JPH0347601A - Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab - Google Patents

Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab

Info

Publication number
JPH0347601A
JPH0347601A JP17966089A JP17966089A JPH0347601A JP H0347601 A JPH0347601 A JP H0347601A JP 17966089 A JP17966089 A JP 17966089A JP 17966089 A JP17966089 A JP 17966089A JP H0347601 A JPH0347601 A JP H0347601A
Authority
JP
Japan
Prior art keywords
slab
hot
reduction rolling
edging
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17966089A
Other languages
Japanese (ja)
Inventor
Kishio Mochinaga
持永 季志雄
Kiyokazu Ichimura
市村 潔一
Shuji Kitahara
北原 修司
Shiro Ichikawa
市川 司朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17966089A priority Critical patent/JPH0347601A/en
Publication of JPH0347601A publication Critical patent/JPH0347601A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To allow high-draft edging without promoting the edge crack of a unidirectionally oriented electrical hot rolled sheet and to improve productivity by subjecting a slab to the high-draft edging by using an edging mill at a specific high temp. of the slab surface temp. right after extraction of the slab after heating. CONSTITUTION:The unidirectionally oriented magnetic steel slab produced by continuous casting is heated to a high temp. of >=1,300 deg.C and is then subjected to the hot high-draft edging to >=60mm by using the edging mill, by which the hot rolled sheet of a desired size is obtd. The slab is subjected to the high-draft edging by using the edging mill at the high temp. of >=1,200 deg.C and <=1,380 deg.C surface temp. of the slab right after the extraction of the slab after heating in this case. The high-draft edging is enabled in this way while the edge crack is improved. The productivity is thus improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一方向性電磁鋼の製造に際しての熱間圧延技術
の分野に属するものであり、更に詳しくは、連続鋳造法
で得られる一層サイズの広幅一方向性電磁鋼連続鋳造ス
ラブを高温で加熱後、連続鋳造スラブから種々のサイズ
の熱延板を得るために広範囲な熱間幅大圧下圧延を行う
ことを可能とした熱間圧延法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention belongs to the field of hot rolling technology for producing unidirectional electrical steel, and more specifically, the present invention belongs to the field of hot rolling technology for producing unidirectional electrical steel. A hot rolling method that makes it possible to heat wide continuous cast slabs of unidirectional electromagnetic steel at high temperatures and then perform large reduction rolling over a wide range of hot widths in order to obtain hot rolled sheets of various sizes from the continuous cast slabs. It is related to.

(従来の技術) 一方向性電磁鋼は、高い磁束密度と低い鉄損とをもつ優
れた磁気特性により変圧器などの鉄心材料として広く用
いられている。
(Prior Art) Unidirectional electrical steel is widely used as an iron core material for transformers and the like due to its excellent magnetic properties including high magnetic flux density and low iron loss.

近年、この種の技術分野でもより一層の優れた磁気特性
をもたせることに加えて、より安価に供給することが望
まれており、換言すれば如何に生産性を高めて且つ歩留
を向上させ、製造コストを低減するかが当該技術者にと
って解決すべき課題である。
In recent years, in this type of technical field, there has been a desire not only to have even better magnetic properties but also to supply materials at a lower cost.In other words, how can we improve productivity and yield? , the problem to be solved by these engineers is how to reduce manufacturing costs.

周知のごとく、現在では一方向性電磁鋼スラブはこうい
った生産性向上、材質安定化等の観点から、その殆どが
連続鋳造法により製造されている。
As is well known, most unidirectional electromagnetic steel slabs are currently manufactured by the continuous casting method from the viewpoint of improving productivity and stabilizing material quality.

連続鋳造法における生産性は、その鋳造速度と鋳造サイ
ズによって決定されるもので、前者の鋳造速度に関して
は、鋳造安定性から制約される最高速度が選択されてい
るが、後者の鋳造サイズは、通常の熱間圧延工程におい
て、所望の熱延板サイズを作り出すのに最も適したスラ
ブサイズが決められており、しかも熱延板サイズは多様
であるため、供給するスラブサイズも多様なものとなら
ざるを得ず、必ずしも鋳造安定性から制約される最大幅
での鋳造が、常になされているとはいえない。
Productivity in a continuous casting method is determined by its casting speed and casting size. Regarding the former casting speed, the maximum speed is selected as it is constrained by casting stability, but the latter casting size is In the normal hot rolling process, the most suitable slab size for producing the desired hot-rolled sheet size is determined, and since the hot-rolled sheet sizes are diverse, the slab sizes to be supplied must also be diverse. Unavoidably, it cannot be said that casting is always performed at the maximum width, which is restricted by casting stability.

換言すると、連続鋳造法での生産性を更に向上させるた
めに、連続鋳造スラブ幅を設備能力から制約されるサイ
ズまで拡大集約することが望まれている。
In other words, in order to further improve productivity in the continuous casting method, it is desired to expand and consolidate the width of continuous casting slabs to a size that is restricted by equipment capacity.

その−例として、特に電磁鋼についての言及はないが、
例えば特公昭59−42561号公報では竪型大径ロー
ルを用いて高歩留を可能とした幅大圧下圧延技術が提案
され、一方、特公平1−12581号公報では中低炭素
鋼の割れ、疵の発生を防止しつつ熱間幅圧下圧延を行う
ための最適素材成分、鋳片冷却速度および保温温度と時
間に関する技術が提案されている。
As an example, although there is no mention of electromagnetic steel,
For example, Japanese Patent Publication No. 59-42561 proposes a wide reduction rolling technology that uses vertical large-diameter rolls to achieve a high yield, while Japanese Patent Publication No. 1-12581 proposes cracking of medium-low carbon steel. Techniques regarding optimal material composition, slab cooling rate, and heat retention temperature and time have been proposed in order to perform hot width reduction rolling while preventing the occurrence of defects.

(発明が解決しようとする課題) 本発明者等は、連続鋳造スラブの熱間幅大圧下圧延が、
連続鋳造工程の生産性の向上に極めて有効であることに
鑑み、連続鋳造一方向性電磁鋼スラブに対し前述した幅
大圧下圧延技術を適用し連続鋳造工程の生産性向上を図
ることを検討した。
(Problems to be Solved by the Invention) The present inventors have discovered that hot wide reduction rolling of continuous cast slabs
Considering that it is extremely effective in improving the productivity of the continuous casting process, we considered applying the above-mentioned wide reduction rolling technology to continuously cast unidirectional electrical steel slabs to improve the productivity of the continuous casting process. .

ところが、本発明が対象とする一方向性電磁鋼は、成品
での磁気特性を発現させるために連続鋳造スラブを13
00℃以上の高温長時間加熱した後に熱間圧延を行って
おり、この場合、熱間圧延により得られた熱延板の耳部
には耳割れと言われる欠陥が発生し歩留の低下および酸
洗、冷間圧延時の稼働率の低下を招いている。
However, in order to develop the magnetic properties of the finished product, the unidirectional electrical steel that is the object of the present invention is manufactured by continuously casting slabs of 13
Hot rolling is performed after heating at a high temperature of 00°C or more for a long period of time, and in this case, a defect called edge cracking occurs in the edges of the hot rolled sheet obtained by hot rolling, resulting in a decrease in yield and This causes a decrease in the operating rate during pickling and cold rolling.

また、近年、一方向性電磁鋼は、特に低鉄損化のためs
i、mおよび(lの増加に加えて、Cu。
In addition, in recent years, unidirectional electrical steel has been developed with s
In addition to increasing i, m and (l, Cu.

Sn、Sb等の添加が行われるようになってきたが、特
に5ljlおよびC量の増加により熱延板の耳割れは多
発する傾向が現れている。
Additions of Sn, Sb, etc. have come to be carried out, but there is a tendency for edge cracking to occur frequently in hot-rolled sheets, especially due to an increase in the amount of 5ljl and C.

上記の問題を抱えた状態で、連続鋳造一方向性電磁鋼ス
ラブを幅大圧下圧延、即ち連続鋳造スラブ端部への強加
工を主体とした圧延を行うと耳割れは更に助長されるも
のであり、この熱延板の耳割れの助長を伴わないで、連
続鋳造スラブの幅大圧下圧延ができることが、連続鋳造
工程での一方向性電磁鋼スラブの製造における生産性の
向上を図る上で極めて重要である。
If the continuously cast unidirectional electrical steel slab is subjected to wide reduction rolling, that is, rolling that mainly involves heavy working on the ends of the continuous cast slab, with the above problems, the edge cracking will be further promoted. The fact that continuous casting slabs can be rolled with a large width reduction without promoting edge cracking in hot-rolled sheets is an important factor in improving productivity in the production of unidirectional electrical steel slabs in the continuous casting process. extremely important.

本発明は、一方向性電磁鋼熱延板の耳割れの助長を伴わ
ないばかりか、史に耳割れが改善できる一方向性電磁鋼
スラブの幅大圧下圧延をnJ能とし、もって連続鋳造工
程での一方向性電磁鋼スラブの製造における生産性の向
上を図るものである。
The present invention not only does not promote edge cracking in hot-rolled unidirectional electrical steel sheets, but also improves the edge cracking of unidirectional electrical steel slabs by making the wide reduction rolling of unidirectional electromagnetic steel slabs nJ-capable, thereby making continuous casting process possible. The aim is to improve productivity in the production of unidirectional electrical steel slabs.

(課題を解決するための手段) 本発明の要旨は次のとおりである。すなわち、連続鋳造
により製造した一方向性電磁鋼スラブを1300℃以上
の高温に加熱後、幅圧下圧延機を用いて60關以上の熱
間幅大圧下圧延を施し所望のサイズの熱延板を得ること
により、連続鋳造工程での生産性の向上を図る、連続鋳
造一方向性電磁鋼スラブの熱間幅圧下圧延方法において
、上記スラブを加熱後抽出した直後でスラブの表面温度
が1200℃以上1380℃以下の高温下で幅圧下圧延
機を用いて上記の幅大圧下圧延を行うことを特徴とする
一方向性電磁鋼連続鋳造スラブの熱間幅圧下圧延方法で
ある。
(Means for Solving the Problems) The gist of the present invention is as follows. That is, a unidirectional electrical steel slab manufactured by continuous casting is heated to a high temperature of 1300°C or higher, and then subjected to hot wide reduction rolling of 60 degrees or more using a width reduction rolling mill to form a hot rolled plate of a desired size. In the hot width reduction rolling method of continuously cast unidirectional electrical steel slabs, which aims to improve productivity in the continuous casting process by obtaining This is a method for hot width reduction rolling of a continuously cast unidirectional electrical steel slab, characterized in that the above-described large width reduction rolling is performed using a width reduction rolling mill at a high temperature of 1380° C. or lower.

(作  用) 以下本発明の詳細な説明する。(for production) The present invention will be explained in detail below.

周知の如く一方向性電磁鋼板の製造において熱延板の耳
部に耳割れが発生するのは、連続鋳造一方向性電磁鋼ス
ラブに含有されているインヒビター形成元素の固溶を充
分に行わせることを目的として^温でかつ長時間のスラ
ブ加熱をするため、スラブの結晶粒が大きく粗大化し、
これが再結晶することなく熱延板へと圧延されることか
ら耳割れが発生すると考えられている。
As is well known, the reason why edge cracks occur in the edges of hot-rolled sheets during the production of grain-oriented electrical steel sheets is due to sufficient solid solution of the inhibitor-forming elements contained in the continuously cast grain-oriented electrical steel slabs. Because the slab is heated at a high temperature for a long period of time, the crystal grains of the slab become large and coarse.
It is thought that edge cracking occurs because this is rolled into a hot rolled sheet without recrystallizing.

ところで、高温に加熱した後の連続鋳造スラブを熱間圧
延工程の粗圧延段階において、バーIVが約40m+m
のところでエッヂャーロールによりバーの幅圧下を行い
、バーの幅方向端部の再結晶を促進させることにより、
粗大化した結晶粒に起因する熱延板の耳割れを防止する
方法として、特開昭GO−200918号公報、特開昭
62−1113721号公報等の技術が既に知られてい
る。
By the way, in the rough rolling stage of the hot rolling process of the continuously cast slab after heating it to a high temperature, the bar IV is approximately 40 m + m.
By reducing the width of the bar using an edger roll and promoting recrystallization at the ends of the bar in the width direction,
As a method for preventing edge cracking in a hot rolled sheet caused by coarsened crystal grains, techniques such as those disclosed in Japanese Patent Laid-Open No. 200918/1983 and Japanese Patent Laid-Open No. 1113721/1988 are already known.

しかし、本発明者等が意図するところの一方向性電磁鋼
の製造法においで1.連続鋳造工程の生産性向上を目的
として広幅で鋳造j2、その後、熱間圧延工程で幅大圧
下圧延を行うためには、スラブ厚の厚い段階で、kつ1
バスの圧下;を大きくとり少ないパス回数で幅大圧下圧
延を行わなければならない。なぜならば成品で目的とす
る一方向性電磁鋼板の磁性を発現させるためには、極力
圧延中の板の温度を高温に維持することが必要なためで
ある。この点において、熱間圧延工程の粗圧延段階では
バー厚が薄いために設備能力上、幅圧下圧延量が通常8
0mm以下しかとれず、それ以上の幅大圧下j丁延は不
呵能である。即ち、幅大圧下圧延を最小バス回数で行う
ためには、粗圧延段階以前のスラブ厚が厚い段階で行わ
なければならず、上記公知技術は適用は困難である。
However, in the manufacturing method of unidirectional electrical steel as intended by the present inventors, 1. For the purpose of improving productivity in the continuous casting process, wide casting j2 is performed, and then in order to perform wide reduction rolling in the hot rolling process, k1
It is necessary to increase the bus reduction and perform wide reduction rolling with a small number of passes. This is because, in order to exhibit the desired magnetism of the unidirectional electrical steel sheet in the finished product, it is necessary to maintain the temperature of the sheet during rolling as high as possible. In this regard, in the rough rolling stage of the hot rolling process, the bar thickness is thin, so the amount of width reduction is usually 8.
Only 0 mm or less can be obtained, and it is impossible to reduce the width further. That is, in order to perform wide reduction rolling with a minimum number of baths, it must be performed at a stage where the slab thickness is thick before the rough rolling stage, and it is difficult to apply the above-mentioned known technique.

本発明は、高温加熱された連続鋳造スラブを幅大圧下圧
延することにより、悪化する耳割れの対策を種々検討し
、耳割れの少ない幅大圧下圧延技術を確立したものであ
る。
The present invention has established a wide reduction rolling technique that reduces edge cracking by examining various measures against edge cracks that are exacerbated by wide reduction rolling of continuously cast slabs heated at high temperatures.

第1図は0.07%C−3,25%Sl −0,13%
Sn −0,05%Cu成分系の一方向性電磁鋼試験片
を1400℃に加熱後、900℃〜1400℃のそれぞ
れの温度で高温引張り試験を行い、各温度での断面収縮
率を測定したいわゆるグリ−プル試験結果である。この
図かられかるように、該成分系における一方向性電磁鋼
は1100℃近傍の温度領域において著しい断面収縮率
の低ド即ち延性低ドが発現している。
Figure 1 shows 0.07%C-3,25%Sl-0.13%
After heating a Sn-0,05% Cu composition-based unidirectional electrical steel test piece to 1400°C, a high-temperature tensile test was conducted at each temperature from 900°C to 1400°C, and the cross-sectional shrinkage rate at each temperature was measured. These are the so-called Greeple test results. As can be seen from this figure, the unidirectional electrical steel in this composition system exhibits a significantly low cross-sectional shrinkage ratio, that is, a low ductility in the temperature region around 1100°C.

また、この延性低ド温度領域(1100℃)でスラブを
急冷後、粒界での偏析状況を観察すると、第2図のよう
に粒界近傍へのSの偏析が多く見られる。
Furthermore, when the slab is rapidly cooled in this ductile low temperature region (1100° C.) and the state of segregation at the grain boundaries is observed, a large amount of S segregation near the grain boundaries is seen as shown in FIG.

このことを第3図の状態図と照らし合わせて考えると、
一方向性電磁鋼は高温下からの冷却過程において、α相
−σ+γ相−α相とネハう相変態を起こし、その途中過
程であるα十γ2相領域において、各相のSの溶解度積
が異なることに起因する粒界へのSの濃厚偏析が発生す
る。そしてγ相の比率が高くなるにつれて粒界偏析部の
占める割合が多くなり、その結果としてγ比率最大とな
る温度域1100℃近傍で著しい延性低下が発現するも
のと考えられる。
Considering this in comparison with the state diagram in Figure 3, we get
Unidirectional electrical steel undergoes phase transformation into α phase - σ + γ phase - α phase during the cooling process from high temperature, and in the α + γ 2 phase region during this process, the solubility product of S of each phase changes. Dense segregation of S at grain boundaries occurs due to the difference. It is thought that as the ratio of the γ phase increases, the ratio occupied by grain boundary segregated portions increases, and as a result, a significant decrease in ductility occurs in the temperature range of around 1100° C. where the γ ratio is maximum.

本発明者等は上記の結果を踏まえて、一方向性電磁鋼の
耳割れを防上シ、つり幅大圧下圧延を行うためには、粒
界へのS等の元素の偏析が少ない領域、即ち、延性良好
領域となる1200℃〜1380℃の温度域での幅大圧
下圧延を行うことにより、耳割れの少ない熱延板が得ら
れることを見出した。
Based on the above results, the present inventors have determined that in order to prevent edge cracks in unidirectional electrical steel and to perform large hanging width reduction rolling, it is necessary to That is, it has been found that a hot rolled sheet with fewer edge cracks can be obtained by performing wide reduction rolling in a temperature range of 1200° C. to 1380° C., which is a good ductility region.

本発明において、連続鋳造一方向性電磁鋼スラブを、熱
間圧延する前段に1300℃以上の高温で加熱する理由
は、連続鋳造スラブに含有されているインヒビター形成
元素の固溶を充分に行い、最終成品に優れた磁気特性を
付与させるためである。
In the present invention, the reason why the continuously cast unidirectional electrical steel slab is heated at a high temperature of 1300°C or higher before hot rolling is to sufficiently dissolve the inhibitor-forming elements contained in the continuously cast slab, This is to impart excellent magnetic properties to the final product.

第4図はMn:0.05%、S :Q、025%含有す
る素材を、goo ’c以上に加熱していった場合の各
加熱温度でのα、γ相に残存するMn5laを示してい
る。この図で明らかなように、MnSの充分な固溶には
1300℃以上の加熱が必要である。昌°い換えると、
連続鋳造スラブの加熱温度が1300℃未満の場合、イ
ンヒビター形成元素の固溶が充分に行われないため優れ
た成品の磁気特性は得られない。
Figure 4 shows the Mn5la remaining in the α and γ phases at each heating temperature when a material containing 0.05% Mn, 0.25% S:Q, and 0.25% S is heated to a temperature higher than goo'c. There is. As is clear from this figure, heating of 1300° C. or higher is required for sufficient solid solution of MnS. In other words,
If the heating temperature of the continuously cast slab is less than 1300° C., the inhibitor-forming elements will not be sufficiently solid-dissolved, so that excellent magnetic properties of the finished product cannot be obtained.

また、幅大圧下圧延を行う温度領域として1200℃〜
1380℃が最適である理由は、ひとつは前述したよう
に1200℃未満の温度領域で粒界へS等の濃厚偏析が
進行し、この際に連続鋳造スラブ端部への強加工を加え
ると、耳割れを助長することから下限温度1200℃が
定められ、一方、1380”cより高温状態となった連
続鋳造スラブの粒界部は溶融温度に近づいており、スラ
ブの溶断等の問題が発生するため上限温度1380℃と
した。
In addition, the temperature range for wide reduction rolling is 1200℃~
One reason why 1380°C is optimal is that, as mentioned above, in the temperature range below 1200°C, dense segregation of S, etc. progresses to the grain boundaries, and at this time, if strong processing is added to the end of the continuous casting slab, A lower temperature limit of 1200°C has been set because it promotes edge cracking. On the other hand, the grain boundaries of continuously cast slabs that are hotter than 1380"c are close to the melting temperature, causing problems such as melting of the slab. Therefore, the upper limit temperature was set at 1380°C.

次に、本発明が対象とする幅大圧下圧延時の幅圧下量を
、60關以上を狙いとしているのは、連続鋳造一方向性
電磁鋼スラブの幅圧下圧延を行う際に、BO龍未満の幅
圧下量であれば生産性向上に対する寄与も少なく、熱延
工程の粗圧延段階でのエッヂャーロールによる幅圧下圧
延でも、耳割れを悪化させることなく所望の熱延板が得
られるのに対し、本発明は、少なくとも約10%以上の
大きな連続鋳造工程の生産性向上が得られるB0關以上
の幅大圧下圧延を主目的とし、そのような幅大圧下圧延
を行った際に生じる熱延板の耳割れの増加を防止するの
みならず、むしろ良好にすることを特徴とするからであ
る。
Next, the purpose of the present invention is to aim for a width reduction amount of 60 degrees or more during wide reduction rolling, which is the object of the present invention. A width reduction of On the other hand, the main purpose of the present invention is to perform wide reduction rolling of B0 or more, which can improve the productivity of the continuous casting process by at least about 10% or more, and to reduce the heat generated when such wide reduction rolling is performed. This is because it is characterized by not only preventing an increase in edge cracking of the rolled sheet, but also improving it.

本発明が意図するところの連続鋳造生産性を大きく向上
させる幅大圧下圧延を行うための熱間幅圧下圧延機の選
択については、幅圧下圧延時に、60mm以上の幅大圧
下圧延がn■能となるカリバーロールまたはフラットロ
ールを強化したエツチャー等が適合するが、これに限定
されない。しかしながら、前述したように、高温下での
幅圧下圧延が耳割れ防ILに最適であることから、スラ
ブの温度確保のため1バスで所望サイズまでの幅圧下が
可能であることが好まし、<、nつできるだけ加熱炉と
の設備間隔が短距離であることが望ましい。また幅大圧
下圧延を施した際に生ずるフィッシュテールの面積を減
少させるためには大径ロールの使用が有効であることは
既に特公昭59−42561号公報で提案されているの
で、これを採用することが望ましい。
Regarding the selection of a hot width reduction mill for performing wide reduction rolling that greatly improves continuous casting productivity as intended by the present invention, it is possible to perform wide reduction rolling of 60 mm or more during width reduction rolling. Etcher, which is a reinforced version of Caliber roll or flat roll, is suitable, but is not limited thereto. However, as mentioned above, since width reduction rolling under high temperature is optimal for IL to prevent edge cracking, it is preferable to be able to perform width reduction to the desired size in one bath to ensure the temperature of the slab. It is desirable that the distance between the equipment and the heating furnace be as short as possible. In addition, it has already been proposed in Japanese Patent Publication No. 42561/1983 that the use of large diameter rolls is effective in reducing the area of fishtails that occur when wide reduction rolling is performed, so this was adopted. It is desirable to do so.

一方向性電磁鋼スラブの成分組成は、本発明においては
何ら限定するものではないが、下記の範囲が望ましい。
The composition of the unidirectional electrical steel slab is not limited in any way in the present invention, but is preferably in the following range.

(C)は0.025〜0.085%の範囲が望ましい。(C) is preferably in the range of 0.025 to 0.085%.

これは0.025%未満では二次再結晶が不安定となる
ためであり、0.085%を超えると脱炭焼鈍での所要
時間が長くなり経済的に不利となるためである。〔S1
〕は2,5〜4.5%の範囲が望ましい。これは2,5
%未満では良好な鉄損が得られないためであり、4.5
%を超えると冷延性が著しく劣化するためである。 (
Mn ) 、  (S) 、  (Soffi、AR)
 、  (N) 。
This is because if it is less than 0.025%, secondary recrystallization becomes unstable, and if it exceeds 0.085%, the time required for decarburization annealing becomes longer, which is economically disadvantageous. [S1
] is preferably in the range of 2.5 to 4.5%. This is 2,5
This is because good iron loss cannot be obtained if it is less than 4.5%.
This is because if it exceeds %, cold rollability will be significantly deteriorated. (
Mn), (S), (Soffi, AR)
, (N).

[Cu)、(S、n)はインヒビター元素として必要に
応じて2種以上添加するもので、それぞれ、0、旧〜0
.IO%、Q 、、 OI〜0,04%、0.005〜
0.085%、0.002 〜o、oio  %、 0
.旧〜0.50%、 0.05〜0.5096が望まし
い。其の他(Sb )、  (Bi )、  (V〕。
[Cu), (S, n) are added as inhibitor elements if necessary, and are 0, old to 0, respectively.
.. IO%, Q,, OI~0.04%, 0.005~
0.085%, 0.002~o, oio%, 0
.. Old to 0.50%, preferably 0.05 to 0.5096. Others (Sb), (Bi), (V).

(Ni)、  [Cr]、  (B1等を必要に応じて
添加する。
(Ni), [Cr], (B1, etc.) are added as necessary.

以下に実施例を詳細に説明する。Examples will be described in detail below.

(実施例1) 成分組成が、C: 0.09%、S 1 : 3.25
%、Mn:0.07%、P ; 0.01%、S :0
.028%、Al :0.027%、N : 0.00
90%、Cu:0.05%、S n:o、10%、残部
実質的にFeよりなり、サイズが250龍厚X 120
0mm幅の連続鋳造スラブを、1400℃にガス加熱し
、幅圧下圧延時の温度を、1100℃、 1250℃、
 +300’Cの3水準と、幅圧下圧延量を、Omm、
  100mm、 400關の3水準で熱間幅圧下圧延
を行った後、粗圧延上程、仕上圧延1程を経て板厚2.
5ms+の熱延板を得た。その後公知の一方向性電磁鋼
板の製造方法で、酸洗、予備冷延、熱延板焼鈍を行い、
冷間圧延によって板厚0.220+amの冷延板を得た
。得られた冷延板を、公知の方法で脱炭焼鈍し焼付分離
剤を塗布した後に最終焼鈍を行い、張力コーティングを
施して高磁束密度一方向性電磁鋼板を製造した。この製
造工程における熱延板耳割れ深さの最悪値、成品の磁気
特性を第1表に示す。
(Example 1) Component composition: C: 0.09%, S 1: 3.25
%, Mn: 0.07%, P; 0.01%, S: 0
.. 028%, Al: 0.027%, N: 0.00
90%, Cu: 0.05%, Sn: o, 10%, remainder substantially made of Fe, size 250 x 120
A continuously cast slab with a width of 0 mm was gas heated to 1400°C, and the temperature during width reduction rolling was set to 1100°C, 1250°C,
Three levels of +300'C and width reduction rolling amount, Omm,
After hot width reduction rolling at three levels: 100 mm and 400 mm, the plate is rolled to a thickness of 2.
A hot rolled sheet of 5 ms+ was obtained. After that, pickling, preliminary cold rolling, and hot rolled sheet annealing are performed using a known method for manufacturing unidirectional electrical steel sheets.
A cold-rolled plate with a plate thickness of 0.220+am was obtained by cold rolling. The obtained cold-rolled sheet was decarburized and annealed by a known method, coated with a baking separator, final annealed, and tension coated to produce a high magnetic flux density unidirectional electrical steel sheet. Table 1 shows the worst value of the edge crack depth of the hot rolled sheet in this manufacturing process and the magnetic properties of the finished product.

第1表から■は耳割れと磁気特性が大きく劣る。From Table 1, ■ indicates significantly inferior ear cracking and magnetic properties.

■は連続鋳造工程の生産性が劣る。■The productivity of the continuous casting process is poor.

■〜[株]はいずれも耳割れ良好で連続鋳造工程の生産
性が向上し磁気特性の面においても問題ない(その中で
も■と■は特に耳割れと磁気特性を良好に保ちつつ連続
鋳造工程の生産性が向上している。)。
■ - [Stocks] all have good edge cracking, improve productivity in the continuous casting process, and have no problems in terms of magnetic properties (among them, ■ and ■ are particularly good in continuous casting while maintaining good edge cracking and magnetic properties. productivity has improved).

(実施M2) 成分組成が、C:0.044%、S i:3.0%、M
n:0.06%、P : 0.01%、S :0.02
0%、Al :0.002%、N : 0.0040%
、Cυ:0.17%、残部実質的にFOよりなり、サイ
ズ250m厚X1200+u+幅の連続鋳造スラブを、
1400℃にガス加熱し、幅圧下圧延時の温度を、1i
oo℃、 1250℃、 1300℃の3水準と、幅圧
下圧延量を、Ou+、  100龍、  400u+の
3水準で、熱間幅圧下圧延を行った後、粗圧延工程、仕
上圧延工程を経て板厚2.5鶴の熱延板を得た。その後
公知の一方向性電磁鋼板の製造方法で、酸洗、予備冷延
を行い、中間焼鈍を施した後、冷間圧延によって板厚o
、aoo關の冷延板を得た。得られた冷延板を公知の方
法で脱炭焼鈍し焼付分離剤を塗布した後に最終焼鈍を行
い張力コーティングを施して一方向性電磁鋼板を製造し
た。この一方向性電磁鋼板製造の際の熱延板耳割れ深さ
の最悪値、成品の磁気特性を第2表に示す。
(Implementation M2) Component composition: C: 0.044%, Si: 3.0%, M
n: 0.06%, P: 0.01%, S: 0.02
0%, Al: 0.002%, N: 0.0040%
, Cυ: 0.17%, the remainder substantially consists of FO, a continuous casting slab of size 250 m thick x 1200 + u + width,
Gas heated to 1400°C, and the temperature during width reduction rolling was set to 1i
After performing hot width reduction rolling at three levels: oo℃, 1250℃, and 1300℃, and the width reduction rolling amount at three levels: Ou+, 100Ryu, and 400U+, the plate is processed through a rough rolling process and a finish rolling process. A hot rolled sheet with a thickness of 2.5 mm was obtained. Thereafter, by a known manufacturing method for unidirectional electrical steel sheets, pickling, preliminary cold rolling, intermediate annealing, and cold rolling are performed to obtain a plate thickness of 0.
, a cold-rolled sheet of AOO was obtained. The obtained cold-rolled sheet was decarburized by a known method, coated with a seizing separator, final annealed, and tension coated to produce a unidirectional electrical steel sheet. Table 2 shows the worst value of the edge cracking depth of the hot rolled sheet and the magnetic properties of the finished product during the production of this unidirectional electrical steel sheet.

本発明範囲にある■〜[株]はいずれも耳割れ良好で連
続鋳造工程の生産性が向上し磁気特性の面においても問
題ない。
All of the products from (1) to (2) within the scope of the present invention have good edge cracking, improve productivity in the continuous casting process, and have no problems in terms of magnetic properties.

(発明の効果) 本発明によれば一方向性電磁鋼熱延板の耳割れの助長を
伴わないばかりか更に改善しつつ一方向性電磁鋼連続鋳
造スラブの幅大圧下圧延を可能とし、もって連続鋳造工
程での一方向性電磁鋼連続鋳造スラブの製造における生
産性の向上を図ることができるものであり工業的効果は
大きい。
(Effects of the Invention) According to the present invention, it is possible not only to not promote edge cracking in hot-rolled unidirectional electrical steel sheets, but also to improve the width of continuous casting slabs of unidirectional electrical steel. It is possible to improve the productivity in the production of continuously cast slabs of unidirectional electromagnetic steel in the continuous casting process, and the industrial effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一方向性電磁鋼試験片の各試験温度とその時の
断面収縮率の関係図。第2図は一方向性電磁鋼試験片の
粒界部近傍のS濃度を示した図。 第3図は0.07%CのときのFe−8i状態図。第4
図は一方向性電磁鋼の加熱温度とMn5(α。 γ相)の固溶曲線の関係図である。 復代理人 弁理士 田村弘明 6− と #  ダ θO 断面収縮=l (%) SLCwtZ)
FIG. 1 is a diagram showing the relationship between each test temperature of a unidirectional electrical steel test piece and the cross-sectional shrinkage rate at that time. FIG. 2 is a diagram showing the S concentration near the grain boundaries of a unidirectional electrical steel test piece. FIG. 3 is a Fe-8i phase diagram at 0.07%C. Fourth
The figure is a diagram showing the relationship between the heating temperature of unidirectional electrical steel and the solid solution curve of Mn5 (α, γ phase). Sub-agent Patent attorney Hiroaki Tamura 6- and #da θO Sectional shrinkage = l (%) SLCwtZ)

Claims (1)

【特許請求の範囲】 連続鋳造により製造した一方向性電磁鋼スラブを130
0℃以上の高温に加熱後、幅圧下圧延機を用いて60m
m以上の熱間幅大圧下圧延を施し所望のサイズの熱延板
を得ることにより、連続鋳造工程での生産性の向上を図
る、連続鋳造一方向性電磁鋼スラブの熱間幅圧下圧延方
法において、 上記スラブを加熱後抽出した直後でスラブの表面温度が
1200℃以上1380℃以下の高温下で幅圧下圧延機
を用いて上記の幅大圧下圧延を行うことを特徴とする連
続鋳造一方向性電磁鋼スラブの熱間幅圧下圧延方法。
[Claims] A unidirectional electrical steel slab manufactured by continuous casting is
After heating to a high temperature of 0℃ or higher, use a width reduction rolling mill to reduce the width to 60m.
A method for hot width reduction rolling of continuously cast unidirectional electrical steel slabs, which aims to improve productivity in the continuous casting process by performing hot width large reduction rolling of m or more to obtain a hot rolled sheet of a desired size. Continuous casting unidirectional, characterized in that immediately after heating and extracting the slab, the above-mentioned wide reduction rolling is performed using a width reduction rolling mill at a high temperature where the surface temperature of the slab is 1200°C or more and 1380°C or less. Hot width reduction rolling method for magnetic steel slabs.
JP17966089A 1989-07-12 1989-07-12 Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab Pending JPH0347601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17966089A JPH0347601A (en) 1989-07-12 1989-07-12 Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17966089A JPH0347601A (en) 1989-07-12 1989-07-12 Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab

Publications (1)

Publication Number Publication Date
JPH0347601A true JPH0347601A (en) 1991-02-28

Family

ID=16069655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17966089A Pending JPH0347601A (en) 1989-07-12 1989-07-12 Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab

Country Status (1)

Country Link
JP (1) JPH0347601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615306A (en) * 1991-03-29 1994-01-25 Nippon Steel Corp Hot continuous rolling device line
WO2022250111A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
WO2022250112A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615306A (en) * 1991-03-29 1994-01-25 Nippon Steel Corp Hot continuous rolling device line
WO2022250111A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
WO2022250112A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
JP7197069B1 (en) * 2021-05-28 2022-12-27 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7239077B1 (en) * 2021-05-28 2023-03-14 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
CN110499448B (en) high-N austenitic stainless steel medium plate with excellent performance and manufacturing method thereof
WO2016059101A1 (en) Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process related applications
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
CN103305748A (en) Non-oriented electrical steel plate and manufacturing method thereof
CN107779727A (en) A kind of production method of orientation silicon steel
CN113042532A (en) Bi-containing high magnetic induction oriented silicon steel hot-rolled strip steel edge quality control method
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
KR100327792B1 (en) Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS6171104A (en) Hot rolling method of grain oriented silicon steel
JPS6237094B2 (en)
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
KR100347572B1 (en) Method for preparing stainless cold rolled steel by using hot rolled non-annealing materials
JPH03133501A (en) Hot rolling method for slab of continuous casting grain -oriented magnetic steel
JP4239276B2 (en) Directional electromagnetic steel hot rolled steel sheet manufacturing method
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPH08157963A (en) Production of grain oriented silicon steel sheet
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JP2703468B2 (en) Stable manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR100560173B1 (en) Method for Making High ?? Steel Sheets
KR101758476B1 (en) Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus and high copper stainless steel manufactured thereby
JPS60200916A (en) Manufacture of anisotropic silicon steel plate
JP2002066601A (en) Method for preventing surface cracking of continuous cast slab under large reduction of hot rolled width
JPH02159319A (en) Manufacture of grain-oriented silicon steel sheet excellent in surface characteristic and magnetic property