JPH09287025A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH09287025A
JPH09287025A JP8100175A JP10017596A JPH09287025A JP H09287025 A JPH09287025 A JP H09287025A JP 8100175 A JP8100175 A JP 8100175A JP 10017596 A JP10017596 A JP 10017596A JP H09287025 A JPH09287025 A JP H09287025A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
cold rolling
grain
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8100175A
Other languages
Japanese (ja)
Inventor
Tomoji Kumano
知二 熊野
Hisakazu Kitagawa
久和 北河
Norihiro Yamamoto
紀宏 山本
Koji Yamazaki
幸司 山崎
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP8100175A priority Critical patent/JPH09287025A/en
Publication of JPH09287025A publication Critical patent/JPH09287025A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve magnetic properties by specifying cold rolling conditions. SOLUTION: A slab of prescribed composition is heated at <1,280 deg.C, hot- rolled, subjected to hot rolled plate annealing, and then cold-rolled one or more times while process-annealed between cold rolling stages. At the time of cold rolling, the diameter D(mm) of a work roll and the temp. T( deg.C) at which a steel sheet is held for >=1min at least one pass are regulated so that they satisfy 40<=D<=500 and 3/40D+115.5<=T<=3/40D+295.5. By this procedure, the size of Goss grains in the final product is decreased, and iron loss is improved. In succession to the cold rolling, decarburizing annealing is performed and then nitriding treatment is carried out under the condition where a strip is allowed to travel. Then, after the application of a separation agent at annealing, composed essentially of MgO, final finish annealing is done.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として使用される一方向性電磁鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが、機器の
小型化、エネルギー損失の減少のために要求される。励
磁特性を表す特性値として、磁場の強さ800A/mに
おける磁束密度B8 がJISで規格化されて通常使用さ
れる。又、エネルギー損失を示す特性値としては、周波
数50Hzで1.7テスラー(T)まで磁化したときの鋼
板1kg当たりのエネルギー損失(鉄損)W17/50もJI
Sで規格化されている。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are excellent in magnetic characteristics such as excitation characteristics and iron loss characteristics. Required for reduced energy loss. As a characteristic value representing the excitation characteristics, magnetic flux density B 8 in the strength of 800A / m of the magnetic field standardized by JIS it is normally used. Further, as the characteristic value indicating the energy loss, the energy loss (iron loss) W 17/50 per kg of the steel sheet when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is also JI.
Standardized by S.

【0003】磁束密度は鉄損の最大支配因子であり、一
般的に磁束密度が高い(大きい)ほど鉄損特性が良好に
なる。又、一般的に磁束密度が高くなると二次再結晶粒
が大きくなり、鉄損が悪化する場合がある。この場合
は、既に広く知られているように、磁区を制御すること
により、二次再結晶の粒径に拘らず鉄損を改善すること
ができる。
[0003] The magnetic flux density is the largest controlling factor of iron loss. Generally, the higher (larger) the magnetic flux density, the better the iron loss characteristics. In general, as the magnetic flux density increases, the size of the secondary recrystallized grains increases, and iron loss may deteriorate. In this case, as already widely known, by controlling the magnetic domain, the iron loss can be improved irrespective of the grain size of the secondary recrystallization.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板表面に{110}、圧
延方向に<001>軸をもったいわゆるゴス組織を有し
ている。良好な磁気特性を得るためには、磁化容易軸で
ある<001>を圧延方向に高度に揃えることが必要で
ある。このような高磁束密度一方向性電磁鋼板の製造技
術は古くから開発され、わが国ではいわゆるインヒビタ
ーとしてMnS,AlNを用いる方法(特開昭40−1
5644号公報)、Mns,MnSe,Sb等を用いる
方法(特開昭51−13469号公報)等がある。これ
らの場合は、熱延板段階でのインヒビターの完全固溶が
求められ、実際の熱間圧延時は鋼塊(スラブ)の加熱温
度を1350℃以上にすることが必要である。
[0004] This unidirectional electrical steel sheet has a so-called goss structure in which secondary recrystallization occurs in the final finish annealing step and has {110} on the steel sheet surface and <001> axis in the rolling direction. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction. The manufacturing technology of such high magnetic flux density unidirectional magnetic steel sheet has been developed for a long time, and in Japan, a method using MnS or AlN as a so-called inhibitor (Japanese Patent Laid-Open No. 40-1).
5644), a method using Mns, MnSe, Sb and the like (JP-A-51-13469). In these cases, complete solid solution of the inhibitor at the hot rolled sheet stage is required, and it is necessary to set the heating temperature of the steel ingot (slab) to 1350 ° C. or higher during actual hot rolling.

【0005】この高温度の加熱には数々の不利、不便な
点がある。このため、この熱延時の鋼塊(スラブ)の加
熱温度を下げる試みが行われている。その一つを開示し
たものとして特開昭59−56522号公報がある。こ
の技術の発展として多くの発明がなされ、インヒビター
形成のために脱炭焼鈍から最終仕上焼鈍の昇温過程で窒
化を行う方法(特開昭62−45285号公報、特開昭
60−179855号公報)、更にはストリップを走行
せしめる状態下での水素、窒素、アンモニアの混合ガス
を用いた窒化処理を行う方法(特開平2−77525号
公報、特開平1−82400号公報、特開平3−180
460号公報、特開平1−317592号公報)が提案
された。
There are a number of disadvantages and inconveniences in heating at this high temperature. For this reason, attempts have been made to lower the heating temperature of the steel ingot (slab) during hot rolling. JP-A-59-56522 discloses one of them. A number of inventions have been made as a development of this technology, and a method of performing nitridation in the process of increasing the temperature from decarburizing annealing to final finish annealing to form inhibitors (Japanese Patent Application Laid-Open Nos. 62-45285 and 60-179855). ), And a method of performing a nitriding treatment using a mixed gas of hydrogen, nitrogen and ammonia while the strip is running (JP-A-2-77525, JP-A-1-82400, JP-A-3-180).
460, JP-A-1-317592) have been proposed.

【0006】又、脱炭焼鈍時の一次再結晶完了後から最
終仕上焼鈍時の二次再結晶完了前までの途中段階での一
次再結晶粒径を制御する方法(特開平3−294425
号公報、特開平2−96275号公報、特開平2−59
020号公報、特開平1−82393号公報)も提案さ
れた。ところで、トランスは電圧変換機器として今日不
可欠であり、トランスでのエネルギー損失が大きいこと
は重大な社会、経済問題である。トランスメーカーは、
トランスの最適設計により、また電磁鋼板メーカーは、
電磁鋼板の品質向上により、省エネルギーに鋭意努力し
ている。電磁鋼板の品質向上と一言で言っても数々の方
法が今までに考案され実施されている。特に省エネルギ
ーに関しては、電磁鋼板の鉄損(電磁鋼板を励磁した場
合、熱となって消費されるエネルギー損失)を低減する
ことである。
A method of controlling the primary recrystallized grain size at an intermediate stage from the completion of the primary recrystallization at the time of decarburizing annealing to the completion of the secondary recrystallization at the time of final finishing annealing (Japanese Patent Laid-Open No. 3-294425).
JP, JP-A-2-96275, JP-A-2-59
020, JP-A-1-82393) have also been proposed. By the way, a transformer is indispensable as a voltage conversion device today, and a large energy loss in the transformer is a serious social and economic problem. Transformers are
Due to the optimal design of the transformer, the manufacturer of electrical steel sheets
We are working hard to save energy by improving the quality of electrical steel sheets. Numerous methods have been devised and implemented to date, in short, to improve the quality of electrical steel sheets. In particular, regarding energy saving, it is to reduce iron loss of the magnetic steel sheet (energy loss consumed as heat when the magnetic steel sheet is excited).

【0007】ところで方向性電磁鋼の最終冷間圧延につ
いて規定したものに特開昭49−34417号公報、特
開昭50−16610号公報がある。前者は冷間圧延ロ
ール径を、後者は、鋼板が保持される温度を規定したも
のである。本発明は、これらの方法とは次の点で異な
る。スラブ加熱温度が高く、脱炭焼鈍後の窒化処理が
なく、冷間圧延のロール径が300mmφ以下で、通常
の冷間圧延機を除外している。
By the way, Japanese Patent Laid-Open Nos. 49-34417 and 50-16610 disclose the final cold rolling of grain-oriented electrical steel. The former defines the cold rolling roll diameter, and the latter defines the temperature at which the steel sheet is held. The present invention differs from these methods in the following points. The slab heating temperature is high, there is no nitriding treatment after decarburization annealing, the roll diameter of cold rolling is 300 mmφ or less, and ordinary cold rolling mills are excluded.

【0008】この様に従来の技術は、ロール径に制約が
あり、また高温スラブ加熱のため、コストアップの要因
を内在している。
As described above, in the conventional technique, there is a limitation in the diameter of the roll, and since the slab is heated at a high temperature, there is an inherent factor of cost increase.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の如く、
方向性電磁鋼板の冷間圧延において、冷延機の制約を外
し、また熱間圧延の容易性を確保して、磁気特性の優れ
た方向性電磁鋼板の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention, as described above, is as follows.
In cold rolling of a grain-oriented electrical steel sheet, the constraint of a cold rolling machine is removed and the easiness of hot rolling is secured, and a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties is provided.

【0010】[0010]

【課題を解決するための手段】本発明は特開平2−77
525、1−82400、3−180460、1−31
7592の各公報で提案されている方向性電磁鋼板の製
造方法において、更に良好な磁気特性を得るために、冷
間圧延機及び、冷間圧延条件を示すものである。これら
の特許においても充分に方向性電磁鋼板は製造可能であ
るが、昨今の省エネルギーの要求に応えるためには、更
なる磁気特性の向上が強く求められている。
The present invention is disclosed in JP-A-2-77.
525, 1-82400, 3-180460, 1-31
In the production method of grain-oriented electrical steel sheet proposed in each publication of 7592, a cold rolling mill and cold rolling conditions are shown in order to obtain more favorable magnetic characteristics. In these patents, the grain-oriented electrical steel sheet can be sufficiently manufactured, but further improvement of magnetic characteristics is strongly demanded in order to meet the recent demand for energy saving.

【0011】本発明は、上記要望に応えるものであり、
その要旨は、重量比で、C:0.025〜0.075
%、Si:2.5〜4.0%、酸可溶性Al:0.02
0〜0.040%、N:0.005〜0.010%、
S,Seの少なくとも1種を0.005〜0.015
%、Mn:0.05〜0.8%、残部がFe及び不可避
的不純物からなるスラブを1280℃未満の温度で加熱
し、熱延を行ない、熱延板焼鈍を行ない、中間焼鈍を挟
む一回以上の冷延を行ない、脱炭焼鈍後ストリップを走
行せしめる状態下で水素、窒素、アンモニアの混合ガス
中で窒化処理を行ない、次いでMgOを主成分とする焼
鈍分離剤を塗布して最終仕上焼鈍を施す一方向性電磁鋼
板の製造の最終冷延において、冷間圧延機のワークロー
ル径D(mm)と、複数回のパスの内の少なくとも1回の
パスにおいて1分以上鋼板を保持する温度T(℃)との
関係を 3/40D+115.5≦T≦3/40D+295.5 (40≦D≦500mm)とする磁気特性の優れた一方向
性電磁鋼板の製造方法であり、更に、上記鋼組成に、必
要に応じて、Su,Sb,Cr,Pの少くとも1種を
0.02〜0.30%含有させるか、或いは、Cuを
0.03〜0.30%および/またはNiを0.03〜
0.3%含有させる磁気特性の優れた一方向性電磁鋼板
の製造方法である。
The present invention meets the above-mentioned needs.
The gist is that C: 0.025 to 0.075 by weight.
%, Si: 2.5 to 4.0%, acid-soluble Al: 0.02
0 to 0.040%, N: 0.005 to 0.010%,
0.005 to 0.015 of at least one of S and Se
%, Mn: 0.05 to 0.8%, the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot rolled, hot rolled sheet annealed, and intermediate annealed. Cold rolling more than one time, decarburization annealing, nitriding treatment in a mixed gas of hydrogen, nitrogen, and ammonia under the condition of running the strip, and then applying an annealing separator containing MgO as the main component for final finishing. In the final cold rolling of the production of the unidirectional electrical steel sheet to be annealed, the steel sheet is held for 1 minute or more in the work roll diameter D (mm) of the cold rolling mill and in at least one of the multiple passes. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which has a relationship with a temperature T (° C.) of 3 / 40D + 115.5 ≦ T ≦ 3 / 40D + 295.5 (40 ≦ D ≦ 500 mm). Steel composition as needed Su, Sb, Cr, or is contained 0.02 to 0.30% of at least one P, or from 0.03 to 0.30% of Cu and / or Ni 0.03 to
This is a method for producing a grain-oriented electrical steel sheet having an excellent magnetic property of containing 0.3%.

【0012】本発明で提案された方法を用いると、脱炭
焼鈍後の一次再結晶集合組織が著しく改善されることを
見い出した。即ちGoss方位粒を増加させ、{11
1}{411}方位粒を減少させることである。そもそ
も、一方向性電磁鋼板の製造において良好な磁気特性
(方向性の良好なGoss方位を有する2次再結晶集合
組織)を得るためには、脱炭焼鈍後の一次再結晶集合の
適正化及びインヒビター強度の確保が必要である。
It has been found that the use of the method proposed in the present invention significantly improves the primary recrystallization texture after decarburization annealing. That is, the number of Goss oriented grains is increased to {11
1} {411} oriented grains. In the first place, in order to obtain good magnetic properties (secondary recrystallization texture having Goss orientation with good directionality) in the production of unidirectional electrical steel sheet, optimization of primary recrystallization aggregation after decarburization annealing and It is necessary to secure the inhibitor strength.

【0013】従来から一方向性電磁鋼板の製造において
一次再結晶集合組織を適正化するためには、熱間圧延後
最終冷間圧延の間にある程度の変態相が必要とされてい
た。このために炭素を含有させている。ところが、12
80℃未満のスラブ加熱法においては一次再結晶集合組
織の適正化の程度が少ない。これは原勢らの対応粒界理
論(例えば特公平7−26155、日本金属学会誌第5
9巻、第9号(1995)917−924)によると磁
気特性があまり良好にならないことを意味する。即ち、
本発明を適用しないとGoss方位粒が少なくそのΣ9
方位関係にある{111}{411}方位粒が多く、完
成した2次再結晶において、Goss粒のサイズが大き
く、鉄損が劣る。
Conventionally, in order to optimize the primary recrystallization texture in the production of grain-oriented electrical steel sheets, a certain amount of transformation phase was required during the final cold rolling after the hot rolling. For this reason, carbon is included. However, 12
In the slab heating method of less than 80 ° C, the degree of optimization of the primary recrystallization texture is small. This is the corresponding grain boundary theory of Harase et al.
According to Vol. 9, No. 9 (1995) 917-924), the magnetic characteristics are not so good. That is,
When the present invention is not applied, the number of Goss oriented grains is small and the Σ9
There are many {111} {411} oriented grains having an orientation relation, and in the completed secondary recrystallization, the size of the Goss grains is large and the iron loss is poor.

【0014】そもそも方向性電磁鋼板の鉄損向上策の代
表的なものは、製品板のGoss方位粒を先鋭化し、か
つ二次再結晶粒のサイズを小さくすることである。本発
明を用いると、まさにこの理想的な方向性電磁鋼板を得
ることができる。この理由は、冷間圧延時の温度と、冷
間圧延機のロール径を本発明の範囲とすると、脱炭焼鈍
後の集合組織(一次集合組織)においてGoss({1
10}<001>)を多くすることができ、そのΣ9対
応方位粒である{111}<211>(厳密には、{7
78}<447>),{411}<148>を少なくす
ることが可能になる。この増加した一次再結晶時のGo
ss粒(核)が二次再結晶成長するため、最終製品での
Goss粒のサイズが小さくなり鉄損が向上する。ま
た、本発明を用いると一次再結晶のGossの集積度も
向上し、製品板でのGoss方位集積度も向上するので
鉄損が著しく改善される。
In the first place, a typical measure for improving the iron loss of grain-oriented electrical steel sheets is to sharpen the Goss-oriented grains of the product sheet and reduce the size of the secondary recrystallized grains. According to the present invention, this ideal grain-oriented electrical steel sheet can be obtained. The reason for this is that if the temperature at the time of cold rolling and the roll diameter of the cold rolling mill are within the range of the present invention, the texture (primary texture) after decarburization annealing is Goss ({1).
10} <001>) can be increased and {111} <211> (strictly speaking, {7}
78} <447>) and {411} <148> can be reduced. This increased Go during the primary recrystallization
Since the ss grains (nuclei) undergo secondary recrystallization growth, the size of the Goss grains in the final product is reduced and the iron loss is improved. Further, when the present invention is used, the degree of integration of Goss in the primary recrystallization is also improved, and the degree of integration of the Goss orientation in the product plate is also improved, so that the iron loss is remarkably improved.

【0015】[0015]

【発明の実施の形態】以下に本発明を詳細に説明する。
まず本発明において、冷間圧延機のワークロール径、鋼
板の温度と磁束密度B 8 の関係を0.23mm材を例に示
し(図1)、また、同様に、冷間圧延機のワークロール
径、鋼板の温度と鉄損W17/50 の関係を0.23mm材の
例を示す(図2)。この図1、図2は、C:0.050
〜0.060%、Si:3.15〜3.30%、酸可溶
性Al:0.026〜0.029%、N:0.0075
〜0.0085%、S:0.0070〜0.0080
%、Mn:0.08〜0.11%、Cr:0.08〜
0.12%、Sn:0.04〜0.07%として得られ
たスラブを1150℃で加熱後、通常の方法で熱延し、
530〜580℃で巻き取り、その後1120℃で2分
間の熱延板焼鈍後に0.220mmに所定の径のワークロ
ールで圧延し1回鋼板をその間で各温度に保持し、その
後脱炭焼鈍、ストリップ窒化し、MgOを主成分とする
焼鈍分離材を塗布して、2次再結晶焼鈍後した。次に平
滑化焼鈍し、燐酸塩を主成分とする張力絶縁被膜を塗布
した後に磁気特性を測定した結果である。この様に本発
明範囲では良好な磁束密度が得られている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, in the present invention, the work roll diameter of the cold rolling mill, the steel
Plate temperature and magnetic flux density B 8The relationship of 0.23mm material is shown as an example.
(Fig. 1), and also work rolls for cold rolling mills.
Diameter, temperature of steel plate and iron loss W17/50Relationship of 0.23mm material
An example is shown (Fig. 2). 1 and 2 show C: 0.050
~ 0.060%, Si: 3.15 ~ 3.30%, acid soluble
Property Al: 0.026 to 0.029%, N: 0.0075
~ 0.0085%, S: 0.0070 to 0.0080
%, Mn: 0.08 to 0.11%, Cr: 0.08 to
0.12%, Sn: 0.04 to 0.07%
After heating the slab at 1150 ° C, hot-roll it in the usual way,
Wind up at 530-580 ℃, then 1120 ℃ for 2 minutes
After annealing the hot rolled sheet between
Rolling the steel sheet once and holding the steel sheet at each temperature in between,
Post decarburization annealing, strip nitriding, MgO as the main component
The annealing separator was applied and after secondary recrystallization annealing. Then flat
Smooth annealing and apply a tension insulating coating consisting mainly of phosphate
It is the result of measuring the magnetic properties after the test. In this way
Good magnetic flux density is obtained in the bright range.

【0016】次にロール径の限定理由を述べる。最大値
500mmを越えると、方向性電磁鋼板の様な薄い材料の
圧延は、ロールの“キス現象”により不可能となる。ま
た最小の40mmは、これ以上小さくても本発明の効果は
確保されるが、実際の多量工業生産では実用化されてい
ない。ロール径が小さい方が、鋼板温度の保持すべき温
度が低下するのは、鋼板の変形形態が圧縮から引き抜き
となり脱炭焼鈍後の一次再結晶集合組織においてGos
s方位粒が増加するためである。
Next, the reason for limiting the roll diameter will be described. If the maximum value exceeds 500 mm, rolling of a thin material such as a grain-oriented electrical steel sheet becomes impossible due to the "kiss phenomenon" of the roll. The effect of the present invention can be ensured even if the minimum value is 40 mm, but it has not been put to practical use in actual mass production. The smaller the roll diameter, the lower the temperature at which the steel sheet temperature is to be maintained is because the deformed form of the steel sheet is pulled out from the compression and the primary recrystallization texture after decarburization annealing is Gos.
This is because s-oriented grains increase.

【0017】鋼板保持温度は、これ以上の温度に保持す
ると冷間圧延中に回復が生じ、一次再結晶集合組織良好
とならず、磁気特性が劣る。一方、下限の温度未満でも
二次再結晶は良好であるが磁気特性が優れない。ワーク
ロール径(D:mm)と鋼板保持温度(T:℃)は次の式
を満たさねばならない。40≦D≦500mmとして、 3/40D+115.5≦T≦3/40D+295.5 である。
If the steel sheet holding temperature is kept above this temperature, recovery occurs during cold rolling, the primary recrystallization texture is not good, and the magnetic properties are poor. On the other hand, even if the temperature is lower than the lower limit temperature, the secondary recrystallization is good but the magnetic properties are not excellent. The work roll diameter (D: mm) and the steel sheet holding temperature (T: ° C) must satisfy the following formula. Assuming that 40 ≦ D ≦ 500 mm, 3 / 40D + 115.5 ≦ T ≦ 3 / 40D + 295.5.

【0018】特に望ましい範囲は、40≦D≦180mm
で 3/40D+165.5≦T(℃)≦3/40D+23
5.5 である。図2は図1の鉄損(W17/50 :W/kg)を示し
ている。この様に本発明の範囲で良好な鉄損が得られて
いる。また、ロール径40≦D≦180mmで、 3/40D+165.5≦T(℃)≦3/40D+23
5.5 特に鉄損が良好となり、この範囲が特に望ましい。
A particularly desirable range is 40≤D≤180 mm
In 3 / 40D + 165.5 ≦ T (° C.) ≦ 3 / 40D + 23
5.5. FIG. 2 shows the iron loss (W 17/50 : W / kg) of FIG. Thus, good iron loss is obtained within the scope of the present invention. Also, when the roll diameter is 40 ≦ D ≦ 180 mm, 3 / 40D + 165.5 ≦ T (° C.) ≦ 3 / 40D + 23
5.5 Particularly good iron loss is obtained, and this range is particularly desirable.

【0019】次に、本発明において出発材とする電磁鋼
スラブの成分組成の限定理由は、以下のとおりである。
Cは、0.025〜0.075%とした。0.025%
未満の場合は特に0.27mm以下の薄手材で2次再結晶
が安定しない。また、0.075%を越えると脱炭工程
での生産性が著しく阻害され本発明の目的から外れる。
Next, the reasons for limiting the component composition of the electromagnetic steel slab used as the starting material in the present invention are as follows.
C was set to 0.025 to 0.075%. 0.025%
If it is less than 0.27 mm, secondary recrystallization is not stable especially with a thin material of 0.27 mm or less. On the other hand, if it exceeds 0.075%, the productivity in the decarburization step is remarkably impaired, deviating from the object of the present invention.

【0020】Siはその含有量が2.5%未満になる
と、良好な鉄損が得られない。また4.0%を超える
と、脆性のために冷間圧延等室温での鋼板処理が困難に
なる。S及びSeは、0.015%以下、望ましくは
0.013%以下である。1280℃以下のスラブ加熱
温度で熱延板を製造し、その後熱延板焼鈍、冷間圧延の
後での、ストリップ窒化等による脱炭焼鈍工程以降のイ
ンヒビターの作り込みで製造する一方向性電磁鋼板で
は、多量のS,Seは一次再結晶粒の粒成長を妨げ有害
であるためである。0.005%未満では、熱延での操
業上の不可避的変動要素(スキッド上及び間の温度履歴
差、圧延速度の加速による熱延温度の変動等)により、
一次再結晶粒の粒成長に場所的変動が生じ易くなり工業
的に安定的に製品が製造できない。
If the Si content is less than 2.5%, good iron loss cannot be obtained. On the other hand, if it exceeds 4.0%, it becomes difficult to perform steel sheet processing such as cold rolling at room temperature due to brittleness. S and Se are 0.015% or less, desirably 0.013% or less. One-way electromagnetic produced by manufacturing a hot-rolled sheet at a slab heating temperature of 1280 ° C. or lower, and then making an inhibitor after the decarburization annealing step such as strip nitriding after hot-rolled sheet annealing and cold rolling. This is because in the steel sheet, a large amount of S and Se hinders the grain growth of the primary recrystallized grains and is harmful. If it is less than 0.005%, due to unavoidable fluctuation factors in operation in hot rolling (temperature history difference on and between skids, fluctuation of hot rolling temperature due to acceleration of rolling speed, etc.),
Since the variation in the grain growth of the primary recrystallized grains is likely to occur, the product cannot be manufactured industrially stably.

【0021】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより(Al,Si)Nを形成せしめるこ
とを必須としているから、フリーのAlが一定量以上必
要である。そのため、sol.Alとして0.020〜
0.040%添加する。Mnは、その含有量が少な過ぎ
ると二次再結晶が不安定となり、一方、多過ぎると高い
磁束密度をもつ製品を得難くなる。適正な含有量は0.
05〜0.8%である。好ましくは、0.070〜0.
3%である。
Al combines with N to form AlN,
In the present invention, since it is essential to form (Al, Si) N by nitriding the steel after the post-process, ie, after the completion of the primary recrystallization, a certain amount of free Al is required. Therefore, sol. 0.020 or more as Al
Add 0.040%. If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The appropriate content is 0.
05 to 0.8%. Preferably, 0.070-0.0.
3%.

【0022】Nは0.005%未満では二次再結晶粒の
発達が悪くなる。一方0.010%を超えるとブリスタ
ーと呼ばれる鋼板のふくれが発生する。Pは、一次再結
晶集合組織を改善する効果が報告されている。低Pで
は、この効果が少なく、また製鋼コスト的にコストアッ
プになるので下限は0.02%とする。上限について
は、0.30%を超えるとPは粒界偏析して脆性破壊を
起しやすくなり、工業的な生産が困難になる。このため
上限を0.30%とする。
If N is less than 0.005%, the development of secondary recrystallized grains becomes poor. On the other hand, when it exceeds 0.010%, swelling of steel plate called blister occurs. It has been reported that P improves the primary recrystallization texture. At a low P, this effect is small and the cost of steelmaking increases, so the lower limit is made 0.02%. With respect to the upper limit, if it exceeds 0.30%, P segregates at the grain boundary and brittle fracture is likely to occur, and industrial production becomes difficult. Therefore, the upper limit is set to 0.30%.

【0023】Sn,Sbは従来からいわれている如く、
一次再結晶集合組織において{110}<001>方位
粒を増加させる効果があるとともに、硫化物を均一に析
出する効果がある。従って、本発明では、Cu−S,M
n−Sの如き硫化物の析出を制御する効果が増長され
る。更に、Sn,Sbを多く添加すると、脱炭焼鈍時の
酸化がされ難く、また一次再結晶粒成長し難くなる傾向
がある。このため、脱炭焼鈍温度を従来の820〜84
0℃より20℃程度上げざるを得ない。このことは、一
方向性電磁鋼板の一次被膜形成を容易ならしめる方向で
ある。また、Sb,Sn添加により二次再結晶粒径が小
さくなるため、添加なしと比べて鉄損(特に低磁場鉄
損)が良好となる。一方、Sb又はSnが0.02%未
満であると、二次再結晶粒があまり小さくならない。ま
た、Sb又はSnが0.30%を超えると、脱炭焼鈍後
の窒化処理が困難となり、工業生産に適していない。
Sn and Sb are, as has been conventionally said,
The primary recrystallization texture has the effect of increasing the {110} <001> orientation grains and has the effect of uniformly depositing sulfides. Therefore, in the present invention, Cu-S, M
The effect of controlling the precipitation of sulfides such as n-S is enhanced. Furthermore, when Sn and Sb are added in a large amount, there is a tendency that oxidation during decarburization annealing is hardly performed and primary recrystallized grains grow hardly. For this reason, the decarburization annealing temperature is set to the conventional 820-84.
There is no choice but to raise it by 20 ° C from 0 ° C. This is a direction that facilitates the formation of the primary coating of the grain-oriented electrical steel sheet. In addition, since the secondary recrystallized grain size is reduced by adding Sb and Sn, iron loss (particularly, low magnetic field iron loss) is improved as compared with no addition. On the other hand, when Sb or Sn is less than 0.02%, the secondary recrystallized grains do not become too small. On the other hand, when Sb or Sn exceeds 0.30%, nitriding treatment after decarburizing annealing becomes difficult, which is not suitable for industrial production.

【0024】Crは、ファルステライト皮膜形成に必要
な脱炭焼鈍後の酸素量を確保するために添加される。
0.02%より少ないと酸素量が極端に少なくなる。ま
た0.30%を超えると酸素量が極端に増加し、良好な
フォルステライトが形成されなくなる。また磁束密度も
低下する。Cuが0.03%未満であると効果が少な
い。また0.5%を超えると、Cu−Sの析出物が粗大
化して、効果が減じる。更に、熱間圧延時に、いわゆる
“Cuヘゲ”という疵の発生頻度が急激に増大する。好
ましくは、0.05〜0.10%である。
[0024] Cr is added to secure the amount of oxygen after decarburization annealing necessary for forming a farsterite film.
If it is less than 0.02%, the amount of oxygen becomes extremely small. On the other hand, if it exceeds 0.30%, the amount of oxygen increases extremely, and good forsterite is not formed. Also, the magnetic flux density decreases. If Cu is less than 0.03%, the effect is small. On the other hand, if it exceeds 0.5%, Cu-S precipitates are coarsened and the effect is reduced. Further, during hot rolling, the frequency of occurrence of so-called "Cu hegging" defects sharply increases. Preferably, it is 0.05 to 0.10%.

【0025】Niは0.03%未満だと効果が少なく
0.3%を超えても特開平5−306410号公報に示
されているように効果はあるが、高価となる。このため
0.30%を上限とする。CrとNiの添加は、本発明
の効果を更に向上させるものであり、コスト的に見合う
量だけの添加で良い。次に熱延板焼鈍の必要性について
述べる。熱延板焼鈍を行なわないと、磁気特性が安定し
ない。この理由は、熱延板焼鈍を行なわないと一次再結
晶集合組織的にはGoss方位が少なく、対応粒界理論
によると最終製品の粒径が大きくなり鉄損が劣る傾向が
ある。一次再結晶集合組織でのGoss方位粒の量を確
保し、最終製品の粒径を小さくし、鉄損を向上させるの
に有効な手段は、熱延板焼鈍を行なうことである。
If Ni is less than 0.03%, the effect is small, and if it exceeds 0.3%, it is effective as shown in Japanese Patent Laid-Open No. 5-306410, but it becomes expensive. Therefore, the upper limit is 0.30%. The addition of Cr and Ni further improves the effect of the present invention, and may be added in amounts that are commensurate with cost. Next, the necessity of annealing the hot rolled sheet will be described. Magnetic properties are not stable unless hot-rolled sheet annealing is performed. The reason for this is that if hot-rolled sheet annealing is not performed, the Goss orientation is small in terms of primary recrystallization texture, and according to the corresponding grain boundary theory, the grain size of the final product tends to be large and iron loss tends to be poor. An effective means for securing the amount of Goss-oriented grains in the primary recrystallization texture, reducing the grain size of the final product, and improving iron loss is to perform hot-rolled sheet annealing.

【0026】[0026]

【実施例】【Example】

<実施例1>表1に示す成分の鋼塊を通常の方法で製造
し1100〜1150℃でスラブを加熱後、通常の熱延
で熱延板厚2.3mmに仕上げた。その後1120℃×2
分の熱延板焼鈍を行ない、酸洗後180〜220℃で最
低2パスの温間圧延を行なって0.22mmに冷間圧延し
た。その後820℃〜840℃で、N2 :25%、
2 :75%の雰囲気ガス中で、含有C量に応じて露点
62℃で70秒〜90秒の脱炭一次再結晶焼鈍を行なっ
た。
 <Example 1> A steel ingot having the components shown in Table 1 was produced by a usual method.
After heating the slab at 1100-1150 ° C, normal hot rolling
The hot-rolled sheet thickness was finished to 2.3 mm. Then 1120 ° C x 2
Hot-rolled sheet is annealed for 180 min.
Low 2 pass warm rolling and 0.22mm cold rolling
Was. Thereafter, at 820 ° C. to 840 ° C., NTwo: 25%,
H Two: Dew point depending on C content in 75% atmospheric gas
Decarburization primary recrystallization annealing is performed at 62 ° C for 70 seconds to 90 seconds.
Was.

【0027】[0027]

【表1】 [Table 1]

【0028】その後、全窒素含有量を195〜210pp
m とするストリップ窒化処理を行ないMgOを主成分と
する焼鈍分離材を塗布し、仕上焼鈍を行なった。この仕
上焼鈍は10〜20℃/時間で昇温し、雰囲気は、
2 :25%、H2 :75%であった。その後1200
℃で20時間、H2 :100%の純化焼鈍を行なった。
その後、通常用いられる張力コーティングの塗布と平滑
化処理を行なった。その結果を表2に示す。
Then, the total nitrogen content is adjusted to 195 to 210 pp.
m, a strip nitriding treatment was performed, an annealing separator containing MgO as a main component was applied, and finish annealing was performed. In this finish annealing, the temperature is raised at 10 to 20 ° C./hour, and the atmosphere is
N 2 : 25%, H 2 : 75%. Then 1200
A purification annealing of H 2 : 100% was performed at 20 ° C. for 20 hours.
Thereafter, application of a commonly used tension coating and smoothing treatment were performed. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】<実施例2>表3に示す成分の鋼塊を通常
の方法で製造し1100〜1150℃でスラブを加熱
後、通常の熱延で熱延板厚2.6mmに仕上げた。その後
1120℃×2分の熱延板焼鈍を行ない、酸洗後180
〜220℃で最低2パスの温間圧延を行なって0.2
9,0.26mmに冷間圧延した。その後820℃〜84
0℃で、N2 :25%、H2 :75%の雰囲気ガス中
で、露点62℃で150〜170秒の脱炭一次再結晶焼
鈍を行なった。
Example 2 A steel ingot having the components shown in Table 3 was manufactured by a usual method, the slab was heated at 1100 to 1150 ° C., and then the hot rolled sheet was finished to a thickness of 2.6 mm by ordinary hot rolling. After that, hot-rolled sheet annealing is performed at 1120 ° C for 2 minutes, and after pickling, 180
0.2 at least 220 warm rolling at ~ 220 ℃
Cold rolled to 9,0.26 mm. After that 820 ℃ ~ 84
Decarburization primary recrystallization annealing was performed at 0 ° C. in an atmosphere gas of N 2 : 25% and H 2 : 75% at a dew point of 62 ° C. for 150 to 170 seconds.

【0031】その後、全窒素含有量を195〜210pp
m とするストリップ窒化処理を行ないMgOを主成分と
する焼鈍分離材を塗布し、仕上焼鈍を行なった。この仕
上焼鈍は10〜20℃/時間で昇温し、雰囲気は、
2 :25%、H2 :75%であった。
Then, the total nitrogen content is adjusted to 195 to 210 pp.
m, a strip nitriding treatment was performed, an annealing separator containing MgO as a main component was applied, and finish annealing was performed. In this finish annealing, the temperature is raised at 10 to 20 ° C./hour, and the atmosphere is
N 2 : 25%, H 2 : 75%.

【0032】[0032]

【表3】 [Table 3]

【0033】その後1200℃で20時間、H2 :10
0%の純化焼鈍を行なった。その後、通常用いられる張
力コーティングの塗布と平滑化処理を行なった。その結
果を表4に示す。
Thereafter, the temperature is set to 1200 ° C. for 20 hours, and H 2 : 10 is set.
A 0% purification annealing was performed. Thereafter, application of a commonly used tension coating and smoothing treatment were performed. The results are shown in Table 4.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【発明の効果】本発明を適用することにより、磁気特性
が極めてすぐれた一方向性電磁鋼板が製造可能となり、
エネルギー節約に極めて多大の貢献が可能となる。
EFFECTS OF THE INVENTION By applying the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having excellent magnetic properties,
An extremely large amount of energy can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間圧延機のワークロール径、鋼板の温度と磁
束密度B8 の関係を0.23mm材の例を示す図。
FIG. 1 is a diagram showing an example of a 0.23 mm material showing the relationship between the work roll diameter of a cold rolling mill, the temperature of a steel plate, and the magnetic flux density B 8 .

【図2】冷間圧延機のワークローク径、鋼板の温度と鉄
損W17/50 の関係を示す図。
FIG. 2 is a diagram showing a relationship between a work roque diameter of a cold rolling mill, a temperature of a steel plate, and an iron loss W 17/50 .

フロントページの続き (72)発明者 山本 紀宏 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 山崎 幸司 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内(72) Inventor Norihiro Yamamoto 1-1 Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture Inside Nippon Steel Corporation Hachiman Works (72) Inventor Koji Yamazaki 1-Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka 1- 1 Inside Nippon Steel Co., Ltd. Yawata Works (72) Inventor Katsuro Kuroki 59 Nippon Steel Plant Design Co., Ltd., 46 Nakahara, Tobata-ku, Kitakyushu, Fukuoka

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C:0.025〜0.075% Si:2.5〜4.0%、 酸可溶性A1:0.020〜0.040%、 N:0.005〜0.010%、 S,Seの少なくとも1種を0.005〜0.015
%、 Mn:0.05〜0.8%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延を行ない、熱延板焼鈍を
行ない、中間焼鈍を挟む一回以上の冷延を行ない、脱炭
焼鈍後ストリップを走行せしめる状態下で水素、窒素、
アンモニアの混合ガス中で窒化処理を行ない、次いでM
gOを主成分とする焼鈍分離剤を塗布して最終仕上焼鈍
を施す一方向性電磁鋼板の製造の最終冷延において、冷
間圧延機のワークロール径D(mm)と、複数回のパスの
内の少なくとも1回のパスにおいて1分以上鋼板を保持
する温度T(℃)との関係を 3/40D+115.5≦T≦3/40D+295.5 (40≦D≦500mm)とすることを特徴とする磁気特
性の優れた一方向性電磁鋼板の製造方法。
1. By weight ratio, C: 0.025 to 0.075% Si: 2.5 to 4.0%, acid soluble A1: 0.020 to 0.040%, N: 0.005 to 0. 0.010%, 0.005 to 0.015 of at least one of S and Se
%, Mn: 0.05 to 0.8%, 128 slabs with the balance Fe and unavoidable impurities
Heating at a temperature of less than 0 ° C., hot rolling, hot-rolled sheet annealing, cold rolling at least once with intermediate annealing sandwiched between hydrogen, nitrogen, and decarburization annealing, and running strips.
Nitriding is performed in a mixed gas of ammonia, then M
In the final cold rolling of the production of the grain-oriented electrical steel sheet in which the annealing separator having gO as a main component is applied and the final finish annealing is performed, the work roll diameter D (mm) of the cold rolling mill and the number of passes The relationship with the temperature T (° C) at which the steel sheet is held for 1 minute or more in at least one pass of the above is 3 / 40D + 115.5 ≤ T ≤ 3 / 40D + 295.5 (40 ≤ D ≤ 500 mm). A method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties.
【請求項2】 更にSn,Sb,Cr,Pの少なくとも
1種を0.02〜0.30%含有させることを特徴とす
る請求項1記載の磁気特性の優れた一方向性電磁鋼板の
製造方法。
2. The production of a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, further comprising 0.02 to 0.30% of at least one of Sn, Sb, Cr and P. Method.
【請求項3】 更にCuを0.03〜0.30%含有さ
せることを特徴とする請求項1、又は2記載の磁気特性
の優れた一方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet with excellent magnetic properties according to claim 1, further comprising 0.03 to 0.30% of Cu.
【請求項4】 更にNiを0.03〜0.3%を含有さ
せることを特徴とする請求項1,2、又は3記載の磁気
特性の優れた一方向性電磁鋼板の製造方法。
4. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, further comprising 0.03 to 0.3% of Ni.
JP8100175A 1996-04-22 1996-04-22 Production of grain oriented silicon steel sheet excellent in magnetic property Withdrawn JPH09287025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100175A JPH09287025A (en) 1996-04-22 1996-04-22 Production of grain oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8100175A JPH09287025A (en) 1996-04-22 1996-04-22 Production of grain oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH09287025A true JPH09287025A (en) 1997-11-04

Family

ID=14266986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100175A Withdrawn JPH09287025A (en) 1996-04-22 1996-04-22 Production of grain oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH09287025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192787A (en) * 2000-01-11 2001-07-17 Nippon Steel Corp Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
WO2008133337A1 (en) 2007-04-24 2008-11-06 Nippon Steel Corporation Process for producing unidirectionally grain oriented electromagnetic steel sheet
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
CN113242911A (en) * 2018-12-19 2021-08-10 Posco公司 Oriented electrical steel sheet and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192787A (en) * 2000-01-11 2001-07-17 Nippon Steel Corp Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
WO2008133337A1 (en) 2007-04-24 2008-11-06 Nippon Steel Corporation Process for producing unidirectionally grain oriented electromagnetic steel sheet
US8236110B2 (en) 2007-04-24 2012-08-07 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
KR20210010526A (en) 2018-06-21 2021-01-27 닛폰세이테츠 가부시키가이샤 Directional electromagnetic steel plate with excellent magnetic properties
EP3812478A4 (en) * 2018-06-21 2022-01-26 Nippon Steel Corporation Grain-oriented electrical steel sheet with excellent magnetic characteristics
CN113242911A (en) * 2018-12-19 2021-08-10 Posco公司 Oriented electrical steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JPS6250529B2 (en)
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JPH10110217A (en) Production of grain oriented silicon steel sheet
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JP2002129234A (en) Method for manufacturing grain oriented silicon steel sheet with high magnetic flux density
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH1046251A (en) Production of grain oriented magnetic steel sheet
JPH0781166B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701