Manufacturing method of electrical steel sheet.
【請求項2】 熱間圧延の仕上げ入口温度を950〜1
150℃、仕上げ出口温度を800〜1050℃、巻き
取り温度を500〜650℃とすることを特徴とする請
求項1記載の製品板厚の厚い一方向性電磁鋼板の製造方
法。
2. The finishing inlet temperature of hot rolling is set to 950-1.
The method for producing a unidirectional magnetic steel sheet having a thick product sheet according to claim 1, wherein the finishing temperature is 150 ° C, the finishing outlet temperature is 800 to 1050 ° C, and the winding temperature is 500 to 650 ° C.
JP9285631A 1997-10-17 1997-10-17 Production of grain oriented silicon steel sheet of which product sheet is thick Withdrawn JPH11124628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9285631A JPH11124628A (en) 1997-10-17 1997-10-17 Production of grain oriented silicon steel sheet of which product sheet is thick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9285631A JPH11124628A (en) 1997-10-17 1997-10-17 Production of grain oriented silicon steel sheet of which product sheet is thick

Publications (1)

Publication Number Publication Date
JPH11124628A true JPH11124628A (en) 1999-05-11

Family

ID=17694042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9285631A Withdrawn JPH11124628A (en) 1997-10-17 1997-10-17 Production of grain oriented silicon steel sheet of which product sheet is thick

Country Status (1)

Country Link
JP (1) JPH11124628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407506B1 (en) 1999-04-02 2002-06-18 Hitachi, Ltd. Display apparatus, display method and control-drive circuit for display apparatus
JP2017101292A (en) * 2015-12-02 2017-06-08 Jfeスチール株式会社 Production method of grain oriented electrical steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407506B1 (en) 1999-04-02 2002-06-18 Hitachi, Ltd. Display apparatus, display method and control-drive circuit for display apparatus
US6504310B2 (en) 1999-04-02 2003-01-07 Hitachi, Ltd. Display apparatus
JP2017101292A (en) * 2015-12-02 2017-06-08 Jfeスチール株式会社 Production method of grain oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH11124628A (en) Production of grain oriented silicon steel sheet of which product sheet is thick
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3492993B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104