JPH07268467A - Production of hot coil for steel tube having high toughness and sour resistance - Google Patents

Production of hot coil for steel tube having high toughness and sour resistance

Info

Publication number
JPH07268467A
JPH07268467A JP6167894A JP6167894A JPH07268467A JP H07268467 A JPH07268467 A JP H07268467A JP 6167894 A JP6167894 A JP 6167894A JP 6167894 A JP6167894 A JP 6167894A JP H07268467 A JPH07268467 A JP H07268467A
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
sec
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6167894A
Other languages
Japanese (ja)
Inventor
Yuji Nomiyama
裕治 野見山
Tadashi Ishikawa
忠 石川
Hiroshi Tokida
弘 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6167894A priority Critical patent/JPH07268467A/en
Publication of JPH07268467A publication Critical patent/JPH07268467A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel tube stock excellent in sour resistance and having superior strength and toughness by specifying a chemical composition of a steel stock and further specifying its rolling conditions and controlled cooling conditions, respectively. CONSTITUTION:A steel stock, having a composition consisting of, by weight, 0.05-0.12% C, 0.10-0.40% Si, 0.50-1.20% Mn, 0.005-0.10% Al, <=0.006% P, <=0.0009% S, 0.0020-0.0060% Ca, further one or >=2 kinds among <=0.60% Ni, <=0.60% Cu, <=1.00% Cr, <=0.60% Mo, <=0.10% Nb, <=0.10% V, <=0.10% Zr, and <=0.10% Ti, and the balance essentially Fe, is used. A continuously cast slab is subjected to rolling reduction at <=950 deg.C at 10-50%, cooled at >=2 deg.C/sec surface cooling rate until a surface temp. not higher than the Ar3 point is reached, recuperated for <250sec, and rolled at >=50% at a temp. in the unrecrystallization region. Rolling is finished at 720-820 deg.C. After cooling at (5 to 30) deg.C/sec average cooling rate, coiling performed at 400-600 deg.C. By this method, the hot coil for steel tube having high toughness and sour resistance can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明では、ラインパイプ用とし
て使用されるホットコイルに関し、特に寒冷地でしかも
硫化水素や二酸化炭素を含む湿潤環境(以下、サワー環
境という)において使用されるもの、耐水素誘起割れ性
及び低温靭性を著しく向上させようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot coil used for line pipes, particularly one used in a cold environment and in a wet environment containing hydrogen sulfide and carbon dioxide (hereinafter referred to as a sour environment). It is intended to remarkably improve hydrogen-induced cracking property and low temperature toughness.

【0002】[0002]

【従来の技術】サワー環境において使用されるラインパ
イプ等の鋼材には、水素誘起割れ(以下、HICとい
う)と称する割れが発生し、漏洩やバースト事故の原因
となる。HICの発生機構は、サワー環境下で起こる鋼
材表面の腐食によって生じた原子状の水素が鋼材中に侵
入し、鋼材中のMnSや硫化物系クラスター状の介在物
のような層状な広がりを持つ介在物の周りに集積して、
割れが生じるものと考えられている。
2. Description of the Related Art Cracks called hydrogen-induced cracks (hereinafter referred to as HICs) occur in steel materials such as line pipes used in sour environments, which cause leakage and burst accidents. The mechanism of HIC generation is that atomic hydrogen generated by corrosion of the steel surface that occurs in a sour environment penetrates into the steel material and has a layered spread such as MnS in the steel material and sulfide-based cluster-like inclusions. Accumulate around inclusions,
It is believed that cracking will occur.

【0003】介在物を起点としたHICは、鋼材中の成
分、組織、硬さ等の不均質な部分に沿って伝播、成長す
る。この不均質部分は、特に鋳片の最終凝固部、つまり
均等冷却で凝固した連鋳製鋳片の中心部に相当する位置
(以下中心偏析帯という)に発生しやすい。この位置で
MnSのような介在物と中心偏析帯という不均質部分が
共存するため、最もHICを発生しやすい。さらに近年
では、天然資源の枯渇化に伴い、さらに硫化水素や炭酸
ガスの含有量が多いガス田の開発や、寒冷地での両特性
を有する鋼板の要求が高まっている。
The HIC starting from inclusions propagates and grows along inhomogeneous portions such as components, structures and hardness in the steel material. This inhomogeneous portion is particularly likely to occur at a position corresponding to the final solidified portion of the cast, that is, the center of the continuously cast cast solidified by uniform cooling (hereinafter referred to as the center segregation zone). At this position, inclusions such as MnS and the heterogeneous portion of the central segregation zone coexist, so that HIC is most likely to occur. Furthermore, in recent years, along with the depletion of natural resources, there has been an increasing demand for the development of gas fields having higher hydrogen sulfide and carbon dioxide gas contents and for steel sheets having both properties in cold regions.

【0004】以上のような耐HIC鋼を製造するため
に、従来(1)鋼材表面の腐食を抑制するか、あるい
は、表面に安定皮膜を形成する元素であるCu,Ni等
を添加して腐食に伴う鋼中への侵入水素を低減させる方
法、(2)S含有量の低減、またはCa,REM等の添
加により、MnSを減少、あるいは有害度の小さい球状
介在物に形態制御し、HICの発生を抑制する方法で、
例えば、特公昭57−16184号公報、特公昭57−
14747号公報、特公昭57−14747号公報に示
されているCa添加法、(3)C,Mn,P等の含有量
を低減し、鋳片を均熱拡散処理して、中心偏析帯の濃縮
した成分を希釈し、HICの伝播、成長を抑制する方法
で、例えば、特開昭58−221261号公報、特公昭
55−49129号公報に示されている方法、(4)適
切な熱延方法により鋼材の組織や硬さを均一化し、HI
Cの伝播、成長を抑制する方法で、例えば特開昭57−
47827号公報に開示されている。
In order to produce the HIC resistant steel as described above, the conventional (1) corrosion of the steel surface is suppressed, or corrosion is caused by adding Cu, Ni, etc. which are elements forming a stable film on the surface. The method of reducing the amount of hydrogen penetrating into the steel accompanying (2) S content reduction or addition of Ca, REM, etc., reduces MnS or controls the morphology into spherical inclusions with a low degree of harmfulness. In a way to suppress the occurrence,
For example, Japanese Patent Publication No. 57-16184 and Japanese Patent Publication No. 57-
14747, Japanese Patent Publication No. 57-14747, Ca addition method, (3) The content of C, Mn, P, etc. is reduced, and the slab is subjected to uniform heat diffusion treatment to form a center segregation zone. A method of diluting a concentrated component to suppress the propagation and growth of HIC, for example, the method disclosed in JP-A-58-221261 and JP-B-55-49129, (4) Appropriate hot rolling Method to make the structure and hardness of steel uniform,
A method of suppressing the propagation and growth of C is disclosed in, for example, JP-A-57-
It is disclosed in Japanese Patent No. 47827.

【0005】また、寒冷地の低温で使用されるので優れ
た靭性を有することも必要であり、その有効な手段とし
て結晶粒制御による靭性の向上技術がある。低温靭性を
向上させるためには変態後のフェライト粒径を微細化す
ることが有効であり、そのために変態前のオーステナイ
ト粒を細粒化させることが有効なことは知られている。
その方法としては多数の提案があり、例えば、特開昭5
9−47323号公報記載のように低温で加熱し、未再
結晶域での加工量を大きくする方法がある。
Further, since it is used at low temperatures in cold regions, it is necessary to have excellent toughness, and as an effective means therefor, there is a technique for improving toughness by controlling crystal grains. In order to improve the low temperature toughness, it is effective to reduce the ferrite grain size after transformation, and for that purpose, it is known that it is effective to refine the austenite grains before transformation.
There are many proposals for this method, for example, Japanese Patent Laid-Open No.
As described in JP-A No. 9-47323, there is a method of heating at a low temperature to increase the processing amount in the non-recrystallized region.

【0006】また従来から鋼材の細粒化には特開昭58
−19431号公報に開示されているようにNiやNb
等の合金元素を使用し、これにより母材の靭性をシャル
ピー衝撃試験で−50℃から−70℃のvTrs値を得
ている。また、特公昭60−169516号公報に溶接
部靭性のすぐれた低温用鋼の製造法がある。この方法で
は、1250〜1350℃に60分以上加熱して放冷も
しくは圧延してAr3変態点以下の温度に冷却し、再び
900〜1150℃に加熱して800℃以下の圧下率が
30%以上の圧延を行って300℃以下までを10〜5
0℃/秒で冷却し、しかる後400〜650℃に加熱し
て焼き戻す方法もある。また、これらの方法を改善する
方法として、特開平1−14668号公報記載のように
高温加熱処理を省略した方法がある。
[0006] Conventionally, Japanese Patent Laid-Open No. 58-58 has been used for refining steel materials.
Ni and Nb as disclosed in Japanese Patent Publication No. 19431
The alloying elements such as the above are used, and the toughness of the base material is obtained by the Charpy impact test with the vTrs value of −50 ° C. to −70 ° C. Further, Japanese Patent Publication No. 60-169516 discloses a method for producing a low temperature steel having excellent toughness in a welded portion. In this method, it is heated to 1250 to 1350 ° C. for 60 minutes or more and allowed to cool or roll to cool to a temperature not higher than the Ar 3 transformation point, and again heated to 900 to 1150 ° C. and a reduction rate of 800 ° C. or lower is 30%. The above rolling is performed and the temperature up to 300 ° C is 10 to 5
There is also a method of cooling at 0 ° C./second and then heating to 400 to 650 ° C. to temper. Further, as a method for improving these methods, there is a method in which high temperature heat treatment is omitted as described in JP-A-1-14668.

【0007】しかしながら、前記した提案は何れも実用
時に次に述べる様々な問題を内在しており、それぞれに
改善が待たれている。特開昭59−47323号公報の
提案のように低温で加熱し、未再結晶域での加工量を大
きくし、かつ制御冷却を必須とし、圧延後の急冷により
微細なフェライト及びマルテンサイトとする方法は、他
のスラブの加熱温度と対象のスラブの加熱温度が異なる
ため、この前後で加熱操業条件を調整する時間が必要と
なる。また、加熱効率の大幅な低下が避けられず、さら
には未再結晶域での加工量を大きくするため、制御圧延
時の温度待ち時間が極めて長くなり、圧延効率の低下、
再加熱、及び制御冷却に伴うコスト上昇を招き、生産性
の向上を追求している現状における問題が多い。
However, each of the above-mentioned proposals has various problems inherent in practical use, and their improvements are awaited. As disclosed in Japanese Patent Application Laid-Open No. 59-47323, heating at a low temperature increases the amount of processing in the non-recrystallized region, controlled cooling is essential, and rapid cooling after rolling produces fine ferrite and martensite. In the method, since the heating temperature of the target slab is different from the heating temperature of the other slab, it takes time to adjust the heating operation conditions before and after this. Further, a significant decrease in heating efficiency is unavoidable, and further, since the amount of processing in the non-recrystallized region is increased, the temperature waiting time during controlled rolling becomes extremely long, and the reduction in rolling efficiency,
There are many problems in the current situation of pursuing the improvement of productivity because of the cost increase associated with reheating and controlled cooling.

【0008】また特開昭58−19431号公報にアレ
スト特性に優れた高張力鋼は、Ni及びNbに加えて、
圧延後再加熱して完全にオーステナイト化することを必
須としており、再加熱に伴う付帯設備、コスト上昇及び
生産性の低下が避けられない。さらにNiやNbは高価
な合金成分であり、その添加は鋼材のコストを著しく上
昇させる。それにも拘らず母材の靭性を示すシャルピー
衝撃試験でのvTrsは−50℃から−70℃レベルで
しかない。
In addition, Japanese Patent Laid-Open No. 58-19431 discloses a high-strength steel excellent in arrest characteristics in addition to Ni and Nb.
It is indispensable to reheat after rolling to completely transform into austenite, and incidental equipment, cost increase and productivity decrease due to reheating cannot be avoided. Further, Ni and Nb are expensive alloy components, and their addition significantly increases the cost of steel materials. Nevertheless, vTrs in the Charpy impact test, which shows the toughness of the base metal, is only at the level of -50 ° C to -70 ° C.

【0009】また、特公昭60−169516号公報に
開示された方法は、靭性を確保するために高温での加熱
処理に加え、再加熱後800℃以下での圧下を必須とし
ており、これによる生産性の低下は著しい。また、特開
平1−14668号公報の方法は、靭性を確保する偏析
拡散のために1250℃以上の温度に加熱後、再結晶終
了温度からAr3 点温度までに圧下量50%以上の未再
結晶域での圧延を必須としているため、所定の温度域ま
で冷却するまでの温度待ち時間の増大、特に厚手材にな
ると圧延ton/hrの低下、さらに温度低下による圧延原単
位の低下により経済性が大きく失われる。
Further, the method disclosed in Japanese Patent Publication No. 169516/1985 requires heat treatment at a high temperature in order to secure toughness and, after reheating, requires reduction at 800 ° C. or lower. The decrease in sex is remarkable. Further, in the method disclosed in JP-A-1-14668, after heating to a temperature of 1250 ° C. or higher for segregation diffusion for ensuring toughness, a reduction amount of 50% or more from the recrystallization end temperature to the Ar 3 point temperature is not re-set. Since rolling in the crystal region is indispensable, increase in temperature waiting time until cooling to a predetermined temperature range, especially for thick materials, reduction in rolling ton / hr, and further reduction in rolling unit consumption due to temperature reduction Is greatly lost.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記した従来
の製造方法の欠点を解消して、圧延能率を低下させず
に、耐HIC特性、強度、靭性の優れた鋼管用素材を生
産性よく、かつ経済的に製造する方法を提供することを
課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional manufacturing method, and makes it possible to produce a steel pipe material excellent in HIC resistance, strength and toughness with high productivity without lowering rolling efficiency. It is an object of the present invention to provide a method for economically manufacturing.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)重量%で、C:0.05〜0.12%、Si:
0.10〜0.40%、Mn:0.50〜1.20%、
Al:0.005〜0.10%、P:≦0.006%、
S:≦0.0009%、Ca:0.0020〜0.00
60%、さらにNi:≦0.60%、Cu:≦0.60
%、Cr:≦1.00%、Mo:≦0.60%、Nb:
≦0.10%、V:≦0.10%、Zr:≦0.10
%、Ti:≦0.10%のうち1種または2種以上を含
み、残部が鉄及び不純物よりなる連鋳製スラブを950
℃以下で10%以上50%以下の圧下を行い、引続き表
面の冷却速度が2℃/秒以上で表面温度がAr3 以下の
温度になるまで冷却し、250秒未満の復熱後、未再結
晶域にて50%以上の圧延を行い、720〜820℃の
範囲で圧延を終了し、引続いて平均冷却速度5〜30℃
/秒で冷却した後、400〜600℃の範囲で巻取る。
The gist of the present invention is as follows. (1) C: 0.05 to 0.12% by weight, Si:
0.10 to 0.40%, Mn: 0.50 to 1.20%,
Al: 0.005 to 0.10%, P: ≤ 0.006%,
S: ≤ 0.0009%, Ca: 0.0020 to 0.00
60%, Ni: ≦ 0.60%, Cu: ≦ 0.60
%, Cr: ≦ 1.00%, Mo: ≦ 0.60%, Nb:
≤0.10%, V: ≤0.10%, Zr: ≤0.10
%, Ti: ≦ 0.10%, a continuous cast slab containing one or more of 950 and the balance of iron and impurities for 950
A reduction of 10% or more and 50% or less is performed at a temperature of ℃ or less, and then the surface is cooled to a temperature of Ar 3 or less at a cooling rate of 2 ℃ / sec or more, and after re-heating for less than 250 seconds, it is not re-heated. Roll at 50% or more in the crystal region, finish rolling in the range of 720 to 820 ° C, and subsequently average cooling rate of 5 to 30 ° C.
After cooling at a speed of 1 / sec, the material is wound in the range of 400 to 600 ° C.

【0012】(2)重量%で、C:0.05〜0.12
%、Si:0.10〜0.40%、Mn:0.50〜
1.20%、Al:0.005〜0.10%、P:≦0.
006%、S:≦0.0009%、Ca:0.0020
〜0.0060%、さらにNi:≦0.60%、Cu:
≦0.60%、Cr:≦1.00%、Mo:≦0.60
%、Nb:≦0.10%、V:≦0.10%、Zr:≦
0.10%、Ti:≦0.10%のうち1種または2種
以上を含み、残部が鉄及び不純物よりなる連鋳製スラブ
を1200℃以下のオーステナイト域で断面減少率20
%以上の熱間加工を施し、その後スラブの中心温度を1
100〜1250℃で30分以上、2時間未満保定した
後、950℃以下で10%以上50%以下の圧下を行
い、引続き表面の冷却速度が2℃/秒以上で表面温度が
Ar3 以下の温度になるまで冷却し、250秒未満の復
熱後、未再結晶域にて50%以上の圧延を行い、720
〜820℃の範囲で圧延を終了し、引続いて、平均冷却
速度5〜30℃/秒で冷却した後、400〜600℃の
範囲で巻取る。
(2) C: 0.05 to 0.12 by weight%
%, Si: 0.10 to 0.40%, Mn: 0.50
1.20%, Al: 0.005 to 0.10%, P: ≤0.
006%, S: ≤ 0.0009%, Ca: 0.0020
˜0.0060%, Ni: ≦ 0.60%, Cu:
≤0.60%, Cr: ≤1.00%, Mo: ≤0.60
%, Nb: ≦ 0.10%, V: ≦ 0.10%, Zr: ≦
0.10%, Ti: ≤0.10%, one or more of which are continuously cast slabs made of iron and impurities, and the balance of which is 20% or less in the austenite region.
% Hot working, then slab center temperature 1
After holding at 100 to 1250 ° C. for 30 minutes or more and less than 2 hours, a reduction of 10% or more and 50% or less is performed at 950 ° C. or less, and the surface cooling rate is 2 ° C./sec or more and the surface temperature is Ar 3 or less. After cooling to the temperature and recuperating for less than 250 seconds, 50% or more rolling is performed in the unrecrystallized region to obtain 720
Rolling is completed in the range of up to 820 ° C, followed by cooling at an average cooling rate of 5 to 30 ° C / sec, and then winding in the range of 400 to 600 ° C.

【0013】[0013]

【作用】本発明が対象としている鋼管用鋼材は、次記す
るように、通常の溶接構造用鋼が所要の材質を得るため
に、従来から当業分野での活用で確認されている作用・
効果の関係を基に定めている添加元素の種類と量を同様
に使用して、同等の作用と効果が得られる。従って、こ
れ等を含む鋼を本発明は対象鋼とするものである。これ
等の各成分元素につきその添加理由と量を以下に示す。
Cは、強度元素として重要な元素であるが、0.12%
を超えると靭性を劣化させ、0.05%未満では必要な
強度を確保することができないだけでなく、現地で溶接
での高温割れが発生しやすくなるため、0.05〜0.
12%とした。
The steel material for steel pipes which is the subject of the present invention is, as described below, an operation that has been conventionally confirmed in practical use in the field of the art in order to obtain the required material for the steel for ordinary welded structures.
The same action and effect can be obtained by similarly using the types and amounts of the additional elements defined based on the effect relationship. Therefore, the steel containing these is the subject steel of the present invention. The reason and amount of addition of each of these component elements are shown below.
C is an important element as a strength element, but 0.12%
If it exceeds 0.05, the toughness is deteriorated, and if it is less than 0.05%, not only the required strength cannot be secured, but also hot cracking during welding tends to occur on site, so that 0.05 to 0.
It was set to 12%.

【0014】Siは溶鋼の脱酸元素として必要であり、
また強度増加元素として添加するが、0.1%未満では
脱酸効果が不十分であり、0.4%を超えて添加する
と、靭性を劣化させるために0.10〜0.40%とし
た。Mnも脱酸成分元素として必要であり、Cと同様に
向上させるために重要な元素であり、0.5%未満では
必要な強度を確保することができず、1.20%を超え
ると、耐HIC性を劣化させるために0.50〜1.2
0%とした。
Si is necessary as a deoxidizing element for molten steel,
Although it is added as a strength-increasing element, if it is less than 0.1%, the deoxidizing effect is insufficient, and if it is added in excess of 0.4%, the toughness is deteriorated, so the content was made 0.10 to 0.40%. . Mn is also necessary as a deoxidizing component element, and is an important element for improving similarly to C. If it is less than 0.5%, the required strength cannot be secured, and if it exceeds 1.20%, 0.50 to 1.2 to deteriorate the HIC resistance
It was set to 0%.

【0015】Alは脱酸上必要であり、結晶粒の粗大化
防止の効果もある。0.005%未満では脱酸の効果が
なく、0.10%を超すと靭性を劣化させるために0.
005〜0.10%とした。Sは耐HIC特性に影響を
及ぼす元素である。Sを0.009%を超えて添加する
と耐HIC特性に悪影響を及ぼす。すなわち靭性を向上
させるための圧延の熱間加工終了温度の低下に伴い悪化
するため、熱間加工終了温度依存性が見られないように
上限範囲を0.0009%とした。
Al is necessary for deoxidation and also has an effect of preventing coarsening of crystal grains. If it is less than 0.005%, there is no deoxidizing effect, and if it exceeds 0.10%, the toughness is deteriorated, so that it is less than 0.1%.
It was set to 005 to 0.10%. S is an element that affects the HIC resistance. If S is added in excess of 0.009%, the HIC resistance is adversely affected. That is, since it deteriorates with a decrease in the hot working finish temperature of rolling for improving the toughness, the upper limit range is set to 0.0009% so that the hot working finish temperature dependency is not observed.

【0016】後述する冷却速度及び巻取り温度による組
織制御を行っても、偏析が大きい場合には偏析部が硬く
なり、HICが伝播、成長する。しかし、中心偏析帯の
硬化組織を少なくするために溶鋼のP含有量をP≦0.
006%とすると、pH4.0未満の厳しいサワー環境
で、HICの伝播、成長を防止できることを見いだし
た。さらに、連鋳製スラブを1200℃以下のオーステ
ナイト域で、断面減少率20%以上の熱間加工を行うこ
とにより、Pの拡散係数が増加するため、1100〜1
250℃で30分以上2時間未満という比較的低温短時
間の均熱でもP偏析の拡散効果が得られるため、この工
程を加えることにより、Pの上限を0.010%まで引
き上げられる。
Even if the structure is controlled by the cooling rate and the coiling temperature, which will be described later, if the segregation is large, the segregation portion becomes hard and the HIC propagates and grows. However, in order to reduce the hardening structure of the central segregation zone, the P content of the molten steel is set to P ≦ 0.
It was found that HIC can be prevented from propagating and growing in a severe sour environment with a pH of less than 4.0 at 006%. Further, the continuous casting slab is hot-worked at a cross-section reduction rate of 20% or more in the austenite region of 1200 ° C. or lower, so that the diffusion coefficient of P increases, and therefore 1100 to 1
Since the diffusion effect of P segregation can be obtained by soaking at a relatively low temperature of 250 ° C. for 30 minutes or more and less than 2 hours, the upper limit of P can be increased to 0.010% by adding this step.

【0017】Caは、Al2 3 を形態制御して大型化
し、MnSを球状無害化するために加えるが、0.00
20%以下ではその効果がなく、0.0060%を超え
ると、Ca系のクラスター状介在物を形成し耐HIC性
を劣化させるため0.0020〜0.0060%とし
た。Niは耐食性の向上、強度の増加、靭性の向上に有
効であるが、0.6%を超えると局部腐食が増大するた
め、0.6%以下とした。
Ca is added to control the morphology of Al 2 O 3 to increase the size and make MnS spherically harmless, but 0.00
If it is 20% or less, there is no effect, and if it exceeds 0.0060%, Ca-based cluster-like inclusions are formed and HIC resistance is deteriorated, so the content was made 0.0020 to 0.0060%. Ni is effective in improving the corrosion resistance, increasing the strength and improving the toughness, but if it exceeds 0.6%, the local corrosion increases, so it was made 0.6% or less.

【0018】Cuは耐食性の向上、強度の増加に有効で
あるが、0.6%を超えると圧延欠陥を生じやすいた
め、0.6%以下とした。Crは、耐HIC性及び靭性
を劣化させず強度を増加させることができるが、1.0
0%を超えると靭性を劣化させるために1.00%以下
とした。Moは焼き入れ性、強度の向上に効果がある
が、0.60%を超えて添加すると靭性の劣化を招くの
で0.60%を上限とした。Nb,V及びZrは、Mo
と同様な効果があるが、0.10%を超えると靭性の劣
化を招くために0.10%を上限とした。Tiは、溶接
熱影響部の靭性向上に効果があるが、0.10%を超え
ると逆に靭性を劣化させるために0.10%を上限とし
た。
Cu is effective for improving the corrosion resistance and increasing the strength, but if it exceeds 0.6%, rolling defects are likely to occur, so the content is made 0.6% or less. Cr can increase strength without deteriorating HIC resistance and toughness, but 1.0
If it exceeds 0%, the toughness is deteriorated, so the content is set to 1.00% or less. Mo has the effect of improving hardenability and strength, but if added in excess of 0.60%, it causes deterioration of toughness, so 0.60% was made the upper limit. Nb, V and Zr are Mo
Although the same effect as above is obtained, if it exceeds 0.10%, toughness is deteriorated, so 0.10% is made the upper limit. Ti has the effect of improving the toughness of the weld heat affected zone, but if it exceeds 0.10%, it adversely deteriorates the toughness, so 0.10% was made the upper limit.

【0019】本発明者らは、前記従来技術が有する問題
を解決すると共に、本発明の課題を達成するため本発明
に規定する化学成分を有する一般的な鋼を用いて種々実
験検討を繰り返した。圧延調整のための滞留・待機、さ
らには低温域での再加熱圧延等を用いることなく、従来
技術で得られていたものよりも同等もしくはそれ以上の
強度、靭性を得る方法を確立するため、検討を繰り返し
た。
The inventors of the present invention have solved the problems of the above-mentioned prior art and, in order to achieve the objects of the present invention, repeated various experimental studies using general steel having the chemical composition defined in the present invention. . In order to establish a method of obtaining strength or toughness equivalent to or higher than that obtained by the prior art, without using retention / standby for rolling adjustment, and further reheating rolling in a low temperature range, etc. The examination was repeated.

【0020】熱間圧延条件は変態前のオーステナイト粒
の微細化及び加工による歪の蓄積を図り、変態組織を微
細化するために、950℃以下での圧下率を10〜50
%とする。950℃以下の圧下率で限定したのは再結晶
オーステナイト粒径や未再結晶オーステナイト粒中への
歪蓄積の効果が950℃以下の熱間圧延で顕著になるた
めである。950℃以下での圧下率が10%未満である
と圧延の効果が不十分であるため下限を10%とした。
圧下率をさらに増加すれば仕上げ圧延前の組織微細化に
は有利であるが、この圧下率が大きすぎると、その後の
仕上げ圧延においてフェライトの微細化に十分な圧下量
が確保できなくなる場合が生じるため、最終的な表層部
の組織微細化に適正な圧下率として基礎実験の結果に基
づいて決定し、50%とした。
The hot rolling conditions are such that the austenite grains before transformation are refined and strain is accumulated by working, and the transformation structure is refined.
%. The reason why the rolling reduction is limited to 950 ° C. or less is that the effect of strain accumulation in the recrystallized austenite grain size and the non-recrystallized austenite grain becomes remarkable in the hot rolling at 950 ° C. or less. If the rolling reduction at 950 ° C. or lower is less than 10%, the effect of rolling is insufficient, so the lower limit was made 10%.
If the reduction rate is further increased, it is advantageous for the refinement of the structure before finish rolling, but if this reduction rate is too large, it may not be possible to secure a sufficient reduction amount for the refinement of ferrite in the subsequent finish rolling. Therefore, it was determined based on the result of the basic experiment as a reduction ratio suitable for the final refinement of the texture of the surface layer portion, and was set to 50%.

【0021】上記の条件で十分オーステナイト粒の微細
化を施した上で、微細化したオーステナイトの粒成長を
抑制すること、さらに粗圧延から仕上げ圧延の間での膨
大な温度待ち時間を短縮するための条件検討を行った。
その結果、冷却速度は2℃/秒以上でAr3 点以下まで
冷却する必要がある。冷却速度が2℃/秒未満であると
これは熱間圧延により微細化したオーステナイトの粒成
長制御効果が十分に発揮されないこと、さらに冷却停止
温度がAr3 以上であると温度待ち時間が発生し、実質
的なメリットを享受できない。また、復熱時間は250
秒未満とし、その理由は仕上げ圧延の温度確保と実質的
な生産性向上のためである。また、低温靭性を確保する
ために未再結晶域での圧下率を50%以上とした。
In order to suppress the grain growth of the refined austenite after sufficiently refining the austenite grains under the above conditions, and to shorten the enormous temperature waiting time between the rough rolling and the finish rolling. The conditions were examined.
As a result, it is necessary to cool at a cooling rate of 2 ° C./second or more to an Ar 3 point or less. If the cooling rate is less than 2 ° C / sec, this means that the grain growth control effect of austenite refined by hot rolling is not sufficiently exerted, and if the cooling stop temperature is Ar 3 or more, a temperature waiting time occurs. , Can not enjoy the substantial benefits. The recuperation time is 250
The time is set to less than a second, and the reason is to secure the temperature for finish rolling and substantially improve productivity. Further, in order to secure the low temperature toughness, the rolling reduction in the unrecrystallized region was set to 50% or more.

【0022】最終加工温度が820℃以上であると低温
靭性が悪く、低温靭性を確保するために圧延仕上げ温度
は720〜820℃とした。平均冷却速度は5〜30℃
/秒とする。平均冷却速度が5℃/秒未満ではフェライ
ト・パーライトの2相分離が進むため、中心偏析部でフ
ェライト・パーライトのバンド状組織が形成されやす
く、30℃/秒超では硬化したベイナイト状の組織が形
成されやすく、耐HIC性が劣化するために、5〜30
℃/秒とした。
When the final working temperature is 820 ° C. or higher, the low temperature toughness is poor, and the rolling finishing temperature is set to 720 to 820 ° C. to secure the low temperature toughness. Average cooling rate is 5 ~ 30 ℃
/ Sec. If the average cooling rate is less than 5 ° C / sec, the two-phase separation of ferrite / pearlite proceeds, so a band structure of ferrite / pearlite tends to be formed at the central segregation portion, and if it exceeds 30 ° C / sec, a hardened bainite-like structure is formed. It is easily formed and the HIC resistance deteriorates.
C / sec.

【0023】巻取り温度は400〜600℃とする。ホ
ットコイルは巻取り工程があるため厚板に比べて水冷停
止温後の冷却速度が極端に低い。そのため、Ar1 変態
点以上の温度で巻取ると、フェライト・パーライトの2
相分離が進み、フェライト・パーライトのバンド状組織
が形成される。特に中心偏析帯ではこの傾向が著しいた
め、耐HIC性が劣化する。従って、巻取り温度の上限
はAr1 変態が完了している600℃とした。さらに、
巻取りが400℃未満の領域では平均冷却速度が30℃
/秒超の場合と同様に、硬化したベイナイト状組織を形
成しやすく耐HIC特性が劣化する。以上より巻取り温
度は400〜600℃とした。
The winding temperature is 400 to 600 ° C. Since the hot coil has a winding process, the cooling rate after the water cooling stop temperature is extremely low as compared with the thick plate. Therefore, if it is wound at a temperature above the Ar 1 transformation point, ferrite / pearlite 2
Phase separation proceeds, and a band structure of ferrite / pearlite is formed. Especially in the center segregation zone, this tendency is remarkable, so that the HIC resistance deteriorates. Therefore, the upper limit of the winding temperature is set to 600 ° C. at which Ar 1 transformation is completed. further,
The average cooling rate is 30 ° C in the region where the winding is less than 400 ° C.
As in the case of more than 1 sec / sec, a hard bainite structure is likely to be formed and the HIC resistance is deteriorated. From the above, the winding temperature was set to 400 to 600 ° C.

【0024】以上の理由により限定された化学成分を有
し、残部Fe及び不可避的不純物からなる鋼片を950
℃以下で10%以上50%以下の圧下を行い、引続き表
面の冷却速度が2℃/秒以上で表面温度がAr3 以下の
温度になるまで冷却し、250秒未満の復熱後未再結晶
域にて50%以上の圧延を行い、720〜820℃の範
囲で圧延を終了し、引続いて、平均冷却速度5〜30℃
/秒で冷却した後、400〜600℃の範囲で巻取るこ
とにより耐HIC性と、低温靭性の両特性が優れたホッ
トコイルの製造を可能とした。
For the above reasons, 950 is a steel slab having a limited chemical composition and the balance being Fe and unavoidable impurities.
A reduction of 10% or more and 50% or less is performed at a temperature of ℃ or less, and then the surface is cooled to a temperature of Ar 3 or less at a cooling rate of 2 ℃ / sec or more, and after reheating for less than 250 seconds, unrecrystallized. Rolling at 50% or more in the zone, finish rolling in the range of 720 to 820 ° C., and then average cooling rate of 5 to 30 ° C.
After cooling at a cooling rate of 10 seconds / second, by winding in the range of 400 to 600 ° C., it is possible to manufacture a hot coil excellent in both HIC resistance and low temperature toughness.

【0025】[0025]

【実施例】本発明者らは、耐HIC性に及ぼすS,P及
び圧延条件の影響を明らかにするため、S及びP含有量
を変えた鋼を用い、実験を行った。試料は全て連続鋳造
法により鋳造し、Caは粒状合金をタンデッシュに連続
添加する方法により行った。次に、このように製造した
スラブをホットコイルとして得た板を用いて、耐HIC
性評価試験を行った。
EXAMPLES In order to clarify the effects of S, P and rolling conditions on HIC resistance, the present inventors conducted experiments using steels with different S and P contents. All the samples were cast by the continuous casting method, and Ca was performed by the method of continuously adding the granular alloy to the tundish. Next, using the plate obtained by using the slab thus manufactured as a hot coil, the HIC resistance is increased.
A sex evaluation test was conducted.

【0026】耐HIC性評価試験はいわゆるBP試験法
に準拠した方法で行った。すなわち、試料をNACE液
(0.5%酢酸−5%塩化ナトリウム溶液に、H2 Sを
飽和させた溶液でpHは約3.8)中に96時間浸漬し
た。HIC発生の有無は、浸漬を完了した試験片をUS
Tで探傷することにより、試験片表面に対する欠陥の割
合(以下CAR)で評価した。
The HIC resistance evaluation test was carried out by a method based on the so-called BP test method. That is, the sample was immersed in a NACE solution (0.5% acetic acid-5% sodium chloride solution, a solution saturated with H 2 S and having a pH of about 3.8) for 96 hours. For the presence or absence of HIC, US
By performing flaw detection with T, the rate of defects (hereinafter, CAR) with respect to the surface of the test piece was evaluated.

【0027】表1に供試鋼の化学成分を示す。鋼A,
B,C,D,E,F,G,Hが本発明鋼でI,J,Kが
比較鋼である。
Table 1 shows the chemical composition of the test steel. Steel A,
B, C, D, E, F, G and H are steels of the present invention, and I, J and K are comparative steels.

【0028】[0028]

【表1】 [Table 1]

【0029】表2に製造条件と材質、耐HIC特性調査
結果を示す。本発明例のNo.1〜16は耐HIC特性、
低温靭性とも良好で温度待ちもなく、生産性も良好であ
った。これに対して、比較例No.17〜32はそれぞれ
に問題がある。No.17〜19,21は成分が本発明の
範囲外であり、No.17は圧延前の処理を実施していな
いので、いずれも耐HIC特性に問題があった。No.2
0は圧延前の処理の条件が満足できていないので、耐H
IC特性に問題があった。No.20〜30は圧延条件も
しくは圧延後の冷却条件が満足せず、靭性あるいは耐H
IC特性が所定の値を満足しなかった。No.31〜33
は、圧延の途中で冷却を実施していないために生産性が
著しく劣化した。
Table 2 shows the manufacturing conditions, materials, and HIC resistance examination results. Example No. 1 of the present invention 1 to 16 are HIC resistance characteristics,
The low temperature toughness was good, there was no temperature waiting, and the productivity was also good. On the other hand, Comparative Example No. 17 to 32 each have a problem. No. Nos. 17 to 19 and 21 have ingredients outside the scope of the present invention, and No. No. 17 did not undergo the pre-rolling treatment, so all had problems with HIC resistance. No. Two
0 means that the condition of the treatment before rolling was not satisfied, so H resistance was high.
There was a problem in IC characteristics. No. 20 to 30 do not satisfy the rolling condition or the cooling condition after rolling, and the toughness or H resistance is high.
The IC characteristics did not satisfy the predetermined value. No. 31-33
In the case of, the productivity was significantly deteriorated because cooling was not performed during rolling.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】※耐HIC性評価試験:◎ 試料をNACE液(0.5%酢酸−5%塩化ナトリウム
溶液に、H2 Sを飽和させ溶液でpHは約3.8)中に
96時間浸漬し、HIC発生の有無は、浸漬を完了した
試験片をUSTで探傷することにより、試験片表面に対
する欠陥の割合(以下CAR)で評価した。評価基準は
○を割れなし、×を割れありで示した。 注1)1170℃で25%圧下後、1160℃で45分
保定。 注2)1150℃で30%圧下後、1120℃で20分
保定。
* HIC resistance evaluation test: ◎ The sample was dipped in a NACE solution (0.5% acetic acid-5% sodium chloride solution saturated with H 2 S to have a pH of about 3.8) for 96 hours. The presence or absence of HIC was evaluated by the ratio of defects to the surface of the test piece (hereinafter referred to as CAR) by performing flaw detection on the test piece after the immersion with UST. Regarding the evaluation criteria, ◯ indicates no cracking, and x indicates cracking. Note 1) Hold at 1160 ° C for 25 minutes after 25% pressure reduction. Note 2) After 30% pressure reduction at 1150 ° C, hold at 1120 ° C for 20 minutes.

【0035】[0035]

【発明の効果】本発明により、pH4.0未満の厳しい
サワー環境での耐HIC特性と、低温靭性の両特性に優
れたホットコイルが製造でき、寒冷地のサワー環境でH
ICの発生及び低温脆性破壊によるバースト事故が発生
しないラインパイプの製造が可能である。
EFFECTS OF THE INVENTION According to the present invention, a hot coil excellent in both HIC resistance in a severe sour environment with a pH of less than 4.0 and low temperature toughness can be produced, and H coil in a sour environment in a cold region can be manufactured.
It is possible to manufacture a line pipe in which a burst accident due to IC generation and low temperature brittle fracture does not occur.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.05〜0.12%、 Si:0.10〜0.40%、 Mn:0.50〜1.20%、 Al:0.005〜0.10%、 P :≦0.006%、 S :≦0.0009%、 Ca:0.0020〜0.0060% さらに Ni:≦0.60%、 Cu:≦0.60%、 Cr:≦1.00%、 Mo:≦0.60%、 Nb:≦0.10%、 V :≦0.10%、 Zr:≦0.10%、 Ti:≦0.10% のうち1種または2種以上を含み、残部が鉄及び不純物
よりなる連鋳製スラブを950℃以下で10%以上50
%以下の圧下を行い、引続き表面の冷却速度が2℃/秒
以上で表面温度がAr3 以下の温度になるまで冷却し、
250秒未満の復熱後、未再結晶域にて50%以上の圧
延を行い、720〜820℃の範囲で圧延を終了し、引
続いて平均冷却速度5〜30℃/秒で冷却した後、40
0〜600℃の範囲で巻取ることを特徴とする高靭性耐
サワー鋼管用ホットコイルの製造方法。
1. By weight%, C: 0.05 to 0.12%, Si: 0.10 to 0.40%, Mn: 0.50 to 1.20%, Al: 0.005 to 0. 10%, P: ≤ 0.006%, S: ≤ 0.0009%, Ca: 0.0020 to 0.0060%, and further Ni: ≤ 0.60%, Cu: ≤ 0.60%, Cr: ≤ 1 0.000%, Mo: ≦ 0.60%, Nb: ≦ 0.10%, V: ≦ 0.10%, Zr: ≦ 0.10%, Ti: ≦ 0.10%, one or two kinds A continuous cast slab containing the above and the balance being iron and impurities is 10% or more 50% at 950 ° C or less.
% Or less, and subsequently, cooling is performed until the surface cooling rate is 2 ° C./sec or more and the surface temperature is Ar 3 or less,
After recuperating for less than 250 seconds, rolling at 50% or more in the unrecrystallized region, ending rolling in the range of 720 to 820 ° C, and subsequently cooling at an average cooling rate of 5 to 30 ° C / sec. , 40
A method for producing a hot coil for high toughness sour-resistant steel pipe, which comprises winding in the range of 0 to 600 ° C.
【請求項2】 重量%で、 C :0.05〜0.12%、 Si:0.10〜0.40%、 Mn:0.50〜1.20%、 Al:0.005〜0.10%、 P :≦0.006%、 S :≦0.0009%、 Ca:0.0020〜0.0060% さらに Ni:≦0.60%、 Cu:≦0.60%、 Cr:≦1.00%、 Mo:≦0.60%、 Nb:≦0.10%、 V :≦0.10%、 Zr:≦0.10%、 Ti:≦0.10% のうち1種または2種以上を含み、残部が鉄及び不純物
よりなる連鋳製スラブを1200℃以下のオーステナイ
ト域で断面減少率20%以上の熱間加工を施し、その後
スラブの中心温度を1100〜1250℃で30分以
上、2時間未満保定した後、950℃以下で10%以上
50%以下の圧下を行い、引続き表面の冷却速度が2℃
/秒以上で表面温度がAr3 以下の温度になるまで冷却
し、250秒未満の復熱後未再結晶域にて50%以上の
圧延を行い、720〜820℃の範囲で圧延を終了し、
引続いて、平均冷却速度5〜30℃/秒で冷却した後、
400〜600℃の範囲で巻取ることを特徴とする高靭
性耐サワー鋼管用ホットコイルの製造方法。
2. C .: 0.05 to 0.12%, Si: 0.10 to 0.40%, Mn: 0.50 to 1.20%, Al: 0.005 to 0. 10%, P: ≤ 0.006%, S: ≤ 0.0009%, Ca: 0.0020 to 0.0060%, and further Ni: ≤ 0.60%, Cu: ≤ 0.60%, Cr: ≤ 1 0.000%, Mo: ≦ 0.60%, Nb: ≦ 0.10%, V: ≦ 0.10%, Zr: ≦ 0.10%, Ti: ≦ 0.10%, one or two kinds Including the above, the continuous cast slab consisting of iron and impurities as the balance is hot-worked at a cross-section reduction rate of 20% or more in an austenite region of 1200 ° C or less, and then the center temperature of the slab is 1100 to 1250 ° C for 30 minutes or more. After holding for less than 2 hours, perform 10% or more and 50% or less reduction at 950 ° C or lower, and continue Surface cooling rate is 2 ℃
/ Sec or more, the surface temperature is cooled to a temperature of Ar 3 or less, and after recuperation for less than 250 seconds, 50% or more of rolling is performed in the unrecrystallized region, and rolling is completed in the range of 720 to 820 ° C. ,
Then, after cooling at an average cooling rate of 5 to 30 ° C./sec,
A method of manufacturing a hot coil for high toughness sour resistant steel pipe, which comprises winding in a range of 400 to 600 ° C.
JP6167894A 1994-03-30 1994-03-30 Production of hot coil for steel tube having high toughness and sour resistance Withdrawn JPH07268467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6167894A JPH07268467A (en) 1994-03-30 1994-03-30 Production of hot coil for steel tube having high toughness and sour resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6167894A JPH07268467A (en) 1994-03-30 1994-03-30 Production of hot coil for steel tube having high toughness and sour resistance

Publications (1)

Publication Number Publication Date
JPH07268467A true JPH07268467A (en) 1995-10-17

Family

ID=13178165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6167894A Withdrawn JPH07268467A (en) 1994-03-30 1994-03-30 Production of hot coil for steel tube having high toughness and sour resistance

Country Status (1)

Country Link
JP (1) JPH07268467A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174020A (en) * 2008-01-25 2009-08-06 Jfe Steel Corp Method for producing hot-rolled steel sheet which is excellent in ductile cracking-arresting characteristic and sour-resistance
KR101105128B1 (en) * 2004-12-22 2012-01-16 주식회사 포스코 Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
CN102796968A (en) * 2012-09-07 2012-11-28 宝鼎重工股份有限公司 cast steel material for bridge high creep resistance and high toughness at low temperature and preparation method thereof
KR20160074823A (en) * 2014-12-18 2016-06-29 주식회사 포스코 Hot rolled steels having high strength, elongation and toughness for use in oil well tube and method for producing the same and steel pipe prepared by the same method for producing the same
WO2019131100A1 (en) 2017-12-25 2019-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
CN115948697A (en) * 2022-12-22 2023-04-11 武汉钢铁有限公司 500 MPa-grade weather-proof coating-free hot-rolled rod wire and rolling process thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105128B1 (en) * 2004-12-22 2012-01-16 주식회사 포스코 Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
JP2009174020A (en) * 2008-01-25 2009-08-06 Jfe Steel Corp Method for producing hot-rolled steel sheet which is excellent in ductile cracking-arresting characteristic and sour-resistance
CN102796968A (en) * 2012-09-07 2012-11-28 宝鼎重工股份有限公司 cast steel material for bridge high creep resistance and high toughness at low temperature and preparation method thereof
KR20160074823A (en) * 2014-12-18 2016-06-29 주식회사 포스코 Hot rolled steels having high strength, elongation and toughness for use in oil well tube and method for producing the same and steel pipe prepared by the same method for producing the same
WO2019131100A1 (en) 2017-12-25 2019-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
KR20200086737A (en) 2017-12-25 2020-07-17 제이에프이 스틸 가부시키가이샤 Hot rolled steel sheet and manufacturing method thereof
US11390931B2 (en) 2017-12-25 2022-07-19 Jfe Steel Corporation Hot-rolled steel plate and method for manufacturing same
CN115948697A (en) * 2022-12-22 2023-04-11 武汉钢铁有限公司 500 MPa-grade weather-proof coating-free hot-rolled rod wire and rolling process thereof

Similar Documents

Publication Publication Date Title
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JPH10298645A (en) Manufacture of hot rolled high tensile strength steel plate
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
US5665182A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPS6338520A (en) Production of steel plate having excellent hydrogen induced cracking resistance
KR20080042296A (en) Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
JPH09310165A (en) Thin steel sheet for working excellent in fatigue characteristic and its production
KR101412354B1 (en) High strength steel sheet and method for manufacturing the same
JPH0359124B2 (en)
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
KR101299328B1 (en) High strength steel sheet and method for manufacturing the same
JPH08295929A (en) Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605