JPS6338520A - Production of steel plate having excellent hydrogen induced cracking resistance - Google Patents

Production of steel plate having excellent hydrogen induced cracking resistance

Info

Publication number
JPS6338520A
JPS6338520A JP18149886A JP18149886A JPS6338520A JP S6338520 A JPS6338520 A JP S6338520A JP 18149886 A JP18149886 A JP 18149886A JP 18149886 A JP18149886 A JP 18149886A JP S6338520 A JPS6338520 A JP S6338520A
Authority
JP
Japan
Prior art keywords
cooling
less
water cooling
steel
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18149886A
Other languages
Japanese (ja)
Inventor
Takahiro Kushida
隆弘 櫛田
Takeo Kudo
赳夫 工藤
Tamotsu Hashimoto
保 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18149886A priority Critical patent/JPS6338520A/en
Publication of JPS6338520A publication Critical patent/JPS6338520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To prevent the formation of martensite and hardness increase of bainite and to obtain a titled steel plate by specifying the cooling conditions after hot rolling of a slab which is confined in the compsn. CONSTITUTION:The compsn. consisting of 0.01-0.20wt% C, 0.03-0.80% Si, 0.40-1.80% Mn, <=0.025% P, <=0.002% S, 0.008-0.032% Ti, 0.01-0.10% solAl and the balance unavoidable impurities and iron is applied. The compsn. is confined to 3.5<(Ca/S) <10.0 and 3.4<(Ti/N)<8.0. The CC slab made of such compsn. is subjected to the hot rolling at >=50% draft in the temp. region of <=(Ar3+150 deg.C) and the Ar3 or above and the hot rolling is ended at the Ar3 point or above. The steel is then subjected to accelerated water cooling at 5-20 deg.C/sec cooling rate from the temp. region of >=(Ar3-30 deg.C) down to <=600 deg.C and the temp. in excess of the Ms point and is allowed to cool naturally after the suspension of water cooling, by which the steel plate is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、H,Sを含んだ原油、天然ガスの輸送に用い
るラインパイプ用として有用な、耐水素誘起割れ性に優
れた鋼板の製造方法、特に、微細かつ均一なベイナイト
+フェライト組織とした耐水素誘起割れ性に優れた鋼板
の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to the production of steel sheets with excellent resistance to hydrogen-induced cracking, which are useful for line pipes used to transport crude oil and natural gas containing H and S. In particular, the present invention relates to a method for manufacturing a steel sheet having a fine and uniform bainite + ferrite structure and excellent resistance to hydrogen-induced cracking.

(従来の技術) 水素誘起割れ(HI C)は、湿潤ToS環境下で鋼が
腐食したときに発生する水素が、媚中に侵入することに
よって起こる水素脆化現象である。
(Prior Art) Hydrogen-induced cracking (HIC) is a hydrogen embrittlement phenomenon that occurs when hydrogen generated when steel corrodes in a wet ToS environment invades the steel.

HI cQ受性が最も高い部分は、Vi、N−中心部で
あり、スラブの中心偏析に起因する部分である。
The region with the highest HI cQ receptivity is the Vi,N-center, which is due to central segregation of the slab.

従来、HICを防止する手段としては、次の方法等がと
られている。
Conventionally, the following methods have been used to prevent HIC.

■スラブソーキングによる偏析の軽減 ■Pの低域による偏析のU減 ■Ca、 REMによる非金属介在物の形態を制御して
、H[Cの起点となる介在物を減らす。
■ Reducing segregation by slab soaking ■ Reducing segregation by U due to low P range ■ Controlling the morphology of nonmetallic inclusions using Ca and REM to reduce inclusions that serve as starting points for H[C.

しかし、これらの手段のうち■、■は非常なコスト上昇
を招く。また、■に至っては効果があいまいである。
However, among these methods, (2) and (3) lead to a significant increase in costs. Moreover, the effect is ambiguous when it comes to (■).

そこで、最近、圧延後加速水冷することによって、合金
元素の濃化を防止し、均一・微細な組織にして、偏析部
の低温度a組織の生成を抑えた鋼の製造が試みられてい
る0例えば、特開昭54−118325号、同57−8
5928号、同58−77530号、および60−33
310号参照。
Therefore, recently, attempts have been made to produce steel that prevents the concentration of alloying elements by performing accelerated water cooling after rolling, creates a uniform and fine structure, and suppresses the formation of low-temperature a-structures in segregated areas. For example, JP-A-54-118325, JP-A-57-8
No. 5928, No. 58-77530, and No. 60-33
See No. 310.

そのような加速水冷を利用した耐水素誘起割れ性向(以
下、酎HrCfiという)の製造方法はおおよそ、Ar
+点以上で仕上圧延を終了し、Ar) −30℃以上か
ら水冷して、組織を微細なフェライト↓パーライト組織
あるいはフェライト+ベイナイトin合組織にして耐)
(IC性を向上させるというものである。
The method for producing hydrogen-induced cracking resistance (hereinafter referred to as HrCfi) using accelerated water cooling is roughly based on Ar
Finish rolling is completed at the + point or higher, and water cooling is performed from -30°C or higher to change the structure to a fine ferrite↓pearlite structure or a ferrite + bainite in combination structure.
(This is to improve IC performance.

しかしながら、水冷条件が適当でないと、マルテンサイ
トのような低温変態組織が生成したり、硬度の高いベイ
ナイトが生成したりして、かえって耐HI C性が低下
する。
However, if the water cooling conditions are not appropriate, a low-temperature transformed structure such as martensite or bainite with high hardness may be formed, resulting in a decrease in HIC resistance.

また、圧延−水冷条件が適当であっても、ある成分系に
おいては耐HIC性の余り良好でないnが得られたりす
る。
Furthermore, even if the rolling-water cooling conditions are appropriate, some component systems may result in n having poor HIC resistance.

例えば、特開昭54−118325号および同57−8
5928号の場合、熱間圧延終了後、Ar1点以上で水
冷を開始し、650〜550℃の温度範囲まで3〜b/
Sの冷却速度で冷却し、その後、放冷を行うのである。
For example, JP-A-54-118325 and JP-A-57-8
In the case of No. 5928, after hot rolling, water cooling is started at Ar1 point or higher, and the temperature range is 3 to 550°C.
It is cooled at a cooling rate of S, and then allowed to cool.

パーライトの残存はさけられない。また、特開昭58−
77530号および同60−33310号の場合は、A
r=−30℃以上から水冷を開始し、550〜350℃
の温度範囲まで10〜b し、その後前記の場合と同様に放冷するのである。
Perlite remains unavoidable. Also, JP-A-58-
In the case of No. 77530 and No. 60-33310, A
Start water cooling from r=-30°C or higher, and reduce to 550-350°C
The temperature range is 10~b, and then it is allowed to cool as in the case described above.

パーライトは存在しないが、マルテンサイトや硬度の高
いベイナイトが存在することになる。
Pearlite does not exist, but martensite and hard bainite do exist.

また、これら従来のものは、鋼1■成のうえからも、T
iを含むもの、含まないもの、さらにはCaを含むもの
のいずれにおいてもN含有量については言及することが
ない。
In addition, these conventional products are made of steel, and T
There is no mention of N content in any of those containing i, those not containing i, and even those containing Ca.

(発明が解決しようとする間8点) したがって、本発明の目的とするところは、耐HIC性
にすぐれた鋼板の製造方法を提供することである。
(8 points to be solved by the invention) Therefore, an object of the present invention is to provide a method for manufacturing a steel plate with excellent HIC resistance.

さらに本発明の目的は、マルテンサイトの生成、ベイナ
イトの硬度上昇を阻止した水冷法による、耐HIC性に
すぐれた鋼板の製造方法を提供することである。
A further object of the present invention is to provide a method for manufacturing a steel sheet with excellent HIC resistance using a water cooling method that prevents the formation of martensite and the increase in hardness of bainite.

本発明のなお別の目的は、湿潤11□S環境下において
問題となるHICに優れた砥抗性を有し、かつ、経済的
なラインパイプ用鋼板の製造方法を提供することである
Still another object of the present invention is to provide an economical method for manufacturing a steel plate for line pipes that has excellent abrasiveness against HIC, which is a problem in a humid 11□S environment.

(問題点を解決するための手段) 本発明者らが加速水冷鋼の耐HI C性を、圧延−水冷
条件との関係において、詳しく検討した結果、次の事実
が判明した。
(Means for Solving the Problems) As a result of the inventors' detailed study of the HIC resistance of accelerated water-cooled steel in relation to the rolling-water-cooling conditions, the following facts were found.

■フェライト+パーライトのハント状i、11織あるい
は、パーライトが残存する組織を有する鋼板は耐HI 
C性が劣る。
■Steel plates with hunt-like I, 11 weaves of ferrite + pearlite, or structures in which pearlite remains have high resistance to HI.
Poor C properties.

■硬度が250以下のベイナイトとフェライトから成る
混合組織は耐HIC性に優れろ。
■A mixed structure consisting of bainite and ferrite with a hardness of 250 or less has excellent HIC resistance.

■硬度が250以上のベイナイト、あるいはマルテンサ
イトを含む組織を有する鋼はI″1tHIC性に劣る。
(2) Steels having a structure containing bainite or martensite with a hardness of 250 or more have poor I″1tHIC properties.

つまり、圧延後の冷却速度を過当に選択し、パーライト
の生成を抑える一方、ヘイナイト変態を起こさせ、しか
も、マルテンサイトが生成しないようにすれば、耐HI
C性が向上するのである。
In other words, if the cooling rate after rolling is selected excessively to suppress the formation of pearlite while causing haynite transformation, and preventing the formation of martensite, it is possible to
This improves carbon properties.

そこで本件発明者らはさらに加速水冷鋼の耐llIC性
とその成分系との関係についても詳しく検討した結果、
次のような事実を知見した。
Therefore, the present inventors further investigated in detail the relationship between the IIC resistance of accelerated water-cooled steel and its component system, and found that
The following facts were discovered.

■N含有量の高い鋼は、耐HI C性が劣る。■Steel with high N content has poor HIC resistance.

■Nlが40 ppm以下と低い口であっても、T1を
添加していない鋼はやはり耐Hr C性が劣る。
■Even if the Nl content is as low as 40 ppm or less, steel without T1 addition still has poor HrC resistance.

■Ca/Sが3.5以下、あるいは10.0以上である
鋼は、N量、Ti!ilに関係なく耐HI C性が劣る
■Steel with Ca/S of 3.5 or less or 10.0 or more has a N content, Ti! Poor HIC resistance regardless of IL.

よって、本発明の要旨とするところは、重量%で、 C: 0.01〜0.20%、 Si:0.03〜0.
80%、Mn: 0.40〜1.80%、 P :C1
,(125%以下、S : 0.002%以下、 Ti
:0.0080〜0.032 %、sol、AQ: 0
.01〜0.10%N : 0.0040%以下、Ca
:0.0020〜0.0050%、さらに、必要に応じ
、Cu: 0.05〜0.50%、Ni: 0.05〜
0.5050%、Cr: 0.05〜0.50%、ha
: 0゜05〜0.50%、Nb: 0.01〜0.1
5%、V: 0.01〜0.15%、およびREM: 
O,0QO5〜0.01%のうちの1種以上を含有し、 ならびに 3.5 < Ca/S < 10.0  および3.4
 <Ti/N<B、Ol 関係式を満足し、 残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar3 + 15
0℃以下、Ar3点以上の温度域で、少なくとも圧下率
50%以上の熱間圧延を行い、Ar1点以上で該熱間圧
延を終了し、Arc−30℃以上の温度域から、600
℃以下、Ms点を越える温度域まで冷却速度5〜20℃
/Sの範囲で加速冷却し、水冷停止後放冷することを特
徴とする、耐水素誘起割れ性に優れた鋼板の製造方法で
ある。
Therefore, the gist of the present invention is, in weight %, C: 0.01-0.20%, Si: 0.03-0.
80%, Mn: 0.40-1.80%, P: C1
, (125% or less, S: 0.002% or less, Ti
:0.0080-0.032%, sol, AQ: 0
.. 01-0.10%N: 0.0040% or less, Ca
:0.0020~0.0050%, further as necessary, Cu: 0.05~0.50%, Ni: 0.05~
0.5050%, Cr: 0.05-0.50%, ha
: 0°05~0.50%, Nb: 0.01~0.1
5%, V: 0.01-0.15%, and REM:
Contains one or more of O,0QO5~0.01%, and 3.5 < Ca/S < 10.0 and 3.4
<Ti/N<B, Ol A CC slab with a composition satisfying the relational expression and the remainder consisting of unavoidable impurities and iron is heated to form Ar3 + 15
Hot rolling is performed at a reduction rate of at least 50% in a temperature range of 0°C or lower and Ar3 points or higher, and the hot rolling is finished at Ar1 or higher, and from a temperature range of Arc-30°C or higher, 600
Cooling rate of 5 to 20℃ to temperatures below ℃ and above Ms point
This is a method for producing a steel sheet with excellent hydrogen-induced cracking resistance, which is characterized by performing accelerated cooling in the range of /S, and cooling after stopping water cooling.

このようにして水冷停止後放冷して得た鋼板に500℃
以上、Ac、点未満の温度域に再加熱し焼戻を行っても
よい。
In this way, the steel plate obtained by cooling after stopping the water cooling was heated to 500°C.
As mentioned above, tempering may be performed by reheating to a temperature range below the Ac point.

このように、本発明によれば、次のような構成上の特1
枚がみられる。
As described above, according to the present invention, the following structural features are achieved.
You can see it.

■Nを40 ppm以下に低減したCCスラブを使用す
■3.4 <Ti/N<8.0になるように、Tiを添
加し、TiNとしてNを固定するとともに、TiCを積
極的に析出させる。
■Use a CC slab with reduced N to 40 ppm or less.■3.4 Add Ti so that <Ti/N<8.0, fix N as TiN, and actively precipitate TiC. let

■Caを20〜50 ppmの範囲で、かつ、3.5<
Ca/S<10.0になるように添加する。
■Ca in the range of 20 to 50 ppm and 3.5<
Add so that Ca/S<10.0.

なお、従来、この種の鋼にあってNに関する規定はな(
、通常レベルとしてN含有量は、4(l ppm超と考
えられる。
In addition, conventionally, there are no regulations regarding N for this type of steel (
, the normal level of N content is considered to be greater than 4 (1 ppm).

(作用) 本発明において鋼組成を上述のように限定した理由は次
の通りである。
(Function) The reason why the steel composition is limited as described above in the present invention is as follows.

C: 鋼の強度確保のために0.01%以上を必要とし、また
、鋼の靭性確保および溶接低温割れの防止のため0.2
0%以下とする。
C: 0.01% or more is required to ensure the strength of the steel, and 0.2% to ensure the toughness of the steel and prevent welding cold cracking.
0% or less.

Si: 鋼の強度確保および脱酸のために0.03%以上を必要
とし、また、鋼の靭性確保および焼戻脆化の防止のため
0.80%以下とする。
Si: 0.03% or more is required to ensure the strength of the steel and deoxidize, and it is 0.80% or less to ensure the toughness of the steel and prevent temper embrittlement.

鋼の強度および靭性の確保のため0.40%以上を必要
とし、またMnの増加によって偏析部の合金元素濃度が
増加するが、1.80%以下までは許容できる。
0.40% or more is required to ensure the strength and toughness of the steel, and an increase in Mn increases the concentration of alloying elements in the segregated portion, but a content of 1.80% or less is permissible.

P: 少ないほど@折部の合金元素濃度は減少し、耐HI C
性に優れるが、低P化することは製造コストを上昇させ
るので、本発明に悪影客を与えない範囲で可及的に高含
有量である0、025%を上限とする。しかし、少なけ
れば少ない程好ましいのは言うまでもない。
P: The lower the concentration of alloying elements in the folded part, the higher the resistance to HIC.
However, reducing the P content increases manufacturing costs, so the upper limit of the content is set at 0.025%, which is as high as possible within a range that does not have any negative effects on the present invention. However, it goes without saying that the smaller the amount, the better.

S・ Sは0.002%超になると、Caによる形態制御が不
能なMnSが生成し、Hr Cの起点となる。
When S·S exceeds 0.002%, MnS, whose morphology cannot be controlled by Ca, is generated and becomes the starting point of HrC.

したがって、本発明にあってSは0.002%以下に制
限する。好ましくは、0.001%以下である。
Therefore, in the present invention, S is limited to 0.002% or less. Preferably it is 0.001% or less.

Ti: TiNにより圧延組織の細粒化をはかり、さらにTiN
およびTiCによる水素のトラップ効果で耐HTc性を
向上させるため0.0080%以上を必要とし、一方、
0.032%超になると靭性が著しく損なわれるため、
上限を0.032%とする。
Ti: The rolling structure is made finer with TiN, and further TiN
0.0080% or more is required to improve HTc resistance due to the hydrogen trapping effect of TiC.
If it exceeds 0.032%, toughness will be significantly impaired.
The upper limit is set to 0.032%.

sol、A(1,: 鋼の脱酸のため0.01%以上を必要とし、また、?f
f浄度を確保するため0.10%以下とする。
sol, A(1,: 0.01% or more is required for deoxidizing steel, and ?f
To ensure f purity, it should be 0.10% or less.

N二 Nは0.0040%超となると耐HIC連中率が低下す
るので0.0040%以下とする。
If N2N exceeds 0.0040%, the HIC resistance rate will decrease, so it is set to 0.0040% or less.

Ca: 鋼中介在物であるMnSの形態を制御し、耐トIIC性
を向上させるために0.0020%以上を添加する。し
かし、o、ooso%を超えると、Ca系介在物が逆に
耐HIC性、耐5scc性を劣化させる。
Ca: 0.0020% or more is added to control the morphology of MnS, which is an inclusion in steel, and to improve IIC resistance. However, when the content exceeds o, ooso%, Ca-based inclusions conversely deteriorate HIC resistance and 5scc resistance.

Ca/S: Mn5の十分な球状化を図るためCa/Sの下限已よ3
.5超とする。Ca系介在物(酸化物)の析出防止のた
めにCa/Sは10.0未満とする。
Ca/S: The lower limit of Ca/S is 3 to ensure sufficient spheroidization of Mn5.
.. Over 5. Ca/S is set to less than 10.0 in order to prevent precipitation of Ca-based inclusions (oxides).

Ti/N: Nの完全固定とTiCの析出による耐HIC性の向上を
図るためTi/Hの比は3.4超を必要とし、一方靭性
確保のためその比は8.0未満とする。
Ti/N: In order to improve HIC resistance through complete fixation of N and precipitation of TiC, the Ti/H ratio needs to be more than 3.4, and on the other hand, to ensure toughness, the ratio is less than 8.0.

本発明にあっては、その池、耐食性付与元素として、C
uおよびREMの少なくとも1種を添加する。
In the present invention, carbon is used as the corrosion resistance imparting element.
At least one of u and REM is added.

Cu: 耐食性付与のため0.05%以上を添加する。Cu: Add 0.05% or more to impart corrosion resistance.

しかし、Cu添加量が0,50%を超えると溶接性を損
なう。
However, if the amount of Cu added exceeds 0.50%, weldability will be impaired.

REM: Caの場合と同様にMnSの形態の制御′JIIのため
0゜0005%以上添加するが、0.01%を超えると
、清浄度が損なわれ、耐HI C性、54sscc性が
低下する。
REM: As in the case of Ca, 0°0005% or more is added to control the morphology of MnS 'JII, but if it exceeds 0.01%, cleanliness is impaired and HIC resistance and 54sscc properties are reduced. .

本発明にあっては、さらに強度調整元素として、Ni、
 Cr、Mo、Nb、■の少なくとも1種を添加する。
In the present invention, Ni, Ni,
At least one of Cr, Mo, Nb, and (2) is added.

Ni: Ni添加量は間の強度、靭性確保のため0.05%以上
を必要とし、0.50%を超えると耐5scc性が劣化
する。
Ni: Ni needs to be added in an amount of 0.05% or more to ensure strength and toughness, and if it exceeds 0.50%, the 5scc resistance will deteriorate.

Cr+ ′Io: いずれも鋼の強度、靭性確保のためそれぞれ0.05%
以上、0.50%以下を添加する。
Cr+'Io: 0.05% each to ensure the strength and toughness of the steel
Above, 0.50% or less is added.

Nb、V: いずれも鋼の強度、靭性確保のためそれぞれ0.01%
以上、0.15%以下を必要とする。
Nb, V: 0.01% each to ensure the strength and toughness of the steel
Above, 0.15% or less is required.

このような組成のCCスラブを、次に、本発明によって
は、熱間圧延そして加速水冷するが、第1図はこのとき
の水冷パターンを示すものである。
According to the present invention, the CC slab having such a composition is then hot-rolled and accelerated water-cooled, and FIG. 1 shows the water-cooling pattern at this time.

すなわち、熱間圧延を行う適宜温度に加熱してから仕上
げ温度^r3点以上、Ar) + 150℃以下で圧下
率50%以上の制御熱間圧延を行い、次いで、Ar3−
30℃以上の範囲の温度から5〜20′C/Sの冷却速
度で600℃以下、Ms点を越える温度域まで加速水冷
を行ない、その後放冷する。必要により、放冷して得た
鋼板は、500℃以上、AC3点未1}1の温度で直接
焼戻を行う。
That is, the material is heated to an appropriate temperature for hot rolling, then controlled hot rolling is performed at a finishing temperature of 3 points or more, Ar) + 150°C or less and a reduction rate of 50% or more, and then Ar3-
Accelerated water cooling is performed from a temperature in the range of 30 DEG C. or higher to a temperature range of 600 DEG C. or lower at a cooling rate of 5 to 20' C/S, exceeding the Ms point, and then allowed to cool. If necessary, the steel plate obtained by cooling is directly tempered at a temperature of 500° C. or higher at 3 AC points.

本発明において熱間圧延条件ならびに前記加速水冷条件
を上述のように限定した理由は次の通りである。
The reason why the hot rolling conditions and the accelerated water cooling conditions are limited as described above in the present invention is as follows.

まず、熱間圧延に当っては以下の熱間圧延が可能な温度
にまで加熱する。
First, in hot rolling, the material is heated to a temperature that allows the following hot rolling.

熱間圧延温度は、上限をAr3” 150℃とするが、
これを超えた温度で圧延を行うと、十分な細粒とならず
、また強変が得られない。また、Ar、未満で終了する
と、所定の水冷開始温度が得られない。
The upper limit of the hot rolling temperature is Ar3” 150°C,
If rolling is carried out at a temperature exceeding this range, the grains will not be sufficiently fine and strong deformation will not be achieved. Furthermore, if the temperature is lower than Ar, a predetermined water cooling start temperature cannot be obtained.

加熱−仕上温度の途中の圧延は任音である。Rolling between heating and finishing temperature is optional.

圧下率は、50%未満ではオーステナイト粒が十分な細
粒とならず、加速冷却しても均一な組i銭とならない。
If the rolling reduction rate is less than 50%, the austenite grains will not become sufficiently fine, and even if accelerated cooling is performed, a uniform composition will not be obtained.

水冷開始温度は、Art  30℃より低い温度では初
析フエらイトの成長に伴い、偏折部に合金元素が(農化
し水・告時に低温変態組織が生成するので、耐HI C
性が低下する。より好ましくはArz点以上が良い。
The starting temperature for water cooling is Art. At temperatures lower than 30°C, alloying elements are converted into the polarized part due to the growth of pro-eutectoid ferrite, and a low-temperature transformation structure is formed when water is cooled.
Sexuality decreases. More preferably, it is at least the Arz point.

で連水冷における水冷停止温度は、上限を600℃とし
、これより高い温度ではへイナイト変態は十分進行しな
い。パーライト変f声が進むため急、速冷却の効果なし
。水冷停止温度域の下■は、Ms点点圧ある。なお、4
00℃より低温度に冷却しても耐HI C性は向上しな
いので、好ましくは400℃以上の温度域に急速冷却す
る。
The upper limit of the water cooling stop temperature in continuous water cooling is 600°C, and the heinite transformation does not proceed sufficiently at temperatures higher than this. There is no effect of rapid cooling because the perlite tone progresses. Below the water-cooling stop temperature range ■, there is a Ms point pressure. In addition, 4
Since HIC resistance does not improve even if the temperature is lower than 00°C, rapid cooling is preferably performed to a temperature range of 400°C or higher.

水冷冷却速度は下限を5℃バ・とし、こ幻7未満では一
部パーラ1゛1−が生成する。土だ、20’C/S超で
は、水冷停止温度のコントロールが工「シ<冷:n L
The lower limit of the water-cooling rate is 5° C., and when the temperature is less than 7, Paral 1-1- is partially formed. At temperatures above 20'C/S, the water cooling stop temperature cannot be controlled.
.

すぎた場合は、マルテンサイトの成長を招き、またヘイ
ナイトの硬度上讐を引き起:す。p仁7シ<は、6〜b 次に、C:0.09%、Si:0.25 %、Mn:I
、0%、P+Q015%、S:O,0O11%: (A
rz=800℃)を店木組代としてTi−N% Ca−
Sの各冷力り星を種々変えた1′二1を1100℃に加
熱してから圧下率709%の色間圧延2行い、910℃
で仕上げ、次いで840℃から18℃/Sで500℃ま
で加速冷却後、放冷した。(トられた′、−1板につい
て後述する実施例と同様なHI C裁可・λを行い耐H
I C連中率を求めた。実験結果を第2171および第
3図にグラフにまとめて示す。第2図巳よ酎1! I 
C性および機械的性質に及ぼすTi1才夕よびNlの影
響をまとめて示すもので、いずれの場合もCa/Sは本
発明の範囲内とした。また第3図5よ耐HIC連中率に
支ぼすNiおよびCa/sの影tgを示すものである。
If it is too much, it will lead to the growth of martensite and cause the hardness of haynite to increase. Next, C: 0.09%, Si: 0.25%, Mn: I
, 0%, P+Q015%, S:O,0O11%: (A
Ti-N% Ca-
1' and 21 with various cold rolls of S were heated to 1100°C, then subjected to color rolling 2 at a reduction rate of 709%, and then rolled to 910°C.
The sample was then finished at 840° C. and then acceleratedly cooled to 500° C. at 18° C./S, and then allowed to cool. (The damaged ′, -1 board was subjected to HIC cutting and λ in the same manner as in the example described later.
I calculated the IC rate. The experimental results are summarized in graphs in FIGS. 2171 and 3. Figure 2 Snake 1! I
This figure summarizes the effects of Ti and Nl on carbon properties and mechanical properties, and in both cases Ca/S was within the scope of the present invention. Furthermore, FIG. 3 shows the influence of Ni and Ca/s tg on the HIC resistance rate.

なお、図中の○内の数値は耐HIC適中率を示す。In addition, the numerical value inside the circle in the figure indicates the HIC resistance accuracy rate.

図示結果から明らかなように、NF440ppm以下、
Ti/N 3.4〜8.O、Ca/33.5〜10.0
のとき耐HIC適中享が100%となる。
As is clear from the illustrated results, NF440ppm or less,
Ti/N 3.4-8. O, Ca/33.5-10.0
At this time, the HIC resistance and mid-range resistance will be 100%.

圧下率50%以上で、Ca/Sが3.5〜10.0が必
要な理由は、MnSの形!唄との関係によるものと思わ
れる。従来、伸展されたMnSはHI Cの起点となる
ことが知られており、Ca/S=2〜3以上となる量の
C,1力句会加されていた。
The reason why a reduction rate of 50% or more and Ca/S of 3.5 to 10.0 is required is the shape of MnS! This seems to be due to its relationship with the song. Conventionally, extended MnS has been known to be the starting point of HIC, and an amount of C,1 has been added such that Ca/S=2 to 3 or more.

しかし、本発明におLJるように3.5以上という多量
のCaが必要な理由は、詳↑Jは不明であるが、水冷材
の方が空冷材に比べてMnS等粗大介在物のまわりに歪
が残りやすいので、より以上のf、Y状化が必要とされ
るためと考えられる。
However, the reason why a large amount of Ca of 3.5 or more is required as shown in LJ in the present invention is not clear in detail, but water-cooled materials are better around coarse inclusions such as MnS than air-cooled materials. It is thought that this is because distortion tends to remain in the plane, so more f and Y shapes are required.

また、N140 ppm1のとき、Ca/Sが3.5以
上であっても耐HIC性が低下する理由も、その詳細は
不明であるが、NがCaの作用を■害すること、多量の
TiNが11 I Cの伝!!径路を形成すること等が
考えられる。
In addition, the reason why HIC resistance decreases even if Ca/S is 3.5 or more when N140 ppm1 is unknown is that N impairs the action of Ca and that a large amount of TiN 11 The story of IC! ! It is conceivable to form a route.

さらに、Nを低バし、Ti/N>3.4のT1を添加す
る利点としては、TiNを核にして均一なフェライト−
ヘイナイト組織が得られること、TiCおよびTiNが
水素のトラップサイトとして働くのでi′1tHIc性
が向上すること等が考えら机る。
Furthermore, the advantage of reducing N and adding T1 with Ti/N > 3.4 is that a uniform ferrite layer is formed using TiN as a nucleus.
It can be considered that a haynite structure is obtained and that i'1tHIc properties are improved because TiC and TiN act as hydrogen trap sites.

さらに、本発明の好適態様にあっては、上述のように製
造された8板に焼戻し処理をするが、焼戻温度がAc+
点以上では再結晶が起きてしまう。
Further, in a preferred embodiment of the present invention, the eight plates manufactured as described above are tempered, and the tempering temperature is Ac+
Above this point, recrystallization will occur.

なお、500 ’C未満では、焼戻による十分な効果が
iユられないため、好ましくは500℃以上、AC,、
t′−1゜未満で焼戻を行う。
Note that if the temperature is less than 500'C, the sufficient effect of tempering cannot be obtained, so it is preferably 500°C or more, AC,...
Tempering is carried out at less than t'-1°.

次に、本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

実施例 第1表に示す組成の供試鋼を使い、44用法によりCC
スラブを製造し、これを第2表ないし第5表に示す条件
下で熱間圧延そしてI]D速冷却を行った。
Example Using the test steel with the composition shown in Table 1, CC was obtained by using 44 methods.
Slabs were produced, hot rolled under the conditions shown in Tables 2 to 5, and subjected to I]D rapid cooling.

得られた熱間圧延材の機械的4′r性および耐+11c
性について同しく第2表ないし第5表にまとめて示す。
Mechanical 4′r properties and +11c resistance of the obtained hot rolled material
The gender is also summarized in Tables 2 to 5.

第2表は、A鋼について最適圧延および水冷条件を検討
したものである。A−7およびA−8は圧延−空冷材で
非常に耐HIC性が劣る。A−5は水冷開始温度が73
0℃と低い(Ar*点を下回ること56℃)。A−6は
仕上温度がAr3点以下であり、それに伴い水冷開始温
度も低いため、耐HIC性に劣る。A−9は、冷却速度
が速すぎる。
Table 2 examines the optimum rolling and water cooling conditions for A steel. A-7 and A-8 are rolled and air-cooled materials and have very poor HIC resistance. A-5 has a water cooling start temperature of 73
As low as 0°C (56°C below the Ar* point). A-6 has a finishing temperature of Ar 3 or lower, and the water cooling start temperature is accordingly low, so it is inferior in HIC resistance. In A-9, the cooling rate is too fast.

A−1〜A−4は本発明の範囲内のものであり、酎HI
 C性が良好であるのが分かる。
A-1 to A-4 are within the scope of the present invention, and are
It can be seen that the carbon properties are good.

第3表は、第2表で求めた最適圧延−水冷条件を用いて
、TiおよびNの影響を示したものである。
Table 3 shows the effects of Ti and N using the optimum rolling-water cooling conditions determined in Table 2.

8口はTi無添加、CI4はN量が40 ppm以下で
あるが、Ti/N<3.4である。D鋼は、Ti/Nは
4.0であるが、NN140pp超である。B −02
’Aの耐HIC連中率は劣る。E−G鋼は、Ti/N、
NWiともに本発明の範囲内である。また、B−G@は
いずれもCa/Sが本発明の範囲内のものである。
No Ti was added in the 8-piece, and the N amount in the CI4 was 40 ppm or less, but Ti/N<3.4. Steel D has Ti/N of 4.0, but NN of over 140 pp. B-02
'A's HIC resistance rate is poor. E-G steel is Ti/N,
Both NWi are within the scope of the present invention. Moreover, Ca/S of all B-G@ is within the scope of the present invention.

第4表においてJ鋼はCaの添加し過ぎ(54ppm)
でCa/Sが大きい。耐HIC連中率いく仔細下。
In Table 4, J steel has too much Ca added (54 ppm).
and Ca/S is large. The HIC-resistant guys are going downhill.

K鋼は、Caの添加が少な(、Ca/Sが小さく、耐T
(Ic性低下。
K steel has a small amount of Ca added (, Ca/S is small, and has a high T resistance.
(Decrease in Ic properties.

L、M鋼は、Ca/S、 Ti/Nとも本発明の範囲内
であるが、Niが40 ppm超であり、耐HIC性に
劣る。
Both L and M steels have Ca/S and Ti/N within the range of the present invention, but have Ni exceeding 40 ppm and are inferior in HIC resistance.

第5表には本発明による効果を確認するために行った実
施例の結果をまとめて示すものである。
Table 5 summarizes the results of Examples conducted to confirm the effects of the present invention.

なお、耐111 C性の試験は第4図および第5図に示
す要領で行った。
The 111 C resistance test was conducted as shown in FIGS. 4 and 5.

すなわち、H■C試験には、第4図に示すように目板よ
り表z面2mm切削した厚さで、幅100mm、長さ1
00mmの板状試験片を全幅にわたって採取し、同しく
長さ方向にも数ケ所採取した。これらの試験片は、60
0メソツユエメリー研磨した後、アセトン脱脂した。H
I C試験に用いた試験液は、NACE液と呼ばれるも
ので0,5%吊は(C1hCOzll)  5%食塩(
NaCQ)水溶液で試験中はH,Sを通気し、飽和状1
唄にした。温度は25℃で、浸漬時間は100時間であ
る。
That is, for the H■C test, as shown in Figure 4, a piece with a thickness of 2 mm cut from the surface z-plane from the batten, a width of 100 mm, and a length of 1 mm is used.
A plate-shaped test piece of 00 mm was sampled over the entire width, and also at several locations in the length direction. These specimens were 60
After polishing with 0% emery, it was degreased with acetone. H
The test solution used in the IC test is called NACE solution, which contains 0.5% (C1hCOzll) and 5% common salt (
During the test with NaCQ) aqueous solution, H and S were bubbled through to form a saturated 1
I made it into a song. The temperature is 25°C and the soaking time is 100 hours.

第5図に、HI C試験後の試験片端面を示すが、この
とき観察されるH I Cを板幅方向の割れの長さくa
、=)で測定し、断面幅に対するこのaijのt、θ和
の比を割れ長さ率(%)(C,L、R,)とした。そし
て、i4 HI C連中率は、次式で表す。
Figure 5 shows the end face of the test piece after the HI C test.
, =), and the ratio of the sum of t and θ of this aij to the cross-sectional width was defined as the crack length ratio (%) (C, L, R,). The i4 HI C rate is expressed by the following formula.

試験片の数Number of specimens

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の水冷パターンを示す線図; 第2図および第3図は、本発明におけるTie、Nlそ
してCa/S比による耐IT I C性に及ぼす影づを
示すグラフ;および 第4図および第5図は、I(I C試験および耐HIc
性評価要領を示す略式説明図である。 出願人 住友金属工業(才、式会社 代理人 弁理士 広 dn  章 − 第1図 碕開 第2図 第3図 B5     〕0.0 IL15
FIG. 1 is a diagram showing the water cooling pattern of the method of the present invention; FIGS. 2 and 3 are graphs showing the influence of Tie, Nl, and Ca/S ratio on IT IC resistance in the present invention; and Figures 4 and 5 show the I (IC test and HIc resistance).
FIG. 2 is a schematic explanatory diagram illustrating the procedure for evaluating gender. Applicant: Sumitomo Metal Industries (Sumitomo Metal Industries, Ltd., company agent, patent attorney, Hiroshi dn Chapter - Figure 1 Sekikai Figure 2 Figure 3 B5) 0.0 IL15

Claims (1)

【特許請求の範囲】 (1)重量%で、 C:0.01〜0.20%、Si:0.03〜0.80
%、Mn:0.40〜1.80%、P:0.025%以
下、S:0.002%以下、Ti:0.0080〜0.
032%、sol.Al:0.01〜0.10%、 N:0.0040%以下、Ca:0.0020〜0.0
050%、ならびに 3.5<Ca/S<10.0および 3.4<Ti/N<8.0、 の関係式を満足し、 残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar_3+150
℃以下、Ar_3点以上の温度域で、少なくとも圧下率
50%以上の熱間圧延を行い、Ar_3点以上で該熱間
圧延を終了し、Ar_3−30℃以上の温度域から、6
00℃以下、Ms点を越える温度域まで冷却速度5〜2
0℃/Sの範囲で加速水冷し、水冷停止後放冷すること
を特徴とする、耐水素誘起割れ性に優れた鋼板の製造方
法。 (2)水冷停止後放冷することにより得た鋼板を500
℃以上、Ac_1点未満の温度域に再加熱して焼戻する
ことを特徴とする、特許請求の範囲第1項記載の方法。 (3)重量%で、 C:0.01〜0.20%、Si:0.03〜0.80
%、Mn:0.40〜1.80%、P:0.025%以
下、S:0.002%以下、Ti:0.0080〜0.
032%、sol.Al:0.01〜0.10%、 N:0.0040%以下、Ca:0.0020〜0.0
050%、さらに、Cu:0.05〜0.50%、Ni
:0.05〜0.50%、Cr:0.05〜0.50%
、Mo:0.05〜0.50%、Nb:0.01〜0.
15%、V:0.01〜0.15%、およびREM:0
.0005〜0.01%のうちの1種以上を含有し、 ならびに 3.5<Ca/S<10.0および 3.4<Ti/N<8.0、 の関係式を満足し、 残部不可避不純物および鉄 から成る組成のCCスラブを加熱し、Ar_3+150
℃以下、Ar_3点以上の温度域で、少なくとも圧下率
50%以上の熱間圧延を行い、Ar_3点以上で該熱間
圧延を終了し、Ar_3−30℃以上の温度域から、6
00℃以下、Ms点を越える温度域まで冷却速度5〜2
0℃/Sの範囲で加速水冷し、水冷停止後放冷すること
を特徴とする、耐水素誘起割れ性に優れた鋼板の製造方
法。 (4)水冷停止後放冷することにより得た鋼板を500
℃以上、Ac_1点未満の温度域に再加熱して焼戻する
ことを特徴とする、特許請求の範囲第3項記載の方法。
[Claims] (1) In weight%, C: 0.01 to 0.20%, Si: 0.03 to 0.80
%, Mn: 0.40-1.80%, P: 0.025% or less, S: 0.002% or less, Ti: 0.0080-0.
032%, sol. Al: 0.01-0.10%, N: 0.0040% or less, Ca: 0.0020-0.0
050%, and 3.5<Ca/S<10.0 and 3.4<Ti/N<8.0, and the remainder consists of unavoidable impurities and iron. Ar_3+150
℃ or below, hot rolling is carried out at a reduction rate of at least 50% in a temperature range of Ar_3 or above, and the hot rolling is finished at Ar_3 or above, and from a temperature range of Ar_3-30℃ or above, 6
Below 00℃, cooling rate 5-2 to temperature range exceeding Ms point
A method for producing a steel sheet with excellent hydrogen-induced cracking resistance, characterized by performing accelerated water cooling in the range of 0° C./S, and cooling after stopping the water cooling. (2) The steel plate obtained by cooling after stopping the water cooling was
The method according to claim 1, characterized in that the tempering is carried out by reheating to a temperature range of not less than 0.degree. C. and less than Ac_1 point. (3) In weight%, C: 0.01-0.20%, Si: 0.03-0.80
%, Mn: 0.40-1.80%, P: 0.025% or less, S: 0.002% or less, Ti: 0.0080-0.
032%, sol. Al: 0.01-0.10%, N: 0.0040% or less, Ca: 0.0020-0.0
050%, further Cu: 0.05-0.50%, Ni
:0.05~0.50%, Cr:0.05~0.50%
, Mo: 0.05-0.50%, Nb: 0.01-0.
15%, V: 0.01-0.15%, and REM: 0
.. 0005 to 0.01%, and satisfies the following relational expressions: 3.5<Ca/S<10.0 and 3.4<Ti/N<8.0, and the remainder is unavoidable. A CC slab with a composition consisting of impurities and iron is heated to Ar_3+150
℃ or below, hot rolling is carried out at a reduction rate of at least 50% in a temperature range of Ar_3 or above, and the hot rolling is finished at Ar_3 or above, and from a temperature range of Ar_3-30℃ or above, 6
Below 00℃, cooling rate 5-2 to temperature range exceeding Ms point
A method for producing a steel sheet with excellent hydrogen-induced cracking resistance, characterized by performing accelerated water cooling in the range of 0° C./S, and cooling after stopping the water cooling. (4) The steel plate obtained by cooling after stopping the water cooling was
4. The method according to claim 3, wherein the method is tempered by reheating to a temperature range of .degree. C. or above and below Ac_1 point.
JP18149886A 1986-08-01 1986-08-01 Production of steel plate having excellent hydrogen induced cracking resistance Pending JPS6338520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18149886A JPS6338520A (en) 1986-08-01 1986-08-01 Production of steel plate having excellent hydrogen induced cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18149886A JPS6338520A (en) 1986-08-01 1986-08-01 Production of steel plate having excellent hydrogen induced cracking resistance

Publications (1)

Publication Number Publication Date
JPS6338520A true JPS6338520A (en) 1988-02-19

Family

ID=16101810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18149886A Pending JPS6338520A (en) 1986-08-01 1986-08-01 Production of steel plate having excellent hydrogen induced cracking resistance

Country Status (1)

Country Link
JP (1) JPS6338520A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263918A (en) * 1989-04-03 1990-10-26 Nippon Steel Corp Production of high-tensile steel plate excellent in hic resistance and ssc resistance
WO1991010752A1 (en) * 1990-01-12 1991-07-25 Nippon Steel Corporation Process for producing highly corrosion-resistant low-alloy steel for line pipe
JPH08134549A (en) * 1994-11-10 1996-05-28 Kobe Steel Ltd Production of ultrahigh strength steel sheet excellent in hydrogen embrittlement resistance
JP2014208891A (en) * 2013-03-29 2014-11-06 株式会社神戸製鋼所 Steel sheet and line pipe steel pipe excellent in hydrogen-induced crack resistance and heat affected zone toughness
WO2015012317A1 (en) * 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
CN107513669A (en) * 2017-07-20 2017-12-26 首钢集团有限公司 A kind of high-strength cold rolling square and rectangular pipe steel and its manufacture method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263918A (en) * 1989-04-03 1990-10-26 Nippon Steel Corp Production of high-tensile steel plate excellent in hic resistance and ssc resistance
WO1991010752A1 (en) * 1990-01-12 1991-07-25 Nippon Steel Corporation Process for producing highly corrosion-resistant low-alloy steel for line pipe
GB2247246A (en) * 1990-01-12 1992-02-26 Nippon Steel Corp Process for producing highly corrosion-resistant low-alloy steel for line pipe
GB2247246B (en) * 1990-01-12 1994-05-11 Nippon Steel Corp Manufacturing method of high corrosion-resistant low-alloy steel for line pipes
JPH08134549A (en) * 1994-11-10 1996-05-28 Kobe Steel Ltd Production of ultrahigh strength steel sheet excellent in hydrogen embrittlement resistance
JP2014208891A (en) * 2013-03-29 2014-11-06 株式会社神戸製鋼所 Steel sheet and line pipe steel pipe excellent in hydrogen-induced crack resistance and heat affected zone toughness
WO2015012317A1 (en) * 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
CN107513669A (en) * 2017-07-20 2017-12-26 首钢集团有限公司 A kind of high-strength cold rolling square and rectangular pipe steel and its manufacture method

Similar Documents

Publication Publication Date Title
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
KR100815717B1 (en) High strength linepipe steel plate for large diameter pipe with high low-temperature ductility and hic resistance at the h2s containing environment and manufacturing method thereof
KR20130069699A (en) Method for manufacturing tensile strength 1.5gpa class steel sheet
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
US20220042151A1 (en) Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor
JPS6338520A (en) Production of steel plate having excellent hydrogen induced cracking resistance
KR102397583B1 (en) High Strength Hot Rolled Steel Sheet with Excellent Elongation and Method of Manufacturing Thereof
KR100928785B1 (en) High strength hot rolled steel sheet with excellent weather resistance and manufacturing method
KR100832982B1 (en) Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
KR100825650B1 (en) Low mo type wide and thick plate having excellent plate distortion property and method for manufacturing the same
JPS6338519A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
RU2793945C1 (en) Pipeline steel with both hic resistance and high deformation resistance and method for its manufacturing
CN114761599B (en) Steel material excellent in sulfide stress corrosion cracking resistance and method for producing same
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS6410565B2 (en)
KR101299328B1 (en) High strength steel sheet and method for manufacturing the same
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
JPH0625743A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPH0625739A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPS6367524B2 (en)
JPS6096718A (en) Manufacture of steel sheet excellent in resistances to hydrogen inducing cracking and stress corrosion crcking