JP2017222898A - Production method of grain oriented magnetic steel sheet - Google Patents

Production method of grain oriented magnetic steel sheet Download PDF

Info

Publication number
JP2017222898A
JP2017222898A JP2016118328A JP2016118328A JP2017222898A JP 2017222898 A JP2017222898 A JP 2017222898A JP 2016118328 A JP2016118328 A JP 2016118328A JP 2016118328 A JP2016118328 A JP 2016118328A JP 2017222898 A JP2017222898 A JP 2017222898A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
grain
slab
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118328A
Other languages
Japanese (ja)
Other versions
JP6844125B2 (en
Inventor
田中 一郎
Ichiro Tanaka
一郎 田中
裕俊 多田
Hirotoshi Tada
裕俊 多田
宣郷 森重
Norisato Morishige
宣郷 森重
高橋 克
Katsu Takahashi
克 高橋
春彦 渥美
Haruhiko Atsumi
春彦 渥美
修一 中村
Shuichi Nakamura
修一 中村
史明 高橋
Fumiaki Takahashi
史明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016118328A priority Critical patent/JP6844125B2/en
Publication of JP2017222898A publication Critical patent/JP2017222898A/en
Application granted granted Critical
Publication of JP6844125B2 publication Critical patent/JP6844125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing a grain oriented magnetic steel sheet having excellent magnetic property at an industrial scale.SOLUTION: A production method of a grain oriented magnetic steel sheet is provided that is composed of a series of steps including: heating a slab containing, by mass%, C:0.02 to 0.10%, Si:2.5 to 4.5%, Mn:0.06 to 0.15%, S+0.405Se:0.02 to 0.050%, acid soluble Al:0.01 to 0.05%, N:0.002 to 0.015%, P:0.01 to 0.09% and the balance Fe with impurities to more than 1300°C and 1400°C or less; hot- rolling the heated slab; then performing hot rolled sheet annealing on the hot rolled slab; performing one cold rolling or two or more cold rolling sandwiching process annealing on the steel sheet to prepare a cold rolled sheet; then performing decarbonization annealing; applying an annealing separation agent onto a steel sheet surface; and performing final annealing. Heating to a temperature of 800°C or more is performed at a heating rate of 650°C/sec. or more and just before the decarbonization annealing or in a temperature rising process of the decarbonization annealing.SELECTED DRAWING: None

Description

本発明は、方向性電磁鋼板の製造方法に関する。特に、磁気特性に優れた方向性電磁鋼板を工業的規模で安定的に製造する方法に関する。   The present invention relates to a method for producing a grain-oriented electrical steel sheet. In particular, the present invention relates to a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties on an industrial scale.

方向性電磁鋼板はSiを2〜5%程度含有し、結晶粒の方位を{110}<001>方位に高度に集積させた鋼板であり、主として変圧器(トランス)などの静止器の鉄心材料として用いられる。{110}<001>方位への制御は、一次再結晶における正常粒成長を抑制し、引き続く二次再結晶とよばれる粒成長現象を利用して達成される。このためにはインヒビターとよばれる鋼中微細析出物や粒界偏析元素を精密に制御することが必要不可欠である。   A grain-oriented electrical steel sheet is a steel sheet containing about 2 to 5% of Si and having a crystal grain orientation highly integrated in the {110} <001> orientation, and is mainly used as a core material for stationary machines such as transformers. Used as Control to the {110} <001> orientation is achieved by suppressing normal grain growth in primary recrystallization and utilizing the subsequent grain growth phenomenon called secondary recrystallization. For this purpose, it is indispensable to precisely control fine precipitates and grain boundary segregation elements in steel called inhibitors.

二次再結晶の制御方法として、インヒビターとして働く析出物を熱間圧延前の鋼片加熱時に完全固溶させた後に、熱間圧延およびその後の焼鈍工程で微細に析出させる方法がある。例えば、特許文献1に示されるようなMnSとAlNをインヒビターとして用い、最終冷延工程で80%を超える圧下率の圧延を施す方法や、特許文献2に示されるようなMnSとMnSeをインヒビターとし、二回の冷延工程を施す方法が工業的に実施されている。これらの方法では、析出物を完全固溶させるために、熱間圧延前の鋼片は1280℃以上の高温で加熱される。   As a control method of the secondary recrystallization, there is a method in which a precipitate acting as an inhibitor is completely dissolved at the time of heating a steel slab before hot rolling, and then finely precipitated in hot rolling and subsequent annealing steps. For example, MnS and AlN as shown in Patent Document 1 are used as inhibitors and rolling at a rolling reduction exceeding 80% in the final cold rolling process, and MnS and MnSe as shown in Patent Document 2 are used as inhibitors. A method of performing the cold rolling process twice has been industrially implemented. In these methods, the steel slab before hot rolling is heated at a high temperature of 1280 ° C. or higher in order to completely dissolve the precipitate.

また、二次再結晶の他の制御方法として、例えば、特許文献3、4に示されるように、熱間圧延前の鋼片の加熱を1280℃未満の温度で実施し、冷延後の窒化処理により形成したAlNをインヒビターとして用いる方法が工業的に実施されている。   As another control method for secondary recrystallization, for example, as shown in Patent Documents 3 and 4, heating of a steel piece before hot rolling is performed at a temperature of less than 1280 ° C., and nitriding after cold rolling is performed. A method of using AlN formed by treatment as an inhibitor has been industrially implemented.

以上のような方向性電磁鋼板の製造において、より優れた磁気特性を得るためには{110}<001>方位への配向性の向上が有効であり、インヒビターの作用を強化すると考えられるBiを含有させる手段が開示されている(特許文献5、6)。しかしながら、鋼中にBiを含有すると一次被膜を形成させることが困難となり、被膜張力を有する絶縁被膜を塗布した際に密着性が劣化するとの問題が生じ、工業的規模での安定生産には課題がある。また、特許文献5〜8に、脱炭焼鈍時に急速加熱する方法や、脱炭焼鈍直前に急速加熱処理を実施し、一次再結晶集合組織を改善することで磁気特性を向上させることが開示されているが、前述のとおりBiを含有させた場合には被膜の密着性が劣化するため、急速加熱によって磁気特性を向上しつつ、工業的規模で安定生産するには課題がある。   In the production of the grain-oriented electrical steel sheet as described above, in order to obtain more excellent magnetic properties, it is effective to improve the orientation in the {110} <001> orientation, and Bi that is considered to strengthen the action of the inhibitor. Means for inclusion is disclosed (Patent Documents 5 and 6). However, when Bi is contained in the steel, it becomes difficult to form a primary film, and there arises a problem that the adhesion deteriorates when an insulating film having a film tension is applied, which is a problem for stable production on an industrial scale. There is. Patent Documents 5 to 8 disclose that a method of rapid heating at the time of decarburization annealing and a rapid heat treatment performed immediately before decarburization annealing to improve the primary recrystallization texture to improve magnetic properties. However, as described above, when Bi is contained, the adhesiveness of the coating is deteriorated, so that there is a problem in stable production on an industrial scale while improving magnetic properties by rapid heating.

特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No. 51-13469 特公昭62−45285号公報Japanese Examined Patent Publication No. 62-45285 特開平2−77525号公報Japanese Patent Laid-Open No. 2-77525 特開平8−188824号公報JP-A-8-188824 特開2003−96520号公報JP 2003-96520 A 特開平8−295937号公報JP-A-8-295937 特開2014−91855号公報JP 2014-91855 A

本発明の課題は、優れた磁気特性を有する方向性電磁鋼板を工業的規模で安定的に製造する方法を提供することにある。   An object of the present invention is to provide a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties on an industrial scale.

本発明者らは、脱炭焼鈍時の加熱速度を高めることで得られる磁気特性への好適な効果を安定的に得られる方法について鋭意研究を行った。その結果、適量のPを含有させるとともに、脱炭焼鈍時の加熱速度をP含有量に応じて制御することにより、優れた磁気特性を有する方向性電磁鋼板が安定的に得られることを見出した。このような新知見に基づく本発明の要旨は以下の通りである。   The inventors of the present invention conducted intensive research on a method capable of stably obtaining a suitable effect on magnetic characteristics obtained by increasing the heating rate during decarburization annealing. As a result, it was found that a grain-oriented electrical steel sheet having excellent magnetic properties can be stably obtained by containing an appropriate amount of P and controlling the heating rate during decarburization annealing according to the P content. . The gist of the present invention based on such new findings is as follows.

即ち、本発明に係る方向性電磁鋼板の製造方法は、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.06〜0.15%、S+0.405Se:0.02〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、P:0.01〜0.09%を含有し、残部Feおよび不純物からなるスラブを、1300℃超1400℃以下に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面に焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法であって、
前記脱炭焼鈍する直前、もしくは前記脱炭焼鈍の昇温過程において、加熱速度を650℃/sec以上で、800℃以上の温度へ加熱することを特徴とする。
That is, the method for producing a grain-oriented electrical steel sheet according to the present invention is mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.06 to 0.15. %, S + 0.405Se: 0.02-0.050%, acid-soluble Al: 0.01-0.05%, N: 0.002-0.015%, P: 0.01-0.09% The slab containing the remaining Fe and impurities is heated to more than 1300 ° C. and not more than 1400 ° C., hot-rolled, then subjected to hot-rolled sheet annealing, and sandwiched once by cold rolling or intermediate annealing. This is a method for producing a grain-oriented electrical steel sheet comprising a series of steps in which cold rolling is performed to obtain a cold-rolled steel sheet, decarburization annealing is performed, an annealing separator is applied to the steel sheet surface, and then finish annealing is performed. And
Heating is performed at a heating rate of 650 ° C./sec or more and a temperature of 800 ° C. or more immediately before the decarburization annealing or in the temperature raising process of the decarburization annealing.

本発明の方向性電磁鋼板の製造方法においては、前記スラブが、更に、Bi:0.0005〜0.0200%、を含有することが、磁気特性に優れた方向性電磁鋼板を安定的に製造できる点から好ましい。   In the method for producing a grain-oriented electrical steel sheet according to the present invention, the slab further contains Bi: 0.0005 to 0.0200%, and thus the grain-oriented electrical steel sheet having excellent magnetic properties is stably produced. It is preferable from the point which can be performed.

また、本発明の方向性電磁鋼板の製造方法においては、前記スラブが、さらにNi:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Sb:0.005〜0.50%およびSn:0.005〜0.50%のうちから選ばれる1種または2種以上を含有することが、磁気特性に優れた方向性電磁鋼板を安定的に製造できる点から好ましい。   Moreover, in the manufacturing method of the grain-oriented electrical steel sheet of this invention, the said slab is further Ni: 0.01-1.50%, Cr: 0.01-0.50%, Cu: 0.01-0. A grain-oriented electrical steel sheet having excellent magnetic properties by containing one or more selected from 50%, Sb: 0.005-0.50%, and Sn: 0.005-0.50% Is preferable because it can be stably produced.

本発明によれば、優れた磁気特性を有する方向性電磁鋼板を工業的規模で安定的に製造する方法を提供することができる。本発明により得られる方向性電磁鋼板は、世界的な発電需要増加に支える機能材料であり、その工業的価値は極めて高い。   The present invention can provide a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties on an industrial scale. The grain-oriented electrical steel sheet obtained by the present invention is a functional material that supports the increase in global power generation demand, and its industrial value is extremely high.

以下、このような新知見に基づく本発明の方向性電磁鋼板の製造方法について詳細に説明する。
なお、本発明において「%」は、特に断りが無い限り「質量%」を表わすものとする。
Hereafter, the manufacturing method of the grain-oriented electrical steel sheet of this invention based on such new knowledge is demonstrated in detail.
In the present invention, “%” represents “% by mass” unless otherwise specified.

本発明に係る方向性電磁鋼板の製造方法は、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.06〜0.15%、S+0.405Se:0.02〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、P:0.01〜0.09%を含有し、残部Feおよび不純物からなるスラブを、1300℃超1400℃以下に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面に焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法であって、
前記脱炭焼鈍する直前、もしくは前記脱炭焼鈍の昇温過程において、加熱速度を650℃/sec以上で、800℃以上の温度へ加熱することを特徴とする。
The manufacturing method of the grain-oriented electrical steel sheet according to the present invention is, in mass%, C: 0.02-0.10%, Si: 2.5-4.5%, Mn: 0.06-0.15%, S + 0.405Se: 0.02-0.050%, acid-soluble Al: 0.01-0.05%, N: 0.002-0.015%, P: 0.01-0.09% The slab composed of the remaining Fe and impurities is heated to more than 1300 ° C. and not more than 1400 ° C., hot-rolled, then subjected to hot-rolled sheet annealing, and two or more times sandwiching one cold rolling or intermediate annealing. After cold rolling and making a cold-rolled steel sheet, it is a method for producing a grain-oriented electrical steel sheet comprising a series of steps in which decarburization annealing is performed, and an annealing separator is applied to the steel sheet surface and then finish annealing is performed.
Heating is performed at a heating rate of 650 ° C./sec or more and a temperature of 800 ° C. or more immediately before the decarburization annealing or in the temperature raising process of the decarburization annealing.

本発明の方向性電磁鋼板の製造方法によれば、優れた磁気特性を有する方向性電磁鋼板を工業的規模で安定的に製造することができる。   According to the method for producing a grain-oriented electrical steel sheet of the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties can be stably produced on an industrial scale.

上記本発明の製造方法により、上記の効果が得られる作用については、未解明な部分もあるが、以下の様に推定される。
脱炭焼鈍時に急速加熱する方法や、脱炭焼鈍直前に急速加熱処理を実施し、一次再結晶集合組織を改善することで磁気特性を向上させることは知られていた(例えば特許文献5〜8)。しかしながら、従来の方法では、磁気特性にばらつきが生じることがあった。
本発明者らは、脱炭焼鈍時の加熱速度を高めることによって磁気特性を向上することについて鋭意検討を行った。その結果、Pを含有させた場合には、加熱速度を過度に高めることなく磁気特性を向上することができ、また、加熱速度を高めた場合であっても磁気特性のばらつきが小さくなるとの知見を得た。本発明者らは、更なる検討の結果、スラブ中のP含有量を0.01%以上とすることにより、優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板が得られることを見出した。
スラブ中にPを含有させた場合に加熱速度を過度に高めることなく磁気特性が向上した理由は明確でないが、脱炭焼鈍後の集合組織、いわゆる一次再結晶集合組織は加熱速度のみならずP含有量にも影響をうけるものと推定され、当該P含有量の高い鋼ほど加熱速度が低くとも磁気特性向上に好ましい一次再結晶集合組織が得られるものとされる。また、加熱速度を過度に増加させた場合の磁気特性のばらつきは、試料内の温度分布の増加や、脱炭焼鈍時の表層酸化の進行形態の変化に起因するものと考えられる。粒界への偏析傾向の強いPは鋼板表層にも濃化する傾向があり、鋼板へPを含有させることで脱炭焼鈍時の表面酸化の進行形態が変化すると推察され、一次再結晶集合組織と表層酸化の形態の双方の変化を通じてP含有量に応じて脱炭焼鈍時の加熱速度の好適な範囲が変化し、安定的に優れた磁気特性が得られたものと考えられる。
一方、スラブ中のP含有量が、0.09%を超過する場合には、圧延加工性が低下し、製造時において、破断する場合があった。
以上のことから、本発明の方向性電磁鋼板の製造方法においては、P含有量が0.01〜0.09%のスラブを用い、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において、加熱速度を650℃/sec以上で、800℃以上の温度へ加熱することにより、磁気特性に優れ、かつ、当該磁気特性のばらつきが抑制された、方向性電磁鋼板を製造することができる。
また、本発明によれば、Biの含有割合を低減することが可能となり、磁気特性に優れ、被膜密着性にも優れた方向性電磁鋼板を製造することもがきる。
以下、本発明に係る方向性電磁鋼板の製造方法の各工程についてより詳細に説明する。
About the effect | action which said effect can be acquired by the manufacturing method of the said invention, although there is an unclear part, it estimates as follows.
It has been known that magnetic properties are improved by rapid heating during decarburization annealing or rapid heat treatment immediately before decarburization annealing to improve the primary recrystallization texture (for example, Patent Documents 5 to 8). ). However, the conventional method sometimes causes variations in magnetic characteristics.
The present inventors diligently studied to improve magnetic properties by increasing the heating rate during decarburization annealing. As a result, when P is contained, the magnetic characteristics can be improved without excessively increasing the heating rate, and the knowledge that the variation in magnetic characteristics is reduced even when the heating rate is increased. Got. As a result of further studies, the inventors have obtained a grain-oriented electrical steel sheet having excellent magnetic properties and suppressed variation by setting the P content in the slab to 0.01% or more. I found out.
The reason why the magnetic properties have been improved without excessively increasing the heating rate when P is contained in the slab is not clear, but the texture after decarburization annealing, so-called primary recrystallization texture, is not limited to the heating rate. It is presumed that the content is also affected, and a steel having a higher P content can obtain a primary recrystallized texture preferable for improving magnetic properties even if the heating rate is low. Moreover, it is thought that the dispersion | variation in the magnetic characteristic when heating rate is increased excessively originates in the increase in the temperature distribution in a sample, or the change of the progress form of surface layer oxidation at the time of decarburization annealing. P, which has a strong tendency to segregate to grain boundaries, tends to concentrate in the surface layer of the steel sheet, and it is speculated that the inclusion of P in the steel sheet will change the progress of surface oxidation during decarburization annealing. It is considered that the preferable range of the heating rate during the decarburization annealing changed according to the P content through changes in both the form of surface oxidation and the surface layer oxidation, and excellent magnetic properties were stably obtained.
On the other hand, when the P content in the slab exceeds 0.09%, the rolling processability deteriorates and sometimes breaks during production.
From the above, in the method for producing a grain-oriented electrical steel sheet according to the present invention, using a slab having a P content of 0.01 to 0.09%, immediately before decarburization annealing or in the temperature raising process of decarburization annealing, By heating at a heating rate of 650 ° C./sec or more to a temperature of 800 ° C. or more, a grain-oriented electrical steel sheet having excellent magnetic properties and suppressing variations in the magnetic properties can be manufactured.
In addition, according to the present invention, it is possible to reduce the content ratio of Bi, and it is also possible to produce a grain-oriented electrical steel sheet having excellent magnetic properties and excellent film adhesion.
Hereinafter, each process of the manufacturing method of the grain-oriented electrical steel sheet according to the present invention will be described in more detail.

[スラブ(鋼塊)]
本発明の方向性電磁鋼板の製造方法においては、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.06〜0.15%、S+0.405Se:0.02〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、P:0.01〜0.09%を含有し、残部Feおよび不純物からなるスラブが用いられる。
当該スラブを用いることにより、優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板が得られる。
[Slab (steel ingot)]
In the manufacturing method of the grain-oriented electrical steel sheet of the present invention, in mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.06 to 0.15%, S + 0.405Se: 0.02-0.050%, acid-soluble Al: 0.01-0.05%, N: 0.002-0.015%, P: 0.01-0.09% A slab composed of the remaining Fe and impurities is used.
By using the slab, a grain-oriented electrical steel sheet having excellent magnetic characteristics and suppressed variation can be obtained.

本発明においてスラブは、少なくとも、C(炭素)、Si(ケイ素)、Mn(マンガン)、S(硫黄)及びSe(セレン)の少なくとも一種、酸可溶性Al(アルミニウム)、N(窒素)、及び、P(リン)を含有し、Bi(ビスマス)、Ni(ニッケル)、Cr(クロム)、Cu(銅)、Sb(アンチモン)、及びSn(スズ)を含有してもよく、本発明の効果を損なわない範囲で不純物を含有してもよい、残部がFe(鉄)からなる組成を有する。   In the present invention, the slab is at least one of C (carbon), Si (silicon), Mn (manganese), S (sulfur) and Se (selenium), acid-soluble Al (aluminum), N (nitrogen), and It contains P (phosphorus) and may contain Bi (bismuth), Ni (nickel), Cr (chromium), Cu (copper), Sb (antimony), and Sn (tin). The composition may contain impurities as long as they are not damaged, and the balance is composed of Fe (iron).

(C:0.02〜0.10%)
本発明においてスラブは、Cを0.02〜0.10%含有する。C含有量を0.02%以上とすることにより、熱間圧延に先立つスラブ加熱において結晶粒が過度に粗大化することを抑制し、二次再結晶不良を抑制することができる。また、C含有量を0.10%以下とすることにより、冷間圧延後の脱炭焼鈍における脱炭時間を短時間としても脱炭が十分に進行し、磁気時効と呼ばれる磁気特性不良を抑制することができる。
(C: 0.02-0.10%)
In the present invention, the slab contains 0.02 to 0.10% of C. By setting the C content to 0.02% or more, it is possible to suppress excessively coarsening of crystal grains in slab heating prior to hot rolling, and secondary recrystallization failure can be suppressed. In addition, by making the C content 0.10% or less, decarburization proceeds sufficiently even if the decarburization time in decarburization annealing after cold rolling is short, and suppresses magnetic property defects called magnetic aging. can do.

(Si:2.5〜4.5%)
本発明においてスラブは、Siを2.5〜4.5%含有する。Siを含有することにより、方向性電磁鋼板における鋼の電気抵抗が増加し、鉄損の一部を構成する渦電流損失を低減することができる。渦電流損失を低減する点から、Siの含有量は、2.5%以上とし、中でも、3.0%以上であることが好ましい。一方、方向性電磁鋼板の磁束密度を向上し、また、圧延時の加工性の点から、Siの含有量は、4.5%以下とし、中でも、3.4%以下であることが好ましい。
(Si: 2.5-4.5%)
In the present invention, the slab contains 2.5 to 4.5% of Si. By containing Si, the electrical resistance of steel in the grain-oriented electrical steel sheet can be increased, and eddy current loss constituting a part of iron loss can be reduced. From the viewpoint of reducing eddy current loss, the Si content is 2.5% or more, and preferably 3.0% or more. On the other hand, from the viewpoint of improving the magnetic flux density of the grain-oriented electrical steel sheet and workability at the time of rolling, the Si content is 4.5% or less, preferably 3.4% or less.

(Mn:0.06〜0.15%)
本発明においてスラブは、Mnを0.06〜0.15%含有する。Mnは、後述するS又はSeと結合してMnSないしMnSeを形成し、二次再結晶のインヒビターとして作用する。Mnの含有量が0.06%以上であれば、十分なMnS、ないしMnSeを得ることができる。一方、Mnの含有量を0.15%以下とすることにより、スラブ加熱時にMnを固溶させやすく、また、熱間圧延時にインヒビターとして適切な粒径のMnS、ないしMnSeを得ることができる。このような観点からは、Mnの含有量は、0.09%以下とすることが好ましい。
(Mn: 0.06 to 0.15%)
In the present invention, the slab contains 0.06 to 0.15% of Mn. Mn combines with S or Se described later to form MnS or MnSe, and acts as an inhibitor of secondary recrystallization. If the Mn content is 0.06% or more, sufficient MnS or MnSe can be obtained. On the other hand, when the Mn content is 0.15% or less, Mn can be easily dissolved during slab heating, and MnS or MnSe having an appropriate particle size as an inhibitor can be obtained during hot rolling. From such a viewpoint, the Mn content is preferably 0.09% or less.

(S+0.405Se:0.02〜0.050%)
本発明においてスラブは、S+0.405Se(即ち、Sの質量と、Seの質量の0.405倍の合計)を、0.02〜0.050%含有する。S及びSeは、前記Mnとの組み合わせにより、MnSないしMnSeを形成する。本発明においては、S及びSeのうち1種のみ含有してもよく、S及びSeのいずれも含有してもよい。インヒビターとしての十分な効果を得る観点から、S+0.405Seで0.01%以上含有すればよく、0.022%以上が好ましい。また、S+0.405Seの上限は0.050%であり、0.030%以下が好ましい。
(S + 0.405Se: 0.02-0.050%)
In the present invention, the slab contains 0.02 to 0.050% of S + 0.405Se (that is, the sum of the mass of S and 0.405 times the mass of Se). S and Se form MnS or MnSe in combination with Mn. In the present invention, only one of S and Se may be contained, or both S and Se may be contained. From the viewpoint of obtaining a sufficient effect as an inhibitor, the content of S + 0.405Se may be 0.01% or more, preferably 0.022% or more. Moreover, the upper limit of S + 0.405Se is 0.050%, and preferably 0.030% or less.

(酸可溶性Al:0.01〜0.05%)
本発明においてスラブは、酸可溶性Alを0.01〜0.05%含有する。酸可溶性Alは後述するNと結合してAlNを形成し、インヒビターとして作用する。酸可溶性Alが0.01%以上含有することにより、方向性電磁鋼板の磁束密度を向上することができる。また、酸可溶性Alの含有量を0.05%以下とすることにより、インヒビターとして析出させるAlNが粗大化を抑制し、インヒビター強度の低下を抑制することができ、方向性電磁鋼板の磁束密度を向上することができる。このような観点から、酸可溶性Alの含有量は、0.01〜0.05%であり、中でも、0.02%以上、0.03%以下であることが好ましい。
(Acid-soluble Al: 0.01 to 0.05%)
In the present invention, the slab contains 0.01 to 0.05% of acid-soluble Al. Acid-soluble Al combines with N described later to form AlN and acts as an inhibitor. By containing 0.01% or more of acid-soluble Al, the magnetic flux density of the grain-oriented electrical steel sheet can be improved. In addition, by setting the content of acid-soluble Al to 0.05% or less, AlN deposited as an inhibitor can suppress coarsening, suppress a decrease in inhibitor strength, and reduce the magnetic flux density of the grain-oriented electrical steel sheet. Can be improved. From such a viewpoint, the content of acid-soluble Al is 0.01 to 0.05%, and preferably 0.02% or more and 0.03% or less.

(N:0.002〜0.015%)
本発明においてスラブは、Nを0.002〜0.015%含有する。Nは、前記酸可溶性Alとの組み合わせによりAlNを形成して、インヒビターとして作用する。中でもNの含有量は、0.005%以上、0.012%以下であることが好ましい。
(N: 0.002 to 0.015%)
In the present invention, the slab contains 0.002 to 0.015% of N. N forms AlN in combination with the acid-soluble Al, and acts as an inhibitor. Among these, the N content is preferably 0.005% or more and 0.012% or less.

(P:0.01〜0.09%)
本発明においてスラブは、Pを0.01〜0.09%含有する。Pを0.01%以上含有することにより、優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板が得られる。本発明においては、中でも、Pを0.02%以上含有することが好ましく、0.025%以上含有することがより好ましく、0.03%以上含有することが更により好ましい。
一方、スラブ中のPの含有量を0.09%以下とすることにより、圧延加工性が過度に低下することを抑制でき、製造時における破断を抑制することができる。このような観点からPの含有量は0.08%以下であることがより好ましい。
(P: 0.01-0.09%)
In the present invention, the slab contains 0.01 to 0.09% of P. By containing 0.01% or more of P, a grain-oriented electrical steel sheet having excellent magnetic properties and suppressed variation can be obtained. In the present invention, it is preferable to contain 0.02% or more of P, more preferably 0.025% or more, and even more preferably 0.03% or more.
On the other hand, when the content of P in the slab is set to 0.09% or less, it is possible to suppress the rolling processability from being excessively reduced, and it is possible to suppress breakage during manufacturing. From such a viewpoint, the P content is more preferably 0.08% or less.

(Bi)
本発明においてスラブは、更にBiを含有してもよい。Biを含有することにより、磁気特性の向上を図ることができる。本発明の方向性電磁鋼板の製造方法においては、スラブがPを0.01%以上含有することから、Biの含有量は0.0005%以上であれば、Pとの組み合わせにより、磁気特性をより向上することができる。また、本発明においては、Biの含有割合を0.0200%以下とすることにより、磁気特性を向上しながら、Biを含有することによる被膜密着性の低減を抑制することができる。
このような理由から、磁気特性を向上し、且つ、被膜密着性の低減を抑制する点から、本発明においてスラブがBiを含有する場合、その含有量は、0.0005〜0.0200%であることが好ましく、0.0007%以上、0.0100%以下であることがより好ましい。
(Bi)
In the present invention, the slab may further contain Bi. By containing Bi, the magnetic properties can be improved. In the method for producing a grain-oriented electrical steel sheet according to the present invention, since the slab contains 0.01% or more of P, if the Bi content is 0.0005% or more, the magnetic properties can be obtained by combining with P. It can be improved further. Moreover, in this invention, the content rate of Bi shall be 0.0200% or less, and the reduction | decrease of the film | membrane adhesiveness by containing Bi can be suppressed, improving a magnetic characteristic.
For these reasons, when the slab contains Bi in the present invention, the content is 0.0005 to 0.0200% from the viewpoint of improving the magnetic properties and suppressing the reduction of the film adhesion. It is preferable that it is 0.0007% or more and 0.0100% or less.

また、本発明においてスラブは、二次再結晶を安定化させる元素として、Ni:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Sb:0.005〜0.50%およびSn:0.005〜0.50%のうちから選ばれる1種または2種以上を含有してもよい。   In the present invention, the slab is an element that stabilizes secondary recrystallization. Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50 %, Sb: 0.005 to 0.50% and Sn: 0.005 to 0.50% may be included.

更に、本発明においてスラブは、本発明の効果を損なわない範囲で、不可避的に混入する各種元素(不純物)を含むものであってもよい。このような元素としては、C、N、Sのほか、Ti(チタン)、Nb(ニオブ)、Mo(モリブテン)等が挙げられる。
本発明においてスラブ中の不純物の含有量は、0.15%以下であることが好ましく、0.10%以下であることがより好ましい。
Furthermore, in the present invention, the slab may contain various elements (impurities) that are inevitably mixed within a range that does not impair the effects of the present invention. Examples of such elements include Ti (titanium), Nb (niobium), and Mo (molybdenum) in addition to C, N, and S.
In the present invention, the content of impurities in the slab is preferably 0.15% or less, and more preferably 0.10% or less.

本発明において用いられるスラブ中の各元素の含有割合は、元素の種類に応じて下記の方法で公知の測定条件により測定することができる。
Si、Mn、Se、Al、Bi、Ni、Cr、Cu、Sb、及びSnについては、誘導結合プラズマ質量分析法(ICP−MS法)により測定することができる。
C、S、Pについては、燃焼赤外線吸収法により測定することができる。
また、Nについては、加熱融解−熱伝導法により測定することができる。
なお、後述する脱炭焼鈍工程、仕上焼鈍工程において各元素の割合は変化する場合がある。そのため、上記スラブの化学組成と、本発明の製造方法により得られる方向性電磁鋼板の化学組成とは異なる場合がある。しかしながら、方向性電磁鋼板に含まれるP、Si、Mnの含有割合は、上記スラブ中の含有割合とほぼ同等であるため、これらの元素については、得られた方向性電磁鋼板からスラブ中の含有割合を求めることができる。
The content ratio of each element in the slab used in the present invention can be measured by known methods under the following method according to the kind of element.
Si, Mn, Se, Al, Bi, Ni, Cr, Cu, Sb, and Sn can be measured by inductively coupled plasma mass spectrometry (ICP-MS method).
C, S, and P can be measured by a combustion infrared absorption method.
Further, N can be measured by a heat melting-heat conduction method.
In addition, the ratio of each element may change in the decarburization annealing process and finish annealing process which will be described later. Therefore, the chemical composition of the slab may differ from the chemical composition of the grain-oriented electrical steel sheet obtained by the production method of the present invention. However, since the content ratios of P, Si, and Mn contained in the grain-oriented electrical steel sheet are substantially equal to the content ratio in the slab, these elements are contained in the slab from the obtained grain-oriented electrical steel sheet. The percentage can be determined.

次に、製造工程について説明する。
まず、化学組成が適宜調製された方向性電磁鋼板製造用の溶鋼を鋳造して、上記組成のスラブ(鋼塊)を得る。当該鋳造方法は、特に限定されず、従来公知の方法を適宜選択して用いることができる。
次いで、得られたスラブに熱間圧延を施す。本発明においては熱間圧延時のスラブの表面温度が1300℃超1400℃以下となるように加熱する。スラブの表面温度を1300℃超とすることによりインヒビターが十分に固溶するため、優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板を得ることができる。一方、磁気特性の点から表面温度は1400℃以下で十分であり、1400℃以下とすることにより、特殊な設備を用いることなく、製造コストを抑制することができる。
また、本発明においては、スラブの表面温度の保持時間は、適宜調整すればよい。優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板を得ることができる点から、5分以上とすることが好ましい。一方、磁気特性の点から、60分以下で十分であり、生産性を向上し、製造コストを抑制する点からは、60分以下とすることが好ましい。
熱間圧延後の鋼板の厚みは、特に限定されないが、例えば、1.8〜3.5mmとすることができる。熱間圧延に関する他の条件は特に限定されず、適宜調整すればよい。
Next, the manufacturing process will be described.
First, molten steel for producing grain-oriented electrical steel sheets having an appropriate chemical composition is cast to obtain a slab (steel ingot) having the above composition. The casting method is not particularly limited, and a conventionally known method can be appropriately selected and used.
Next, hot rolling is performed on the obtained slab. In this invention, it heats so that the surface temperature of the slab at the time of hot rolling may become 1400 degreeC or more exceeding 1300 degreeC. By setting the surface temperature of the slab to above 1300 ° C., the inhibitor is sufficiently solid-solved, so that a grain-oriented electrical steel sheet having excellent magnetic properties and suppressed variation can be obtained. On the other hand, a surface temperature of 1400 ° C. or lower is sufficient from the viewpoint of magnetic properties, and by setting it to 1400 ° C. or lower, manufacturing costs can be suppressed without using special equipment.
In the present invention, the holding time of the surface temperature of the slab may be adjusted as appropriate. In view of obtaining a grain-oriented electrical steel sheet having excellent magnetic characteristics and suppressed variation, it is preferably set to 5 minutes or more. On the other hand, 60 minutes or less is sufficient from the viewpoint of magnetic characteristics, and 60 minutes or less is preferable from the viewpoint of improving productivity and suppressing manufacturing costs.
Although the thickness of the steel plate after hot rolling is not specifically limited, For example, it can be set as 1.8-3.5 mm. Other conditions related to hot rolling are not particularly limited, and may be adjusted as appropriate.

熱間圧延後、磁気特性を向上させる目的で熱延板焼鈍を施す。熱延板焼鈍は特に限定されず、公知の方法を適宜選択すればよい。例えば、熱延板焼鈍は750〜1200℃の温度域で30秒〜10分間実施することができる。熱延板焼鈍後の鋼板は、必要に応じて、酸洗を行ってもよい。   After hot rolling, hot-rolled sheet annealing is performed for the purpose of improving magnetic properties. Hot-rolled sheet annealing is not particularly limited, and a known method may be selected as appropriate. For example, the hot-rolled sheet annealing can be performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes. The steel sheet after hot-rolled sheet annealing may be pickled as necessary.

次いで、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とする。一回の冷間圧延とは、中間焼鈍を途中に施すことなく圧延機に一回又は複数回通板させることで所望の板厚へ仕上げることを意味する。また、中間焼鈍とは、圧延機に一回又は複数回通板させることで中間板厚とした後に施す焼鈍工程であり、当該中間焼鈍後、圧延機に一回又は複数回通板させることで所望の板厚へ仕上げる。中間焼鈍を含む二回以上の冷間圧延とは、前記中間焼鈍を一回以上実施する冷間圧延を意味する。
中間焼鈍条件は特に限定されず、例えば、750〜1200℃の温度域で30秒〜10分間実施するなど適宜条件を選択すればよい。ここで、圧延機に複数回通板させる際、圧延と圧延の間に300℃以下程度へ鋼板を加熱してから圧延を実施することが磁気特性向上には好ましい。
Next, the cold rolled steel sheet is formed by performing one cold rolling or two or more cold rolling sandwiching the intermediate annealing. One cold rolling means finishing to a desired plate thickness by letting the rolling mill pass once or a plurality of times without intermediate annealing. Moreover, intermediate annealing is an annealing process performed after making it into an intermediate thickness by letting a rolling mill pass once or a plurality of times, and after the intermediate annealing, by passing the rolling mill once or a plurality of times. Finish to desired thickness. The cold rolling twice or more including intermediate annealing means cold rolling in which the intermediate annealing is performed once or more.
The intermediate annealing conditions are not particularly limited, and may be selected as appropriate, for example, in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes. Here, when letting a rolling mill pass a plurality of times, it is preferable to carry out rolling after heating the steel plate to about 300 ° C. or less between rollings to improve magnetic properties.

得られた冷延鋼板には、次いで、脱炭焼鈍を施す。本発明の方向性電磁鋼板の製造方法においては、脱炭焼鈍する直前、もしくは脱炭焼鈍の昇温過程において、加熱速度を650℃/sec以上で、800℃以上の温度へ加熱することを特徴とする。本発明においては、前記スラブが、Pを0.01%以上含有するため、650℃/sec以上で、800℃以上の温度へ加熱することにより、優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板が得られる。
加熱速度の上限は特に限定されないが、装置の制約等の観点から、通常、1500℃/sec以下であることが好ましい。本発明において、加熱速度は300℃から到達温度までの平均加熱速度とする。このような高い加熱速度を得るには、加熱方法として誘導加熱や通電加熱を採用するのがよい。本発明の効果を得るための十分な加熱速度を達成するため、誘導加熱方式が好ましい。工程簡素化の観点から、上記加熱処理は脱炭焼鈍工程の加熱時に組み込むことが望ましい。
また、到達温度の上限は特に限定されないが、1000℃以下であることが好ましい。
Next, the obtained cold-rolled steel sheet is subjected to decarburization annealing. In the method for producing a grain-oriented electrical steel sheet according to the present invention, heating is performed at a heating rate of 650 ° C./sec or more and a temperature of 800 ° C. or more immediately before decarburization annealing or in a temperature raising process of decarburization annealing. And In the present invention, since the slab contains 0.01% or more of P, by heating to a temperature of 650 ° C./sec or more and 800 ° C. or more, it has excellent magnetic properties and suppresses variation. The obtained grain-oriented electrical steel sheet is obtained.
The upper limit of the heating rate is not particularly limited, but it is usually preferably 1500 ° C./sec or less from the viewpoint of device restrictions and the like. In the present invention, the heating rate is an average heating rate from 300 ° C. to the ultimate temperature. In order to obtain such a high heating rate, it is preferable to employ induction heating or electric heating as a heating method. In order to achieve a sufficient heating rate for obtaining the effects of the present invention, an induction heating method is preferred. From the viewpoint of process simplification, it is desirable to incorporate the above heat treatment at the time of heating in the decarburization annealing process.
The upper limit of the reached temperature is not particularly limited, but is preferably 1000 ° C. or lower.

更に、鋭意検討の結果、スラブ中のPの含有割合と、加熱速度が、以下の関係式(1)を満たすことにより、特に優れた磁気特性を有し、且つばらつきの抑制された方向性電磁鋼板が得られることが明らかとなった。
式(1):[加熱速度]≧930−12000×[%P]
(ここで、[%P]は、スラブ中のPの含有量(質量%)を表す。また、[加熱速度]の単位は(℃/sec)である。)
上記式(1)によれば、スラブ中のPの含有量を増やすことにより、加熱速度を過度に高めることなく、磁気特性を向上することができることが分かる。
Furthermore, as a result of intensive studies, when the content ratio of P in the slab and the heating rate satisfy the following relational expression (1), the directional electromagnetic wave having particularly excellent magnetic characteristics and suppressed variation. It became clear that a steel plate was obtained.
Formula (1): [Heating rate] ≧ 930-12000 × [% P]
(Here, [% P] represents the content (mass%) of P in the slab. The unit of [heating rate] is (° C./sec).)
According to the above formula (1), it can be seen that increasing the P content in the slab can improve the magnetic properties without excessively increasing the heating rate.

脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布乾燥してから仕上焼鈍を施す。仕上焼鈍は{110}<001>方位粒を二次再結晶させる工程であり、鋼板の磁気特性を向上させるために極めて重要である。仕上焼鈍方法は、特に限定されないが、例えば、窒素水素混合雰囲気にて1100〜1200℃の温度に昇温する過程で二次再結晶を発現させた後、水素雰囲気に切り替え、1100〜1200℃の温度で20時間程度の焼鈍を実施することによりN、S、Se等を鋼板外へ拡散除去して製品板の磁気特性を良好なものとすることができる。
上記焼鈍分離剤としては、従来公知のものの中から適宜選択して用いることができる。本発明においては、磁気特性の向上の点から、MgO(酸化マグネシウム)を含有する焼鈍分離剤が好ましく、MgOを主成分とする焼鈍分離剤がより好ましい。
After decarburization annealing, an annealing separator is applied and dried on the steel sheet surface, and then finish annealing is performed. Finish annealing is a step of secondary recrystallization of {110} <001> oriented grains, and is extremely important for improving the magnetic properties of the steel sheet. The finish annealing method is not particularly limited. For example, after the secondary recrystallization is developed in the process of raising the temperature to 1100 to 1200 ° C. in a nitrogen-hydrogen mixed atmosphere, the hydrogen annealing atmosphere is changed to 1100 to 1200 ° C. By performing annealing for about 20 hours at a temperature, N, S, Se, etc. can be diffused and removed out of the steel sheet, and the magnetic properties of the product plate can be improved.
As said annealing separation agent, it can select suitably from conventionally well-known things and can use it. In the present invention, an annealing separator containing MgO (magnesium oxide) is preferable from the viewpoint of improving magnetic properties, and an annealing separator containing MgO as a main component is more preferable.

本発明の方向性電磁鋼板の製造方法においては、本発明の効果を損なわない範囲で、更に他の工程を有していてもよいものである。
例えば、仕上焼鈍後、鋼板の一次被膜の上にさらに絶縁被膜を施してもよい。特に、りん酸塩とコロイダルシリカを主体とするコーティング液を焼き付けることによって得られる絶縁被膜は鋼板に付与する張力が大きく、鉄損改善に有効である。
また、さらに、方向性電磁鋼板にレーザ照射、プラズマ照射、歯型ロール、エッチングなどにより、いわゆる磁区細分化処理を施してもよい。
In the manufacturing method of the grain-oriented electrical steel sheet according to the present invention, other steps may be included as long as the effects of the present invention are not impaired.
For example, after finish annealing, an insulating coating may be further applied on the primary coating of the steel plate. In particular, an insulating coating obtained by baking a coating solution mainly composed of phosphate and colloidal silica has a large tension applied to the steel sheet, and is effective in improving iron loss.
Further, the grain-oriented electrical steel sheet may be subjected to a so-called magnetic domain refinement process by laser irradiation, plasma irradiation, tooth roll, etching or the like.

本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

以下、実施例および比較例を例示して、本発明を具体的に説明する。
[実施例1]
C:0.08%、Si:3.2%、Mn:0.08%、S:0.025%、酸可溶性Al:0.024%、N:0.008%、Bi:0.0035%、P:0.008%〜0.10%を含有し、残部がFeおよび不純物であるスラブを1350℃まで昇温して30分保持した後、熱間圧延して2.3mm厚の熱延コイルとした。熱延コイルに1120℃で120秒間保持する熱延板焼鈍を施した後に酸洗し、冷間圧延にて0.22mm厚とした。得られた冷延鋼板に湿潤水素中850℃で120秒の脱炭焼鈍を施した。脱炭焼鈍の加熱過程では到達温度を850℃とし、加熱速度を20℃/秒〜1000℃/秒の範囲で変化させた。脱炭焼鈍後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し、1150℃で20時間の仕上げ焼鈍に供した。仕上焼鈍後、鋼板の余剰のMgOを除去し、単板磁気測定試験片へせん断し、コロイダルシリカとりん酸アルミニウムを主成分とした絶縁被膜を形成させた。得られた鋼板につき、単板磁気測定(SST)により磁束密度B8(800A/mで磁化した際の磁束密度)を測定するとともに、一次被膜の評価を行った。
Hereinafter, the present invention will be described specifically by way of examples and comparative examples.
[Example 1]
C: 0.08%, Si: 3.2%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.024%, N: 0.008%, Bi: 0.0035% , P: 0.008% to 0.10%, the remainder of Fe and impurities slab is heated to 1350 ° C. and held for 30 minutes, then hot-rolled to a 2.3 mm thick hot rolled A coil was used. The hot-rolled coil was subjected to hot-rolled sheet annealing that was held at 1120 ° C. for 120 seconds, then pickled, and cold-rolled to a thickness of 0.22 mm. The obtained cold-rolled steel sheet was subjected to decarburization annealing in wet hydrogen at 850 ° C. for 120 seconds. In the heating process of the decarburization annealing, the ultimate temperature was 850 ° C., and the heating rate was changed in the range of 20 ° C./second to 1000 ° C./second. After the decarburization annealing, an annealing separator containing MgO as a main component was applied to the steel sheet surface and subjected to a final annealing at 1150 ° C. for 20 hours. After the finish annealing, excess MgO of the steel sheet was removed and sheared into a single-plate magnetic measurement test piece to form an insulating film composed mainly of colloidal silica and aluminum phosphate. About the obtained steel plate, while measuring magnetic flux density B8 (magnetic flux density at the time of magnetizing by 800 A / m) by single plate magnetic measurement (SST), the primary film was evaluated.

表1にP含有量、加熱速度とともに、B8および一次被膜の評価結果を示す。被膜評価は、10φの円柱に沿って試験片を曲げ、内曲げによる被膜の剥離状況で表し、Aが最も良好で、次いでB、C、Dとした。評点A,Bを合格とした。加熱速度の増加とともに磁気特性は向上するが、本発明のP含有量と加熱速度の条件を満足しなかった場合は被膜の評価がCもしくはDであった。加熱速度の増加とともに磁気特性は増加するが、P含有量が本願発明範囲を下回る鋼では被膜の密着性が劣位であった。また、P含有量が本願発明範囲を超過した鋼では冷間圧延時に破断したため以降の工程に供することができなかった。P含有量と加熱速度の条件が本願発明範囲を満足する条件では、磁気特性、被膜評価とも優れていた。   Table 1 shows the evaluation results of B8 and the primary coating, together with the P content and the heating rate. The coating evaluation was performed by bending a test piece along a 10φ cylinder and expressing the peeling state of the coating by internal bending, with A being the best and then B, C, and D. Scores A and B were accepted. The magnetic characteristics improved with an increase in the heating rate. However, when the conditions for the P content and the heating rate of the present invention were not satisfied, the evaluation of the film was C or D. Although the magnetic properties increase with increasing heating rate, the adhesion of the coating was inferior for steels with P content below the scope of the present invention. In addition, steel with a P content exceeding the scope of the present invention could not be subjected to subsequent steps because it broke during cold rolling. Under conditions where the P content and the heating rate satisfy the scope of the present invention, both the magnetic properties and the film evaluation were excellent.

[実施例2]
表2に示す鋼組成のスラブを種々の温度で50分保持した後に熱間圧延により2.0mm〜2.5mmの板厚に仕上げた。これらの熱延板に1100℃で100秒間の熱延板焼鈍を施し、酸洗後に冷間圧延により0.22mmの板厚に仕上げた。試験番号2−1および2−3の鋼板については、中間板厚まで冷間圧延で仕上げた後に1050℃で100秒間の中間焼鈍を施し、冷間圧延によって0.22mmの板厚に仕上げた。得られた冷延鋼板に湿潤水素中850℃で120秒の脱炭焼鈍を施した。脱炭焼鈍の加熱過程では到達温度を850℃とし、加熱速度を900℃/秒とした。脱炭焼鈍後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し、1150℃で20時間の仕上げ焼鈍に供した。仕上げ焼鈍後、鋼板の余剰のMgOを除去し、単板磁気測定試験片へせん断し、コロイダルシリカとりん酸アルミニウムを主成分とした絶縁被膜を形成させた。得られた鋼板につき、実施例1と同様に磁束密度B8を測定するとともに、一次被膜の評価を行った。表3にスラブ加熱温度、熱延板厚、中間板厚とともに評価結果を示す。
[Example 2]
The steel composition slabs shown in Table 2 were held at various temperatures for 50 minutes and then finished to a thickness of 2.0 mm to 2.5 mm by hot rolling. These hot-rolled sheets were subjected to hot-rolled sheet annealing at 1100 ° C. for 100 seconds, and finished to a sheet thickness of 0.22 mm by cold rolling after pickling. About the steel plates of test numbers 2-1 and 2-3, after finishing by cold rolling to an intermediate thickness, intermediate annealing was performed at 1050 ° C. for 100 seconds, and finished to a thickness of 0.22 mm by cold rolling. The obtained cold-rolled steel sheet was subjected to decarburization annealing in wet hydrogen at 850 ° C. for 120 seconds. In the heating process of decarburization annealing, the ultimate temperature was 850 ° C., and the heating rate was 900 ° C./second. After the decarburization annealing, an annealing separator containing MgO as a main component was applied to the steel sheet surface and subjected to a final annealing at 1150 ° C. for 20 hours. After the finish annealing, excess MgO of the steel sheet was removed and sheared into a single-plate magnetic measurement test piece to form an insulating film composed mainly of colloidal silica and aluminum phosphate. About the obtained steel plate, while measuring magnetic flux density B8 similarly to Example 1, the primary film was evaluated. Table 3 shows the evaluation results together with the slab heating temperature, hot-rolled plate thickness, and intermediate plate thickness.

試験番号2−9は、スラブ加熱温度が本発明で限定する範囲を下回っており、磁気特性が特に劣っていた。試験番号2−10は、本発明で限定する鋼組成、特にインヒビターとして作用する元素が本発明の範囲外であり、特に磁気特性に劣っていた。これに対して、試験番号2−1〜2−8および2−11は、本発明で限定する条件を満足しており、所望の磁気特性が得られるとともに被膜評価にも優れていた。   In Test No. 2-9, the slab heating temperature was below the range limited by the present invention, and the magnetic properties were particularly inferior. In Test No. 2-10, the steel composition limited in the present invention, particularly the element acting as an inhibitor was outside the scope of the present invention, and the magnetic properties were particularly inferior. On the other hand, test numbers 2-1 to 2-8 and 2-11 satisfied the conditions limited in the present invention, and desired magnetic characteristics were obtained and the film evaluation was excellent.

Claims (3)

質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.06〜0.15%、S+0.405Se:0.02〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、P:0.01〜0.09%を含有し、残部Feおよび不純物からなるスラブを、1300℃超1400℃以下に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面に焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法であって、
前記脱炭焼鈍する直前、もしくは前記脱炭焼鈍の昇温過程において、加熱速度を650℃/sec以上で、800℃以上の温度へ加熱することを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.02-0.10%, Si: 2.5-4.5%, Mn: 0.06-0.15%, S + 0.405Se: 0.02-0.050%, A slab containing acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, P: 0.01 to 0.09%, and remaining Fe and impurities exceeding 1300 ° C After heating to 1400 ° C. or less and hot rolling, hot-rolled sheet annealing is performed, and after cold rolling or intermediate cold annealing is performed twice or more to form a cold-rolled steel sheet, It is a method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing decarburization annealing, applying an annealing separator to the steel sheet surface, and then performing finish annealing,
A method for producing a grain-oriented electrical steel sheet, wherein heating is performed at a heating rate of 650 ° C./sec or more and a temperature of 800 ° C. or more immediately before the decarburization annealing or in the temperature raising process of the decarburization annealing.
前記スラブが、更に、Bi:0.0005〜0.0200%、を含有することを特徴とする、請求項1に記載の方向性電磁鋼板の製造方法。   The method for manufacturing a grain-oriented electrical steel sheet according to claim 1, wherein the slab further contains Bi: 0.0005 to 0.0200%. 前記スラブが、さらにNi:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Sb:0.005〜0.50%およびSn:0.005〜0.50%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。   The slab further contains Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, Sb: 0.005 to 0.50%, and Sn. The method for producing a grain-oriented electrical steel sheet according to claim 1, comprising one or more selected from 0.005 to 0.50%.
JP2016118328A 2016-06-14 2016-06-14 Manufacturing method of grain-oriented electrical steel sheet Active JP6844125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118328A JP6844125B2 (en) 2016-06-14 2016-06-14 Manufacturing method of grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118328A JP6844125B2 (en) 2016-06-14 2016-06-14 Manufacturing method of grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2017222898A true JP2017222898A (en) 2017-12-21
JP6844125B2 JP6844125B2 (en) 2021-03-17

Family

ID=60686327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118328A Active JP6844125B2 (en) 2016-06-14 2016-06-14 Manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6844125B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182154A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP2019163516A (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method of grain-oriented electromagnetic steel sheet
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2019163519A (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Processing method of grain-oriented electromagnetic steel sheet
WO2019182004A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2019167567A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Production method of directional magnetic steel sheet
JP2019167568A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Production method of directional magnetic steel sheet
CN110318005A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 A kind of high magnetic induction grain-oriented silicon steel and its manufacturing method
JP2019178377A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2019178379A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2020169368A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169367A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169366A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2022514794A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304315A (en) * 1991-03-30 1992-10-27 Kawasaki Steel Corp Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet
JPH08295937A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Production of grain-oriented silicon steel sheet having extremely low core loss
JP2001040449A (en) * 1999-07-29 2001-02-13 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate
JP2006144042A (en) * 2004-11-17 2006-06-08 Jfe Steel Kk Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic and coating characteristic
JP2009235574A (en) * 2008-03-05 2009-10-15 Nippon Steel Corp Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
US20130306202A1 (en) * 2011-12-16 2013-11-21 Posco Method for Manufacturing Grain-Oriented Electrical Steel Sheets Having Excellent Magnetic Properties
WO2016035530A1 (en) * 2014-09-01 2016-03-10 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304315A (en) * 1991-03-30 1992-10-27 Kawasaki Steel Corp Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet
JPH08295937A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Production of grain-oriented silicon steel sheet having extremely low core loss
JP2001040449A (en) * 1999-07-29 2001-02-13 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate
JP2006144042A (en) * 2004-11-17 2006-06-08 Jfe Steel Kk Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic and coating characteristic
JP2009235574A (en) * 2008-03-05 2009-10-15 Nippon Steel Corp Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
US20130306202A1 (en) * 2011-12-16 2013-11-21 Posco Method for Manufacturing Grain-Oriented Electrical Steel Sheets Having Excellent Magnetic Properties
WO2016035530A1 (en) * 2014-09-01 2016-03-10 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019182004A1 (en) * 2018-03-20 2021-03-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP2019163516A (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method of grain-oriented electromagnetic steel sheet
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2019163519A (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Processing method of grain-oriented electromagnetic steel sheet
WO2019182004A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
US11661636B2 (en) 2018-03-20 2023-05-30 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
US11408042B2 (en) 2018-03-20 2022-08-09 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7106910B2 (en) 2018-03-20 2022-07-27 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7063032B2 (en) 2018-03-20 2022-05-09 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7036194B2 (en) 2018-03-20 2022-03-15 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7006772B2 (en) 2018-03-20 2022-01-24 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
RU2755918C1 (en) * 2018-03-20 2021-09-22 Ниппон Стил Корпорейшн Method for producing electrotechnical steel sheet with oriented grain structure and electrotechnical steel sheet with oriented grain structure
EP3770283A4 (en) * 2018-03-20 2021-08-11 Nippon Steel Corporation Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
EP3770282A4 (en) * 2018-03-20 2021-08-04 Nippon Steel Corporation Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JPWO2019181952A1 (en) * 2018-03-20 2021-03-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7119474B2 (en) 2018-03-22 2022-08-17 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7248917B2 (en) 2018-03-22 2023-03-30 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JPWO2019182154A1 (en) * 2018-03-22 2021-03-18 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP2019167567A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Production method of directional magnetic steel sheet
RU2746949C1 (en) * 2018-03-22 2021-04-22 Ниппон Стил Корпорейшн Electrical steel sheet with oriented grain structure and method for its production
JP7119475B2 (en) 2018-03-22 2022-08-17 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2019182154A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP2019167568A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Production method of directional magnetic steel sheet
JP7159594B2 (en) 2018-03-30 2022-10-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP2019178377A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
CN110318005A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 A kind of high magnetic induction grain-oriented silicon steel and its manufacturing method
JP2019178379A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP7159595B2 (en) 2018-03-30 2022-10-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
CN110318005B (en) * 2018-03-30 2021-12-17 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
JP2022514794A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
JP7507157B2 (en) 2018-12-19 2024-06-27 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and its manufacturing method
JP2020169368A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169367A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169366A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP7284392B2 (en) 2019-04-05 2023-05-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7284391B2 (en) 2019-04-05 2023-05-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7284393B2 (en) 2019-04-05 2023-05-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP6844125B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5423909B1 (en) Method for producing grain-oriented electrical steel sheet
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
WO2011115120A1 (en) Method for producing directional electromagnetic steel sheet
JP2009235574A (en) Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
WO2011102455A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP2019163516A (en) Production method of grain-oriented electromagnetic steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP2016156068A (en) Method for producing grain-oriented silicon steel sheet
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP7221481B6 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2017106111A (en) Manufacturing method of oriented electromagnetic steel sheet
JP2018070974A (en) Production method for grain-oriented electromagnetic steel sheet
JP6079092B2 (en) Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP7365414B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2024503245A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP2021509149A (en) Directional electrical steel sheet and its manufacturing method
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201223

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R151 Written notification of patent or utility model registration

Ref document number: 6844125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151