KR100327792B1 - Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process - Google Patents

Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process Download PDF

Info

Publication number
KR100327792B1
KR100327792B1 KR1019970072737A KR19970072737A KR100327792B1 KR 100327792 B1 KR100327792 B1 KR 100327792B1 KR 1019970072737 A KR1019970072737 A KR 1019970072737A KR 19970072737 A KR19970072737 A KR 19970072737A KR 100327792 B1 KR100327792 B1 KR 100327792B1
Authority
KR
South Korea
Prior art keywords
less
rolling
rolled steel
thin slab
hot rolled
Prior art date
Application number
KR1019970072737A
Other languages
Korean (ko)
Other versions
KR19990053146A (en
Inventor
곽재현
Original Assignee
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사 filed Critical 포항종합제철 주식회사
Priority to KR1019970072737A priority Critical patent/KR100327792B1/en
Publication of KR19990053146A publication Critical patent/KR19990053146A/en
Application granted granted Critical
Publication of KR100327792B1 publication Critical patent/KR100327792B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Abstract

PURPOSE: A method for manufacturing a hot rolled steel sheet for pipes by thin slab direct rolling process is provided to produce hot rolled steel sheets with a tensile strength of less than 41 kgf/mm¬2 and an elongation ratio of higher than 41 %, based on a hot rolled steel sheet with a thickness of less than 3 mm. CONSTITUTION: The method for manufacturing a hot rolled steel sheet for pipes by thin slab direct rolling process includes step of continuous casting a steel comprising 0.04 wt.% or less of C, Mn 0.3 wt.% to 0.5 wt.%, 0.012 wt.% or less of S, 0.012 wt.% or less of P, 0.02 wt.% or less of Si, 0.1 wt.% or less of Cu, 0.01 wt.% or less of Sn, Al 0.02 wt.% to 0.04 wt.%, a balance of Fe and incidental impurities, wherein Mn/S is between 35 and 55; rough rolling the continuous cast steel; direct rolling the rough rolled steel strip; induction heating the direct rolled steel strip at less than 1050°C; hot rolling the induction heat treated steel strip by thin slab direct rolling process in such a condition that the temperature of finish rolling is controlled to be in the range of 850°C to 880°C.

Description

박슬래브 직접압연법에 의한 강관용 열연강판의 제조방법Manufacturing method of hot rolled steel sheet for steel pipe by thin slab direct rolling

본 발명은 박슬래브 직접압연법에 의한 강관용 열연강판 제조방법에 관한 것으로서, 특히 박슬래브 직접압연법에서 용이하게 규제 및 조정 가능한 합금원소 중 C 및 P, Si 등을 조정하는 한편 열간 마무리 압연온도 등 공정인자를 제어하므로서 강관용 열연강판중 가장 연질인 SPHT1재를 용이하게 제조할 수 있으며, 고로방식으로 제조된 상기 SPHT1제품에 비해 보다 연성이 향상되고도 유사한 인장강도 및 표면품질을 확보함은 물론 열간 에지크랙을 방지하므로서 제품 실수율을 현저히 향상 시킬 수 있는 박슬래브 직접압연법에 의한 강관용 열연강판 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a hot rolled steel sheet for steel pipe by the thin slab direct rolling method, in particular to adjust the C, P, Si, etc. among the alloy elements that can be easily regulated and adjustable in the thin slab direct rolling method while hot finishing rolling temperature It is possible to easily manufacture the softest SPHT1 material among the hot rolled steel sheets for steel pipes by controlling the process factors, and as compared with the SPHT1 products manufactured by the blast furnace method, it has improved ductility and similar tensile strength and surface quality. Of course, the present invention relates to a method for manufacturing a hot rolled steel sheet for steel pipe by a thin slab direct rolling method, which can significantly improve a product error rate by preventing hot edge cracks.

미니밀이라 불리는 박슬래브(slab, 주편) 연속주조 직접 열간압연법이 최근에 새로운 제철 공정으로 등장하였다(이하 박슬래브 직접압연법이라 칭함). 이 프로세스는 설비비가 낮고, 박물의 열연강판 제조가 가능하며, 연속주조된 슬래브를 열간압연하기 위해 다시 가열함이 없기 때문에 에너지 절감에 효과적이다. 그러나 고철을 전기로에서 다시 녹여 사용하기 때문에 Cu, Sn, Cr, Ni 등의 잔류원소 함량이 높고, 대기중 질소가 용강중에 다량 함유되기 때문에 기존의 고로방식의 제조방법에 비하여 강의 강도가 높고 연성이 저하되는 문제가 있어 적절한 강도와 연성 이 요구되는 강관용 SPHT1 재(JIS, G3132)의 제조가 용이하지 않다. 본 발명에서 제안한 SPHT1재는 강관용 열연강판중 가장 연질로서 주로 가정 및 산업용 배관재로 사용되며 대부분 조관후 아연도금을 실시하여 사용되기 때문에 표면 및 도금품질이 우수해야 하고, 적당한 강도와 연신율을 동시에 갖추고 있어야 한다.A thin slab continuous casting direct hot rolling method called a mini mill has recently emerged as a new steelmaking process (hereinafter referred to as a thin slab direct rolling method). This process is effective in energy savings because of low equipment costs, the manufacture of hot rolled steel sheets of thin metal, and no reheating to hot roll the continuously cast slab. However, because the scrap iron is melted again in an electric furnace, the content of residual elements such as Cu, Sn, Cr, and Ni is high, and since nitrogen in the air is contained in molten steel, the strength of the steel is higher and ductility than the conventional blast furnace manufacturing method. It is not easy to manufacture SPHT1 material for steel pipes (JIS, G3132) that requires proper strength and ductility. The SPHT1 material proposed in the present invention is the softest of the hot rolled steel sheets for steel pipes, and is mainly used for home and industrial piping materials. Since most of them are used by galvanizing after pipes, the surface and plating quality must be excellent, and the strength and elongation must be provided at the same time. do.

그러나 기존의 고로방식과 달리 박슬래브 직접압연법에서는 연속주조에 의해 응고된 박슬래브를 바로 압연하게 되므로서, 과냉 및 소성유기석출에 의한 강의 강화가 이루어지므로 기존의 방법과 같은 조성으로 제조하게 되면 목표로 하는 재질의 확보가 어렵다는 문제를 안고 있다. 그렇다고 해서 조정 가능한 원소 즉 탄소나, Mn, Al 등을 재질확보측면에서 조정하게 되면 에지크랙(edge crack) 등의 표면결함이 일어나기 쉬우므로 제품 실수율 측면에서 이것 역시 바람직하지 않다. 상기의 에지크랙이란 강의 고온취성의 일종으로서 오스테나이트 입계에 액체금속이나, 초석 페라이트가 존재할 때 가공이 이루어지면, 입계 석출물 또는 입계 삼중점을 핵으로 하여 크랙의 형성 및 전파가 용이하게 이루어지므로서 강이 찢어지는 현상이다. 따라서 가급적 석출물의 수를 줄이고, 액상으로 잔류하는 FeS 등의 저융점 화합물이 액상으로 잔류하는 것을 보다 고온에서 조대한 석출물로 석출시키는 것이필요하다.However, unlike the existing blast furnace method, in the thin slab direct rolling method, the solid slab solidified by continuous casting is directly rolled, so that the steel is strengthened by supercooling and plastic organic precipitation. It is difficult to secure the target material. However, if the adjustable elements such as carbon, Mn, Al, etc. are adjusted in terms of securing the material, surface defects such as edge cracks are likely to occur, which is also undesirable in terms of product error rate. The above-mentioned edge crack is a kind of high temperature brittleness of steel. When processing is performed when liquid metal or cornerstone ferrite is present in the austenite grain boundary, the cracks are easily formed and propagated using the grain boundary precipitate or grain triple point as nuclei. This is a tearing phenomenon. Therefore, it is necessary to reduce the number of precipitates as much as possible, and to precipitate the low-melting point compounds such as FeS remaining in the liquid phase as coarse precipitates at a higher temperature.

본 발명은 상기의 해결방안을 안출한 것으로서, 박슬래브 직접압연법에서 용이하게 규제 및 조정 가능한 합금원소 중 C 및 P, Si 등을 조정하는 한편 열간 마무리 압연온도 등 공정인자를 제어하므로서 강관용 열연강판중 가장 연질인 SPHT1재를 용이하게 제조하는 방법으로서, 고로방식으로 제조된 상기 제품에 비해 보 다 연성이 향상되고도 유사한 인장강도 및 표면품질을 확보함은 물론 열간 에지크랙을 방지하므로서 제품 실수율을 현저히 향상시킬 수 있는 박슬래브 직접압연법에 의한 강관용열연강판 제조방법을 제공하는데 그 목적이 있다.The present invention devised the above solution, hot-rolled steel pipe by controlling the process factors such as hot finish rolling temperature while adjusting C, P, Si, etc. among the alloy elements that can be easily regulated and adjustable in the thin slab direct rolling method As a method of easily manufacturing the softest SPHT1 material among steel sheets, the ductility is improved and the tensile strength and surface quality are similar to those of the blast furnace method. It is an object of the present invention to provide a method for manufacturing a hot rolled steel sheet for steel pipe by the thin slab direct rolling method which can significantly improve the efficiency of the steel sheet.

도 1은 Mn/S비에 따른 에지크랙 평균깊이의 변화를 도시한 도면.1 is a view showing a change in the average depth of the edge cracks according to the Mn / S ratio.

도 2는 탄소함량에 따른 인장강도의 변화를 도시한 도면.2 is a view showing a change in tensile strength according to the carbon content.

상술한 목적을 달성하기 위한 본 발명은 중량%로 C : 0.04이하, Mn : 0.3% ∼0.5%, S : 0.012% 이하로 하되, Mn/S비는 35∼55을 유지하며, P : 0.012% 이하, Si : 0.02% 이하, Cu : 0.1%이하, Sn : 0.01% 이하, Al : 0.02%∼0.04%, 기타 불가피한 잔류 원소로 구성된 강을 연속주조-조압연 직접압연후 다시 1050℃ 이하로 유도가열하고, 이를 통상의 박슬래브 직접압연방법으로 열간압연하되, 마무리 압연온도는 850℃∼880℃ 범위가 되도록 제어하는 것을 특징으로 하는 박슬래브 직접압연법에 의한 강관용 열연강판 제조방법을 제공한다.In order to achieve the above object, the present invention provides a weight% of C: 0.04 or less, Mn: 0.3% to 0.5%, S: 0.012% or less, and maintains Mn / S ratio of 35 to 55, P: 0.012% Below, Si: 0.02% or less, Cu: 0.1% or less, Sn: 0.01% or less, Al: 0.02% to 0.04%, and other unavoidable residual steels after continuous casting-rolling direct rolling to guide the steel back to 1050 ° C or less. It is heated and hot-rolled by a conventional thin slab direct rolling method, but provides a method of manufacturing a hot rolled steel sheet for steel pipes by the thin slab direct rolling method characterized in that the finishing rolling temperature is controlled to be in the range of 850 ℃ ~ 880 ℃. .

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 조압연설비가 갖추어진 박슬래브 직접압연 공정에서, 강관용 열연강판중 가장 연질인 SPHT1재를 용이하게 제조하는 한편, 열연강판의 에지크랙을 방지할 목적으로 중량%로 C는 0.04이하, Mn은 0.3% 에서 0.5%까지, S는 0.012% 이하로 하되, Mn/S비는 35∼55을 유지하며, P는 0.012% 이하, Si는 0.02% 이하, Cu는 0.1%이하, Sn 0.01% 이하, Al은 0.02% 에서 0.04%까지, 기타 불가피한 잔류 원소 로 구성된 강을 연속주조-조압연 직결압연후 다시 유도가열함에 있어서 유도가 열온도는 1050℃ 이하로 제어하고, 이를 통상의 박슬래브 직접압연방법으로 열간압연하되 마무리 압연온도는 850℃ 에서 880℃ 범위가 되도록 제어함으로써 인장강도 41kgf/mm2이하, 두께 3mm를 기준으로 연신율 41%를 초과하는 박슬래브 직접압연법에 의한 강관용열연강판 제조법이다.In the present invention, in the thin slab direct rolling process equipped with a rough rolling facility, the softest SPHT1 material among the hot rolled steel sheets for steel pipes is easily manufactured, and C is less than 0.04 in weight% for the purpose of preventing edge cracking of the hot rolled steel sheets. , Mn is 0.3% to 0.5%, S is 0.012% or less, Mn / S ratio is maintained at 35 to 55, P is 0.012% or less, Si is 0.02% or less, Cu is 0.1% or less, Sn 0.01 % Or less, Al is 0.02% to 0.04%, induction heating temperature is controlled to 1050 ℃ or less in continuous induction heating after continuous casting-corolling direct-rolling steel composed of other unavoidable residual elements. Hot rolling by direct rolling method, but the finish rolling temperature is controlled to be in the range of 850 ℃ to 880 ℃, and the hot rolling for steel pipe by thin slab direct rolling method with tensile strength less than 41kgf / mm 2 and elongation exceeding 41% based on thickness 3mm Steel plate manufacturing method.

이하에서는 이들을 상기와 같이 한정한 이유에 대해 설명한다.The reason for limiting these as mentioned above is demonstrated below.

강관용 열연강판은 인장강도에 따라 SPHT1∼T4에 이르는 재질등급으로 구분되며, 가정 및 산업용 배관재로 사용되는 SPHT1재는 관직경이 작으므로 말미암아 인장강도 30∼45kgf/mm2, 연신율 35∼42%의 것들이 사용되고 있다. 현재의 고로방식으로 생산된 SPHT1재는 주로 두께가 5mm 이하로서 인장강도가 40kgf/mm2, 연신율 40%의 수준이다. 최근 박슬래브 직접압연법이 도입되면서 상기 고로방식으로 생산되는 SPHT1재에 상응하는 재질을 대체하려는 기술개발이 진행되고 있으나, 박슬래브 직접압연법의 특성상 주편의 냉각속도가 높고, 압연중 소성유기석출량이 많기 때문에 강도확보 측면에서 용이하지 않다. 또한 강도를 상기 고로재 수준으로 낮추기 위해 강도저감에 도움이 되는 원소의 조정, 즉 Mn을 낮추고, S 및 Al 함량을 높이면 각종 표면크랙과 에지크랙이 발생하여 양호한 표면품질의 확보가 곤란하게 된다. 따라서 가장 좋은 방법은 탄소함량을 낮추는 것이다.Hot rolled steel sheets for steel pipes are classified into material grades ranging from SPHT1 to T4 according to tensile strength. SPHT1 materials used for home and industrial piping materials have small pipe diameters, so those with tensile strength of 30 to 45 kgf / mm 2 and elongation of 35 to 42%. It is used. The SPHT1 material produced by the current blast furnace method is mainly 5mm or less in thickness and has a tensile strength of 40kgf / mm 2 and an elongation of 40%. Recently, with the introduction of the thin slab direct rolling method, the development of technology to replace the material corresponding to the SPHT1 material produced by the blast furnace method is in progress, but due to the characteristics of the thin slab direct rolling method, the cooling rate of the cast steel is high, and the amount of plastic organic precipitation during rolling Because of this many, it is not easy in terms of securing strength. In addition, in order to lower the strength to the blast furnace material level, the adjustment of the elements, which is helpful for reducing the strength, that is, lowering Mn and increasing the S and Al contents, various surface cracks and edge cracks are generated, making it difficult to secure good surface quality. Therefore, the best way is to lower the carbon content.

본 발명에서 탄소함량을 0.04% 이하로 제한한 것은 인장강도 41kgf/mm2이하를 얻기 위함이다. 본 발명에서 탄소의 하한은 규정하지 않았지만 최근의 설비능력 및 경제성을 고려한다면 하한은 0.02% 수준으로 판단된다.In the present invention, the carbon content is limited to 0.04% or less in order to obtain a tensile strength of 41 kgf / mm 2 or less. Although the lower limit of carbon is not specified in the present invention, considering the recent capacity and economic feasibility, the lower limit is determined to be 0.02%.

Mn 함량 및 S 함량은 본 발명에서 제품의 강도 및 에지크랙 등 표면품질과 직접 관계되므로 매우 중요하다. Mn은 강도를 증가시키는 원소로서 보다 적게 함유 되는 것이 바람직하나, 고온에서 액체상태로 존재하는 FeS를 MnS로써 석출하기 때문에 에지크랙을 억제하는 효과가 있다. 여기서 에지크랙은 다음의 2가지 이유에서 발생한다. 첫째는 고온에서 입게에 편석된 액상의 S가 고온입계취성을 일으키고, 둘째는 S 함량이 높을수록 페라이트역에서 석출되어진 FeS, CuS 및 MnS 등의 석출량이 증가하기 때문에 페라이트, 오스테나이트의 2상역으로 에지부 온도가 떨어지면, 페라이트의 크랙 발생 자리 및 전파-합체가 용이해지기 때문에 에지크랙의 발생이 쉽다. 또한 이를 방지하기 위해 본 발명에서 제시한 바와 같이 0.3% 이상의 Mn을 투입하므로서 FeS, CuS 석출을 억제하고, 조대한 MnS를 석출 성장시켜 액상의 S 및 저온에서의 석출밀도는 낮추는 작용으로 말미암아 에지크랙의 발생이 억제된다. 그러나 Mn은 규격체계상 0.5%의 상한을 가지며, 또 그이상 첨가하는 것은 강도상승을 초래하므로 상한을 0.5%로 제한하였다.Mn content and S content are very important in the present invention because they directly relate to surface quality such as strength and edge cracks of the product. Although Mn is preferably contained less as an element to increase the strength, FeS existing in a liquid state at high temperature is precipitated as MnS, thereby suppressing edge cracking. Edge cracks occur for two reasons. Firstly, the liquid S segregated in the crab at high temperature causes high temperature intergranular brittleness, and secondly, the higher the S content, the more precipitated amounts of FeS, CuS, and MnS precipitated in the ferrite region. When the edge temperature drops, the crack generation site and the propagation-integration of the ferrite become easy, so that the occurrence of edge cracks is easy. In addition, in order to prevent this, by inhibiting FeS and CuS precipitation by introducing 0.3% or more of Mn as suggested in the present invention, and by growing the coarse MnS by lowering the density of precipitation in the liquid phase and low temperature, the edge cracks. The occurrence of is suppressed. However, Mn has an upper limit of 0.5% due to the standard system, and further addition results in an increase in strength, so the upper limit is limited to 0.5%.

S는 미량으로 줄일수록 에지크랙억제에 효과적이기 때문에 본 발명에서는 그상한을 0.012%로 하였다. 그러나 도 1에 나타낸 바와 같이 실험적으로 조사한 바에 따르면 Mn 및 S의 범위가 본 발명의 범위를 만족한다 할지라도 Mn/S 비가 35 이상이 되지 않으면 에지크랙은 발생할 수 있으며, 55를 초과하면 본 발명에서 요구되는 고연성이 확보되지 않게되는 문제가 있기 때문에 Mn 및 S가 본 발명의 범위를 만족함과 동시에 Mn/S비가 35∼55을 만족하는 것이 바람직하다.Since S is more effective in suppressing edge cracks as the amount is reduced to a small amount, the upper limit thereof is set to 0.012% in the present invention. However, experimentally, as shown in FIG. 1, even if the range of Mn and S satisfies the scope of the present invention, an edge crack may occur when the Mn / S ratio is not more than 35. Since there is a problem that the required high ductility is not secured, it is preferable that Mn and S satisfy the scope of the present invention and that the Mn / S ratio satisfies 35 to 55.

P는 본 발명에서 조사한 결과 강도기여에 상당한 효과가 있는 것으로 나타 났기 때문에 종래의 강종과 달리 다소 엄격한 범위인 0.012% 이하로 제한하였다.P was found to have a significant effect on strength contribution as a result of the investigation in the present invention, unlike the conventional steel grade it was limited to less than 0.012%, which is a rather strict range.

Si는 강관용 열연강판의 강도상승 및 도금성 측면에서 바람직하지 않은 원소이므로 비교적 낮은 범위인 0.02% 이하로 한정하였다.Since Si is an undesirable element in terms of strength increase and plating property of the hot rolled steel sheet for steel pipes, Si is limited to 0.02% or less, which is a relatively low range.

Al 함량은 종래의 기술과 달리 본 발명에서는 0.02∼0.04%로 제한하였는바, Al은 많이 첨가할수록 AlN 석출이 증가하여 강중 고용 질소를 제거하므로서 강도를 저감시키는데 효과적인 것으로 본 발명의 조사결과 밝혀졌으나, 반대로 에지크랙 및 표면크랙 측면에서는 불리한 것으로 나타났다. 이는 앞서 설명한 바와 같이 AlN의 석출밀도가 보다 높아지므로 크랙의 발생기점이 증가됨에 따라 에지크랙 발생 및 표면크랙 발생을 조장하는 것이다. 따라서 본 발명에서는 Al의 함량을 상한을 0.04% 로 제한하였고, 그 함량이 0.02% 미만으로 되면 고용질소에 의한 강도상승과 강중산소를 충분히 제거치 못하므로서 오히려 표면크랙을 발생시키는 문제가 따르므로 하한율 0.02%로 하였다.Unlike the conventional technology, the Al content was limited to 0.02 to 0.04% in the present invention. As the Al is added, the AlN precipitation increases, and it is found to be effective in reducing the strength by removing the dissolved nitrogen in the steel. On the contrary, it appeared to be disadvantageous in terms of edge cracks and surface cracks. As described above, since the deposition density of AlN is higher, the crack generation point promotes edge crack generation and surface crack generation. Therefore, in the present invention, the upper limit of the Al content is limited to 0.04%, and if the content is less than 0.02%, there is a problem of generating surface cracks due to insufficient strength increase and strong oxygen due to solid solution nitrogen. The rate was made 0.02%.

이와 함께 잔류되는 원소들 중 에지크랙 발생을 조장하는 Cu는 0.1% 이하, Sn은 0.01% 이하로 적제하였는데, 본 발명에서는 강도를 최소화 하기 위한 수단과표면품질확보 및 에지크랙억제에 효과적인 방법들이 앞서 말한 바와 같이 서로 상반되므로 강도 및 연성에 큰 영향없이 표면크랙 및 에지크랙을 유발하는 Cu 및 Sn은 적극 억제하였다. Cu는 1100℃까지 용융상태로 존재하여, 보다 저온에서는 미세한 Cu2S로 석출하는 경향이 있다. 이는 MnS와 달리 저온에서 석출하고 그 크기도 매우 미세하므로 크랙발생의 자리를 제공하는 역할을 한다. Sn은 융점이 낮고 철중 고용도가 매우 낮으며 Cu의 고용도를 저하시키는 원소로서 바람직하지 않다. 따라서 Cu는 0.1% 이하, Sn은 0.01% 이하로 제한하였다.Among the remaining elements, Cu, which promotes edge crack generation, was loaded at 0.1% or less and Sn at 0.01% or less. In the present invention, methods for minimizing strength and effective methods for securing surface quality and edge crack suppression are As mentioned above, Cu and Sn, which cause surface cracks and edge cracks, were strongly inhibited without significant influence on strength and ductility. Cu tends to exist in a molten state to 1100 ℃, the lower temperature to precipitate fine Cu 2 S. Unlike MnS, it precipitates at low temperatures and has a very fine size, thus providing a place for cracking. Sn is not preferred as an element having low melting point, very low solubility in iron, and lowering the solubility of Cu. Therefore, Cu was limited to 0.1% or less and Sn to 0.01% or less.

N은 본 특허에서 별도 규제치 않은 바, 탈질처리를 하지 않으면 통상 0.006∼0.01%의 질소가 강중 함유되는바 본 발명에서는 질소함량을 0.01%의 수준에서 조사한 결과이므로 통상 이보다 낮은 경우가 많기 때문에 별도로 규정치 않고 기타 불가피한 잔류원소로 분류하였다.N is not regulated separately in the present patent. If it is not denitrified, 0.006 to 0.01% of nitrogen is usually contained in steel. In the present invention, since the nitrogen content is examined at a level of 0.01%, since it is usually lower than this, And other unavoidable residual elements.

상기 성분을 만족하는 강을 연속주조-조압연 직접압연후 다시 유도가열함에 있어서 유도가열온도는 1050℃ 이하로 하였다. 이와같은 이유는 저온에서 열처리를 실시하므로서 보다 많은 량의 석추이 이루어지고 보다 조대화가 이루어져 강도 저감과 미세크랙발생 억제에 효과가 있기 때문이다. 박슬래브 직접압연의 설비적 구성상, 통상 열간압연온도는 유도가열후 바(bar)의 온도에 영향받기 때문에 본 발명에서는 열간 마무리 압연도를 제한하고 유도가열온도의 하한은 제시하지 않았다.The induction heating temperature was set to 1050 ° C. or less in continuous induction heating after continuous casting-cast rolling direct rolling. The reason for this is that by performing a heat treatment at low temperature, a greater amount of weights and coarsening are made, which is effective in reducing strength and suppressing microcracks. Due to the structural configuration of the thin slab direct rolling, since the hot rolling temperature is generally affected by the temperature of the bar after the induction heating, the present invention limits the hot finish rolling degree and does not present the lower limit of the induction heating temperature.

열간 마무리 압연온도의 하한은 850℃로 하였다. 이는 동적재결정이 저온에서 보다 지연되는 현상에 기인하여 냉각이 보다 심한 에지부와 중심부간 조직적 차이가 크게 되므로서 제품의 길이방향 및 폭방향으로 재질편차가 커지기 때문이다. 그러나 마무리 열간압연온도가 높아질수록 고용되는 원소량이 증가하고 석출물의 미세화가 이루어지므로 상한은 880℃로 하였다.The minimum of hot finishing rolling temperature was 850 degreeC. This is because dynamic recrystallization is more delayed at low temperatures, resulting in greater material differences in the longitudinal direction and the width direction of the product due to the larger structural differences between the edges and the centers where cooling is more severe. However, the higher the finishing hot rolling temperature, the higher the amount of dissolved solids and the smaller the precipitate was. Therefore, the upper limit was 880 ° C.

이와같이 제조된 강관용 열연강판은 통상의 방법과 같이 권취하면 되는데 본 발명강에서 재질에 미치는 열연권취온도의 영향은 크지 않으므로 특허 청구범위에는 포함시키지 않았으나, 철산화층 형성두께와 재질수준을 고려할 때 550∼650℃ 범위가 바람직하다. 이와같은 본 발명법에 따라 강관용 열연강판을 제조하면 종래의 고로방식 제품보다 연신율이 우수하고, 여타 박슬래브 직접압연법에 의해 제조된 제품에 비해 표면크랙 및 에지크랙을 크게 개선시킬 수 있다는 장점을 갖는다.The hot rolled steel sheet manufactured as described above may be wound in the usual manner. However, since the influence of the hot rolled winding temperature on the material is not large in the present invention, it is not included in the claims, but considering the iron oxide layer formation thickness and the material level, 550 The range of 650 ° C. is preferred. The production of hot-rolled steel sheet for steel pipes according to the present invention is superior in elongation than conventional blast furnace products, and can significantly improve surface cracks and edge cracks compared to products manufactured by other thin slab direct rolling methods. Has

이하 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

종래에 잘 알려진 박슬래브 직접압연법은 조압연을 실시한 후 바(bar)를 코일박스에서 권취하여 일정시간 유지후 소정의 두께로 마무리 압연하는 방법(일명 ISP 방식)과 조압연이 없이 슬래브를 보온한 다음 코일박스에 권취하여 일정시간 유지한 다음 바로 마무리 압연하는 방법(일명 CSP 방식)으로 대별된다. 전자는 조압연후 마무리 압연하므로 박물의 제품제조가 가능하다는 장점이 있으나, 에지크랙의 발생이 쉽다는 문제를 안고 있다. 본 발명은 전자의 조압연이 있는 박슬래브 직접압연법을 대상으로 시험하였다.In the well-known thin slab direct rolling method, after performing rough rolling, the bar is wound in a coil box and maintained for a predetermined time to finish rolling to a predetermined thickness (aka ISP method) and to keep the slab without rough rolling. Then, it is wound into a coil box, maintained for a certain time, and then roughly rolled into finishing method (aka CSP method). The former has the advantage that it is possible to manufacture the product of the thin product after finishing rolling after rough rolling, but has a problem that the generation of edge cracks is easy. The present invention was tested in the thin slab direct rolling method with the former rough rolling.

시험된 시편은 표 1의 조성범위를 가진 성분을 진공유도용해로에서 주편의 두께 80mm, 폭 170mm로 주조한 다음, 열전달이론에 의해 컴퓨터로 미리 계산된 열이력을 참고하여 조압연 직전 고온산화피막을 고압의 가스로 제거하고 조압연하였다. 조압연후의 바두께는 25mm로서 조압연 압하율은 58%로 하였다. 에지크랙 및 표면 미세크랙을 평가하기 위해 제조된 바의 일부는 두께 방향의 중앙부까지 연삭한 다음 1000번 까지 사포로 기계연마 후, 약산에서 에칭을 통해 미세한 크랙까지 드러나게 하였다. 크랙의 깊이는 1/100mm 정도의 버니어캘리피스로 측정하고 평균크랙깊이를 측정하였다. 나머지 시료는 조압연후 전단하여 1040∼1050℃로 미리 가열된 로속에 장입하여 약 3분간 유지한 다음 3회의 반복압연으로 최종두께 3㎜의 열연강판을 제작하였다. 이때 압하율은 약 88%였다. 압연개시 온도는 1000∼1050℃에서 실시하였고 최종적으로 마무리 압연온도를 목적하는 바와 같이 850∼880℃로 맞추었다. 열간압연이 완료되면 600℃로 미리 가열된 로속에 1시간 유지한 후 로냉하여 열연권취온도 상당의 온도로 열처리한 다음 JIS 5호의 인장시편을 압연방향으로 채취하여 기계적 성질을 평가하였다.The tested specimens were cast from the vacuum induction furnace with the composition ranges in Table 1 to 80 mm thick and 170 mm wide, and then the high-temperature oxide film immediately before rough rolling by referring to the thermal history calculated by computer by heat transfer theory. It was removed with a high pressure gas and rough rolled. The bar thickness after rough rolling was 25 mm, and the rough rolling reduction rate was 58%. Some of the bars prepared for evaluating edge cracks and surface microcracks were ground to the center in the thickness direction and then machined with sandpaper up to 1000 times, and then exposed to fine cracks through etching in a weak acid. The crack depth was measured with a vernier caliper of about 1/100 mm and the average crack depth was measured. The remaining sample was sheared after rough rolling, charged into a furnace heated to 1040 to 1050 ° C., preserved for about 3 minutes, and then subjected to repeated rolling three times to produce a hot rolled steel sheet having a final thickness of 3 mm. At this time, the reduction ratio was about 88%. Rolling start temperature was carried out at 1000 ~ 1050 ℃ and finally the finish rolling temperature was set to 850 ~ 880 ℃ as desired. After hot rolling was completed, the furnace was maintained for 1 hour in a furnace preheated to 600 ° C., and then cooled to a heat treatment at a temperature corresponding to the hot rolling temperature, and then the tensile test specimen of JIS No. 5 was taken in the rolling direction to evaluate mechanical properties.

본 발명에서 제조한 강중 잔류성분은 종래의 박슬래브 직접압연법에서 사용된 것과 동일한 수준으로 설정하였으며 특별한 명시가 없으면 기타 잔류원소로서 Cr은 0.04%, Ni는 0.03%, N은 0.09∼0.011%로 하였다.Residual components in the steel produced in the present invention was set to the same level as used in the conventional thin slab direct rolling method, and unless otherwise specified, Cr is 0.04%, Ni is 0.03%, and N is 0.09 to 0.011%. It was.

도 1은 상기 시편의 Mn/S비와 에지크랙 평균깊이의 관계를 나타내기 위해서 Mn/S비에 따른 에지크랙 평균깊이를 측정하여 나타낸 것이다. 이 그림에서 보듯이에지크랙을 방지하기 위한 본 발명의 Mn/S비는 35∼55임을 알 수 있다.Figure 1 shows the average depth of the edge crack according to the Mn / S ratio to show the relationship between the Mn / S ratio and the edge crack average depth of the specimen. As shown in this figure, it can be seen that the Mn / S ratio of the present invention for preventing edge crack is 35 to 55.

도 2는 탄소함량에 따른 인장강도의 변화를 나타낸 것으로서 표 1에 나타낸 바와 같이 기타성분이 본 발명의 범위에 속하는 것들 중 탄소함량에 따른 인장강도를 도시해 보았다. 이 그림에서 보면 인장강도 41kgf/mm2이하를 얻기 위해서는 탄소함량이 0.04%이하가 요구됨을 알 수 있다.Figure 2 shows the change in tensile strength according to the carbon content, as shown in Table 1, showing the tensile strength according to the carbon content of the other components within the scope of the present invention. In this figure, it can be seen that carbon content of 0.04% or less is required to obtain a tensile strength of 41 kgf / mm 2 or less.

다음은 표 1에 의해서 본 발명의 실시예를 보다 구체적으로 설명한다.The following describes the embodiment of the present invention in more detail with reference to Table 1.

본 발명법 '가' ∼'다' 강종은 성분조성 및 제조공정 변수가 본 발명의 범위 내에 해당되는 것들로서 인장강도가 41kgf/mm2이하를 만족하며 에지크랙 및 표면크랙 등이 발생하지 않았다. 특히 연신율은 모두 41%를 상회하므로서 비교법 대비 우수한 고연성을 보이고 있다. 이는 조직적으로 다각형의 균일한 페라이트가 형성되었기 때문에 박슬래브 직접압연법의 특성으로 판단된다.The method of the present invention 'ga' ~ 'da' steel composition of the composition and manufacturing process variables are those within the scope of the present invention, the tensile strength is less than 41kgf / mm 2 and did not occur edge cracks and surface cracks. In particular, the elongation is more than 41%, showing superior ductility compared to the comparative method. This is considered to be a characteristic of the thin slab direct rolling method because the uniform ferrite of the polygon is formed systematically.

비교법인 강종 '라'는 성분은 만족되나 유도가열후 바의 온도가 1100℃로 높기 때문에 인장강도가 높게 나타났다. '마'는 탄소함량이 0.05%로 높으며, '바'는 Mn 함량이 높고, '사'는 P 함량이 높아서 목표로 하는 인장강도를 모두 상회하였다. 강종 '아'는 Si 함량이 높기 때문에 강도도 높은 수준이지만 표면에 적스케일(red scale)이 많이 발생하였다. 이는 산세성이 좋지 않게 되어 아연도금성을 저해한다. 강종 '자'∼'카'는 목표로 하는 인장강도를 확보할 수 있지만 Al 함량이 높거나 Mn/S 비가 낮아서 1∼3.5mm의 에지크랙이 발생하였다. 또한 강종 '카'는 목표로 하는 인장강도 및 연신율을 확보할 수 있으나 Cu, Sn의 함량이 높아서 미량의 에지크랙 및 표면크랙이 발생하였다.The steel grade 'la', which is a comparative method, was satisfied, but the tensile strength was high because the temperature of the bar was high as 1100 ℃ after induction heating. 'Ma' has a high carbon content of 0.05%, 'Bar' has a high Mn content, and 'Sa' has a high P content, exceeding the target tensile strength. Steel grade 'Ah' has high strength because of high Si content, but a lot of red scale occurred on the surface. This leads to poor pickling and impairs galvanization. Steel grades 'za' to 'ka' can secure the target tensile strength, but high Al content or low Mn / S ratio resulted in edge cracks of 1 ~ 3.5mm. In addition, steel grade 'Ka' can secure the target tensile strength and elongation, but a small amount of edge crack and surface crack occurred due to high content of Cu and Sn.

따라서 표 1의 실시예에서 알 수 있듯이 본 발명법에 따르면 표면크랙이 억제되고 표면 및 도금성이 우수하며 인장강도 41kgf/mm2이하, 두께 3mm를 기준으로연신율 41%를 초과하는 고연성형 강관용 열연강판인 SPHT1재를 박슬래브 직접압연법으로 용이하게 제조할 수 있다.Therefore, as can be seen in the embodiment of Table 1, according to the present invention, surface cracks are suppressed, and the surface and plating properties are excellent, and for high-strength steel pipes having an elongation of 41 kgf / mm 2 or less and an elongation of more than 41% based on a thickness of 3 mm Hot rolled steel sheet can be easily produced by the thin slab direct rolling method.

Figure pat00001
Figure pat00001

본 발명에서는 박슬래브 직접압연법에서 용이하게 규제 및 조정 가능한 합금원소 중 C 및 P, Si 등을 조정하는 한편 열간 마무리 압연온도 등 공정인자를 제어하므로서 강관용 열연강판중 가장 연질인 SPHT1재를 용이하게 제조할 수 있었으며, 고로방식으로 제조된 제품에 비해 보다 연성이 우수하고 유사한 인장강도 및 표면품질을 확보함은 물론 열간에지크랙을 방지하므로서 제품 실수율을 현저히 향상시키는 우수한 효과가 있다.In the present invention, by controlling the C, P, Si, etc. among the alloy elements that can be easily regulated and adjusted in the thin slab direct rolling method, while controlling the process factors such as hot finish rolling temperature, the softest SPHT1 material among the hot rolled steel sheet for steel pipes Compared to the product manufactured by the blast furnace method, it was more ductile and secured similar tensile strength and surface quality as well as preventing hot edge cracking.

Claims (1)

중량%로 C : 0.04이하, Mn : 0.3%∼0.5%, S : 0.012% 이하로 하되, Mn/S비는 35∼55을 유지하며, P : 0.012% 이하, Si : 0.02% 이하, Cu : 0.1%이하, Sn : 0.01% 이하, Al : 0.02%∼0.04%, 기타 Fe 및 불가피한 잔류 원소로 구성된 강을 연속주조-조압연, 직접압연후 다시 1050℃ 이하로 유도가열하고, 이를 통상의 박슬래브 직접압연방법으로 열간압연하되, 마무리 압연온도는 850℃∼880℃ 범위가 되도록 제어하는 것을 특징으로 하는 박슬래브 직접압연법에 의한 강관용 열연강판 제조방법.C: 0.04 or less, Mn: 0.3% to 0.5%, S: 0.012% or less, Mn / S ratio of 35 to 55, P: 0.012% or less, Si: 0.02% or less, Cu: 0.1% or less, Sn: 0.01% or less, Al: 0.02% to 0.04%, other steels composed of Fe and unavoidable residual elements are subjected to continuous casting-cast rolling, direct rolling, and then induction heating up to 1050 ° C or lower, Hot-rolled by the slab direct rolling method, the finish rolling temperature is controlled to be in the range of 850 ℃ ~ 880 ℃ hot slab steel sheet manufacturing method for the steel pipe by the thin slab direct rolling method.
KR1019970072737A 1997-12-23 1997-12-23 Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process KR100327792B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970072737A KR100327792B1 (en) 1997-12-23 1997-12-23 Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970072737A KR100327792B1 (en) 1997-12-23 1997-12-23 Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process

Publications (2)

Publication Number Publication Date
KR19990053146A KR19990053146A (en) 1999-07-15
KR100327792B1 true KR100327792B1 (en) 2002-07-27

Family

ID=37478434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970072737A KR100327792B1 (en) 1997-12-23 1997-12-23 Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process

Country Status (1)

Country Link
KR (1) KR100327792B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961334B1 (en) 2002-12-26 2010-06-04 주식회사 포스코 Method for manufacturing Cu added Hot Rolled steel sheet using thin slab
KR101225734B1 (en) 2010-08-30 2013-01-24 현대제철 주식회사 Steel sheet with reduced surface defect and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782786B1 (en) * 2001-12-26 2007-12-05 주식회사 포스코 MANUFACTURING METHOD OF Cu CONTAINING HOT ROLLED STEEL SHEET WITH GOOD SURFACE QUALITY
KR100568365B1 (en) * 2001-12-27 2006-04-05 주식회사 포스코 Method for manufacturing heavy gauge high strength linepipe steel with superior low temperature toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961334B1 (en) 2002-12-26 2010-06-04 주식회사 포스코 Method for manufacturing Cu added Hot Rolled steel sheet using thin slab
KR101225734B1 (en) 2010-08-30 2013-01-24 현대제철 주식회사 Steel sheet with reduced surface defect and method of manufacturing the same

Also Published As

Publication number Publication date
KR19990053146A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
US4883544A (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
CA2941202C (en) Method for producing a high-strength flat steel product
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
EP1444373A1 (en) STEEL PLATE HAVING SUPERIOR TOUGHNESS IN WELD HEAT−AFFECTED ZONE AND METHOD FOR MANUFACTURING THE SAME, WELDING FABRIC USING THE SAME
WO2002040731A1 (en) STEEL PLATE TO BE PRECIPITATING TiN+CuS FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME, WELDING FABRIC USING THE SAME
KR20200065141A (en) Non-oriented electrical steel sheet having low iron loss property and excellent surface quality and method of manufacturing the same
WO2002044436A1 (en) Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
JP3809827B2 (en) Ti-added ferritic stainless steel sheet and method for producing the same
CN114480975A (en) Economical X65-grade acid-resistant pipeline steel plate coil and manufacturing method thereof
JP2007239097A (en) Method for manufacturing hot rolled steel sheet for high-strength cold rolled steel sheet
JP2021181624A (en) Steel sheet, member subject and manufacturing method of them
KR100327792B1 (en) Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process
US4491476A (en) Boron-containing steel and a process for producing the same
JP2020186433A (en) Manufacturing method of slab
JP6816516B2 (en) Non-oriented electrical steel sheet
JP7010418B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
KR19980044905A (en) Yield strength 65ksi class line pipe steel manufacturing method
JPS5827934A (en) Production of mild blackplate having excellent corrosion resistance by continuous annealing
KR100370579B1 (en) Hot rolled steel sheet with excellent surface properties and workability and manufacturing method by mini mill process
KR101055818B1 (en) Manufacturing method of high strength steel sheet for deep processing by mini mill process
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
KR950003807B1 (en) Making method of cold rolling sheet
KR19980052509A (en) Method for manufacturing a low-carbon cold-rolled steel sheet for vacuum deposition plating in which changes in material after plating are suppressed
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130212

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160217

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee