JPH04304315A - Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet - Google Patents

Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet

Info

Publication number
JPH04304315A
JPH04304315A JP9101291A JP9101291A JPH04304315A JP H04304315 A JPH04304315 A JP H04304315A JP 9101291 A JP9101291 A JP 9101291A JP 9101291 A JP9101291 A JP 9101291A JP H04304315 A JPH04304315 A JP H04304315A
Authority
JP
Japan
Prior art keywords
edge
slab
deformability
hot
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9101291A
Other languages
Japanese (ja)
Inventor
Michiro Komatsubara
道郎 小松原
Yasuyuki Hayakawa
康之 早川
Toshito Takamiya
俊人 高宮
Makoto Watanabe
誠 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9101291A priority Critical patent/JPH04304315A/en
Publication of JPH04304315A publication Critical patent/JPH04304315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drastically reduce the development of edge flaw of edge crack, etc., feared in the case of using a slab for silicon steel, particularly a continuously cast slab and to improve the yield of a product. CONSTITUTION:In the continuous casting process for Si-incorporating steel slab, to both edge parts of this slab, high deformable range satisfying the range of 1.02-1.15 relative deformability is formed with the width having 0.5-2.0 edge part high deformable range index and successively, after heating relevant slab at >=1250 deg.C, width rolling reduction having 3-60mm is applied at least once among before passing, during passing and after passing in hot rougher rolling process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、方向性けい素鋼板の
製造技術の分野における熱間圧延材の改良に係わり、と
くに方向性けい素鋼スラブを高温加熱したときに懸念さ
れる熱間圧延時における耳荒れ、耳割れのような耳きず
の発生を有効に防止して、磁気特性に優れた方向性けい
素鋼板を高歩留りの下で得ようとするものである。
[Industrial Application Field] This invention relates to the improvement of hot-rolled materials in the field of manufacturing technology for grain-oriented silicon steel sheets, and particularly relates to the improvement of hot-rolled materials when grain-oriented silicon steel slabs are heated to high temperatures. The purpose of this invention is to effectively prevent the occurrence of ear flaws such as ear roughness and ear cracking, and to obtain a grain-oriented silicon steel sheet with excellent magnetic properties at a high yield.

【0002】方向性けい素鋼板は、高い磁束密度と低い
鉄損を示す優れた磁気特性により、変圧器などの鉄心材
料として広く用いられている。とくに近年のエネルギー
危機以来、磁気特性に優れた方向性けい素鋼板を安価に
供給することが大きな課題となっており、如何にして製
造コストを低減し、優れた磁気特性の製品を広く普及さ
せるかは当業者にとっての大きな関心事である。
Grain-oriented silicon steel sheets are widely used as iron core materials for transformers and the like because of their excellent magnetic properties, including high magnetic flux density and low iron loss. Especially since the recent energy crisis, it has become a major issue to supply grain-oriented silicon steel sheets with excellent magnetic properties at low prices.How can we reduce manufacturing costs and spread products with excellent magnetic properties? is of great interest to those skilled in the art.

【0003】0003

【従来の技術】一般に、磁気特性の優れた方向性けい素
鋼板を得るためには、最終焼鈍において2次再結晶と呼
ばれる(110)[001]方位(ゴス方位)を有する
結晶粒が選択成長する現象を制御する必要がある。この
ためには、MnS, MnSe, AlN等のインヒビ
ターと呼ばれる析出分散相を鋼中に微細均一に分散させ
る必要があり、これは熱延前にスラブを高温度に加熱し
、これらインヒビターを固溶させることによってはじめ
て可能となる。このためスラブは、通常、1250〜1
470℃という高温域に加熱されるが、かかる高温加熱
ではスラブ結晶粒が異常成長し、粗大化した結晶粒はそ
の後の熱間圧延段階においても十分に再結晶せず、粗い
結晶粒を残したままとなり、磁気特性の劣化原因となる
[Prior Art] Generally, in order to obtain grain-oriented silicon steel sheets with excellent magnetic properties, crystal grains having the (110) [001] orientation (Goss orientation) are selectively grown during final annealing, which is called secondary recrystallization. It is necessary to control the phenomena that occur. For this purpose, it is necessary to finely and uniformly disperse precipitated dispersed phases called inhibitors such as MnS, MnSe, AlN, etc. into the steel. This is done by heating the slab to a high temperature before hot rolling to dissolve these inhibitors in solid solution. It becomes possible only by doing so. For this reason, slabs are usually 1250 to 1
Although it was heated to a high temperature range of 470°C, the slab crystal grains grew abnormally due to such high temperature heating, and the coarse crystal grains did not recrystallize sufficiently during the subsequent hot rolling stage, leaving coarse crystal grains. This will cause deterioration of magnetic properties.

【0004】上記の対策として、粗圧延の温度とパスス
ケジュールを工夫して、組織の再結晶化を図ったり、ス
ラブ加熱前に軽圧延を施して、スラブ組織の粗大化を防
ぐなどの方策が講じられているが、かような方策はスト
リップの両縁部については効果がない。というのはスト
リップの両縁部(耳部)においては、ロールによる圧延
の場合、幅拡がりの方向にメタルフローが生じることか
ら、加工による歪の蓄積量が少なく、熱延中あるいはス
ラブ軽圧延後の加熱によっても、十分には再結晶が進行
しないからである。その結果、熱延後のコイル両側縁部
においては、磁気特性の劣化はもとより耳割れや耳荒れ
に代表される耳きずが多発し、かかる耳きずは次工程の
冷間圧延工程での破断の原因ともなるので、冷間圧延前
に除去をしなければならず、歩留り低下の大きな原因と
なっていた。
[0004] As a countermeasure against the above problem, measures such as recrystallizing the structure by modifying the temperature and pass schedule of rough rolling, and performing light rolling before heating the slab to prevent coarsening of the slab structure are available. However, such measures are ineffective at both edges of the strip. This is because metal flow occurs in the direction of width expansion at both edges (edges) of the strip when rolling with rolls, so the amount of strain accumulated due to processing is small, and the amount of strain accumulated during hot rolling or after light rolling of the slab is small. This is because recrystallization does not proceed sufficiently even with heating. As a result, on both side edges of the coil after hot rolling, not only deterioration of magnetic properties but also frequent ear flaws such as edge cracks and rough edges occur, and these ear flaws are likely to cause breakage in the next cold rolling process. Since it is also a cause, it has to be removed before cold rolling, which is a major cause of a decrease in yield.

【0005】上述した現象は連続鋳造したスラブの場合
にとりわけ顕著に見られるが、その理由は、かかる現象
は連続鋳造スラブの特長である急速凝固に伴う柱状晶組
織に起因する。すなわち柱状晶組織は、その他の組織に
較べて異常成長し易く、また粗圧延後に再結晶し難いも
のであるが、連続鋳造スラブの幅端部には、とくにかか
る柱状晶組織が発達している。そして熱間粗圧延におい
て未再結晶粒として残った組織は、じん性に乏しいので
熱間仕上げ圧延中に亀裂が惹起され、これが耳割れ等の
耳きずの原因となるのである。
The above-mentioned phenomenon is particularly noticeable in the case of continuously cast slabs, and this phenomenon is due to the columnar crystal structure associated with rapid solidification, which is a feature of continuously cast slabs. In other words, columnar crystal structures tend to grow abnormally more easily than other structures, and are difficult to recrystallize after rough rolling, but such columnar crystal structures are particularly developed at the width ends of continuous casting slabs. . The structure remaining as unrecrystallized grains during hot rough rolling has poor toughness, so cracks are generated during hot finish rolling, which causes edge cracks and other edge flaws.

【0006】かかる耳きずの防止対策として、熱延中で
の板幅方向の圧延が提案されている。この方法は、圧延
ロールによる幅方向へのメタルフロー(幅拡り)を抑え
て、ストリップ側縁部における歪の蓄積を狙うと同時に
、積極的に圧下を与えることによって加工歪を増加させ
、再結晶の促進を図ったものである。例えば、特公昭6
4−3564号公報には、エッジャーロールを用いて5
〜40mmの幅圧下を加えかつ熱延仕上げ圧延開始温度
を1100℃以上とする技術が、また特開昭60−20
0916号公報には、熱間粗圧延段階で少なくとも1回
の幅圧下を5〜40%の範囲で行う技術が、さらに特開
昭61−71104号公報には、熱間仕上圧延前にエッ
ジャーを設けて5〜60mmの範囲で幅圧下を行い、か
つシートカバー側面温度を1150〜1250℃の範囲
に保持する技術が開示されている。
[0006] As a measure to prevent such ear scratches, rolling in the sheet width direction during hot rolling has been proposed. This method aims to suppress the metal flow (width expansion) in the width direction by the rolling rolls and accumulate strain at the side edges of the strip, while at the same time increasing processing strain by actively applying rolling reduction. This is intended to promote crystallization. For example, Tokuko Sho 6
4-3564, using an edger roll,
A technique for applying a width reduction of ~40 mm and setting the start temperature of hot rolling finish rolling to 1100°C or higher was also disclosed in JP-A-60-20.
No. 0916 discloses a technique for performing at least one width reduction in the range of 5 to 40% during hot rough rolling, and JP-A-61-71104 discloses a technique for applying an edger before hot finishing rolling. A technique is disclosed in which the width reduction is performed in the range of 5 to 60 mm and the temperature of the side surface of the seat cover is maintained in the range of 1150 to 1250°C.

【0007】[0007]

【発明が解決しようとする課題】上記の各技術により、
熱延コイルの耳きずの改善に関し、それなりの効果は得
られたけれども、幅圧下の量が少ない時には耳きず改善
効果が乏しく、といって幅圧下量を増した場合にはエッ
ジヘゲと称する欠陥が新たに発生する。このため耳性状
が劣化し、やはり耳部を切断、廃屑せざるを得ないので
、結局歩留りの低下を招いていた。
[Problem to be solved by the invention] With each of the above technologies,
Regarding the improvement of edge scratches on hot-rolled coils, some effects were obtained, but when the amount of width reduction was small, the effect of improving edge scratches was poor, but when the amount of width reduction was increased, a defect called edge heave occurred. A new occurrence. As a result, the properties of the ears deteriorate, and the ears have to be cut and scrapped, resulting in a decrease in yield.

【0008】この発明は、上記の実情に鑑みて開発され
たもので、連鋳スラブを素材とした場合にとくに問題と
なる、熱延コイルの縁部における粗大結晶粒に起因した
耳きずの効果的な防止方法を提案することを目的とする
This invention was developed in view of the above-mentioned circumstances, and it solves the effect of ear scratches caused by coarse grains at the edges of hot-rolled coils, which is a particular problem when continuous cast slabs are used as the raw material. The purpose of this study is to propose effective prevention methods.

【0009】[0009]

【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく鋭意研究を重ねた結果、熱間粗圧延段
階においてスラブの幅方向に積極的に応力を加えるだけ
でなく、幅方向における材料の変形能を変化させること
によって、縁部における粗大結晶粒が効果的に微細化さ
れるのみならず、再結晶が促進され、その結果前述のエ
ッジヘゲの発生を招くことなしに、耳きずの発生を防止
できることの知見を得た。この発明は、上記の知見に立
脚するものである。
[Means for Solving the Problems] Now, as a result of extensive research to achieve the above object, the inventors have found that in addition to actively applying stress in the width direction of the slab during the hot rough rolling stage, By changing the deformability of the material in the width direction, coarse grains at the edges are not only effectively refined, but also recrystallization is promoted, without causing the aforementioned edge heave. We have obtained knowledge that the occurrence of ear scratches can be prevented. This invention is based on the above knowledge.

【0010】すなわちこの発明は、Si:2.5 〜4
.5 wt%(以下、単に%で示す)を含有する方向性
けい素鋼用スラブの連続鋳造工程において、該スラブの
両縁部にそれぞれ、相対変形能(縁部変形能/中央部変
形能)が1.02〜1.15の範囲を満足する高変形能
領域を、縁部高変形能領域指数(縁部高変形能領域幅/
スラブ厚)が 0.5〜2.0 となる幅で形成し、つ
いで該スラブを1250℃以上の温度に加熱したのち、
熱間粗圧延工程におけるパス前、パス間およびパス後の
いずれかにおいて少なくとも1回の幅圧下を、幅圧下量
:3〜60mmの範囲で行なうことからなる方向性けい
素鋼用熱延鋼板の耳きず発生防止方法(第1発明)であ
る。
[0010] That is, the present invention provides Si: 2.5 to 4
.. In the continuous casting process of a grain-oriented silicon steel slab containing 5 wt% (hereinafter simply indicated as %), both edges of the slab have a relative deformability (edge deformability/center deformability). The high deformability region satisfying the range of 1.02 to 1.15 is defined by the edge high deformability region index (edge high deformability region width/
After forming the slab with a width such that the slab thickness is 0.5 to 2.0, and then heating the slab to a temperature of 1250°C or higher,
A hot-rolled steel sheet for grain-oriented silicon steel comprising performing width reduction at least once in the range of width reduction: 3 to 60 mm before, between and after passes in a hot rough rolling process. This is a method for preventing ear scratches (first invention).

【0011】またこの発明は、上記第1発明において、
高変形能領域の形成が、該領域に対し、中央部よりも0
.03〜0.25%多いCuを含有させることからなる
方向性けい素鋼用熱延鋼板の耳きず防止方法(第2発明
)である。
[0011] Further, the present invention provides, in the first invention,
The formation of a high deformability region makes the region more 0 than the central region.
.. This is a method for preventing ear scratches in a hot-rolled steel sheet for grain-oriented silicon steel (second invention), which comprises containing 03 to 0.25% more Cu.

【0012】以下、この発明を由来するに至った実験結
果について説明する。さて発明者らは、耳割れの改善を
目的としてエッジャーで圧下をかけた場合における縁部
の組織を調査した結果、20mm以内の圧下量では、幅
方向全体に対する相対的圧下量(いわゆる圧下率)が小
さいため、縁部に蓄積される歪量も僅かで、再結晶の駆
動力とはなり得ないことが判った。
[0012] The experimental results that led to this invention will be explained below. As a result of investigating the structure of the edge when rolling down with an edger for the purpose of improving edge cracks, the inventors found that when the rolling amount is within 20 mm, the relative rolling amount (so-called rolling ratio) with respect to the entire width direction It was found that since the amount of strain accumulated at the edge was small, it could not serve as a driving force for recrystallization.

【0013】とはいえ、20mm以上に圧下量をかけた
場合には、図3(イ)のような圧下前の縁部形状に対し
、同図(ロ)のようなドッグボーン状の形状を呈し、さ
らにこれが次パスで圧延される結果、同図(ハ)のよう
な倒れ込みを生じてエッジヘゲの原因となることが判明
した。
[0013] However, if the reduction amount is 20 mm or more, the shape of the edge before rolling as shown in Fig. 3 (a) will change to a dogbone shape as shown in Fig. 3 (b). It was found that as a result of this being rolled in the next pass, collapse as shown in FIG.

【0014】以上の知見に基づき、発明者らは以下のよ
うな実験を行った。 (実験1)すなわち、C:0.05%を含有する厚み1
00 mmの3%Si鋼スラブの縁部に、同じ厚みでC
を0.03%含有する3%Si鋼スラブの縁部を幅:1
00 mm分切断し、溶接した。この接合スラブを13
50℃に加熱したのち、1パスの粗圧延をしたところ、
図4(イ)に示すように、縁部にいくに従って厚みが低
減する形状となった。このスラブに幅圧下を加えたとこ
ろ、5mmの圧下量によっても縁部の組織は十分に再結
晶しており、細粒化していた。また25mmの圧下を加
えた場合でも、同図(ロ)のような矩形状の縁部形状を
呈し、次パスの圧延によっても同図(ハ)のように、エ
ッジヘゲは全く認められなかった。 上記のような圧延により、3〜60mmの幅圧下によっ
て耳割れが発生せず、しかもエッジヘゲも発生しない熱
延コイルを得ることができた。
Based on the above findings, the inventors conducted the following experiments. (Experiment 1) That is, thickness 1 containing 0.05% C
00 mm of 3% Si steel slab with the same thickness.
Width of the edge of a 3% Si steel slab containing 0.03%: 1
00 mm was cut and welded. This joint slab is 13
After heating to 50°C, one pass of rough rolling was performed.
As shown in FIG. 4(a), the thickness decreased toward the edge. When width reduction was applied to this slab, the edge structure was sufficiently recrystallized and grained even with a reduction of 5 mm. Further, even when a reduction of 25 mm was applied, the edge shape was rectangular as shown in Figure (B), and even in the next pass of rolling, no edge hedding was observed as shown in Figure (C). By rolling as described above, it was possible to obtain a hot-rolled coil in which no edge cracking occurs due to a width reduction of 3 to 60 mm, and also no edge curling occurs.

【0015】上記のような成功は、スラブ中央部よりも
変形能の大きいスラブ素材を縁部に用いたため、縁部に
図4(イ)のような厚みテーパーがつき、このため幅圧
下量を大きくしても図3(ロ)のようなドッグボーン形
状は生じなかったものと推察される。また幅方向で材質
の機械的性質が異なるため、幅方向の圧下によって歪が
集中する部位は、変形能の大きい縁部のみであり、従っ
て僅かの幅圧下量でも縁部の再結晶が促進される結果に
なったものと推察される。
The success described above is due to the fact that a slab material with greater deformability than the central part of the slab is used for the edges, which results in a thickness taper at the edges as shown in Figure 4 (a), which makes it difficult to reduce the amount of width reduction. It is presumed that even if the size was increased, the dogbone shape shown in FIG. 3(b) would not have occurred. In addition, since the mechanical properties of the material differ in the width direction, the only areas where strain is concentrated due to reduction in the width direction are the edges, where the deformability is large, so recrystallization at the edges is promoted even with a small amount of width reduction. It is assumed that this resulted in

【0016】そこで次に、発明者は、所期した効果を得
るのに最も重要な、変形能を大きくすべきスラブ縁部の
適正領域と適切な変形能の大きさについて調査した。な
お次の実験では、通常の 3.4%Siを含有する方向
性けい素鋼の溶鋼を連続鋳造によってスラブとする際、
鋳型内の縁部にCuワイヤーを投入する方法により、ス
ラブ縁部に約0.12%のCuを含有させた。
[0016] Next, the inventors investigated the most important area for obtaining the desired effect, the appropriate area of the slab edge where the deformability should be increased, and the appropriate size of the deformability. In addition, in the following experiment, when making a slab from ordinary molten grain-oriented silicon steel containing 3.4% Si by continuous casting,
Approximately 0.12% Cu was contained at the edge of the slab by inserting a Cu wire into the edge of the mold.

【0017】(実験2)Cuワイヤーの太さおよび投入
本数を調整しながら、Cu量を増大すべき縁部領域を種
々に変更した。ここにCu含有領域とは、スラブ縁部か
ら幅中心方向にかけての領域で、Cu含有量が半減する
までの領域である。さて熱間圧延温度におけるCu含有
領域の変形能のCuを含有しないスラブ幅中心部の変形
能に対する比(以下、相対変形能と呼称する)は、熱間
圧延の温度領域では、1.04〜1.07倍に相当する
ものであった。なお変形能は、一定温度(例えば熱延温
度)において、定荷重をかけた時の厚み減少率で評価す
るものとした。またスラブの形状効果を加味するため、
Cu含有領域の長さをスラブの厚みで割ったものを、変
形能の大なるスラブ縁部のサイズの指数(以下、縁部高
変形能領域指数と呼称する)として用いることにした。
(Experiment 2) The edge region where the amount of Cu should be increased was variously changed while adjusting the thickness and number of Cu wires introduced. Here, the Cu-containing region is a region from the edge of the slab to the width center direction, and is a region where the Cu content is reduced by half. Now, the ratio of the deformability of the Cu-containing region to the deformability of the central part of the slab width not containing Cu at the hot rolling temperature (hereinafter referred to as relative deformability) is 1.04 to This was equivalent to 1.07 times. The deformability was evaluated by the rate of decrease in thickness when a constant load was applied at a constant temperature (for example, hot rolling temperature). In addition, in order to take into account the shape effect of the slab,
It was decided to use the length of the Cu-containing region divided by the thickness of the slab as an index of the size of the edge of the slab with high deformability (hereinafter referred to as edge high deformability region index).

【0018】(実験3)Cuワイヤーの太さおよび投入
本数を調整しながら、Cu含有領域はスラブ厚さと同じ
値(縁部高変形能領域指数=1.0 )で、Cu含有量
が種々に異なるスラブを製造した。この時縁部の相対変
形能は1.01〜1.15であった。
(Experiment 3) While adjusting the thickness and number of Cu wires, the Cu content area was kept at the same value as the slab thickness (edge high deformability area index = 1.0), and the Cu content was varied. Different slabs were manufactured. At this time, the relative deformability of the edge was 1.01 to 1.15.

【0019】上記の実験2および3で製造したスラブを
1420℃に加熱したのち、粗3パスの圧延で合計83
%の圧延を施してシートバーとした。この際1パス目の
圧延の後に30mmの幅圧下を行った。またシートバー
は通常の仕上げ圧延によって熱延コイルとした。かくし
て得られた各コイルの最大耳割れ深さ、エッジヘゲの発
生率およびHotクラウンでのエッジドロップ率{(板
幅中央部の厚み−エッジの厚み)÷板幅中央部の厚み×
100 }を測定した。実験2についてのこれらの結果
を図1に、また実験3についてのこれらの結果を図2に
それぞれ示す。
After heating the slabs produced in Experiments 2 and 3 above to 1420°C, the slabs were rolled in three rough passes to give a total of 83.
% rolling to make a sheet bar. At this time, a width reduction of 30 mm was performed after the first pass of rolling. In addition, the sheet bar was made into a hot-rolled coil by ordinary finish rolling. Maximum ear cracking depth, occurrence rate of edge baldness, and edge drop rate at Hot crown of each coil thus obtained {(Thickness at the center of the board width - Thickness of the edge) ÷ Thickness at the center of the board width x
100} was measured. These results for Experiment 2 are shown in FIG. 1, and those for Experiment 3 are shown in FIG. 2.

【0020】図1から明らかなように、縁部高変形能領
域指数が0.5 以上、すなわちスラブ縁部にスラブ厚
みの0.5 倍以上の長さにわたって高変形能領域を設
ければ、耳割れは著しく低減される。しかしながら縁部
高変形能領域指数が2.0 を超えるとエッジドロップ
が急激に増加しはじめると共にエッジヘゲが発生するよ
うになる。それ故、この発明では、高変形能を付与すべ
き縁部領域を縁部高変形能領域指数で 0.5〜2.0
 の範囲に限定した。
As is clear from FIG. 1, if the edge high deformability region index is 0.5 or more, that is, if the high deformability region is provided at the slab edge over a length of 0.5 times the slab thickness or more, Ear splitting is significantly reduced. However, when the edge high deformability region index exceeds 2.0, edge drop begins to increase rapidly and edge heave begins to occur. Therefore, in this invention, the edge region to which high deformability is to be imparted has an edge high deformability region index of 0.5 to 2.0.
limited to the range of

【0021】次に図2によれば、縁部のCu含有量が0
.03%以上となると耳割れ低減に非常な効果がある。 しかしながらCu含有量が0.25%を超えるとエッジ
ヘゲが多発するようになるので、適正なCu含有量は0
.03〜0.25%である。ここに上記のCu量の範囲
を相対変形能で表すと1.02〜1.15の範囲に相当
する。そこでこの発明では、相対変形能の範囲を1.0
2〜1.15に限定したのである。
Next, according to FIG. 2, the Cu content at the edge is 0.
.. When it is 0.3% or more, it is very effective in reducing ear cracking. However, if the Cu content exceeds 0.25%, edge curling will occur frequently, so the appropriate Cu content is 0.
.. 03 to 0.25%. Here, when the range of the above-mentioned Cu amount is expressed in terms of relative deformability, it corresponds to a range of 1.02 to 1.15. Therefore, in this invention, the range of relative deformability is set to 1.0.
It was limited to 2 to 1.15.

【0022】[0022]

【作用】次に、この発明を製造工程順に具体的に説明す
る。まずこの発明に用いる連鋳スラブの成分について述
べる。供試スラブは、Siを 2.5〜4.5 %の範
囲で含有する必要がある。というのはSi量が 2.5
%に満たないと所望の磁気特性が得られず、一方 4.
5%を超えると冷間加工性が劣化するからである。また
C量については、0.02%に満たないと熱延時に十分
なγ相が生成せず、一方0.09%を超えると後続の脱
炭工程で脱炭が不十分となるので、0.02〜0.09
%の範囲が含有させることが好ましい。 その他、インヒビターとしてAlN, MnS, Mn
Seのいずれか1種以上が有効に使用できる。この時、
インヒビターとして好適な含有量は、 AlN系の場合
、Al:0.010 〜0.030 %、N:0.00
4 〜0.012%%、また MnS, MnSe系の
場合、Mn:0.03〜0.12、S:0.005 〜
0.10%、Se:0.010 〜0.12%である。 なおインヒビターの補助元素として、Cu,Ni, C
r, Sn, Mo, SbおよびPなどの溶質原子を
添加することもできる。
[Operation] Next, the present invention will be specifically explained in the order of manufacturing steps. First, the components of the continuously cast slab used in this invention will be described. The test slab must contain Si in a range of 2.5 to 4.5%. This is because the amount of Si is 2.5
%, the desired magnetic properties cannot be obtained; on the other hand, 4.
This is because if it exceeds 5%, cold workability deteriorates. Regarding the amount of C, if it is less than 0.02%, sufficient γ phase will not be generated during hot rolling, while if it exceeds 0.09%, decarburization will be insufficient in the subsequent decarburization process. .02-0.09
The content is preferably within the range of %. In addition, AlN, MnS, Mn as inhibitors
Any one or more of Se can be effectively used. At this time,
In the case of AlN-based, the content suitable as an inhibitor is: Al: 0.010 to 0.030%, N: 0.00%
4 ~ 0.012%%, and in the case of MnS, MnSe type, Mn: 0.03 ~ 0.12, S: 0.005 ~
0.10%, Se: 0.010 to 0.12%. In addition, as auxiliary elements of the inhibitor, Cu, Ni, C
Solute atoms such as r, Sn, Mo, Sb and P can also be added.

【0023】さて、上記の適正組成に調整された溶鋼を
、連続鋳造法によって100〜850 mm厚みのスラ
ブとするが、このときスラブ幅方向の両縁部の組成を変
更して、スラブ中央部よりも変形能を高めることが、こ
の発明の最も肝要な点である。変形能の変更手段として
は、スラブ鋳込みの際に、モールド内のスラブ両縁部相
当領域に組成調整用合金を投入する方法が有利である。 ここに組成調整用合金としては、磁気特性に悪影響を及
ぼす不利のない高Si鉄合金棒や、Cr鉄合金棒、Cu
およびCu合金棒などが挙げられる。
Now, the molten steel adjusted to the proper composition as described above is made into a slab with a thickness of 100 to 850 mm by a continuous casting method. At this time, the composition of both edges in the width direction of the slab is changed, and the central part of the slab is The most important point of this invention is to improve the deformability even more than the above. As a means for changing the deformability, it is advantageous to introduce a composition-adjusting alloy into regions corresponding to both edges of the slab in the mold during slab casting. Here, as alloys for composition adjustment, high-Si iron alloy rods, Cr iron alloy rods, Cu
and Cu alloy rods.

【0024】なおモールド内への投入の簡便さの観点か
らは、Cu線棒や、黄銅、白銅、青銅およびりん青銅の
ようなCu合金線棒の使用が最も優れ、しかもスラブ縁
部における合金の均一性も良い。その際のスラブ縁部に
おけるCu含有量の増加分は、0.03〜0.25%と
する必要がある。というのは前述したとおり、Cu量の
増加分が0.03%に満たないと熱延コイルの耳割れ改
善効果が不十分であり、逆に0.25%を超えるとエッ
ジヘゲの発生を免れ得ないからである。
From the viewpoint of ease of charging into the mold, it is best to use Cu wire rods or Cu alloy wire rods such as brass, cupronickel, bronze, and phosphor bronze. Good uniformity. At this time, the increase in Cu content at the edge of the slab needs to be 0.03 to 0.25%. This is because, as mentioned above, if the increase in Cu content is less than 0.03%, the effect of improving the edge cracks in the hot rolled coil is insufficient, and on the other hand, if it exceeds 0.25%, the occurrence of edge curling cannot be avoided. That's because there isn't.

【0025】このとき相対変形能は1.02〜1.15
、縁部高変形能領域指数は 0.5〜2.0 の範囲に
それぞれ制御する必要があることは、前述したとおりで
ある。
[0025] At this time, the relative deformability is 1.02 to 1.15.
As described above, it is necessary to control the edge high deformability region index within the range of 0.5 to 2.0.

【0026】かくして得られたスラブは、プッシャー形
式あるいはウォーキングビーム形式のガス加熱炉または
直接通電やインダクションヒーターによる加熱炉にて、
1250℃以上の温度に加熱される。ついで加熱処理を
経た高温スラブに熱間圧延を施すわけであるが、この熱
間圧延の粗圧延段階において、最初のパス前を含む複数
のパス間でエッジャーロールのような縦型ロールまたは
幅プレスによって、少なくとも1回の幅圧下を3〜60
mmの範囲で施す。ここに幅圧下の量が3mmに満たな
い場合には、この発明に従い得られたスラブであっても
耳きずを十分には改善できず、一方60mmを超えるた
場合はエッジヘゲが発生する。
The slab thus obtained is heated in a pusher type or walking beam type gas heating furnace, or in a heating furnace using a direct current or induction heater.
Heated to a temperature of 1250°C or higher. The heat-treated high-temperature slab is then hot-rolled. During the rough rolling stage of hot rolling, a vertical roll such as an edger roll or a width roll is used between multiple passes including before the first pass. By pressing at least one width reduction from 3 to 60
Apply in the range of mm. If the amount of width reduction is less than 3 mm, the edge scratches cannot be sufficiently improved even in the slab obtained according to the present invention, while if it exceeds 60 mm, edge hedding occurs.

【0027】なおこの発明の適用に当たっては、スラブ
や圧延パス間の熱鋼板の縁部に対する加熱処理を併用す
ると、より一層の効果が得られる。
[0027] In applying the present invention, further effects can be obtained if heat treatment is also applied to the edge of the hot steel plate between the slab and rolling passes.

【0028】その後、常法に従って仕上げ圧延を施した
のち、ホットコイルに巻き取り、ついで1回または中間
焼鈍を含む2回以上の冷間圧延を施して最終板厚とした
後、780 〜900 ℃の湿水素を含む雰囲気中で1
次再結晶を兼ねる脱炭焼鈍を施し、しかるのち1200
℃付近で最終仕上げ焼鈍を施すことによって、製品板と
する。この製品板は必要に応じて、張力絶縁コーティン
グを施され需要家に供給される。
[0028] Thereafter, the plate was finish rolled according to a conventional method, then wound into a hot coil, and then cold rolled once or twice or more including intermediate annealing to obtain a final thickness, and then heated at 780 to 900°C. 1 in an atmosphere containing wet hydrogen.
Next, decarburization annealing that also serves as recrystallization is performed, and then 1200
A final annealing is performed at around ℃ to produce a product plate. This product board is supplied to customers with a tension insulation coating, if necessary.

【0029】[0029]

【実施例】実施例1 表1に示す組成の溶鋼から、連続鋳造によりスラブを製
造するに際し、一部のスラブにモールド長辺方向の両縁
部にCuワイヤーを投入し、Cu濃度の富化を行いつつ
、厚み:250 mm、幅:1000mmのスラブとし
た。得られたスラブの両縁部はは、Cu含有量が中央域
よりも0.10〜0.15%増加した縁部高変形能領域
が形成され、また縁部高変形能領域指数は 1.0〜1
.5 、相対変形能は1.07〜1.10であった。な
お比較のため、Cuワイヤーを投入しないでそのまま同
じサイズのスラブを製造し、従来例とした。
[Example] Example 1 When manufacturing slabs by continuous casting from molten steel with the composition shown in Table 1, Cu wire was introduced into both edges of the mold in the long side direction of some of the slabs to enrich the Cu concentration. While doing this, a slab with a thickness of 250 mm and a width of 1000 mm was obtained. At both edges of the obtained slab, edge high deformability regions were formed in which the Cu content was increased by 0.10 to 0.15% compared to the central region, and the edge high deformability region index was 1. 0-1
.. 5, the relative deformability was 1.07-1.10. For comparison, a slab of the same size was produced without adding Cu wire and used as a conventional example.

【0030】これらのスラブを1440℃に加熱した後
、4パスの粗圧延で50mmのシートバーとしたが、そ
の際、各パス間および4パス後にエッジャーをかけて、
各10mmの幅圧下を施した。その後、常法に従う熱間
仕上げ圧延により2.5 mm厚の熱延コイルとした。 かくして得られた各コイルの最大耳割れ量について測定
した結果を表1 に併記する。なお各コイルにはいずれ
も、エッジヘゲは認められず、またエッジドロップは2
〜4%と良好であった。
After heating these slabs to 1440° C., they were roughly rolled into a 50 mm sheet bar in 4 passes. At that time, an edger was applied between each pass and after the 4 passes.
A width reduction of 10 mm was applied each time. Thereafter, a hot-rolled coil having a thickness of 2.5 mm was obtained by hot finish rolling according to a conventional method. The results of measuring the maximum amount of edge cracking of each coil thus obtained are also listed in Table 1. In addition, there is no edge heave on each coil, and there are 2 edge drops.
It was good at ~4%.

【0031】[0031]

【表1】[Table 1]

【0032】同表より明らかなように、この発明を適用
して製造されたスラブから製造した熱延コイルは、耳割
れ量が少なく効果的に耳きずが改善されている。なおこ
れらの熱延コイルを素材として製造した製品の縁部と中
央部の磁気特性について調べたところ、両者間に差異は
認められなっかった。
As is clear from the table, the hot-rolled coil manufactured from the slab manufactured by applying the present invention has a small amount of edge cracking, and the edge flaws are effectively improved. When we investigated the magnetic properties of the edges and center of products manufactured using these hot-rolled coils, no difference was found between the two.

【0033】実施例2 C:0.08%、Mn:0.075 %、P:0.01
0 %、S:0.020 %、Al:0.025 %、
Si:3.35%、N:0.006 %の溶鋼から、連
続鋳造により、以下に示す種々の要領でスラブを製造し
た。なおスラブ形状はいずれも厚さ:210 mm、幅
:1050mmである。 A.そのまま鋳造。 B.モールド長辺方向両縁部に複数のCuワイヤーを投
入速度:2.5 m/min で投入しながら鋳造。 C.モールド長辺方向両縁部に複数のCuワイヤーを投
入速度:1.1 m/min で投入しながら鋳造。 D.Cと同じく、モールド長辺方向両縁部に複数のCu
ワイヤーを投入速度:1.1m/min で投入したが
、Cよりも長辺方向により広域にわたってCuワイヤー
を投入しながら鋳造。 E.モールド長辺方向両縁部に複数の黄銅ワイヤーを投
入速度:1.1 m/min で投入しながら鋳造。 F.モールド長辺方向両縁部に複数の青銅ワイヤーを投
入速度:1.1 m/min で投入しながら鋳造。
Example 2 C: 0.08%, Mn: 0.075%, P: 0.01
0%, S: 0.020%, Al: 0.025%,
Slabs were manufactured from molten steel containing 3.35% Si and 0.006% N by continuous casting in various ways as shown below. Note that each slab shape has a thickness of 210 mm and a width of 1050 mm. A. Cast as is. B. Casting was carried out while a plurality of Cu wires were introduced into both edges of the mold in the longitudinal direction at a charging speed of 2.5 m/min. C. Casting was performed while a plurality of Cu wires were introduced into both edges of the mold in the longitudinal direction at a charging speed of 1.1 m/min. D. Similar to C, there are multiple Cu on both edges in the long side direction of the mold.
The wire was introduced at a speed of 1.1 m/min, but the Cu wire was introduced over a wider area in the long side direction than in C for casting. E. Casting was carried out while a plurality of brass wires were introduced into both edges of the mold in the longitudinal direction at a charging speed of 1.1 m/min. F. Casting was carried out while a plurality of bronze wires were introduced into both edges of the mold in the longitudinal direction at a charging speed of 1.1 m/min.

【0034】得られた各スラブの幅方向にわたる成分分
布について調べたところ、スラブAは偏析部を除いて比
較的均質であったのに対し、スラブB〜FはCuを高濃
度含有する縁部高変形能領域を両端部に有し、その指数
はB〜C,EおよびFで 0.9〜1.4 、Dで 2
.4であった。 また縁部高変形能領域における平均Cu含有量は、Bで
0.24%、Cで0.18%、Dで0.09%、Eで0
.08%、Fで0.11%、一方それ以外の中央部での
Cu含有量は0.01〜0.02% であり、相対変形
能はそれぞれ、Bで1.14、Cで1.11、Dで1.
05、Eで1.05、Fで1.08であった。
When examining the component distribution across the width of each obtained slab, it was found that slab A was relatively homogeneous except for the segregated areas, whereas slabs B to F had edges containing a high concentration of Cu. It has high deformability regions at both ends, and its index is 0.9 to 1.4 for B to C, E and F, and 2 for D.
.. It was 4. The average Cu content in the edge high deformability region is 0.24% for B, 0.18% for C, 0.09% for D, and 0 for E.
.. 08% and 0.11% for F, while the Cu content in the other central part is 0.01-0.02%, and the relative deformability is 1.14 for B and 1.11 for C, respectively. , D with 1.
05, 1.05 in E and 1.08 in F.

【0035】ついでこれらのスラブを1400℃に加熱
した後、3パスの粗圧延で40mmのシートバーとした
が、その際、圧延前に幅プレスによって20mmの幅圧
下をかけ、また3パス後に25mmの幅圧下をエッジャ
ーによりかけた。 さらに各コイルの一部について、3パス目の圧延の前に
エッジヒーターで両縁部の温度を20℃上昇させた。そ
の後、通常の熱間仕上げ圧延により、2.2 mmの熱
延コイルとした。かくして得られた各コイルの最大耳割
れ量、エッジヘゲ発生率およびエッジドロップ率を測定
した結果を、表2に示す。
[0035] These slabs were then heated to 1400°C and then roughly rolled into a 40 mm sheet bar in 3 passes. At that time, a width reduction of 20 mm was applied using a width press before rolling, and a 25 mm width reduction was applied after the 3 passes. A width reduction of 200 mm was applied with an edger. Furthermore, for a portion of each coil, the temperature at both edges was increased by 20° C. using an edge heater before the third rolling pass. Thereafter, it was made into a 2.2 mm hot rolled coil by normal hot finish rolling. Table 2 shows the results of measuring the maximum amount of edge cracking, edge hedding occurrence rate, and edge drop rate of each coil thus obtained.

【0036】[0036]

【表2】[Table 2]

【0037】同表より明らかなように、この発明を適用
して製造されたスラブB,同C,同E,同Fから製造し
た熱延コイルは、耳きず発生量が極めて少なかった。な
おこれらの熱延コイルを素材として製造した製品の縁部
と中央部の磁気特性について調べたところ、両者間に差
異は認められなっかった。
As is clear from the table, the hot-rolled coils manufactured from slabs B, C, E, and F according to the present invention had an extremely small amount of ear scratches. When we investigated the magnetic properties of the edges and center of products manufactured using these hot-rolled coils, no difference was found between the two.

【0038】[0038]

【発明の効果】かくしてこの発明によれば、従来、とく
に連続鋳造スラブを用いた場合に懸念された耳割れ等の
耳きずの発生を大幅に低減することができ、製品の歩留
り向上に偉効を奏する。
[Effects of the Invention] Thus, according to the present invention, it is possible to significantly reduce the occurrence of edge cracks and other flaws that were a concern in the past, especially when continuous casting slabs were used, and it is highly effective in improving product yield. play.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】縁部高変形能領域指数と最大耳割れ深さ、エッ
ジヘゲ発生率およびエッジドロップ率との関係を示した
グラフである。
FIG. 1 is a graph showing the relationship between the edge high deformability region index, the maximum ear crack depth, the edge heave occurrence rate, and the edge drop rate.

【図2】縁部変形能領域のCu含有量と最大耳割れ深さ
、エッジヘゲ発生率およびエッジドロップ率との関係を
示したグラフである。
FIG. 2 is a graph showing the relationship between the Cu content of the edge deformability region, the maximum ear crack depth, the edge heave occurrence rate, and the edge drop rate.

【図3】幅方向にわたる材質が均質なスラブに幅圧下を
含む圧延処理を施した場合における、圧延材の縁部形状
変化を示す断面図である。
FIG. 3 is a cross-sectional view showing a change in the shape of the edge of a rolled material when a slab whose material is homogeneous in the width direction is subjected to rolling treatment including width reduction.

【図4】縁部に高変形能領域をそなえるスラブに幅圧下
を含む圧延処理を施した場合における、圧延材の縁部形
状変化を示す断面図である。
FIG. 4 is a cross-sectional view showing a change in the shape of the edge of a rolled material when a slab having a high deformability region at the edge is subjected to rolling treatment including width reduction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Si:2.5 〜4.5 wt%を含
有する方向性けい素鋼用スラブの連続鋳造工程において
、該スラブの両縁部にそれぞれ、相対変形能(縁部変形
能/中央部変形能)が1.02〜1.15の範囲を満足
する高変形能領域を、縁部高変形能領域指数(縁部高変
形能領域幅/スラブ厚)が 0.5〜2.0 となる幅
で形成し、ついで該スラブを1250℃以上の温度に加
熱したのち、熱間粗圧延工程におけるパス前、パス間お
よびパス後のいずれかにおいて少なくとも1回の幅圧下
を、幅圧下量:3〜60mmの範囲で行うことを特徴と
する方向性けい素鋼用熱延鋼板の耳きず発生防止方法。
Claim 1: In the continuous casting process of a grain-oriented silicon steel slab containing 2.5 to 4.5 wt% of Si, both edges of the slab have a relative deformability (edge deformability/ The high deformability region satisfying the range of 1.02 to 1.15 (center deformability) is defined as the high deformability region where the edge high deformability region index (edge high deformability region width/slab thickness) satisfies the range of 0.5 to 2. After heating the slab to a temperature of 1250°C or higher, width reduction is performed at least once before, between passes, or after the pass in the hot rough rolling process. A method for preventing the occurrence of ear scratches on a hot rolled steel sheet for grain-oriented silicon steel, characterized in that the method is carried out within the range of 3 to 60 mm.
【請求項2】  請求項1において、高変形能領域の形
成が、該領域に対し、中央部よりも0.03〜0.25
wt%多いCuを含有させることによるものである方向
性けい素鋼用熱延鋼板の耳きず防止方法。
2. In claim 1, the formation of the high deformability region is such that the region is 0.03 to 0.25 more deformable than the central region.
A method for preventing ear scratches on a hot-rolled steel sheet for grain-oriented silicon steel, which method involves containing a large amount of Cu by wt%.
JP9101291A 1991-03-30 1991-03-30 Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet Pending JPH04304315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9101291A JPH04304315A (en) 1991-03-30 1991-03-30 Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9101291A JPH04304315A (en) 1991-03-30 1991-03-30 Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH04304315A true JPH04304315A (en) 1992-10-27

Family

ID=14014630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9101291A Pending JPH04304315A (en) 1991-03-30 1991-03-30 Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH04304315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813035A (en) * 1994-06-30 1996-01-16 Nippon Steel Corp Production of hot rolled silicon steel plate of ultrahigh silicon content, excellent in edge shape
JPH0970602A (en) * 1995-06-30 1997-03-18 Kawasaki Steel Corp Manufacture of grain oriented electrical steel sheet
JP2017222898A (en) * 2016-06-14 2017-12-21 新日鐵住金株式会社 Production method of grain oriented magnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813035A (en) * 1994-06-30 1996-01-16 Nippon Steel Corp Production of hot rolled silicon steel plate of ultrahigh silicon content, excellent in edge shape
JPH0970602A (en) * 1995-06-30 1997-03-18 Kawasaki Steel Corp Manufacture of grain oriented electrical steel sheet
JP2017222898A (en) * 2016-06-14 2017-12-21 新日鐵住金株式会社 Production method of grain oriented magnetic steel sheet

Similar Documents

Publication Publication Date Title
CN109844156B (en) Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same
JP2011190485A (en) Method for producing oriented electrical steel sheet
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPWO2020067236A1 (en) Manufacturing method of grain-oriented electrical steel sheet and cold rolling equipment
JPH04304315A (en) Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP4753558B2 (en) Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JPH036842B2 (en)
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP7338812B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7276502B2 (en) Manufacturing method and equipment for grain oriented electrical steel sheet
JPH0533056A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2005279689A (en) Method for producing grain oriented silicon steel sheet
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
JPS643564B2 (en)
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3885264B2 (en) Method for producing grain-oriented electrical steel sheet
JPH10259422A (en) Production of grain-oriented silicon steel sheet good in core loss characteristic
JP2574583B2 (en) Method for manufacturing oriented silicon steel sheet with good iron loss