JP2002129234A - Method for manufacturing grain oriented silicon steel sheet with high magnetic flux density - Google Patents

Method for manufacturing grain oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JP2002129234A
JP2002129234A JP2000319837A JP2000319837A JP2002129234A JP 2002129234 A JP2002129234 A JP 2002129234A JP 2000319837 A JP2000319837 A JP 2000319837A JP 2000319837 A JP2000319837 A JP 2000319837A JP 2002129234 A JP2002129234 A JP 2002129234A
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
flux density
steel sheet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000319837A
Other languages
Japanese (ja)
Other versions
JP3492993B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Tomoji Kumano
知二 熊野
Masao Mukai
聖夫 向井
Shinya Hayashi
申也 林
Toshiyuki Shiraishi
利幸 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000319837A priority Critical patent/JP3492993B2/en
Priority to KR10-2001-0015446A priority patent/KR100430601B1/en
Priority to CNB011120185A priority patent/CN1261241C/en
Publication of JP2002129234A publication Critical patent/JP2002129234A/en
Application granted granted Critical
Publication of JP3492993B2 publication Critical patent/JP3492993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold rolling method for obtaining a grain oriented silicon steel sheet using AlN as an inhibitor by which thinning can be combined with increase of magnetic flux density. SOLUTION: In the method for manufacturing the grain oriented silicon steel sheet: a slab having a composition containing 0.025-0.100% C, 2.5-4.5% Si and 0.007-0.040% Al is hot-rolled; the resultant plate is cold-rolled one or more times after hot rolled plate annealing or while process-annealed between the cold rolling stages; and the resultant sheet is subjected to primary recrystallization annealing and then to secondary recrystallization annealing. In the method of cold rolling for obtaining the grain oriented silicon steel sheet of <=0.23 mm product sheet thickness having high magnetic flux density, final cold rolling after the hot rolled plate annealing or the process annealing is performed using a reversing mill constituted of a housing splittable into the upper and the lower part in such a way that: at passes in the former stage of rolling, rolling is carried out using work rolls of 95-180 mmϕ diameter at least to <=0.40 mm intermediate sheet thickness; in the stage of sheet thickness midway through the rolling, the sheet is held at 100-350 deg.C at least for >=1 min; and subsequent rolling to Tf (mm) product sheet thickness is performed by replacing the above work rolls by work rolls of <=(Tf×520) mm diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器・発電機な
どの電気機器の鉄心材料に用いられる、一方向性電磁鋼
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for a core material of electric equipment such as a transformer and a generator.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、圧延方向の磁化・
鉄損特性が良好でなければならない。磁化特性の良否は
かけられた一定の磁場中で鉄心内に誘起される磁束密度
の高低で決まり、磁束密度の高い製品は鉄心を小型化で
きる。鉄損は、鉄心に所定の交流磁場を与えた場合に熱
エネルギーとして消費される電力損失であり、その良否
に対しては、磁束密度、板厚、被膜張力、不純物量、比
抵抗、結晶粒、磁区幅等の大きさが影響する。その中で
も磁束密度が高く板厚が薄いことが鉄損を小さくするう
えで重要である。
2. Description of the Related Art A grain-oriented electrical steel sheet has a magnetization direction in a rolling direction.
Iron loss characteristics must be good. The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the iron core in the applied constant magnetic field, and a product with a high magnetic flux density can reduce the size of the iron core. Iron loss is power loss that is consumed as heat energy when a predetermined AC magnetic field is applied to the iron core, and the quality is determined by the magnetic flux density, plate thickness, coating tension, impurity amount, specific resistance, crystal grain , The size of the magnetic domain width and the like have an effect. Among them, it is important that the magnetic flux density is high and the plate thickness is thin in order to reduce iron loss.

【0003】今日の製造技術の進歩により、たとえば0.
23mmの板厚の鋼板で、磁束密度B8(磁化力800A/mにおけ
る値)が1.92T、鉄損W17/50(50Hzで1.7Tの最大磁化の
時の値)が0.85W/kgの如き優れた製品が工業的規模で生
産可能となってきた。ところが近年の地球温暖化への対
応のため、板厚が0.20、0.18mmなどの更なる高磁束密度
薄手一方向性電磁鋼板の開発が求められている。
With today's manufacturing technology advances, for example,
Excellent steel sheet with 23mm thickness, magnetic flux density B8 (value at 800A / m magnetizing force) 1.92T, iron loss W17 / 50 (value at maximum magnetization of 1.7T at 50Hz) 0.85W / kg. Products have become available on an industrial scale. However, in order to respond to recent global warming, development of a thinner unidirectional magnetic steel sheet having a higher magnetic flux density, such as a sheet thickness of 0.20 or 0.18 mm, is required.

【0004】このような優れた磁気特性を有する一方向
性電磁鋼板は、鉄の磁化容易軸である<001>方位が鋼板
の圧延方向に高度に揃った結晶組織で構成されるもので
あり、製造工程の最終仕上焼鈍の際に、いわゆるゴス方
位と称される[110]<001>方位を有する結晶粒を優先的に
巨大成長させる、二次再結晶と呼ばれる現象を通じて形
成される。
A grain-oriented electrical steel sheet having such excellent magnetic properties has a crystal structure in which the <001> orientation, which is the axis of easy magnetization of iron, is highly aligned with the rolling direction of the steel sheet. It is formed through a phenomenon called secondary recrystallization, in which crystal grains having a [110] <001> orientation, which is a so-called Goss orientation, are preferentially grown at the time of final finish annealing in a manufacturing process.

【0005】このゴス方位粒を先鋭かつ十分に成長させ
るための基本的な要件として、二次再結晶過程におい
て、ゴス方位以外の好ましくない方位を有する結晶粒の
成長を抑制するインヒビターの存在と、ゴス方位粒が優
先的に発達しやすい一次再結晶組織の形成が不可欠であ
ることは、周知の事実である。ここにインヒビターとし
ては、一般にAlN,Mn(S,Se),Cu2(S,Se)等の析出物が、さ
らに補助的にSn,Sbなどの粒界偏析傾向の強い成分が利
用される。また、一次再結晶組織は結晶粒径とその均一
性、ゴス方位粒とゴス方位と対応関係にある方位粒が圧
延方向に揃った集合組織の形成が重要である。
[0005] Basic requirements for sharply and sufficiently growing the Goss-oriented grains include the presence of an inhibitor that suppresses the growth of crystal grains having an undesired orientation other than the Goss orientation in the secondary recrystallization process. It is a well-known fact that it is essential to form a primary recrystallized structure in which goss grains are likely to develop preferentially. Here, as the inhibitor, a precipitate such as AlN, Mn (S, Se), Cu 2 (S, Se) is generally used, and a component having a strong tendency to segregate at the grain boundaries such as Sn, Sb is used as an auxiliary. It is important that the primary recrystallized structure has a crystal grain size and its uniformity, and a texture in which the Goss-oriented grains and the oriented grains corresponding to the Goss-oriented grains are aligned in the rolling direction.

【0006】磁束密度の高い一方向性電磁鋼板を得る方
法は古くから知られており、例えば、特公昭46−23820
号公報に開示されているように、インヒビターとしてAl
Nを用いる方法が広く知られている。これは、高温スラ
ブ加熱(≧1300℃)により、AlNのインヒビター成分を一
旦固溶させ、最終冷延前の焼鈍中にAlNを微細析出させ
ることにより一方向性電磁鋼板を製造するものである。
[0006] A method of obtaining a grain-oriented electrical steel sheet having a high magnetic flux density has been known for a long time, for example, Japanese Patent Publication No. 46-23820.
As disclosed in Japanese Patent Application Publication No.
Methods using N are widely known. In this method, an inhibitor component of AlN is once dissolved by high-temperature slab heating (≧ 1300 ° C.), and AlN is finely precipitated during annealing before final cold rolling to produce a grain-oriented electrical steel sheet.

【0007】一方、特開昭62-40315号公報には、AlNイ
ンヒビターを後工程の窒化処理で作り込み、低温スラブ
加熱(≦1250℃)とする方法が開示されている。この方法
は、高温スラブ加熱の設備・操業的デメリットを回避す
るために開発されたものである。これらのAlNインヒビ
ターを用いた製造方法においては、適正な一次再結晶組
織が伴なわなければ高い磁束密度が得られないことは周
知である。一次再結晶組織の形成は、冷間圧延条件に大
きく影響され、一般に最終の冷間圧延の圧下率が81%以
上と高いことが好ましい。その他の冷間圧延に関して
は、1)特公昭54-13846号公報に、強冷延のパス間に50
〜350℃で1分以上の時効処理を施す技術が、また、2)
特公昭54-29182号公報に、300〜600℃で1〜30秒の保持
を行う技術が開示されている。前記1)の技術はレバー
ス圧延を、前記2)の技術はタンデム圧延を意図した技
術である。
On the other hand, Japanese Patent Application Laid-Open No. Sho 62-40315 discloses a method in which an AlN inhibitor is formed by a nitriding treatment in a later step to perform low-temperature slab heating (≦ 1250 ° C.). This method has been developed to avoid the equipment and operational disadvantages of high-temperature slab heating. It is well known that in a manufacturing method using these AlN inhibitors, a high magnetic flux density cannot be obtained without an appropriate primary recrystallization structure. The formation of the primary recrystallization structure is greatly affected by the cold rolling conditions, and it is generally preferable that the final cold rolling reduction is as high as 81% or more. Regarding other cold rolling, 1) Japanese Patent Publication No. 54-13846 discloses that 50
Aging treatment at ~ 350 ° C for 1 minute or more, and 2)
Japanese Patent Publication No. 54-29182 discloses a technique for holding at 300 to 600 ° C. for 1 to 30 seconds. The technique 1) is intended for reversal rolling, and the technique 2) is intended for tandem rolling.

【0008】タンデムミルを用いた高温圧延は、設備・
操業技術的に困難であり、現在のところは、レバース圧
延の加工発熱を利用して高温圧延を行い、圧延途中のリ
ール巻き取り後の時効効果を利用している。レバースミ
ルは4重式、6重式などのロールを直列に配置したものが
一般的であるが、ワークロール直径を小さくするとロー
ル変形が生じやすく、一般に250mmφ以上の大径ロール
を用いることになる。
[0008] High-temperature rolling using a tandem mill requires equipment and
It is difficult in terms of operation technology, and at present, high-temperature rolling is performed by utilizing the processing heat of reversal rolling, and the aging effect after the reel is wound up during rolling is used. In general, a reversing mill is a type in which rolls of a quadruple type, a six-type type, etc. are arranged in series. However, when the diameter of the work roll is reduced, roll deformation is likely to occur.

【0009】一方、6重、12重、20重などのロールをク
ラスター状に配置したゼンジマーミルやNMSミルは、ワ
ークロールを多角的にバックアップするため、小径ワー
クロールの使用を可能とする。一方向性電磁鋼板は多量
のSiを含有するため、圧延反力が高く、製品板厚を薄く
するうえで小径ワークロールを使用する方が有利であ
る。したがって、一方向性電磁鋼板の高温圧延には、ク
ラスター型レバース圧延機を用いることが多い。
On the other hand, a Sendzimir mill or an NMS mill in which rolls of six, twelve, twenty, etc. are arranged in a cluster form enables the use of small-diameter work rolls in order to back up the work rolls from various angles. Since the grain-oriented electrical steel sheet contains a large amount of Si, the rolling reaction force is high, and it is more advantageous to use a small-diameter work roll to reduce the product sheet thickness. Therefore, a cluster type reversing mill is often used for high-temperature rolling of a grain-oriented electrical steel sheet.

【0010】一方、冷延機のワークロール径に関し、
3)特公昭50-37130号公報に、圧延の全パスまたは後段
パスにて300mmφ以下の小径ロールで行う技術、4)特
開平02-282422号公報に、後段パスにて30〜100mmφの小
径ロールで150〜230℃の温間圧延する技術、5)特開平
05-33056号公報に、前段パスにて50〜150mmφの小径ロ
ールで150〜350℃の温間圧延する技術、6)特開平09-2
87025号公報に、ワークロール(40〜500mmφ)の径大化に
ともない圧延温度(100〜350℃)を上げる技術、が開示さ
れている。
On the other hand, regarding the work roll diameter of the cold rolling mill,
3) Japanese Patent Publication No. 50-37130 discloses a technique in which rolling is performed with a small-diameter roll having a diameter of 300 mm or less in all rolling passes or a subsequent pass. 4) Japanese Patent Application Laid-Open No. 02-282422 discloses a small roll having a diameter of 30 to 100 mm in a subsequent pass. Technology for warm rolling at 150-230 ° C with 5)
No. 05-33056, a technique of warm rolling at 150 to 350 ° C. with a small-diameter roll of 50 to 150 mmφ in the former pass, 6) JP-A-09-2
No. 87025 discloses a technique for increasing a rolling temperature (100 to 350 ° C.) with an increase in the diameter of a work roll (40 to 500 mmφ).

【0011】[0011]

【発明が解決しようとする課題】従来の電磁鋼板に用い
られるクラスターミルは、21,22型に代表されるゼンジ
マーミルが主流であり、薄手の圧延性確保の観点から、
主に95mmφ以下の小径ワークロールが用いられていた。
例えば、上記5)の技術ではロール径を50〜150mmφと
しているが、実施例では80と90mmφの例のみが記載され
ている。
As the cluster mill used for the conventional magnetic steel sheet, a Sendzimer mill represented by a 21 or 22 type is mainly used.
Mainly, small diameter work rolls of 95 mmφ or less were used.
For example, in the technique 5), the roll diameter is set to 50 to 150 mmφ, but in the embodiment, only examples of 80 and 90 mmφ are described.

【0012】また、Al含有の一方向性電磁鋼板の製造に
おいては、上記3)で開示されるように、冷延ワークロ
ールは小径が良いとされ、薄手化に有利なクラスターミ
ルはこの要請に合致していた。また、上記4)〜6)で
開示されるように、パス間の時効処理を前提とする圧延
においても、小径ロールが磁気特性の観点から有利と考
えられていた。
In the production of an Al-containing grain-oriented electrical steel sheet, as disclosed in the item 3), the cold-rolled work roll is considered to have a small diameter, and a cluster mill that is advantageous for thinning meets this demand. Had matched. Also, as disclosed in the above 4) to 6), in rolling on the premise of aging treatment between passes, small-diameter rolls were considered to be advantageous from the viewpoint of magnetic properties.

【0013】本発明者らは、クラスター型レバース圧延
機を用いてパス間の時効処理を施すAl含有一方向性電磁
鋼板の製造にあたり、磁気特性に及ぼすワークロール直
径の影響を詳細に検討した。その結果、従来の90mmφ以
下のワークロール直径で圧延した場合は磁束密度が低
く、むしろ、直径95〜170mmφの従来より大きなワーク
ロールで圧延することで磁束密度向上効果を発見し、特
許出願した。(特願平2000-002944号明細書)。
The present inventors have studied in detail the effect of the work roll diameter on the magnetic properties when producing an Al-containing grain-oriented electrical steel sheet subjected to aging treatment between passes using a cluster type reversing mill. As a result, the magnetic flux density was low when rolling was performed with a conventional work roll diameter of 90 mmφ or less, but rather, the effect of improving the magnetic flux density was discovered by rolling with a work roll having a diameter of 95 to 170 mmφ, which was larger than before, and a patent application was filed. (Japanese Patent Application No. 2000-002944).

【0014】ところが、薄手材の製造においては、圧延
反力の観点から大径ワークロールは不利である。そこ
で、ワークロール径大化効果が圧延の前段パスまたは後
段パスのどちらで有効であるかを調査した。その結果、
圧延の前段パスにおいて大径ワークロール圧延を実施す
るほうが、磁気特性向上効果が大きいことを見出した。
これらは、前記3)と4)の技術と相反する結果となっ
た。従って、本発明で薄手材を製造するためには、95〜
170mmφの大径ワークロールの冷延機で中間厚みまで温
間圧延を行い、その後、別の冷延機で、例えば65mmφ以
下の小径ロールで最終板厚まで圧延するというように、
2基の冷延機で圧延すれば良い。ところが、この方法で
は、冷間圧延の固定費が増大し、生産性が劣るという欠
点がある。
However, in the production of thin materials, large-diameter work rolls are disadvantageous from the viewpoint of the rolling reaction force. Therefore, it was investigated whether the effect of increasing the diameter of the work roll was effective in the first pass or the second pass of rolling. as a result,
It has been found that performing large-diameter work roll rolling in the previous pass of rolling has a greater effect of improving magnetic properties.
These results were inconsistent with the techniques 3) and 4). Therefore, in order to produce a thin material in the present invention, 95-
Perform cold rolling to an intermediate thickness with a cold rolling machine of a large diameter work roll of 170 mmφ, and then, in another cold rolling machine, for example, roll to a final thickness with a small diameter roll of 65 mmφ or less,
What is necessary is just to roll with two cold rolling mills. However, this method has the drawback that the fixed cost of cold rolling increases and productivity is poor.

【0015】この問題は、例えば1基の冷延機でワーク
ロールの直径を変更できれば克服できるが、従来の一方
向性電磁鋼板製造に用いられていた21、22型に代表され
るゼンジマーミルは、モノブロック型のハウジングを基
本構成とするため、圧延パスの途中でのワークロール径
変更は困難である。そこで、本発明者らは分割型のハウ
ジングで構成されたクラスターミルを一方向性電磁鋼板
製造に初めて適用し、圧延の前段パスを95mmφ以上のワ
ークロール直径で圧延し、後段パスを薄手圧延に適した
小径ロールに組み替えて圧延することに成功し、磁束密
度が高い薄手一方向電磁鋼板を、1基の圧延機で低固定
費、高生産性で製造する技術を確立した。
This problem can be overcome if the diameter of the work roll can be changed by, for example, a single cold rolling mill. However, the Sendzimir mill represented by types 21 and 22 used in the production of conventional unidirectional magnetic steel sheets has the following problems. Since a monoblock type housing is used as a basic configuration, it is difficult to change the work roll diameter during a rolling pass. Therefore, the present inventors applied a cluster mill composed of a split-type housing to the production of unidirectional magnetic steel sheets for the first time, rolling the first pass of rolling with a work roll diameter of 95 mmφ or more, and thinning the second pass with thin rolling. We succeeded in rolling by changing to suitable small-diameter rolls, and established a technology to produce thin unidirectional magnetic steel sheets with high magnetic flux density with a single rolling mill at low fixed cost and high productivity.

【0016】この発明は、クラスターミルの大径ワーク
ロール効果は圧延パスの前段において有効であるという
冶金的発見と、分割型ハウジング型クラスターミルの効
率的な冷間圧延技術を、有機的に組み合わせたものであ
る。
The present invention organically combines the metallurgical discovery that the large-diameter work roll effect of the cluster mill is effective in the preceding stage of the rolling pass and the efficient cold rolling technology of the split-housing cluster mill. It is a thing.

【0017】[0017]

【課題を解決するための手段】本発明は、上述した知見
に基づいてなされたものであり、その要旨は次のとおり
である。 (1)質量%で、C:0.025〜0.100%,S
i:2.5〜4.5%,Al:0.007〜0.040
%を含有する電磁鋼スラブに熱間圧延を施した後、熱延
板焼鈍を施して一回の冷間圧延、または中間焼鈍を介挿
する二回以上の冷間圧延を施し、その後、一次再結晶焼
鈍、次いで、二次再結晶焼鈍を施す一方向性電磁鋼板の
製造方法において、最終の冷間圧延をレバースミルで行
い、かつ圧延途中の板厚段階でワークロール径を変更す
ることを特徴とする高磁束密度薄手一方向性電磁鋼板の
製造方法。 (2)上記冷間圧延における最終の冷間圧延の前段パス
を直径95〜180mmφのワークロールで少なくとも
0.40mm以下の中間板厚まで冷間圧延し、引き続き
中間板厚から最終板厚Tf(mm)までの圧延を、D≦
f×520、とする直径D(mmφ)のワークロール
で冷間圧延する上記(1)記載の高磁束密度薄手一方向
性電磁鋼板の製造方法。 (3)上記冷間圧延における最終の冷間圧延のパス間の
うち少なくとも1回において、ストリップ温度を100
〜350℃の範囲で少なくとも1分以上の時間保持する
上記(1)または(2)記載の高磁束密度薄手一方向性
電磁鋼板の製造方法。 (4)製品板厚が0.23mm以下である上記(1)〜
(3)のいずれかの項に記載の高磁束密度薄手一方向性
電磁鋼板の製造方法。 (5)前記冷間圧延において、上下に分割可能なハウジ
ングから構成されるクラスター型のレバース圧延機を用
いて、複数パス圧延の途中の板厚段階で直径の異なるワ
ークロールに交換することにより、一基の圧延機で最終
の冷間圧延を行う上記(1)〜(4)のいずれかの項に
記載の高磁束密度薄手一方向性電磁鋼板の製造方法。
SUMMARY OF THE INVENTION The present invention has been made based on the above findings, and the gist thereof is as follows. (1) In mass%, C: 0.025 to 0.100%, S
i: 2.5 to 4.5%, Al: 0.007 to 0.040
% Of the electromagnetic steel slab containing the hot-rolled sheet, and then subjected to hot-rolled sheet annealing to perform one-time cold rolling or two or more times of cold-rolling through intermediate annealing. In the method for producing a grain-oriented electrical steel sheet to be subjected to recrystallization annealing and then to secondary recrystallization annealing, the final cold rolling is performed by a lever mill, and the work roll diameter is changed at a plate thickness stage during the rolling. Method for producing a thin magnetically unidirectional magnetic steel sheet having a high magnetic flux density. (2) The preceding pass of the final cold rolling in the cold rolling is cold-rolled to a thickness of at least 0.40 mm or less with a work roll having a diameter of 95 to 180 mmφ, and subsequently the thickness from the intermediate thickness to the final thickness T f. (Mm), D ≦
The method for producing a high magnetic flux density thin unidirectional magnetic steel sheet according to the above (1), wherein the thin magnetic sheet is cold rolled with a work roll having a diameter D (mmφ) of T f × 520. (3) In at least one of the final cold rolling passes in the cold rolling, the strip temperature is set at 100
The method for producing a thin magnetically unidirectional magnetic steel sheet having a high magnetic flux density according to the above (1) or (2), wherein the magnetic steel sheet is held in a temperature range of from about 350 ° C. to at least one minute or more. (4) The above (1) to the product plate thickness is 0.23 mm or less.
The method for producing a high magnetic flux density thin unidirectional magnetic steel sheet according to any one of the above items (3). (5) In the cold rolling, by using a cluster type reversing rolling mill composed of a housing that can be divided into upper and lower parts, the work rolls having different diameters are exchanged at a thickness stage in the middle of a plurality of passes. The method for producing a high magnetic flux density thin unidirectional magnetic steel sheet according to any one of the above (1) to (4), wherein the final cold rolling is performed by one rolling mill.

【0018】[0018]

【発明の実施の形態】まず、この発明の基礎となった試
験結果について述べる。 [実験1]質量%で、C:0.005%、Si:3.3
%、Mn:0.1%、S:0.07%、Al:0.02
82%、N:0.0070%、および、Sn:0.07
%lを含有する電磁鋼スラブを、1150℃の低温スラブ加
熱した後、熱間圧延し、1.8mm厚の熱延コイルとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, test results on which the present invention is based will be described. [Experiment 1] In mass%, C: 0.005%, Si: 3.3
%, Mn: 0.1%, S: 0.07%, Al: 0.02
82%, N: 0.0070%, and Sn: 0.07
% Of the magnetic steel slab was heated at a low temperature of 1150 ° C., and then hot-rolled into a hot-rolled coil having a thickness of 1.8 mm.

【0019】この熱延コイルを1100℃で焼鈍した後、20
重式のゼンジミアミルを用いて、圧下率90%で冷延し、
0.18mmの板厚に仕上げた。そのとき、途中板厚0.26mmま
では圧延機のワークロール直径を40〜180mmφの範囲で
変更し、パススケジュールとパス回数(5回)は同一条
件で圧延した。また、2パス目、3パス目、4パス目の途
中の板厚段階で、200℃で5分間の時効処理を行った。そ
れから0.26mmから0.18mmまでの圧延を、60mmφのワーク
ロール直径で1パスで仕上げた。
After annealing this hot-rolled coil at 1100 ° C.,
Using a heavy-duty Sendzimir mill, cold-roll at a rolling reduction of 90%,
Finished to a thickness of 0.18mm. At this time, the work roll diameter of the rolling mill was changed in the range of 40 to 180 mmφ until the sheet thickness reached 0.26 mm, and rolling was performed under the same conditions as the pass schedule and the number of passes (5 times). Further, at the thickness stage in the second, third and fourth passes, aging treatment was performed at 200 ° C. for 5 minutes. Then, rolling from 0.26 mm to 0.18 mm was completed in one pass with a work roll diameter of 60 mmφ.

【0020】次いで、冷延板を一次再結晶粒径が23μm
になるように温度を調整して脱炭焼鈍した後、[N]が240
ppmになるように窒化焼鈍を行い、次いで、マグネシア
スラリーを塗布した。このコイルを通常の方法で仕上焼
鈍を行った後、「リン酸Al+コロイダルシリカの絶縁コ
ーティング」を塗布して、コーティング焼付を兼ねた形
状矯正焼鈍を行って製品とした。そして、この製品の磁
束密度B8を測定した。
Next, the cold-rolled sheet was made to have a primary recrystallization particle size of 23 μm.
After decarburizing annealing by adjusting the temperature so that
Nitriding annealing was performed so as to be ppm, and then a magnesia slurry was applied. After finish annealing this coil by a usual method, "insulating coating of Al phosphate + colloidal silica" was applied, and shape correction annealing combined with coating baking was performed to obtain a product. Then, the magnetic flux density B8 of this product was measured.

【0021】ワークロール直径とB8の関係を図1に示
す。図1から、ワークロール直径が95〜180mmφの範囲
で磁束密度B8が向上することが明らかになった。 [実験2]実験1と同一成分の電磁鋼スラブを、1150℃の
低温スラブ加熱で熱延し、2.0mm厚の熱延コイルを製造
した。この熱延コイルを1100℃で焼鈍したのち、20重式
ロールのゼンジミアミルを用いて圧下率90%で冷延し、
0.20mmの板厚に仕上げた。そのとき圧延機のワークロー
ル直径をi)100mmφとii)60mmφの2水準とし、0.60mm
〜0.20mmの範囲の複数の中間板厚まで圧延した。このと
き、2パス目(1.00mm)と3パス目(0.80mm)の途中板厚段階
で200℃で5分間の時効処理を行った。それから、0.22mm
以上のものは、前記i)とii)の条件に対応して、i)
は60mmφと、ii)は100mmφの直径のワークロールに
それぞれ組み替えて、0.20mmまで圧延した。
FIG. 1 shows the relationship between the work roll diameter and B8. FIG. 1 shows that the magnetic flux density B8 improves when the work roll diameter is in the range of 95 to 180 mmφ. [Experiment 2] An electromagnetic steel slab having the same components as in Experiment 1 was hot-rolled by low-temperature slab heating at 1150 ° C to produce a hot-rolled coil having a thickness of 2.0 mm. After annealing this hot-rolled coil at 1100 ° C, it was cold-rolled at a rolling reduction of 90% using a Sendzimir mill with 20 double rolls,
Finished to 0.20mm thickness. At this time, the work roll diameter of the rolling mill was set to two levels of i) 100 mmφ and ii) 60 mmφ, and 0.60 mm
It was rolled to multiple intermediate sheet thicknesses in the range of ~ 0.20 mm. At this time, aging treatment was performed at 200 ° C. for 5 minutes at the stage of the thickness in the middle of the second pass (1.00 mm) and the third pass (0.80 mm). Then 0.22mm
The above is based on i) and ii), and
Was recombined into a work roll having a diameter of 100 mmφ and ii) was rolled to 0.20 mm.

【0022】その後、冷延板を一次再結晶粒径が23μm
になるように温度を調整して脱炭焼鈍した後、[N]が220
ppmになるように窒化焼鈍を行い、次いで、マグネシア
を塗布した。このコイルは通常の方法で仕上焼鈍を行
い、「リン酸Mg+コロイダルシリカの絶縁コーティング」
を塗布した後、コーティング焼付を兼ねた形状矯正焼鈍
を行って製品とした。そして、この製品の磁束密度B8を
測定した。
Thereafter, the cold-rolled sheet was subjected to a primary recrystallization grain size of 23 μm.
After decarburizing annealing by adjusting the temperature so that
Nitriding annealing was performed so as to be ppm, and then magnesia was applied. This coil is subjected to finish annealing by the usual method, and “insulating coating of Mg phosphate and colloidal silica”
, And shape-correcting annealing also serving as coating baking was performed to obtain a product. Then, the magnetic flux density B8 of this product was measured.

【0023】前段と後段パスでワークロール直径を変更
して圧延したときの、前段圧延の最小板厚(中間板厚)と
磁束密度B8の関係を図2に示す。その結果、圧延の前段
パスを大径ワークロールとした前記i)の条件では、少
なくとも0.40mmの板厚まで大径ワークロール圧延を行え
ば高いB8が確保できるが、後段パスを大径ワークロール
で圧延したii)はいずれの条件でも高B8は得られなかっ
た。
FIG. 2 shows the relationship between the minimum plate thickness (intermediate plate thickness) and the magnetic flux density B8 in the first-stage rolling when the work roll diameter is changed in the first and second passes. As a result, under the condition i) in which the first pass of the rolling is a large-diameter work roll, a high B8 can be secured if the large-diameter work roll is rolled to a sheet thickness of at least 0.40 mm. In ii), high B8 was not obtained under any conditions.

【0024】前述のとおり、一方向性電磁鋼板の磁束密
度はインヒビターと一次再結晶組織に影響される。[実
験1]と[実験2]では、窒化焼鈍後の[N]は一定条件でイ
ンヒビターは変えていないから、圧延の条件が一次再結
晶組織の変化を介して磁束密度に影響したものと推定す
る。そこで、[実験1]の50、95及び150mmのワークロー
ル直径に対応する一次再結晶サンプルを採取し、一次再
結晶集合組織を調査した。板厚1/5tを中心にサンプリン
グしてX線分析し、SGH法(原勢ら:日本金属学会会報 第2
9巻 第7号P552)による解析を行った。
As described above, the magnetic flux density of the grain-oriented electrical steel sheet is affected by the inhibitor and the primary recrystallized structure. In [Experiment 1] and [Experiment 2], since [N] after nitriding annealing did not change the inhibitor under constant conditions, it is estimated that the rolling conditions affected the magnetic flux density through changes in the primary recrystallization structure. I do. Therefore, primary recrystallization samples corresponding to the work roll diameters of 50, 95, and 150 mm in [Experiment 1] were collected, and the primary recrystallization texture was investigated. X-ray analysis by sampling around 1 / 5t thickness, SGH method (Harase et al .: Bulletin of the Japan Institute of Metals No. 2
9 Vol. 7, No. P552).

【0025】図3に、ゴス方位のND軸まわりの強度(I
N)とΣ9対応方位の強度(IcΣ9)を示す。図3を
見ると、ワークロール直径が大きい方が、 ゴス方位(回
転角度が0°)のIN強度が増加、ND軸から約25°ずれた
N強度が減少、ND軸を中心としたIcΣ9の分布が先
鋭化することが判る。磁束密度が高い一方向性電磁鋼板
を得るうえにおいて、一次再結晶集合組織が具備すべき
条件は、ゴス方位が多いことと、ゴスを優先成長させる
Σ9対応方位が先鋭なことである。本発明に従ってワー
クロール直径を制御したものは、二次再結晶のゴス集積
度を高めるのに好適な一次再結晶集合組織が得られてい
る。
FIG. 3 shows the intensity (I) of the Goss direction around the ND axis.
N ) and the intensity of the azimuth corresponding to Σ9 (IcΣ9). Looking at Figure 3, it work roll diameter is large, I N intensity of Goss orientation (° rotation angle 0) is increased, I N intensity shifted about 25 ° from the ND axis decreases, around the ND axis It can be seen that the distribution of IcΣ9 sharpens. In order to obtain a grain-oriented electrical steel sheet having a high magnetic flux density, the conditions that the primary recrystallized texture should have are that the goss orientation is large and the # 9 corresponding orientation for preferential growth of goss is sharp. When the work roll diameter is controlled according to the present invention, a primary recrystallized texture suitable for increasing the degree of Gos accumulation of secondary recrystallization is obtained.

【0026】以上はAlNインヒビターを用いた低温スラ
ブ加熱法における結果であるが、本発明者らは実施例1
で示すようにMnS,AlN+MnS(MnSe)インヒビター、およ
び、Sn,Sb,Cu等を補助的に添加した高温スラブ加熱法に
ついても同様に調査した。その結果、AlNをインヒビタ
ーとして含む成分系の材料全般で、ワークロール大径化
にともなう磁束密度改善効果を確認した。一方、AlNを
含まない成分系では、効果を確認できなかった。
The above is the result of the low-temperature slab heating method using the AlN inhibitor.
As shown in the above, the MnS, AlN + MnS (MnSe) inhibitor and the high-temperature slab heating method supplemented with Sn, Sb, Cu and the like were also investigated. As a result, the effect of improving the magnetic flux density with the increase in the work roll diameter was confirmed for all component-based materials containing AlN as an inhibitor. On the other hand, no effect could be confirmed in the component system containing no AlN.

【0027】AlNは、MnS(MnSe)などに比較してインヒビ
ター強度が強く、かつ、熱的安定であることが知られて
いる。このようなAlNインヒビターを用いた場合、本発
明で得られる一次再結晶集合組織が、効果的に、磁束密
度改善効果を発揮するものと推定される。ワークロール
直径制御と一次再結晶集合組織形成との関係に係るメカ
ニズムは現在のところ明らかでないが、次のように仮説
される。ワークロール直径が小さい場合は、冷間圧延中
に鋼鈑表面部の剪断変形成分が大きくなり、一次再結晶
後に、(110)面が増加、(111)面が減少することが知られ
ている(河野ら:鉄と鋼,68(1982),P.58)。このとき、(1
10)面についてはゴス方位からND軸周りに回転した方位
群が増加し、一方向性電磁鋼鈑に好ましくないブロード
な集合組織になるものと推定する。従ってワークロール
の径大化により集合組織をシャープにすることが、磁束
密度を高める効果であると推定する。また、圧延の前段
パスにおいてワークロール径大化効果が有効である理由
は、板厚の厚い段階のほうがワークロールの材料への噛
み込み角度が大きく、鋼板表面部の剪断変形成分が大き
いためであると考えている。
It is known that AlN has a higher inhibitor strength than MnS (MnSe) and is thermally stable. When such an AlN inhibitor is used, it is presumed that the primary recrystallized texture obtained by the present invention effectively exerts a magnetic flux density improving effect. The mechanism of the relationship between work roll diameter control and primary recrystallization texture formation is not clear at present, but is hypothesized as follows. It is known that when the work roll diameter is small, the shear deformation component of the steel sheet surface increases during cold rolling, and after the primary recrystallization, the (110) plane increases and the (111) plane decreases. (Kono et al .: Iron and Steel, 68 (1982), p. 58). At this time, (1
On the 10) surface, it is estimated that the orientation group rotated around the ND axis from the Goss orientation increases, resulting in a broad texture that is undesirable for unidirectional electromagnetic steel sheets. Therefore, it is presumed that sharpening the texture by increasing the diameter of the work roll is an effect of increasing the magnetic flux density. In addition, the reason why the effect of increasing the work roll diameter is effective in the former pass of rolling is that the thicker the plate thickness, the larger the bite angle into the work roll material, and the greater the shear deformation component on the steel sheet surface. I think there is.

【0028】次に、本発明における一方向性電磁鋼の成
分組成に係る限定理由、および好適な成分範囲について
説明する。なお、組成含有量の単位は質量%である。C
は、オーステナイト形成のため重要な元素であり、0.02
5%以上は必要である。多過ぎると、脱炭が困難となるの
で、上限を0.100%とする。Siは、あまり少ないと電気
抵抗が小さくなって良好な鉄損特性が得られず、一方、
多過ぎると冷間圧延が困難になるので、その含有量は2.
5%以上4.5%以下とする。
Next, the reasons for limitation of the composition of the grain-oriented electrical steel in the present invention and the preferred range of the components will be described. The unit of the composition content is mass%. C
Is an important element for austenite formation, and 0.02
More than 5% is necessary. If too much, decarburization becomes difficult, so the upper limit is set to 0.100%. If the content of Si is too small, the electric resistance becomes small and good iron loss characteristics cannot be obtained.
If too much, cold rolling becomes difficult, so its content is 2.
5% or more and 4.5% or less.

【0029】Mnは、不可避成分としての下限は0.03%
であり、一方、多過ぎると、高温スラブ加熱を前提とし
た場合、MnS,MnSeの溶体化が困難となるので、上限を0.
45%とする。S、Seは、使用するインヒビターの種類
に応じて適宜添加される。これらは、前記Mnと結合し
て、インヒビターとして作用するMnS又はMnSeを形成す
る。S、Seの成分範囲は、単独および併用いずれの場
合も、0.01%以上0.04%以下が好適である。ただし、MnS,
MnSeを微細に析出させるためには、高温スラブ加熱が必
要である。一方、後工程窒化法を用いた低温スラブ加熱
法においては、微細なMnS,MnSeは不必要なため、0.015%
以下が望ましい。従って、特に、S、Seの範囲は限定
しない。
Mn has a lower limit of 0.03% as an unavoidable component.
On the other hand, if too much, assuming high-temperature slab heating, it becomes difficult to solutionize MnS and MnSe, so the upper limit is set to 0.
45%. S and Se are appropriately added depending on the type of the inhibitor to be used. These combine with the Mn to form MnS or MnSe which acts as an inhibitor. The component range of S and Se is preferably 0.01% or more and 0.04% or less in both cases of single use and combination use. However, MnS,
In order to precipitate MnSe finely, high-temperature slab heating is required. On the other hand, in the low-temperature slab heating method using the post-step nitriding method, since fine MnS and MnSe are unnecessary, 0.015%
The following is desirable. Therefore, the ranges of S and Se are not particularly limited.

【0030】本発明では、インヒビター成分として、特
に、Alを含有させることが、高磁束密度を得るうえにお
いて不可欠であり、一定含有量以上の添加を必要であ
る。しかし、多過ぎると、溶体化のための高温スラブ加
熱時間が長くなり、生産性が悪化するので、Al含有量
は、0.007%以上0.040%以下とする。Nは、高温スラブ加
熱を前提とするとする場合は、最終冷延前の焼鈍にAlN
を形成する必要があるので、0.003%以上0.020%以下の範
囲で含有される。一方、低温スラブ加熱法においては、
一次再結晶後に窒化処理によりAlNを形成するので、製
鋼段階でNを含有させておくことは必須でない。したが
って、特に、Nの範囲は限定しない。
In the present invention, in particular, it is indispensable to contain Al as an inhibitor component in order to obtain a high magnetic flux density, and it is necessary to add a certain amount or more. However, if the amount is too large, the heating time of the high-temperature slab for solution treatment becomes long, and the productivity deteriorates. Therefore, the Al content is set to 0.007% or more and 0.040% or less. If N is premised on high-temperature slab heating, AlN is used for annealing before final cold rolling.
Therefore, it is contained in the range of 0.003% or more and 0.020% or less. On the other hand, in the low-temperature slab heating method,
Since AlN is formed by a nitriding treatment after the primary recrystallization, it is not essential to contain N in the steelmaking stage. Therefore, the range of N is not particularly limited.

【0031】以上の他、磁性の向上のため、さらに、S
n,Sb,Cu,Ni,Cr,P,V,B,Bi,Mo,NbおよびGe等の成分も、公
知の範囲で適宜添加することができる。次に、製造工程
に係る条件ついて説明する。本発明において、鋼素材の
製造工程には公知の製法を適用する。製造されたインゴ
ットまたはスラブを、必要に応じて加工してサイズを合
わせた後加熱し、熱間圧延する。スラブ加熱温度は、必
要に応じ1100℃〜1450℃の範囲とし、加熱には、通常の
ガス加熱炉や誘導・通電加熱炉を用いる。熱間圧延後の
鋼帯は、熱延板焼鈍後の1回冷間圧延法、または、中間
焼鈍を挟む複数回冷間圧延法によって最終板厚とする。
In addition to the above, in order to improve magnetism,
Components such as n, Sb, Cu, Ni, Cr, P, V, B, Bi, Mo, Nb, and Ge can also be appropriately added within a known range. Next, conditions related to the manufacturing process will be described. In the present invention, a known manufacturing method is applied to the manufacturing process of the steel material. The manufactured ingot or slab is processed as necessary, adjusted in size, heated, and hot-rolled. The slab heating temperature is set in the range of 1100 ° C. to 1450 ° C. as necessary, and a normal gas heating furnace or an induction / electric heating furnace is used for heating. The final strip thickness of the steel strip after hot rolling is obtained by a single cold rolling method after hot-rolled sheet annealing or a plurality of cold rolling methods sandwiching intermediate annealing.

【0032】なお、最終の冷間圧延の前に公知の条件で
焼鈍を実施する。高温スラブ加熱を前提とする場合は、
熱間圧延で不十分なAlNの微細析出を確保するうえで、
最終の冷間圧延前の焼鈍は必須である。一方、低温スラ
ブ加熱を前提とする場合は、AlN析出制御のための最終
の冷間圧延前の焼鈍は必須でないが、炭化物や固溶Cの
制御技術のため、焼鈍後の急冷、冷却過程の加工歪付
加、炭化物析出のための保定等の技術が本発明パス間の
時効処理を更に有効にするため、最終の冷間圧延前の焼
鈍を実施しても、本発明の効果を損なうものでない。
Prior to the final cold rolling, annealing is performed under known conditions. When assuming high-temperature slab heating,
In securing insufficient AlN fine precipitation by hot rolling,
Annealing before the final cold rolling is essential. On the other hand, when premised on low-temperature slab heating, annealing before final cold rolling for control of AlN precipitation is not essential, but because of carbide and solid solution C control technology, rapid cooling after annealing and cooling process In order to further enhance the aging treatment between passes of the present invention, techniques such as processing strain addition and retention for carbide precipitation, even if annealing before final cold rolling is performed, the effect of the present invention is not impaired. .

【0033】その後、鋼板は、レバース圧延により最終
の冷間圧延に供されるが、この時、高磁束密度を得るた
めには、従来より公知のように81%以上の圧下率とする
ことが好ましい。本発明においては、冷間圧延途中の時
効処理や、温間圧延を行うことが磁気特性を向上させる
上で重要である。特に、高温スラブ加熱の場合、磁気特
性向上効果よりも、線状細粒発生防止の観点から有効で
あることが知られている。そして、本発明においては、
実施例3に示すように、圧延途中の板厚段階で100〜350
℃の温度範囲で1分以上の時間保持することが重要であ
る。
Thereafter, the steel sheet is subjected to final cold rolling by reversal rolling. At this time, in order to obtain a high magnetic flux density, a reduction rate of 81% or more is conventionally known. preferable. In the present invention, aging treatment during cold rolling and warm rolling are important for improving magnetic properties. In particular, in the case of high-temperature slab heating, it is known that it is more effective than the effect of improving magnetic properties from the viewpoint of preventing the generation of linear fine particles. And in the present invention,
As shown in Example 3, 100 to 350
It is important to keep the temperature in the temperature range of ° C. for 1 minute or more.

【0034】本発明のもう一つの特徴は、冷間圧延の前
段パスのワークロール直径を大きくするこにより、磁気
特性が優れた一方向性電磁鋼板を製造することである。
図1に示すように、磁束密度はワークロール直径90mmφ
以下では著しく劣り、95mmφ以上で改善され、120mmφ
以上でほぼ飽和する傾向にある。従って、本発明では、
ワークロール直径を95mmφ以上、好ましくは120mmφ以
上とする。一方、ワークロール直径が大き過ぎると効果
が飽和するばかりでなく、クラスターミルが大規模にな
り、設備費が増大するので、180mmφを上限とする。ま
た、直径95〜180mmφの大径ワークロールを適用する範
囲は、板厚が厚い、圧延の前段パスにおいて有効で、少
なくとも板厚0.40mm以下、好ましくは0.26mm以下まで行
う必要があることが、図2より判る。
Another feature of the present invention is to produce a grain-oriented electrical steel sheet having excellent magnetic properties by increasing the diameter of the work roll in the first pass of cold rolling.
As shown in Fig. 1, the magnetic flux density is 90 mm
Below, it is remarkably inferior, improved above 95 mmφ, and 120 mmφ
The above tends to be almost saturated. Therefore, in the present invention,
The work roll diameter is 95 mmφ or more, preferably 120 mmφ or more. On the other hand, if the diameter of the work roll is too large, the effect is not only saturated, but also the cluster mill becomes large-scale and equipment cost increases, so the upper limit is 180 mmφ. In addition, the range of applying a large-diameter work roll having a diameter of 95 to 180 mmφ is effective when the plate thickness is large and in the preceding pass of rolling, and it is necessary to perform the process up to at least 0.40 mm or less, preferably 0.26 mm or less. It can be seen from FIG.

【0035】一方、後段パスの圧延においては、仕上板
厚が小さくなるほど、圧延反力が大きくなるため、直径
95〜180mmφの大径ワークロールでは圧延が困難とな
る。したがって、求められる製品板厚に応じて、ワーク
ロール直径を選ぶ必要がある。そこで、本発明者らは、
ワークロール直径可変型の圧延機を用いて、ワークロー
ル直径と圧延可能な最小板厚の関係を実験的に求めた。
その結果、ワークロール直径をDmm、最小板厚をTfmmと
した場合、Tf=D/520の関係が得られた。この関係は、
理論式であるStoneの式(μ=0.1)より若干高いが、これ
は高温圧延に起因したサーマルクラウン等の悪影響によ
るものと考えられる。
On the other hand, in the latter pass rolling, the smaller the finished plate thickness, the larger the rolling reaction force.
Rolling becomes difficult with a large diameter work roll of 95 to 180 mmφ. Therefore, it is necessary to select the work roll diameter according to the required product thickness. Thus, the present inventors
The relationship between the work roll diameter and the minimum rollable plate thickness was experimentally determined using a work roll diameter variable rolling mill.
As a result, when the work roll diameter was Dmm and the minimum plate thickness was Tf mm, the relationship of Tf = D / 520 was obtained. This relationship is
Although slightly higher than the theoretical formula of Stone (μ = 0.1), it is considered that this is due to an adverse effect such as thermal crown caused by high-temperature rolling.

【0036】結論として、図4のように、ワークロール
直径と圧延の最終板厚の関係を図示できる。以下に、圧
延の前段パスと後段パスに分けて、本発明の圧延方法を
説明する。圧延の前段パスの少なくとも0.40mmの板厚ま
では、ワークロール直径を95〜180mmφとする。このと
きの圧延は、高温圧延とパス間の時効処理を前提する。
次に、後段パスの圧延は、仕上板厚をTfmmとした場合、
(520×Tf)mm以下のワークロール直径で圧延すること
により、薄手材が安定して得られる。例えば、磁束密度
改善に好ましい120mmφのワークロールの場合は、0.23m
mの板厚が圧延限界であるため、0.23mm以下の製品板厚
は圧延で仕上げることは困難である。さらに、製品板厚
が0.20mmの場合は、本発明の前段パスの下限である95mm
φのワークロールで仕上すことが可能であるが、安定し
て高磁束密度は得難い。そして、製品板厚が0.18mm以下
の場合は、95mmφのワークロールでは圧延不可能なた
め、例えば60mmφの小径ロールに変更する必要があ
る。以上の理由から、安定した磁束密度改善効果を得る
ために、圧延の後段パスで小径ワークロールに交換する
必要がある、0.23mmの製品板厚を本発明の上限とする。
In conclusion, as shown in FIG. 4, the relationship between the work roll diameter and the final rolling thickness can be illustrated. Hereinafter, the rolling method of the present invention will be described by dividing into a first pass and a second pass of rolling. The work roll diameter is 95 to 180 mmφ at least up to a plate thickness of 0.40 mm in the first pass of rolling. The rolling at this time is based on high-temperature rolling and aging treatment between passes.
Next, the rolling of the latter pass, when the finished plate thickness is T f mm,
By rolling with a work roll diameter of (520 × T f ) mm or less, a thin material can be stably obtained. For example, in the case of a work roll of 120 mmφ which is preferable for improving the magnetic flux density, 0.23 m
Since the thickness of m is the rolling limit, it is difficult to finish the product thickness of 0.23 mm or less by rolling. Further, when the product thickness is 0.20 mm, the lower limit of the former pass of the present invention is 95 mm.
Although it is possible to finish with a work roll of φ, it is difficult to obtain a stable high magnetic flux density. When the product plate thickness is 0.18 mm or less, rolling cannot be performed with a work roll of 95 mmφ, and therefore, it is necessary to change to a small diameter roll of, for example, 60 mmφ. For the above reasons, in order to obtain a stable magnetic flux density improvement effect, it is necessary to replace the work roll with a small-diameter work roll in a subsequent pass of rolling.

【0037】冷間圧延機は、高温圧延や薄手圧延の安定
性の観点から、6重式、12重式、20重式等のクラスター
型レバース圧延機(ゼンジミアミルやNMSミルなど)に限
定する。また、ハウジングを分割型として途中圧延段階
で好適なワークロール直径に変更し、上述の圧延を1基
の圧延機で行うことが、本発明の請求項2の特徴であ
る。図5(a)に、従来のモノブロック型ハウジング、図
5(b)に、分割型ハウジングの概念図を示す。(a)にお
いては、中間ロールの直径を変更することにより、ワー
クロール直径を変更することが可能であるが、変更範囲
は10mm程度と小さく、また組み替え作業負担が大きく現
実的でない。(b)は、上下のハウジングを昇降し、ボア
間距離を調整することにより、ワークロール直径の変更
が可能となる。また、クラスターミルは、ワークロール
にチョックを有しないため、コイルの圧延途中で迅速に
ワークロールを交換することが可能であり、生産性を悪
化させることはない。
From the viewpoint of the stability of high-temperature rolling and thin rolling, cold rolling mills are limited to cluster-type reversing mills (Senzimir mill, NMS mill, etc.) such as 6-layer, 12-layer, and 20-layer. Further, it is a feature of claim 2 of the present invention that the housing is changed to a suitable work roll diameter in the middle rolling stage by using a split mold and the above-mentioned rolling is performed by one rolling mill. FIG. 5A shows a conceptual diagram of a conventional monoblock type housing, and FIG. 5B shows a conceptual diagram of a split type housing. In (a), it is possible to change the diameter of the work roll by changing the diameter of the intermediate roll, but the change range is as small as about 10 mm, and the reloading work burden is large, which is not practical. In (b), the work roll diameter can be changed by raising and lowering the upper and lower housings and adjusting the distance between the bores. Further, the cluster mill has no chocks in the work rolls, so that the work rolls can be quickly replaced during the rolling of the coil, and the productivity is not deteriorated.

【0038】最終圧延後の鋼板には、脱脂処理が施さ
れ、その後、脱炭と一次再結晶を兼ねた焼鈍が施され
る。スラブ加熱温度が1250℃以下の低温スラブ加熱法の
場合は、一次再結晶から二次再結晶の間に窒化処理を行
いAlNインヒビターを形成させることが有効である。窒
化処理の方法としては、特開昭60-179885号公報等に開
示された仕上焼鈍の途中で行う方法や、特開平1-82393
号公報等に開示されたストリップを走行させながら「水
素+窒素+アンモニア」の混合ガス中で焼鈍する方法が
ある。良好な二次再結晶粒を安定して発達させるには、
窒素量は120ppm以上、好ましくは150ppm以上必要であ
る。また、特開昭1-82939号公報等に開示された一次再
結晶粒径の制御を併用すると更に磁気特性は向上する。
[0038] The steel sheet after the final rolling is subjected to a degreasing treatment, and thereafter subjected to an annealing for both decarburization and primary recrystallization. In the case of the low-temperature slab heating method in which the slab heating temperature is 1250 ° C. or less, it is effective to perform a nitriding treatment between the primary recrystallization and the secondary recrystallization to form an AlN inhibitor. As a method of nitriding treatment, a method performed during finish annealing disclosed in JP-A-60-179885 and the like, and a method disclosed in JP-A-1-82393.
There is a method in which annealing is performed in a mixed gas of "hydrogen + nitrogen + ammonia" while running a strip disclosed in Japanese Patent Application Laid-Open Publication No. H10-163,036. To stably develop good secondary recrystallized grains,
The nitrogen content needs to be 120 ppm or more, preferably 150 ppm or more. Further, when the control of the primary recrystallization particle size disclosed in Japanese Patent Application Laid-Open No. 1-82939 is used in combination, the magnetic characteristics are further improved.

【0039】次いで、鋼板に、MgOスラリーを主成分と
する焼鈍分離剤を塗布してから、コイル状に巻かれて最
終仕上げ焼鈍に供する。その後、必要に応じて絶縁コー
ティングを施すが、レーザー、プラズマ、機械的方法、
エッチング、その他の手法によって磁区細分化処理を施
すことも有効である。
Next, the steel sheet is coated with an annealing separator containing MgO slurry as a main component, and then wound in a coil shape and subjected to final finish annealing. After that, if necessary, an insulating coating is applied, but laser, plasma, mechanical method,
It is also effective to perform a magnetic domain refining process by etching or other methods.

【0040】[0040]

【実施例】(実施例1)表1に示す成分を含有する電磁
鋼スラブを、表2に示す製造工程条件において、1350〜
1400℃の高温スラブ加熱a),b)およびc)と、1150〜1290
℃の低温スラブ加熱d),e)およびf)の方法で熱間圧延
し、熱延鋼帯とした。
EXAMPLES (Example 1) An electromagnetic steel slab containing the components shown in Table 1 was produced under the manufacturing process conditions shown in Table 2 in the range of 1350 to 1350.
1400 ° C high-temperature slab heating a), b) and c), and 1150-1290
The steel sheet was hot-rolled by a method of low-temperature slab heating d), e), and f) to obtain a hot-rolled steel strip.

【0041】a),c)およびf)は、中間焼鈍を挟む2回冷延
法、b)、e)およびd)は、熱延板焼鈍後の1回冷延法とし
た。最終の冷間圧延はすべてレバース圧延機を用い、圧
下率は75〜92%とした。中間板厚と最終板厚は表に示し
たとおりである。冷間圧延は、表1に示すようにワーク
ロール直径を変更し、板厚0.30mmまでは、2〜5パスで圧
延した。圧延途中の最低2パスの中間板厚を選び、200℃
で5分の時効処理を行った。引き続いて、60mmのワーク
ロール直径で板厚0.18mmまで1パスで圧延した。冷延鋼
帯には通常の方法で脱炭焼鈍を施し、このうち、d)およ
びe)については、脱炭焼鈍の後に窒化焼鈍を追加し、表
1に示す窒化量(窒化後−窒化前)になるようインヒビ
ターを補強した。その後、通常の方法でマグネシア塗
布、仕上焼鈍、絶縁コーティング、形状矯正・焼付焼鈍
を施し、得られた製品鋼帯の磁束密度(B8)を測定し
た。その後、機械的方法により磁区制御を施した後、得
られた製品鋼帯の鉄損(W17/50)を測定した。表1に示
すように、Alを含有する成分で、冷間圧延のワークロー
ル直径を本発明で規定した範囲内に制御すると、磁気特
性が優れた製品が得らることが判る。
In a), c) and f), the cold rolling was performed twice with intermediate annealing, and in b), e) and d), the cold rolling was performed once after hot-rolled sheet annealing. The final cold rolling was performed using a reversing mill, and the rolling reduction was 75 to 92%. The intermediate plate thickness and final plate thickness are as shown in the table. In the cold rolling, the work roll diameter was changed as shown in Table 1, and rolling was performed in 2 to 5 passes until the plate thickness was 0.30 mm. Select at least 2 pass intermediate plate thickness during rolling, 200 ℃
Aging treatment for 5 minutes. Subsequently, it was rolled in one pass to a sheet thickness of 0.18 mm with a work roll diameter of 60 mm. The cold-rolled steel strip is subjected to decarburizing annealing by a usual method. Of these, for d) and e), nitriding annealing is added after decarburizing annealing, and the amount of nitriding shown in Table 1 (after nitriding-before nitriding) ) To reinforce the inhibitor. Thereafter, magnesia application, finish annealing, insulating coating, shape correction and baking annealing were performed by a usual method, and the magnetic flux density (B8) of the obtained product steel strip was measured. Thereafter, the magnetic domain was controlled by a mechanical method, and the iron loss (W17 / 50) of the obtained product steel strip was measured. As shown in Table 1, it is found that when the work roll diameter of the cold rolling is controlled within the range specified in the present invention with the Al-containing component, a product having excellent magnetic properties can be obtained.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】(実施例2)表1のa)および表2のa)に
示す1.6mmの中間板厚の焼鈍材を、レバース圧延機を用
いて、表3に示すように、10通りのワークロール直径を
120mmφと60mmφの組み合わせで、最終板厚0.20mmまで
冷間圧延した。パス間の時効は、表2に示す板厚段階
で、200℃×5分間の処理を行った。冷延鋼帯には通常の
方法で脱炭焼鈍、マグネシア塗布、仕上焼鈍、絶縁コー
ティング、形状矯正・焼付焼鈍を施し、得られた製品鋼
帯の磁束密度(B8)を測定した。その後、機械的方法に
より磁区制御を施した後、得られた製品鋼帯の鉄損(W1
7/50)を測定した。表2に示すように、圧延の前段パス
で、少なくとも板厚0.4mm以下まで、120mmφの大径ワー
クロールを適用することにより、磁束密度が優れた製品
が得られることが判る。
(Example 2) As shown in Table 3, ten kinds of workpieces were prepared by annealing an annealed material having an intermediate thickness of 1.6 mm as shown in Table 1 a) and Table 2 a) using a reversing mill. Roll diameter
Cold rolling was performed to a final sheet thickness of 0.20 mm using a combination of 120 mmφ and 60 mmφ. The aging between passes was performed at 200 ° C. for 5 minutes at the plate thickness stages shown in Table 2. The cold rolled steel strip was subjected to decarburizing annealing, magnesia coating, finish annealing, insulating coating, shape correction and baking annealing in the usual manner, and the magnetic flux density (B8) of the obtained product steel strip was measured. Then, after performing magnetic domain control by a mechanical method, the iron loss (W1
7/50) was measured. As shown in Table 2, it is understood that a product having excellent magnetic flux density can be obtained by applying a large-diameter work roll having a diameter of 120 mm to a thickness of at least 0.4 mm or less in a pass before rolling.

【0045】[0045]

【表3】 [Table 3]

【0046】(実施例3)表1のa)および表2のa)に
示す1.6mmの中間板厚の焼鈍材を、ワークロール直径を1
65mmφとしたレバース圧延機を用いて、表4に示す12通
りのパス間保持温度・時間の条件で、0.30mmまで圧延
後、ワークロール直径50mmφで、最終板厚0.15mmまで冷
間圧延した。冷延鋼帯には通常の方法で脱炭焼鈍、マグ
ネシア塗布、仕上焼鈍、絶縁コーティング、形状矯正・
焼付焼鈍を施し、得られた製品鋼帯の磁束密度(B8)を
測定した。それから、エッチングにより磁区制御を施し
た後、得られた製品鋼帯の鉄損(W17/50)を測定した。
表4に示すように、圧延途中の板厚段階で100〜350℃の
温度範囲で1分以上の時間保持することにより、磁気特
性が優れた製品が得られた。
(Example 3) An annealed material having an intermediate plate thickness of 1.6 mm shown in a) of Table 1 and a) of Table 2 was used with a work roll diameter of 1 mm.
Using a reversing mill having a diameter of 65 mm, rolling was performed to 0.30 mm under the 12 conditions of holding temperature and time between passes shown in Table 4, and then cold-rolled to a work roll diameter of 50 mm and a final thickness of 0.15 mm. Decarburization annealing, magnesia application, finish annealing, insulation coating, shape correction,
Baking annealing was performed, and the magnetic flux density (B8) of the obtained product steel strip was measured. Then, after performing magnetic domain control by etching, the iron loss (W17 / 50) of the obtained product steel strip was measured.
As shown in Table 4, a product having excellent magnetic properties was obtained by holding at a temperature range of 100 to 350 ° C. for 1 minute or more at the thickness stage during rolling.

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【発明の効果】本発明によれば、Alを含有する、製品板
厚が0.23mm以下の薄手一方向性電磁鋼板におい
て、磁束密度を向上による磁気特性の改善が可能にな
る。それ故、本発明は、変圧器等の低鉄損化や小型化に
貢献するものである。
According to the present invention, in a thin unidirectional magnetic steel sheet containing Al and having a product thickness of 0.23 mm or less, the magnetic properties can be improved by improving the magnetic flux density. Therefore, the present invention contributes to low iron loss and miniaturization of transformers and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ワークロール直径と磁束密度の関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between a work roll diameter and a magnetic flux density.

【図2】前段圧延の最小板厚と磁束密度の関係を示す図
である。
FIG. 2 is a diagram showing the relationship between the minimum thickness of pre-rolling and the magnetic flux density.

【図3】ワークロール直径を変更したときの、鋼板の一
次再結晶集合組織に係る解析結果を示す図である。
FIG. 3 is a diagram showing an analysis result relating to a primary recrystallization texture of a steel sheet when a work roll diameter is changed.

【図4】ワークロール直径と圧延可能な最小板厚の関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a work roll diameter and a minimum rollable plate thickness.

【図5】モノブロック型ハウジングおよび分割型ハウジ
ングの20段式クラスターミルの概略図である。
FIG. 5 is a schematic view of a 20-stage cluster mill having a monoblock type housing and a split type housing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/60 C22C 38/60 (72)発明者 向井 聖夫 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 林 申也 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 白石 利幸 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K033 AA02 BA01 BA02 CA01 CA02 CA03 CA04 CA06 CA07 CA08 FA04 PA05 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN06 NN17 NN18──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/60 C22C 38/60 (72) Inventor Masao Mukai 1-1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation, Yawata Works (72) Inventor Shinya Hayashi 1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation, Yawata Works (72) Inventor Toshiyuki Shiraishi Chiba 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F term (reference) 4K033 AA02 BA01 BA02 CA01 CA02 CA03 CA04 CA06 CA07 CA08 FA04 PA05 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN06 NN17 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.025〜0.100
%,Si:2.5〜4.5%,Al:0.007〜0.
040%を含有する電磁鋼スラブに熱間圧延を施した
後、熱延板焼鈍を施して一回の冷間圧延、または中間焼
鈍を介挿する二回以上の冷間圧延を施し、その後、一次
再結晶焼鈍、次いで、二次再結晶焼鈍を施す一方向性電
磁鋼板の製造方法において、最終の冷間圧延をレバース
ミルで行い、かつ圧延途中の板厚段階でワークロール径
を変更することを特徴とする高磁束密度薄手一方向性電
磁鋼板の製造方法。
C: 0.025 to 0.100 by mass%
%, Si: 2.5-4.5%, Al: 0.007-0.
After subjecting the electromagnetic steel slab containing 040% to hot rolling, hot-rolled sheet annealing is performed, and one cold rolling is performed, or two or more times of cold rolling is performed through intermediate annealing, and then, Primary recrystallization annealing, and then, in a method for producing a unidirectional electrical steel sheet subjected to secondary recrystallization annealing, performing the final cold rolling with a lever mill, and changing the work roll diameter at the thickness stage during the rolling. A method for producing a thin magnetically unidirectional magnetic steel sheet with a high magnetic flux density.
【請求項2】 前記冷間圧延における最終の冷間圧延の
前段パスを直径95〜180mmφのワークロールで少
なくとも0.40mm以下の中間板厚まで冷間圧延し、
引き続き中間板厚から最終板厚Tf(mm)までの圧延
を、D≦Tf×520、とする直径D(mmφ)のワー
クロールで冷間圧延することを特徴とする請求項1記載
の高磁束密度薄手一方向性電磁鋼板の製造方法。
2. The pre-pass of the final cold rolling in the cold rolling is cold-rolled with a work roll having a diameter of 95 to 180 mmφ to an intermediate plate thickness of at least 0.40 mm or less,
2. The rolling according to claim 1, wherein the rolling from the intermediate sheet thickness to the final sheet thickness T f (mm) is cold-rolled with a work roll having a diameter D (mmφ) satisfying D ≦ T f × 520. Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet.
【請求項3】 前記冷間圧延における最終の冷間圧延の
パス間のうち少なくとも1回において、ストリップ温度
を100〜350℃の範囲で少なくとも1分以上の時間
保持することを特徴とする請求項1もしくは2記載の高磁
束密度薄手一方向性電磁鋼板の製造方法。
3. The strip temperature is maintained in a range of 100 to 350 ° C. for at least one minute during at least one of the last cold rolling passes in the cold rolling. 3. The method for producing a high magnetic flux density thin unidirectional magnetic steel sheet according to 1 or 2.
【請求項4】 製品板厚が0.23mm以下であること
を特徴とする請求項1ないし3のいずれかに記載の高磁
束密度薄手一方向性電磁鋼板の製造方法。
4. The method according to claim 1, wherein a product thickness of the product is 0.23 mm or less.
【請求項5】 前記冷間圧延において、上下に分割可能
なハウジングから構成されるクラスター型のレバース圧
延機を用いて、複数パス圧延の途中の板厚段階で直径の
異なるワークロールに交換することにより、一基の圧延
機で最終の冷間圧延を行うことを特徴とする請求項1な
いし4のいずれかに記載の高磁束密度薄手一方向性電磁
鋼板の製造方法。
5. In the cold rolling, using a cluster-type reversing rolling mill composed of a housing that can be divided into upper and lower parts, the work rolls are exchanged for work rolls having different diameters at a thickness step in the middle of plural-pass rolling. 5. The method for producing a high magnetic flux density thin unidirectional magnetic steel sheet according to claim 1, wherein the final cold rolling is performed by one rolling mill.
JP2000319837A 2000-10-19 2000-10-19 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet Expired - Fee Related JP3492993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000319837A JP3492993B2 (en) 2000-10-19 2000-10-19 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
KR10-2001-0015446A KR100430601B1 (en) 2000-10-19 2001-03-24 Method f0r manufacturing a grain-oriented electrical steel sheet with high magnetic flux density
CNB011120185A CN1261241C (en) 2000-10-19 2001-03-27 Production method of unidirectional electromagnetic steel plate with high magnetic intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319837A JP3492993B2 (en) 2000-10-19 2000-10-19 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Publications (2)

Publication Number Publication Date
JP2002129234A true JP2002129234A (en) 2002-05-09
JP3492993B2 JP3492993B2 (en) 2004-02-03

Family

ID=18798228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319837A Expired - Fee Related JP3492993B2 (en) 2000-10-19 2000-10-19 Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Country Status (3)

Country Link
JP (1) JP3492993B2 (en)
KR (1) KR100430601B1 (en)
CN (1) CN1261241C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133337A1 (en) 2007-04-24 2008-11-06 Nippon Steel Corporation Process for producing unidirectionally grain oriented electromagnetic steel sheet
CN116460139A (en) * 2023-03-23 2023-07-21 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258349B2 (en) * 2002-10-29 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN104438325B (en) * 2014-10-08 2017-01-11 武汉科技大学 Rolling method of ultra-thin silicon steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133337A1 (en) 2007-04-24 2008-11-06 Nippon Steel Corporation Process for producing unidirectionally grain oriented electromagnetic steel sheet
KR101120125B1 (en) 2007-04-24 2012-03-22 신닛뽄세이테쯔 카부시키카이샤 Process for producing unidirectionally grain oriented electromagnetic steel sheet
US8236110B2 (en) 2007-04-24 2012-08-07 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet
JP5392076B2 (en) * 2007-04-24 2014-01-22 新日鐵住金株式会社 Manufacturing method of unidirectional electrical steel sheet
CN116460139A (en) * 2023-03-23 2023-07-21 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof
CN116460139B (en) * 2023-03-23 2024-01-02 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof

Also Published As

Publication number Publication date
KR20020033021A (en) 2002-05-04
CN1261241C (en) 2006-06-28
JP3492993B2 (en) 2004-02-03
CN1349862A (en) 2002-05-22
KR100430601B1 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
RU2539274C2 (en) Method of sheet fabrication from textured electric steel
JP7454646B2 (en) High magnetic induction grain-oriented silicon steel and its manufacturing method
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
WO2010116936A1 (en) Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
KR101120125B1 (en) Process for producing unidirectionally grain oriented electromagnetic steel sheet
JP3492993B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0565536A (en) Manufacture of high silicon steel sheet having high permeability
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031014

R151 Written notification of patent or utility model registration

Ref document number: 3492993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees