JPS6196030A - Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking - Google Patents
Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion crackingInfo
- Publication number
- JPS6196030A JPS6196030A JP21712684A JP21712684A JPS6196030A JP S6196030 A JPS6196030 A JP S6196030A JP 21712684 A JP21712684 A JP 21712684A JP 21712684 A JP21712684 A JP 21712684A JP S6196030 A JPS6196030 A JP S6196030A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- rolling
- stress corrosion
- cracking resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は耐水素誘起割れ性及び耐応力腐食割れ性にすぐ
れた高強度高靭性熱延鋼板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength, high-toughness hot-rolled steel sheet with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance.
近年、鋼板には高強度、高靭性に加えて、耐水素誘起割
れ性や耐応力腐食割れ性にすぐれた高品質鋼板が要求さ
れ・るに至っている。鋼板のこのような腐食割れに最も
大きく影響する因子は、既によく知られているように、
鋼中のマクロ及びミクロ偏析と、非金属介在物の伸長で
あるため、従来、上記のような高品質鋼板には、SやP
を低減した焼入れ焼戻し鋼や、調質ベイナイト鋼等の均
質調質鋼からなる鋼板が用いられている。しかし、この
ような方法は、生産性と経済性が劣るために、高品質鋼
板を安価に量産化し得ない難点がある。In recent years, there has been a growing demand for high-quality steel sheets that not only have high strength and toughness, but also have excellent resistance to hydrogen-induced cracking and stress corrosion cracking. As is already well known, the factors that have the greatest effect on corrosion cracking of steel plates are:
Due to macro- and micro-segregation in steel and elongation of non-metallic inclusions, high-quality steel sheets such as those mentioned above have traditionally been made with S and P.
Steel plates made of quenched and tempered steel with reduced quenching and homogeneous tempered steel such as tempered bainitic steel are used. However, such a method has a drawback in that high-quality steel sheets cannot be mass-produced at low cost because of poor productivity and economic efficiency.
このため、近年、特に製鋼技術の進歩を背景として、例
えば、S量が0.002%以下、P量が0゜010%以
下のような極低S低P綱の量産化が実現されるに至り、
比較的高い生産性にて非調質ままでこれら高品質鋼機番
製造する方法が一部で実用化されている。しかし、水素
誘起割れや応力腐食割れのように、極めて多(の因子が
関係する割れについては、例えば、上記のようにS量を
o、。For this reason, in recent years, especially against the background of advances in steelmaking technology, the mass production of ultra-low S and low P steels, for example, with an S content of 0.002% or less and a P content of 0°010% or less, has been realized. Finally,
Some methods have been put into practical use for manufacturing these high-quality steel machines without heat refining with relatively high productivity. However, for cracks that involve an extremely large number of factors, such as hydrogen-induced cracking and stress corrosion cracking, for example, the amount of S may be reduced to o, as described above.
02%以下に抑え得たとしても、鋼板表面で発生し、鋼
中に浸入する水素の影響を避けることができない。Even if it can be suppressed to 0.2% or less, the influence of hydrogen generated on the surface of the steel sheet and penetrating into the steel cannot be avoided.
このような問題を解決するために、最近においては、鋼
の化学成分の観点からは、偏析を抑制するためにCやM
njiを低減する、鋼中への水素の浸入と拡散を抑制す
るためにCu ’?) Coを添加する、有効な水素ト
ラップサイトを確保するためにNbやTiを添加する、
更にはCaJPREMを添加する等の方法が提案されて
おり、一方、金属組織の観点からは、造塊鋳造組織を良
好にすると共に、最終金属組織をフェライト・パーライ
ト組織から微細なフェライト・ベイナイト組織やベイナ
イト組織に変態を制御することが提案されている。In order to solve these problems, recently, from the viewpoint of the chemical composition of steel, C and M have been added to suppress segregation.
Cu' to suppress hydrogen infiltration and diffusion into the steel, reducing nji? ) Adding Co, adding Nb and Ti to ensure effective hydrogen trap sites,
Furthermore, methods such as adding CaJPREM have been proposed. On the other hand, from the viewpoint of metal structure, in addition to improving the ingot casting structure, the final metal structure is changed from a ferrite-pearlite structure to a fine ferrite-bainite structure. It has been proposed to control the metamorphosis into a bainite structure.
特に、清浄鋼については、後者の変態組織制御によって
、調材の材料特性が改善されることが知られている。In particular, with respect to clean steel, it is known that the material properties of prepared materials are improved by controlling the latter transformation structure.
しかし、ラインパイプ用鋼材のように、比較的板厚の大
きい鋼材の場合は、ベイナイト組織のように低温変態生
成物を均一に得難いため、実際上は、化学成分を制御す
ると共に、フェライト・パーライト組織を微細化する方
向での研究が主として進められている。即ち、このフェ
ライト・パーライト鋼においては、主としてパーライト
バンドであるバンド状組織が鋼材の靭性、耐水素誘起割
れ性及び耐応力腐食割れ性に有害な影響を及ぼすので、
熱間圧延を制御して極めて微細な組織とし、パーライト
組織を孤立させるものである。しかし、これらの従来の
方法によれば、NACE等の苛酷な腐食環境下では、鋼
板の水素誘起割れや応力腐食割れを抑制することができ
ない。However, in the case of relatively thick steel materials such as steel materials for line pipes, it is difficult to uniformly obtain low-temperature transformation products such as bainite structure, so in practice it is necessary to control the chemical composition and to Research is mainly being carried out in the direction of making the structure finer. That is, in this ferrite-pearlite steel, the band-like structure, which is mainly a pearlite band, has a detrimental effect on the toughness, hydrogen-induced cracking resistance, and stress corrosion cracking resistance of the steel material.
Hot rolling is controlled to create an extremely fine structure and isolate the pearlite structure. However, according to these conventional methods, hydrogen-induced cracking and stress corrosion cracking of steel sheets cannot be suppressed under severe corrosive environments such as NACE.
本発明者らは、上記した問題を解決するために、鋼板の
水素誘起割れ及び応力腐食割れを詳細且つ広範囲にわた
って研究した結果、清浄鋼の水素誘起割れ及び応力腐食
割れの割れ発生とその伝播に関しては、粒界に析出する
主としてセメンタイトからなる炭化物が極めて重要な役
割を演じており、この炭化物の析出サイトとその形状を
適切に制御することによって、耐水素誘起割れ性、耐応
力腐食割れ性のみならず、その他の機械的特性にもすぐ
れた熱延綱板を得ることを見出して、本発明に至ったも
のである。In order to solve the above-mentioned problems, the present inventors conducted detailed and extensive research on hydrogen-induced cracking and stress corrosion cracking in steel plates, and found that the occurrence and propagation of hydrogen-induced cracking and stress corrosion cracking in clean steel were as follows. In this process, carbides mainly composed of cementite precipitated at grain boundaries play an extremely important role, and by appropriately controlling the precipitation sites and shapes of these carbides, hydrogen-induced cracking resistance and stress corrosion cracking resistance can be improved. The inventors have discovered that it is possible to obtain a hot-rolled steel sheet that is not only excellent in other mechanical properties, but also has excellent other mechanical properties, and has thus arrived at the present invention.
本発明による耐水素誘起割れ性及び耐応力腐食割れ性に
すぐれた熱延綱板の製造方法は、重量%で
C0.03〜0.3%、
Si0.01〜160%、
Mn 0.5〜2.0%、
Al 0.005〜0.05%、
残部鉄及び不可避的不純物よりなる鋼片を粗圧延した後
、オーステナイト未再結晶域における全圧下率を30%
以上とし、゛温度900〜800℃にて仕上圧延した後
、平均冷却速度15〜b秒にて温度750〜650℃ま
で冷却し、更に、加工率3〜20%にて軽圧下すること
を特徴とすし、かかる方法によって、フェライト粒界で
のセメンタイトの析出を抑制しつつ、フェライト粒内に
微細に多数析出させることができる。The method for producing a hot-rolled steel sheet with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance according to the present invention includes, in weight percent, C 0.03-0.3%, Si 0.01-160%, Mn 0.5-0. After rough rolling a steel billet consisting of 2.0% Al, 0.005 to 0.05% Al, and the balance iron and unavoidable impurities, the total rolling reduction in the austenite non-recrystallized region was reduced to 30%.
With the above, after finishing rolling at a temperature of 900 to 800°C, cooling to a temperature of 750 to 650°C at an average cooling rate of 15 to b seconds, and further light rolling at a processing rate of 3 to 20%. By this method, it is possible to suppress the precipitation of cementite at the ferrite grain boundaries and to cause a large amount of cementite to precipitate finely within the ferrite grains.
先ず、本発明の方法・において用いる鋼材における化学
成分の限定理由について説明する。First, the reason for limiting the chemical composition of the steel used in the method of the present invention will be explained.
Cは、鋼の強度を確保するために必須の元素であり、本
発明においては少なくとも0.03%を添加する。しか
し、過多に添加するときは鋼の靭性と溶接性とを阻害し
、また、連続鋳造材の場合には中心偏析の異常発生の原
因ともなり、更には、腐食環境下にカソード反応の促進
効果を存するため、その添加量の上限を0.3%とする
。C is an essential element for ensuring the strength of steel, and in the present invention, at least 0.03% is added. However, when added in excess, it impairs the toughness and weldability of the steel, and in the case of continuously cast materials, it can cause abnormal center segregation, and it also has the effect of promoting cathode reactions in a corrosive environment. Therefore, the upper limit of its addition amount is set at 0.3%.
3iは、強力な脱酸剤として添加され、また、素地中に
固容して鋼の伸びや延性を改善する効果を有する。かか
る効果を有効に発現させるためには、少なくとも0.0
1%の添加を必要とするが、しかし、過多に添加すると
きは、溶接性の劣化、清浄度の圧下、表面スケールの発
生等の好ましくない問題を生じるため、その添加量の上
限を1.0%とする。3i is added as a strong deoxidizing agent, and also has the effect of improving the elongation and ductility of steel by being solidified in the base material. In order to effectively express such an effect, at least 0.0
It is necessary to add 1%, but when adding too much, undesirable problems such as deterioration of weldability, reduction in cleanliness, and generation of surface scale occur, so the upper limit of the amount added is set at 1%. Set to 0%.
Mnは、本発明において鋼に所要の強度と靭性を付与す
るために少なくとも0.5%を添加する。Mn is added in an amount of at least 0.5% in order to impart the required strength and toughness to the steel in the present invention.
しかし、余りに多量に添加する場合は、ミクロ偏析が顕
著となって異常組織が生成し、耐水素誘起割れ性や靭性
を劣化させるので、その上限を2.0%とする。However, if it is added in an excessively large amount, micro-segregation becomes noticeable and an abnormal structure is formed, deteriorating the hydrogen-induced cracking resistance and toughness, so the upper limit is set at 2.0%.
Alは、Siと同様に脱酸剤として必要な元素であり、
少なくとも0.005%を添加するが、過多に添加する
ときは、靭性を劣化させ、また、鋳造欠陥も顕著となる
ため、上限を0.05%とする。Al, like Si, is an element necessary as a deoxidizer,
At least 0.005% is added, but if added in excess, the toughness deteriorates and casting defects become noticeable, so the upper limit is set to 0.05%.
Pは、鋼においてミクロ偏析を生じ、鋼塊中央部に異常
組織の発生を促進し、耐水素誘起割れ性に有害であるの
で、本発明においては、その含有量は好ましくは0.0
3%以下とする。P causes micro-segregation in steel, promotes the generation of abnormal structures in the center of the steel ingot, and is harmful to hydrogen-induced cracking resistance. Therefore, in the present invention, the content is preferably 0.0
3% or less.
また、Sは、Mnと結合してA系介在物を形成し、割れ
発生の起点となるので有害である。鋼にCaを添加して
、CaSとしてもその含有量が多くなると、クラスター
状になり、割れを誘起する場合がある。従って、本発明
においては、鋼中のS含有量は好ましくは0.01%以
下とする。Further, S is harmful because it combines with Mn to form A-based inclusions, which become a starting point for cracking. When Ca is added to steel and the CaS content increases, it may form clusters and induce cracks. Therefore, in the present invention, the S content in the steel is preferably 0.01% or less.
本発明においては、鋼板に更に強度や耐食性を付与する
ために、必要に応じてCr 、、T t −、Cu、M
O% N b s V及びNiよりなる群から選ばれ
る少なくとも1種の元素を添加することができる。In the present invention, in order to further impart strength and corrosion resistance to the steel plate, Cr, T t -, Cu, M
At least one element selected from the group consisting of O% N b s V and Ni can be added.
Crは鋼の強度を高める以外に耐食性を高める効果を有
するが、過多に添加するときは、溶接時にペネトレータ
が発生し、溶接性を著しく阻害するので、その上限を1
.0%とする。Cr has the effect of increasing corrosion resistance in addition to increasing the strength of steel, but when added in excess, penetrators are generated during welding and significantly impede weldability, so the upper limit should be set at 1.
.. Set to 0%.
Tiは微細な炭窒化物を析出して、鋼中において水素の
有効なトラップサイトとして作用し、、鋼の耐水素誘起
割れ性を更に改善する。しかし、過多に添加する場合は
、上記炭窒化物が粗大化し、却って割れ発生を助長する
ので、その添加量の上限を0.05%とする。。Ti precipitates fine carbonitrides and acts as an effective trap site for hydrogen in the steel, further improving the hydrogen-induced cracking resistance of the steel. However, if too much is added, the carbonitrides will become coarse and will even encourage cracking, so the upper limit of the amount added is set at 0.05%. .
Cuは鋼中への水素の浸入を防止し、弱酸性の腐食環境
下での耐食性を著しく向上させる。このような効果を有
効に発現させるためには、少なくとも0.1%の添加を
必要とする。しかし、1.0%を越えて多量に添加すれ
ば、熱間脆性が生じるので、その添加量の上限を1.0
%とする。Cu prevents hydrogen from penetrating into steel and significantly improves corrosion resistance in a slightly acidic corrosive environment. In order to effectively exhibit such an effect, it is necessary to add at least 0.1%. However, if added in a large amount exceeding 1.0%, hot embrittlement will occur, so the upper limit of the amount added should be set at 1.0%.
%.
また、Mo5Nb、V及びNiは、鋼の強度を上昇させ
ると共に、その靭性を改善するために添加されるが、余
りに過多に加えても上記効果が飽和し、更に、経済性を
考慮して、その上限をM。In addition, Mo5Nb, V, and Ni are added to increase the strength of steel and improve its toughness, but if they are added in too much, the above effects will be saturated, and furthermore, considering economic efficiency, The upper limit is M.
については0.2%、Nbについては0.1%、■につ
いては0.1%、Niについては0.2%とする。0.2% for Nb, 0.1% for Nb, 0.1% for ■, and 0.2% for Ni.
更に、本発明においては、鋼にCaを添加することもで
きる。Caは鋼中の硫化物系介在物の形態と組成を制御
するのに効果があり、特に、Ca/S≧2を満足する場
合に硫化物系介在物が完全に球状化する結果、すぐれた
耐水素誘起割れ性を付与することができる。しかし、過
多に添加するときは、クラスター状となって、性能が劣
化するので、上限をo、 o o s o%とする。Furthermore, in the present invention, Ca can also be added to the steel. Ca is effective in controlling the morphology and composition of sulfide inclusions in steel, and in particular, when Ca/S≧2 is satisfied, the sulfide inclusions become completely spheroidized, resulting in an excellent Hydrogen-induced cracking resistance can be imparted. However, when added in excess, it forms clusters and performance deteriorates, so the upper limit is set to o, o o so o%.
本発明の方法によれば、上記のような化学成分を有する
綱片を粗圧延した後、所定の条件下に処理することによ
って、耐水素誘起割れ性及び耐応力腐食割れ性にすぐれ
た高強度高靭性熱延鋼板を得ることができる。即ち、鋼
片をオーステナイト未再結晶域における全圧下率を30
%以上とし、温度900〜800℃にて仕上圧延した後
、平均冷却速度15〜b
0℃まで冷却し、更に、加工率3〜20%にて軽圧下す
る。According to the method of the present invention, a steel piece having the above-mentioned chemical components is roughly rolled and then treated under predetermined conditions, thereby achieving high strength with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance. A high toughness hot rolled steel sheet can be obtained. That is, the total reduction rate of the steel slab in the austenite unrecrystallized region is 30
% or more and finish rolling at a temperature of 900 to 800°C, then cooled to an average cooling rate of 15 to 0°C, and further lightly rolled at a processing rate of 3 to 20%.
先ず、本発明の方法においては、鋼片を粗圧延した後、
オーステナイト未再結晶域における全圧下率を30%以
上とする。30%よりも小さい場合は、微細組織を得る
ことができず、靭性が劣化するからである。仕上圧延温
度は900〜800℃の範囲である。900℃よりも高
いときは、オーステナイト未再結晶域における圧下を十
分に行なうことが困難であるので、フェライト粒が粗大
化し、靭性が低下する。一方、800℃よりも低い場合
は、析出フェライトを強化加工することとなり、集合組
織が発達する結果、セパレーションが多発し、板厚方向
の靭性が劣化する。First, in the method of the present invention, after rough rolling a steel billet,
The total rolling reduction in the austenite non-recrystallized region is 30% or more. This is because if it is smaller than 30%, a fine structure cannot be obtained and the toughness deteriorates. The finish rolling temperature is in the range of 900 to 800°C. When the temperature is higher than 900°C, it is difficult to sufficiently reduce the austenite non-recrystallized region, so ferrite grains become coarse and toughness decreases. On the other hand, if the temperature is lower than 800°C, the precipitated ferrite will be strengthened, and as a result, the texture will develop, separation will occur frequently, and the toughness in the thickness direction will deteriorate.
この仕上圧延後、フェライト中に過飽和に固容させたC
を析出させるために、直ちに平均冷却速度15〜b
の温度まで急冷する。冷却速度が余りに遅い場合は、冷
却途中で界面にCが濃縮され、純度の高いフェライトが
析出するため、粒界にセメンタイトが析出しやすい。冷
却速度の上限は特に制限されないが、実操業上の観点か
ら80℃/秒とする。After this finish rolling, supersaturated C solidified in the ferrite
In order to precipitate , it is immediately quenched to a temperature with an average cooling rate of 15~b. If the cooling rate is too slow, C is concentrated at the interface during cooling and highly pure ferrite is precipitated, so that cementite is likely to precipitate at the grain boundaries. Although the upper limit of the cooling rate is not particularly limited, it is set to 80° C./sec from the viewpoint of actual operation.
この急冷後、本発明の方法においては、セメンタイトを
微細に、且つ、粒内に多く析出させるために、750〜
650℃の範囲の温度域にて3〜20%の加工率にて軽
圧下する。この温度域において、フェライト中に析出す
るclが最も多く、この温度域で軽圧下することによっ
て、フェライト粒内でセメンタイトが最も微細に且つ多
数析出するからである。軽圧下温度が上記範囲をはずれ
る場合には、粒界でセメンタイトが多数析出して、所要
の物性を得ることができない。圧下率は、セメンタイト
を微細に析出させるために、少なくとも3%を必要とし
、一方、20%を越えるときは、析出フェライト相を加
工することとなり、その結果、集合組織の発達が顕著と
なる。After this rapid cooling, in the method of the present invention, in order to precipitate cementite finely and in large quantities within the grains,
Light reduction is performed at a processing rate of 3 to 20% in a temperature range of 650°C. This is because in this temperature range, the largest amount of Cl precipitates in the ferrite, and by applying a light pressure reduction in this temperature range, cementite is precipitated in the finest form and in the largest number within the ferrite grains. If the light rolling temperature is outside the above range, a large amount of cementite will precipitate at the grain boundaries, making it impossible to obtain the desired physical properties. The rolling reduction rate needs to be at least 3% in order to finely precipitate cementite, while if it exceeds 20%, the precipitated ferrite phase will be processed, and as a result, the development of texture will become significant.
尚、本発明においては、冷却停止温度又は巻取温度は6
50℃以下であり、650℃よりも高い場合は、セメン
タイトの粗大成長し、粒界セメンタイトの伸長が起こる
。In addition, in the present invention, the cooling stop temperature or the winding temperature is 6
If the temperature is 50° C. or lower and higher than 650° C., coarse growth of cementite occurs and elongation of grain boundary cementite occurs.
以上のように、所定の化学成分を有する鋼片を所定の条
件に従って処理することによりて、集合組織を生成させ
ることなく、微細なフェライト組織を生成させると共に
、セメンタイトを微細に且つ多数フェライト中に生成さ
せるので、機械的特性にすぐれるのみならず、耐水素誘
起割れ性及び耐応力腐食割れ性にすぐれた熱延鋼板を得
ることができる。As described above, by processing a steel billet having a predetermined chemical composition according to predetermined conditions, a fine ferrite structure is generated without forming a texture, and cementite is finely and in large numbers in the ferrite. As a result, it is possible to obtain a hot-rolled steel sheet that not only has excellent mechanical properties but also excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance.
以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.
実施例1
第1表に示す化学成分を有する鋼片を粗圧延した後、第
2表に示す条件にてオーステナイト未再結晶域にて圧延
し、所定の温度にて仕上圧延し、本発明の方法に従って
急冷し、軽圧下し、巻取を行なって、厚さ8.8鶴の鋼
板を得た(発明法)。Example 1 After rough rolling a steel billet having the chemical composition shown in Table 1, it was rolled in an austenite non-recrystallized area under the conditions shown in Table 2, and finished rolled at a predetermined temperature. A steel plate having a thickness of 8.8 mm was obtained by quenching, light reduction, and winding according to the method (invention method).
比較のために、通常の方法に従って、第2表に示す温度
で仕上圧延し、急冷及びその後の軽圧下を実施すること
なく、巻取を行なって、厚さ8.8 mmの鋼板を得た
(比較法)。For comparison, a steel plate with a thickness of 8.8 mm was obtained by finishing rolling at the temperature shown in Table 2 according to the usual method, and winding without performing rapid cooling and subsequent light reduction. (comparative law).
このようにして得た各鋼板の1/3幅の位置がら引張試
験片(JIS 14号A試験片、径6龍、C方向切出し
)、シャルピー試験片(5鶴厚さ、2mVノツチ、C方
向切出し)、水素誘起割れ試験片(長さ100鶴、幅2
0n、厚さ5額、表面仕上)及び応力腐食割れ性試験片
(長さ75龍、幅15mm、厚さ51、表面仕上)を作
製し、それぞれの試験に付した。Tensile test pieces (JIS No. 14 A test piece, diameter 6, cut in C direction), Charpy test pieces (5 mm thickness, 2 mV notch, C direction) of each steel plate obtained in this way. (cut out), hydrogen-induced cracking test piece (length 100, width 2
A stress corrosion cracking test piece (length: 75 mm, width: 15 mm, thickness: 51 mm, surface finish) was prepared and subjected to each test.
水素誘起割れ(耐HI C)試験は、食塩5%と酢酸0
.5%を含み、硫化水素を飽和させた水溶液に96時間
浸漬し、1鋼種について6断面の検査と超音波探傷器に
より判定した。評価基準はQが割れなし、△が割れ長さ
率が3%未満、×が割れ長さ率が3%以上とした。ここ
に、割れ長さ率とは、Wを板幅、aを亀裂長さとすると
き、また、耐応力腐食割れ(耐5cc)性は、降伏強さ
の70%応力を付加した条件下に行なった。Hydrogen induced cracking (HIC resistance) test was conducted using 5% common salt and 0 acetic acid.
.. It was immersed in an aqueous solution containing 5% hydrogen sulfide and saturated with hydrogen sulfide for 96 hours, and each steel type was evaluated by inspecting 6 cross sections and using an ultrasonic flaw detector. The evaluation criteria were Q: no cracks, Δ: crack length ratio less than 3%, and ×: crack length ratio of 3% or more. Here, the crack length ratio is when W is the plate width and a is the crack length, and the stress corrosion cracking resistance (5cc resistance) is measured under the condition of applying stress of 70% of the yield strength. Ta.
試験終了後、表面を10倍の顕微鏡にて観察して、表面
割れを調べ、評価基準はOが割れなし、△が割れが認め
られる、×が割れが著しいとした。After the test, the surface was observed with a 10x microscope to check for surface cracks, and the evaluation criteria were O: no cracks, Δ: cracks observed, and ×: severe cracks.
第2表に鋼板の機械的性質、衝撃特性、耐水素誘起割れ
性及び耐応力腐食割れ性を示す。本発明の方法による鋼
板は、従来の製造方法による鋼板に比べて、機械的性質
及び衝撃特性がすぐれるのみならず、耐水素誘起割れ性
及び耐応力腐食割れ性にすぐれていることが明らかであ
る。Table 2 shows the mechanical properties, impact properties, hydrogen-induced cracking resistance, and stress corrosion cracking resistance of the steel sheets. It is clear that the steel plate produced by the method of the present invention not only has superior mechanical properties and impact properties, but also superior hydrogen-induced cracking resistance and stress corrosion cracking resistance compared to steel plates produced by conventional methods. be.
手続補正占(自発) 昭和59年12月10日Procedural correction divination (voluntary) December 10, 1982
Claims (3)
、オーステナイト未再結晶域における全圧下率を30%
以上とし、温度900〜800℃にて仕上圧延した後、
平均冷却速度15〜80℃/秒にて温度750〜650
℃まで冷却し、加工率3〜20%にて軽圧下することを
特徴とする耐水素誘起割れ性及び耐応力腐食割れ性にす
ぐれた高強度高靭性熱延鋼板の製造方法。(1) Consists of 0.03 to 0.3% by weight of C, 0.01 to 1.0% of Si, 0.5 to 2.0% of Mn, 0.005 to 0.05% of Al, and the balance consisting of iron and inevitable impurities. After rough rolling the steel billet, the total rolling reduction in the austenite non-recrystallized area is 30%.
After finishing rolling at a temperature of 900 to 800°C,
Temperature 750-650 at average cooling rate 15-80°C/sec
A method for producing a high-strength, high-toughness hot-rolled steel sheet with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance, which comprises cooling the steel sheet to 0.degree. C. and lightly rolling it at a processing rate of 3 to 20%.
種の元素、 残部鉄及び不可避的不純物よりなる鋼片を粗圧延した後
、オーステナイト未再結晶域における全圧下率を30%
以上とし、温度900〜800℃にて仕上圧延した後、
平均冷却速度15〜80℃/秒にて温度750〜650
℃まで冷却し、加工率3〜20%にて軽圧下することを
特徴とする耐水素誘起割れ性及び耐応力腐食割れ性にす
ぐれた高強度高靭性熱延鋼板の製造方法。(2) In weight% (a) C0.03-0.3%, Si0.01-1.0%, Mn0.5-2.0%, AE0.005-0.05%, and (b) At least selected from the group consisting of Nb 0.1% or less, Ti 0.05% or less, V 0.1% or less, Cr 1.0% or less, Cu 1.0% or less, Mo 0.2% or less, and Ni 0.2% or less. 1
After rough rolling a steel billet consisting of seed elements, balance iron and unavoidable impurities, the total rolling reduction in the austenite non-recrystallized area is reduced to 30%.
After finishing rolling at a temperature of 900 to 800°C,
Temperature 750-650 at average cooling rate 15-80°C/sec
A method for producing a high-strength, high-toughness hot-rolled steel sheet with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance, which comprises cooling the steel sheet to 0.degree. C. and lightly rolling it at a processing rate of 3 to 20%.
種の元素、 (c)Ca0.0050%以下、 残部鉄及び不可避的不純物よりなる鋼片を粗圧延した後
、オーステナイト未再結晶域における全圧下率を30%
以上とし、温度900〜800℃にて仕上圧延した後、
平均冷却速度15〜80℃/秒にて温度750〜650
℃まで冷却し、加工率3〜20%にて軽圧下することを
特徴とする耐水素誘起割れ性及び耐応力腐食割れ性にす
ぐれた高強度高靭性熱延鋼板の製造方法。(3) In weight% (a) C0.03-0.3%, Si0.01-1.0%, Mn0.5-2.0%, Al0.005-0.05%, and (b) At least selected from the group consisting of Nb 0.1% or less, Ti 0.05% or less, V 0.1% or less, Cr 1.0% or less, Cu 1.0% or less, Mo 0.2% or less, and Ni 0.2% or less. 1
After rough rolling a steel billet consisting of a seed element, (c) Ca 0.0050% or less, the balance iron and unavoidable impurities, the total rolling reduction in the austenite non-recrystallized region is 30%.
After finishing rolling at a temperature of 900 to 800°C,
Temperature 750-650 at average cooling rate 15-80°C/sec
A method for producing a high-strength, high-toughness hot-rolled steel sheet with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance, which comprises cooling the steel sheet to 0.degree. C. and lightly rolling it at a processing rate of 3 to 20%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21712684A JPS6196030A (en) | 1984-10-15 | 1984-10-15 | Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21712684A JPS6196030A (en) | 1984-10-15 | 1984-10-15 | Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6196030A true JPS6196030A (en) | 1986-05-14 |
JPS6410565B2 JPS6410565B2 (en) | 1989-02-22 |
Family
ID=16699257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21712684A Granted JPS6196030A (en) | 1984-10-15 | 1984-10-15 | Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196030A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5454883A (en) * | 1993-02-02 | 1995-10-03 | Nippon Steel Corporation | High toughness low yield ratio, high fatigue strength steel plate and process of producing same |
JP2009174708A (en) * | 2007-12-25 | 2009-08-06 | Tokai Rubber Ind Ltd | Fluid-sealed vibration control connecting rod |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0813534A (en) * | 1994-07-04 | 1996-01-16 | Shinwa Kogyo Kk | Rolling mechanism of attachment for construction machinery |
JPH08165676A (en) * | 1994-12-16 | 1996-06-25 | Shinwa Kogyo Kk | Rotary mechanism of attachment to construction machine |
-
1984
- 1984-10-15 JP JP21712684A patent/JPS6196030A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5454883A (en) * | 1993-02-02 | 1995-10-03 | Nippon Steel Corporation | High toughness low yield ratio, high fatigue strength steel plate and process of producing same |
JP2009174708A (en) * | 2007-12-25 | 2009-08-06 | Tokai Rubber Ind Ltd | Fluid-sealed vibration control connecting rod |
Also Published As
Publication number | Publication date |
---|---|
JPS6410565B2 (en) | 1989-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6048580B2 (en) | Hot rolled steel sheet and manufacturing method thereof | |
JP3857939B2 (en) | High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate | |
JP7221475B6 (en) | High-strength steel material with excellent ductility and low-temperature toughness, and method for producing the same | |
US5882447A (en) | Heavy-wall structural steel and method | |
JP4207334B2 (en) | High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same | |
JPH08295982A (en) | Thick steel plate excellent in toughness at low temperature and its production | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JP3999457B2 (en) | Wire rod and steel bar excellent in cold workability and manufacturing method thereof | |
JPS6196030A (en) | Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking | |
KR20000043762A (en) | Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility | |
JPH07268467A (en) | Production of hot coil for steel tube having high toughness and sour resistance | |
JP6673320B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JPS63203721A (en) | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance | |
JPH05148544A (en) | Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction | |
KR100431848B1 (en) | Method for manufacturing high carbon wire rod containing high silicon without low temperature structure | |
JPH08295929A (en) | Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness | |
JPH04358026A (en) | Production of seamless low alloy steel tube having fine-grained structure | |
JPH06145786A (en) | Production of wide flange shape minimal in difference in mechancal property in plate thickness direction | |
JPH0774383B2 (en) | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking | |
JP3692565B2 (en) | Method for producing B-added high-strength steel | |
KR100276300B1 (en) | The manufacturing method of high strength hot rolling steel sheet with having low tensil strength | |
JPH09125141A (en) | Production of high strength and high corrosion resistant martensitic stainless steel | |
JPH03223420A (en) | Production of high strength steel | |
KR900005374B1 (en) | Making process for high tensile strength steel | |
JPH1112642A (en) | Manufacture of steel product for line pipe, excellent in sulfide corrosion cracking resistance |