KR20080042296A - Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same - Google Patents

Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same Download PDF

Info

Publication number
KR20080042296A
KR20080042296A KR1020060110520A KR20060110520A KR20080042296A KR 20080042296 A KR20080042296 A KR 20080042296A KR 1020060110520 A KR1020060110520 A KR 1020060110520A KR 20060110520 A KR20060110520 A KR 20060110520A KR 20080042296 A KR20080042296 A KR 20080042296A
Authority
KR
South Korea
Prior art keywords
less
steel
hot
low temperature
hydrogen
Prior art date
Application number
KR1020060110520A
Other languages
Korean (ko)
Other versions
KR100832982B1 (en
Inventor
양부영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060110520A priority Critical patent/KR100832982B1/en
Publication of KR20080042296A publication Critical patent/KR20080042296A/en
Application granted granted Critical
Publication of KR100832982B1 publication Critical patent/KR100832982B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and a method for manufacturing the same are provided to be employed for a line pipe for crude oil or natural gas. A hot-rolled steel includes 0.02% to 0.05%C, 0.05% to 0.5% Si, 0.5 % to 1.5% Mn, P of less than 0.01%, S of less than 0.01%, 0.02% to 0.05% Al, 0.04% to 0.6% V, 0.005% to 0.2% Ti, 0.1% to 0.3% Cr, 0.0015% to 0.003% Ca, and Fe. The Ca and S are greater than or equal to 1.5 and less than or equal to 4. The occupation area of non-metal is 1000mum^2 in the area of 10mm x 20mm. A steel slab is reheated under the temperature in the range of 1150°C to 1250°C. The steel slab is subject to hot rolling. The steel slab is cooled to the temperature of 450°C to 600°C at the speed of 10°C/sec to 30°C/sec.

Description

내수소유기균열성과 저온인성이 우수한 열연강재 및 그 제조방법{Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same}Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same}

일본 공개특허공보 제2003-226915호Japanese Laid-Open Patent Publication No. 2003-226915

일본 공개특허공보 평2-290947호Japanese Patent Laid-Open No. 2-290947

일본 공개특허공보 소58-138724호Japanese Laid-Open Patent Publication No. 58-138724

본 발명은 원유 또는 천연가스를 수송하는 라인 파이프에 주로 사용되는 열연강재에 관한 것이다. 보다 상세하게는, 비금속 개재물의 면적과 압연 제어에 의해 우수한 내수소유기균열성 및 저온인성을 갖는 열연강재 및 그 제조방법에 관한 것이다.The present invention relates to hot rolled steels mainly used in line pipes for transporting crude oil or natural gas. More specifically, the present invention relates to a hot rolled steel having excellent hydrogen-organic crack resistance and low temperature toughness by controlling the area and rolling control of nonmetallic inclusions, and a method of manufacturing the same.

최근 에너지 수요 증가에 따라 열악한 환경의 유전 혹은 가스전이 개발되고 있으며, 특히 극지방의 H2S 가스 함유량이 높은 원유 혹은 천연가스의 개발이 진행 됨에 따라, 저온에서의 인성이 우수하고 H2S 가스에 의한 파손이 적은 강재 개발이 높이 요구되고 있다.In recent years, as the demand for energy increases, oilfields or gas fields in harsh environments are being developed. Especially, as crude oil or natural gas with high H 2 S gas content in the polar regions is developed, the toughness at low temperatures and the H 2 S gas are reduced. There is a high demand for development of steel materials with little damage.

특히, H2S(황화수소)를 포함하는 가스 또는 원유 수송용 강재에서는 H2S 가스에 의한 수소유기균열(HIC, hydrogen induced crack)이 문제시되고 있는데, 수소유기균열은 MnS와 같이 압연에 의하여 신장되는 개재물을 기점으로 발생하는 것으로, 강재와 H2S(황화수소) 분위기와의 부식반응에 의해 강재 표면에서 발생되는 수소가 원자상태로 강중에 침입, 확산하여 분자화됨에 따라 강의 개재물 속에 모인 수소 분자의 압력으로 인해 균열이 발생되는 것으로 알려져 있다.Particularly, in the gas containing H 2 S (hydrogen sulfide) or steel for crude oil transportation, hydrogen induced crack (HIC) caused by H 2 S gas is problematic, and the hydrogen organic crack is elongated by rolling like MnS. Hydrogen molecules gathered in steel inclusions as hydrogen is generated on the surface of steel materials by the corrosion reaction between steel materials and H 2 S (hydrogen sulfide) atmosphere as it invades and diffuses into the steel in an atomic state. Cracks are known to occur due to the pressure of.

내수소유기균열을 개선하기 위한 종래기술에서는 Cu 첨가, MnS 저감 및 형상제어, 탄질화물의 미세분산 등에 의한 수소 침입 또는 확산을 억제하는 방법과 연속주조 시 중심편석을 저감하는 수단이 제시되고 있다. 그러나 상기 종래기술들에서는 비교적 내수소유기균열성이 우수한 강재를 확보할 수 있는 수단을 제공하였으나, 강재의 강도 수준이 높고 동시에 강산성의 습윤황화수소 분위기에서 수소유기균열은 완전히 억제하지 못하고 있다. In the prior art for improving the hydrogen organic cracks, a method of suppressing hydrogen intrusion or diffusion due to Cu addition, MnS reduction and shape control, fine dispersion of carbonitrides, and the like, and a means for reducing central segregation during continuous casting are proposed. However, the prior arts provide a means for securing steels having relatively excellent hydrogen organic crack resistance, but the hydrogen organic cracks are not completely suppressed in a high acidic wet hydrogen sulfide atmosphere.

이에 따라, 일본 공개특허공보 제2003-226915호에서는 수소유기균열을 효과적으로 제어하는 방법으로서, 수소균열 발생기점으로 알려져 있는 비금속개재물의 길이와 수소유기균열이 전파되는 편석부의 경도를 제어하는 수단을 제시하였다. Accordingly, Japanese Laid-Open Patent Publication No. 2003-226915 discloses a method for effectively controlling hydrogen organic crack, and means for controlling the length of the nonmetallic inclusions known as the hydrogen crack generation point and the hardness of the segregation portion through which the hydrogen organic crack is propagated. Presented.

또한, 일본 공개특허공보 평2-290947호에서는 비금속개재물, 특히 Al-Ca-O 계 비금속 개재물의 조성을 제어함으로써 내수소유기균열성 및 저온인성을 향상시키는 방법을 제시하고 있으며, 일본 공개특허공보 소58-138724호에서는 Ca 처리를 통한 개재물 제어 및 압연제어를 통해 내수소유기균열성 및 저온인성이 동시에 우수한 강재의 제조방법을 제안하고 있다.In addition, Japanese Patent Application Laid-Open No. 2-290947 discloses a method of improving hydrogen-organic crack resistance and low temperature toughness by controlling the composition of nonmetallic inclusions, particularly Al-Ca-O based nonmetallic inclusions. 58-138724 proposes a method for producing steels having excellent hydrogen organic crack resistance and low temperature toughness through inclusion control and rolling control through Ca treatment.

하지만, 상기 종래기술들은 비금속 개재물을 제어하여 수소유기균열을 방지하고자 하나, 강재 중에는 Al2O3, Al2O3-CaO계, Al2O3-MgO-CaO계, Al2O3-CaO-CaS계, Nb-Ti계 등의 비금속 개재물이 어디에나 불가피하게 존재하고, 이러한 비금속 개재물에 의한 수소유기균열의 발생 및 저온인성 저하의 문제를 완전히 해결하지 못하고 있다.However, the prior art one would like to prevent hydrogen induced crack by controlling non-metallic inclusions, the steel material during the Al 2 O 3, Al 2 O 3 -CaO -based, Al 2 O 3 -MgO-CaO-based, Al 2 O 3 -CaO Non-metallic inclusions such as -CaS and Nb-Ti-based materials are inevitably present everywhere, and the problems of generation of hydrogen organic cracks and lowering of low temperature toughness due to such nonmetallic inclusions are not completely solved.

본 발명은 상기한 종래의 문제점을 개선하기 위한 것으로, 비금속 개재물의 면적 및 압연 제어를 통하여 내수소유기균열성 및 저온인성이 우수한 열연강재와 그 제조방법을 제공하는데, 그 목적이 있다.The present invention is to improve the above-mentioned conventional problems, and to provide a hot-rolled steel material and a method of manufacturing the same excellent in hydrogen cracking resistance and low temperature toughness through the area and rolling control of non-metallic inclusions.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C : 0.02~0.05%, Si : 0.05~0.5%, Mn : 0.5~1.5%, P : 0.01% 이하, S : 0.001% 이하, Al : 0.02~0.05%, Nb : 0.04~0.06%, V : 0.04~0.06%, Ti : 0.005~0.02%, Cr : 0.1 ~ 0.3%, Ca : 0.0015~0.003%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ca 및 S가 1.5≤Ca/S≤4를 만족하며, 비금속 개재물의 면적이 t/4 위치를 중심으로 면적 10mm × 20mm 내에 1000㎛2 이하인 내수소유기균열성과 저온인성이 우수한 열연강재에 관한 것이다.The present invention for achieving the above object, in weight%, C: 0.02-0.05%, Si: 0.05-0.5%, Mn: 0.5-1.5%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 ~ 0.05%, Nb: 0.04-0.06%, V: 0.04-0.06%, Ti: 0.005-0.02%, Cr: 0.1-0.3%, Ca: 0.0015-0.003%, remaining Fe and other unavoidable impurities, and The present invention relates to a hot-rolled steel material having excellent hydrogen-organic crack resistance and low temperature toughness in which Ca and S satisfy 1.5≤Ca / S≤4 and the area of nonmetallic inclusions is 1000 μm 2 or less within an area of 10 mm × 20 mm around the t / 4 position. .

또한, 본 발명은 중량%로, C : 0.02~0.05%, Si : 0.05~0.5%, Mn : 0.5~1.5%, P : 0.01% 이하, S : 0.001% 이하, Al : 0.02~0.05%, Nb : 0.04~0.06%, V : 0.04~0.06%, Ti : 0.005~0.02%, Cr : 0.1 ~ 0.3%, Ca : 0.0015~0.003%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ca 및 S가 1.5≤Ca/S≤4를 만족하며, 비금속 개재물의 면적이 t/4 위치를 중심으로 면적 10mm × 20mm 내에 1000㎛2 이하인 강 슬라브를 1150℃~1250℃에서 재가열하고, 미재결정 온도 이하에서 70% 이상의 압하량으로 열간압연한 다음, Ar3 변태점 이상에서 마무리 열간압연하고, 열간압연 종료 후 10~30℃/sec의 속도로 450~600℃까지 냉각한 후 권취하는 내수소유기균열성과 저온인성이 우수한 열연강재의 제조방법에 관한 것이다. In addition, the present invention is in weight%, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 to 0.05%, Nb : 0.04 to 0.06%, V: 0.04 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.3%, Ca: 0.0015 to 0.003%, remaining Fe and other inevitable impurities, and Ca and S are 1.5 ≤Ca / satisfies S≤4 and, in the central area of 10mm × 20mm as the t / 4 position of the non-metallic inclusions and the area re-heating a steel slab 1000㎛ 2 or less at 1150 ℃ ~ 1250 ℃, 70% or less from the non-recrystallized temperature After rolling hot with the above reduction amount, finish hot rolling at the Ar 3 transformation point or more, and after completion of hot rolling, cooling to 450 ~ 600 ℃ at the rate of 10 ~ 30 ℃ / sec, and winding up the hydrogen-organic crack and low temperature toughness It relates to a method for producing an excellent hot rolled steel.

(여기서, 상기 미재결정 온도 = 887 + 464×[C] + (6445×[Nb] - 644×√[Nb]) + (732×[V] - 230×√[V]) + 890×[Ti] + 363×[Al] - 357×[Si]Where the recrystallization temperature = 887 + 464 x [C] + (6445 x [Nb]-644 x √ [Nb]) + (732 x [V]-230 x √ [V]) + 890 x [Ti ] + 363 × [Al]-357 × [Si]

Ar3 변태점 = 910 - 310×[C] - 80×[Mn] - 20×[Cu] - 15×[Cr] - 80×[Mo] - 55×[Ni] - 0.35×(t-8) 이고, 상기 식에서 함량은 중량%이다.)Ar 3 transformation point = 910-310 x [C]-80 x [Mn]-20 x [Cu]-15 x [Cr]-80 x [Mo]-55 x [Ni]-0.35 x (t-8) , Wherein the content is weight percent.)

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자는 수소유기균열이 발생한 강재의 균열발생 기점과 조직을 검토한 결과, 균열발생 주위의 조직과 경도에 따라서 균열발생 기점이 되는 비금속 개재물의 면적이 다르고, 그 면적이 강재의 t/4 위치를 중심으로 면적 10mm × 20mm 내에 1000㎛2 이하이면 수소유기균열의 발생 원인을 제거할 수 있다는 것을 확인하였다. 또한, 비금속 개재물의 면적 제어와 함께 압연 제어에 의해서 열연강재에 균일한 미세조직을 확보함으로써 내수소유기균열성 및 저온인성이 우수한 열연강재를 확보할 수 있다.As a result of examining the crack origin and structure of the steel material in which the hydrogen-organic crack has occurred, the present inventors have different areas of the nonmetallic inclusions that are the crack origin, depending on the structure and hardness around the crack occurrence, and the area is t / 4 position of the steel. It was confirmed that the cause of generation of hydrogen organic cracks can be eliminated if the thickness is 1000 μm 2 or less within an area of 10 mm × 20 mm. In addition, by securing a uniform microstructure in the hot rolled steel by rolling control together with the area control of the non-metallic inclusions, it is possible to secure a hot rolled steel having excellent hydrogen organic crack resistance and low temperature toughness.

먼저 본 발명의 강성분의 조성범위를 설명한다.First, the composition range of the steel component of the present invention will be described.

C: 0.02~0.05%가 바람직하다.C: 0.02 to 0.05% is preferable.

상기 C는 강을 강화시키는데 가장 경제적이며 효과적인 합금성분으로, 그 함량이 0.02% 미만인 경우 Nb, V 또는 Ti과 결합하여 강을 강화시키는 효과가 매우 적다. 반면, 0.05%를 초과하게 되면 내 HIC성을 저하시키는 중심편석이 증대되므로 상기 C의 함량은 0.02~0.05%로 제한하는 것이 바람직하다.The C is the most economical and effective alloying component to strengthen the steel, when the content is less than 0.02%, the effect of strengthening the steel by combining with Nb, V or Ti is very small. On the other hand, if the content exceeds 0.05%, the central segregation that decreases the HIC resistance is increased, so the content of C is preferably limited to 0.02 to 0.05%.

Si: 0.05~0.5%가 바람직하다.Si: 0.05-0.5% is preferable.

상기 Si은 탈산 및 고용강화에 유효한 성분으로, 그 함량이 0.05% 미만인 경우 탈산 효과를 얻기 어렵고, 0.5%를 초과하게 되면 용접성 및 취성을 저하시킬 가능성이 높아지므로, 그 함량을 0.05~0.5%로 제한하는 것이 바람직하다.The Si is an effective component for deoxidation and solid solution strengthening, and when the content is less than 0.05%, it is difficult to obtain a deoxidation effect, and when it exceeds 0.5%, the possibility of deterioration of weldability and brittleness increases, so the content is 0.05 to 0.5%. It is desirable to limit.

Mn: 0.5~1.5%가 바람직하다.Mn: 0.5 to 1.5% is preferable.

상기 Mn은 강도 및 인성을 확보하기 위하여 필수적인 성분으로, 그 함량이 0.5% 미만인 경우 강도와 인성을 확보하기 어렵고, 1.5%를 초과하게 되면 연주시 중심편석을 조장하여 충격인성 및 내 HIC성을 저하시킬 가능성이 높아지므로, 그 함량을 0.5~1.5%로 제한하는 것이 바람직하다.The Mn is an essential component to secure strength and toughness. If the content is less than 0.5%, it is difficult to secure strength and toughness. If the content exceeds 1.5%, Mn promotes central segregation during performance, thereby lowering impact toughness and HIC resistance. It is preferable to limit the content to 0.5 to 1.5% since the likelihood is increased.

P: 0.01% 이하가 바람직하다.P: 0.01% or less is preferable.

상기 P의 함량이 0.01%를 초과하여 첨가되면 연주시 Mn과 함께 중심편석을 조장하여 충격인성 및 유화물응력균열 저항성을 저하시킬 가능성이 높아지므로, 그 함량을 0.01% 이하로 제한하는 것이 바람직하다.When the content of P is added in excess of 0.01%, since it increases the possibility of lowering the impact toughness and emulsion stress cracking resistance by promoting the central segregation with Mn when playing, it is preferable to limit the content to 0.01% or less.

S: 0.001% 이하가 바람직하다.S: 0.001% or less is preferable.

상기 S은 강중에서 Mn과 함께 MnS를 형성하여 취성을 크게 저하시키는 성분으로, 0.001%를 초과하는 경우 내 HIC성을 크게 저하시킬 가능성이 높아지므로, 그 함량을 0.001% 이하로 제한하는 것이 바람직하다.S is a component that greatly reduces brittleness by forming MnS together with Mn in steel, and when it exceeds 0.001%, it is highly likely to significantly reduce HIC resistance, and therefore, the content is preferably limited to 0.001% or less. .

Al: 0.02~0.05%가 바람직하다.Al: 0.02-0.05% is preferable.

상기 Al은 Si과 함께 탈산작용을 하는 성분으로, 0.02% 미만인 경우 탈산효과를 확보하기 어렵고, 0.05%를 초과하게 되면 알루미나 집합체를 증가시켜 내 HIC성을 저하시킬 가능성이 높아지므로, 그 함량을 0.02~0.05%로 제한하는 것이 바람직하다.Al is a component which deoxidizes with Si, and when it is less than 0.02%, it is difficult to secure a deoxidation effect. When Al is exceeded 0.05%, the alumina aggregate is increased to increase the possibility of lowering the HIC resistance. It is desirable to limit it to -0.05%.

Nb 및 V: 0.02~0.06%가 바람직하다.Nb and V: 0.02-0.06% are preferable.

상기 Nb 및 V는 소량 첨가에 의해 석출강화 효과를 나타내는 성분으로, 본 발명의 탄소범위에서는 각각 0.06% 초과시 석출강화에 의한 강도증가가 크지 않으므로, 그 함량을 각각 0.06% 이하로 제한하며, 0.02% 미만인 경우 상기의 효과를 확보하기 어렵다. 따라서 상기 Nb 및 V의 함량은 0.02~0.06%로 제한하는 것이 바람직하다.Nb and V are the components exhibiting the precipitation strengthening effect by the addition of a small amount, in the carbon range of the present invention, since the strength increase due to precipitation strengthening is more than 0.06%, respectively, the content is limited to 0.06% or less, respectively, 0.02% If less, it is difficult to secure the above effects. Therefore, the content of Nb and V is preferably limited to 0.02 ~ 0.06%.

Ti: 0.005~0.02%가 바람직하다.Ti: 0.005 to 0.02% is preferable.

상기 Ti는 강중에서 TiN으로 석출되어 재가열시 오스테나이트의 결정립 성장을 억제함으로써 고강도 및 우수한 충격인성을 확보하며 TiC 등으로 석출되어 강을 강화하는 역할을 한다. 그러나, 본 발명의 탄소범위에서 상기 Ti의 함량이 0.005% 미만인 경우, 상기의 효과를 확보하기 어렵고, 0.02%를 초과하는 경우 상기 효과가 크지 않으므로, 그 함량을 0.005~0.02%로 제한하는 것이 바람직하다.The Ti precipitates as TiN in the steel, thereby inhibiting grain growth of austenite when reheating, thereby securing high strength and excellent impact toughness, and precipitated with TiC to strengthen the steel. However, when the content of Ti in the carbon range of the present invention is less than 0.005%, it is difficult to secure the above effects, and when the content of Ti exceeds 0.02%, the effect is not large. Therefore, the content is preferably limited to 0.005 to 0.02%. Do.

Cr: 0.1~0.5%가 바람직하다.Cr: 0.1 to 0.5% is preferable.

상기 Cr은 강도증가 및 내식성 확보를 위해 첨가하며, Cr 첨가는 저온변태조직으로의 변태를 쉽게 유도하는 성분으로, 0.1% 미만인 경우, 상기 효과를 확보하기 어렵고, 0.5%를 초과하는 경우 국부부식 발생 위험이 증대되므로, 그 함량을 0.1 ~ 0.5%로 제한하는 것이 바람직하다.The Cr is added to increase strength and to secure corrosion resistance, and the addition of Cr is a component that easily induces transformation into low-temperature metamorphic tissues, when less than 0.1%, it is difficult to secure the effect, and when it exceeds 0.5%, local corrosion occurs. As the risk is increased, it is desirable to limit the content to 0.1 to 0.5%.

Ca: 0.0015~0.003%가 바람직하다.Ca: 0.0015 to 0.003% is preferable.

상기 Ca는 유화물계 개재물의 형상을 구상화시킴으로써 수소유기균열발생 기점을 억제하는 역할을 하는 성분으로, 그 함량이 0.0015% 미만인 경우 상기 효과를 확보하기 어렵다. 반면, 0.003%를 초과하는 경우 개재물 양이 오히려 증가하여 내 HIC성을 저하시키므로, 그 함량을 0.0015~0.003%로 제한하는 것이 바람직하다.The Ca is a component that serves to suppress the hydrogen organic cracking origin by spheroidizing the shape of the emulsion inclusions, when the content is less than 0.0015% it is difficult to secure the effect. On the other hand, if the content exceeds 0.003%, the amount of inclusions is rather increased, which lowers the HIC resistance. Therefore, it is preferable to limit the content to 0.0015 to 0.003%.

본 발명은 상기한 성분 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.The present invention is composed of Fe and other unavoidable impurities in addition to the above components.

본 발명에서는 열연강재에 MnS 및 Ca계 비금속 개재물을 제어하기 위한 관점에서 Ca 및 S의 성분비를 제어하는데 특징이 있다.The present invention is characterized in controlling the component ratios of Ca and S in terms of controlling MnS and Ca-based nonmetallic inclusions in the hot rolled steel.

1.5≤Ca/S≤4가 바람직하다.1.5 ≦ Ca / S ≦ 4 is preferred.

상기 관계식은 여러 실험을 통해 얻어진 경험식으로서, 상기 관계식 값이 1.5 미만인 경우 MnS 형성이 용이하여 내수소유기균열성이 저하될 수 있는 반면, 4를 초과하는 경우에는 Ca계 비금속 개재물의 양이 증가하여 내수소유기균열성 및 인성의 저하를 초래할 수 있다. 따라서, 상기 Ca 및 S의 관계식은 1.5~4로 제한하는 것이 바람직하다.The relationship is an empirical equation obtained through a number of experiments, when the relationship value is less than 1.5, MnS is easily formed, so that the hydrogen cracking resistance may be lowered, while the amount of Ca-based nonmetallic inclusions is increased when it exceeds 4 This can lead to a decrease in hydrogen organic crack resistance and toughness. Therefore, it is preferable to limit the relationship between Ca and S to 1.5-4.

본 발명에서는 균열발생 주위의 조직과 경도에 따라서 균열발생기점이 되는 비금속 개재물의 크기가 다르다는 점을 기반하여 비금속 개재물을 적절히 제어하는 것이다. 즉, 강재의 t/4위치를 중심으로 면적 10mm × 20mm내에 비금속 개재물의 면적이 1000㎛2 이하를 가지도록 하여 내수소유기균열성과 저온인성을 개선하는 것이다. 본 발명에서 비금속개재물의 면적은 10개 위치 측정을 통한 평균값을 의미한다. 비금속 개재물의 면적이 1000㎛2 를 초과하는 경우에는, 열간압연단계에서 비금속 개재물이 수소유기균열의 개시점 역할을 하게되어 내수소유기균열성의 저하를 초래할 수 있다. 따라서, 비금속 개재물의 면적은 t/4 위치를 중심으로 면적 10mm × 20mm 내에 1000㎛2 이하로 제한하는 것이 바람직하다.In the present invention, the nonmetallic inclusions are appropriately controlled based on the fact that the size of the nonmetallic inclusions, which is the starting point of cracking, varies depending on the structure and hardness around the cracking occurrence. In other words, the area of nonmetallic inclusions within an area of 10 mm x 20 mm centered on the t / 4 position of the steel to have a thickness of 1000 μm 2 or less, thereby improving hydrogen organic cracking resistance and low temperature toughness. In the present invention, the area of the nonmetallic inclusion means an average value through measurement of 10 positions. When the area of the nonmetallic inclusion exceeds 1000 μm 2 , the nonmetallic inclusion serves as an initiation point of the hydrogen organic crack in the hot rolling step, which may cause a decrease in hydrogen organic cracking resistance. Therefore, it is preferable to limit the area of a nonmetallic inclusion to 1000 micrometer <2> or less in area 10mm x 20mm centering on t / 4 position.

이하, 상기와 같이 조성되는 강을 갖는 열연강재의 제조방법에 대하여 상세하게 설명한다.Hereinafter, the manufacturing method of the hot rolled steel material which has the steel comprised as mentioned above is demonstrated in detail.

열연강재는 통상적으로 전로에서 1차 정련한 다음 전로의 용강을 래들로 출강하여 2차 정련한 다음 연속주조하여 제조된다. 2차 정련에서는 Ar과 같은 불활성 가스로 버블링하여 개재물을 제어한다. Hot rolled steel is usually manufactured by primary refining in converters, followed by tapping the molten steel of converters by ladle, followed by secondary refining, followed by continuous casting. In secondary refining, inclusions are controlled by bubbling with an inert gas such as Ar.

본 발명에서는 강재의 1/4t 위치를 중심으로 10mm × 20mm내에 비금속개재물의 면적이 1000㎛2 이하를 가지도록 하여 내수소유기균열성과 저온인성을 개선하도록 하는 것이다. 본 발명에 따른 비금속 개재물의 제어는 통상적인 2차 정련과정에서의 공정조건의 제어를 통해 얻어질 수 있는데, 일례로 2차 정련공정은 LF에서 Ar버블링 및 VTD 또는 RH 등과 같은 탈가스 공정에서 Ar버블링에 의해 개재물을 제어하고 있다. 본 발명은 이러한 공정조건에 반드시 제한되는 것이 아니며, 어떠한 방법에 의해서던 개재물을 제어하면 되는 것이다. In the present invention, the area of the non-metallic inclusions within 10mm x 20mm around the 1 / 4t position of the steel to have a thickness of less than 1000㎛ 2 to improve the hydrogen-organic crack and low temperature toughness. The control of the non-metallic inclusions according to the present invention can be obtained through the control of the process conditions in the conventional secondary refining process, for example, the secondary refining process is carried out in the degassing process such as Ar bubbling in LF and VTD or RH. The inclusions are controlled by Ar bubbling. The present invention is not necessarily limited to these process conditions, and the inclusions may be controlled by any method.

본 발명에서 비금속개재물을 강재의 t/4 위치에서 제어하는 것은, 만곡형 연속주조기의 경우 t/4 위치에서 비금속개재물이 가장 많이 집적한다. 따라서, 그 위치에서 개재물을 제어하면 강재 전체에서 개재물이 제어되는 것이다.In the present invention, the control of the non-metallic inclusions at the t / 4 position of the steel is, in the case of a curved continuous casting machine, the most non-metallic inclusions are accumulated at the t / 4 position. Therefore, when the inclusion is controlled at that position, the inclusion is controlled throughout the steel.

본 발명에 따라 강재의 t/4위치를 중심으로 면적 10mm × 20mm내에서 비금속개재물의 면적이 1000㎛2 이하를 가지는 슬라브를 재가열하여 열간압연한 다음, 냉각후에 권취하는데, 이를 구체적으로 설명한다. According to the present invention, a slab having an area of a nonmetallic inclusion of 1000 μm 2 or less within an area of 10 mm × 20 mm around a t / 4 position of steel is reheated and hot rolled, and then wound up after cooling, which will be described in detail.

먼저, 상기와 같이 조성되는 강 슬라브를 1150~1250℃에서 재가열한다. 상기 재가열 온도는 Nb계 석출물의 고용온도에 의해 결정되며, 본 발명의 성분범위에서는 1150℃ 이상에서 고용이 가능하며, 1250℃를 초과하면 강재의 결정립도가 매우 커져 인성이 저하될 수 있으므로 상기 재가열 온도는 1150~1250 ℃ 로 제한하는 것이 바람직하다.First, the steel slab formed as described above is reheated at 1150 ~ 1250 ℃. The reheating temperature is determined by the solid solution temperature of the Nb-based precipitate, in the component range of the present invention can be dissolved in more than 1150 ℃, and if the temperature exceeds 1250 ℃ the grain size of the steel is very large, the toughness may be lowered, so the reheating temperature 1150-1250 It is preferable to limit to ° C.

상기 재가열 후, 열간압연을 행하는데 본 발명에서는 내수소유기균열성 및 저온 인성을 확보하기 위한 측면에서 압연조건의 제어가 중요하다. Hot rolling is performed after the reheating, but in the present invention, it is important to control the rolling conditions in terms of securing hydrogen organic crack resistance and low temperature toughness.

상기 1150~1250℃의 온도에서 재가열 후, 미재결정 온도 이하에서 70% 이상의 압하량으로 열간압연한 다음, Ar3 변태점 이상에서 마무리 열간압연을 행한다.After the re-heating at a temperature of 1150 ~ 1250 ℃, hot-rolled at less than the non-recrystallized temperature of at least 70% rolling reduction is carried out, and then finish hot rolled at more than Ar 3 transformation point.

미재결정 온도 이하에서 압하량은 열연강재 미세조직의 결정립도 및 균일성에 매우 큰 영향을 끼치며, 결정립도 및 균일성은 수소유기균열 저항성 및 저온인성에 영향이 크다. 또한, 상기 압하량이 70% 미만의 경우 결정립도의 균질성이 저하되어 저온인성이 저하될 수 있으므로 상기 압하량은 70% 이상으로 제한하는 것이 바람직하다. Below the unrecrystallized temperature, the amount of reduction greatly affects the grain size and uniformity of the hot rolled steel microstructure, and the grain size and uniformity have a great influence on the hydrogen organic crack resistance and low temperature toughness. In addition, when the amount of the reduction is less than 70%, the homogeneity of the grain size may be lowered and thus the low-temperature toughness may be lowered.

또한, Ar3 변태점 미만의 온도에서는 페라이트 변태가 개시되어 내수소유기균열성이 매우 낮아지므로 상기 열간마무리압연 온도는 Ar3 변태점 이상으로 제한하는 것이 바람직하다.In addition, since the ferrite transformation is initiated at a temperature below the Ar 3 transformation point and the hydrogen-organic crack resistance is very low, the hot finishing rolling temperature is preferably limited to the Ar 3 transformation point or more.

여기서, 상기 미재결 온도 및 Ar3 변태점 온도는 일반적인 관계식을 이용하는 것으로, Here, the undetermined temperature and the Ar 3 transformation point temperature by using a general relationship,

상기 미재결정 온도 = 887 + 464×[C] + (6445×[Nb] - 644×√[Nb]) + (732×[V] - 230×√[V]) + 890×[Ti] + 363×[Al] - 357×[Si]The recrystallization temperature = 887 + 464 x [C] + (6445 x [Nb]-644 x √ [Nb]) + (732 x [V]-230 x √ [V]) + 890 x [Ti] + 363 × [Al]-357 × [Si]

Ar3 변태점 온도 = 910 - 310×[C] - 80×[Mn] - 20×[Cu] - 15×[Cr] - 80×[Mo] - 55×[Ni] - 0.35×(t-8) 이고, 상기 식에서 함량은 중량%이다.Ar 3 transformation temperature = 910-310 × [C]-80 × [Mn]-20 × [Cu]-15 × [Cr]-80 × [Mo]-55 × [Ni]-0.35 × (t-8) Wherein the content is weight percent.

상기 열간압연 종료 후, 10~30℃/sec의 속도로 450~600℃까지 냉각한 후 권취한다. 상기 냉각은 Ar3 변태점 온도 이상에서 개시해야 하며 그 미만의 온도에서 개시되는 경우, 냉각 전에 조대한 페라이트가 형성되어 인성을 저하시키는 원인이 될 수 있다. 또한, 상기 냉각 속도가 10℃/sec 미만의 경우 내수소유기균열성을 저하시키는 펄라이트 조직의 형성이 용이하며, 30℃/sec을 초과하면 베이나이트 형성이 용이할 수 있으므로, 상기 냉각속도는 110~30℃/sec로 제한하는 것이 바람직하다. After the end of the hot rolling, after cooling to 450 ~ 600 ℃ at a rate of 10 ~ 30 ℃ / sec is wound up. The cooling should be initiated above the Ar 3 transformation point temperature, and if initiated at a temperature below that, coarse ferrite may form prior to cooling, which may cause degradation of toughness. In addition, when the cooling rate is less than 10 ° C / sec it is easy to form a pearlite structure to lower the hydrogen organic crack resistance, and if it exceeds 30 ° C / sec bainite may be easily formed, the cooling rate is 110 It is preferable to limit to ˜30 ° C./sec.

또한, 상기 권취온도가 450℃ 미만인 경우 강재의 강성이 커져 권취가 어려울 수 있으며, 600℃를 초과하면 변태가 불안정하여 펄라이트 조직의 형성이 용이할 수 있으므로, 상기 권취온도는 450~600℃로 제한하는 것이 바람직하다.In addition, when the coiling temperature is less than 450 ℃ the rigidity of the steel may be difficult to wind the winding, and if it exceeds 600 ℃ the transformation is unstable to facilitate the formation of pearlite structure, the coiling temperature is limited to 450 ~ 600 ℃ It is desirable to.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같이 조성되는 발명강(1-2) 및 비교강(1-6)을 1150~1250℃ 범위에서 2~3시간 동안 재가열 다음, 하기 표2와 같은 압연조건에서 열간압연하여 두께 12mm로 압연 및 권취하였다. 상기와 같이 제조된 강재의 내수소유기균열성 및 저온인성 특성을 조사하였으며, 그 결과는 하기 표 2와 같다.Inventive steel (1-2) and comparative steel (1-6) to be prepared as shown in Table 1, after reheating for 2 to 3 hours in the range of 1150 ~ 1250 ℃, followed by hot rolling in the rolling conditions as shown in Table 2 below 12mm Rolled and wound. Hydrogen organic crack resistance and low temperature toughness characteristics of the steels prepared as described above were examined, and the results are shown in Table 2 below.

상기 강재의 내HIC성은 NACE TM0284에 따라서 1기압 H2S 가스로 포화된 5%NaCl + 0.5%CH3COOH 용액 중에서 행하였고, 초음파 탐상법에 의해 균열정도를 관찰하였다. 저온인성은 Charpy 충격시험을 하였으며, -80℃ 온도에서의 충격에너지값이 400J 이상의 경우 합격기준으로 설정하였다.The HIC resistance of the steel was carried out in a 5% NaCl + 0.5% CH 3 COOH solution saturated with 1 atm H 2 S gas in accordance with NACE TM 0284, and the degree of cracking was observed by ultrasonic inspection. Low temperature toughness was tested by Charpy impact test, and when the impact energy value at -80 ℃ was over 400J, it was set as acceptance criteria.

구분division CC SiSi MnMn PP SS AlAl NbNb VV TiTi CrCr CaCa Ca/SCa / S 비금속개재물 면적(㎛2)Nonmetallic Inclusion Area (㎛ 2 ) 발명강1Inventive Steel 1 0.0350.035 0.20.2 1.41.4 0.0100.010 0.0010.001 0.030.03 0.0530.053 0.0510.051 0.020.02 0.150.15 0.00250.0025 2.52.5 985985 발명강2Inventive Steel 2 0.0450.045 0.20.2 1.31.3 0.00890.0089 0.0010.001 0.030.03 0.0510.051 0.0480.048 0.020.02 0.480.48 0.00200.0020 2.02.0 852852 비교강1Comparative Steel 1 0.0380.038 0.20.2 1.31.3 0.00550.0055 0.00150.0015 0.030.03 0.050.05 0.0500.050 0.020.02 0.230.23 0.00150.0015 1.01.0 695695 비교강2Comparative Steel 2 0.0300.030 0.20.2 1.31.3 0.00750.0075 0.0070.007 0.030.03 0.0420.042 0.0320.032 0.0100.010 0.120.12 0.00320.0032 4.574.57 15231523 비교강3Comparative Steel 3 0.0300.030 0.20.2 1.31.3 0.00650.0065 0.0080.008 0.030.03 0.0420.042 0.0320.032 0.0150.015 0.120.12 0.00200.0020 2.52.5 11951195 비교강4Comparative Steel 4 0.0480.048 0.20.2 1.51.5 0.00450.0045 0.0010.001 0.030.03 0.0360.036 0.0420.042 0.020.02 0.310.31 0.00200.0020 22 916916 비교강5Comparative Steel 5 0.0410.041 0.20.2 1.61.6 0.00850.0085 0.0010.001 0.030.03 0.0510.051 0.0410.041 0.0120.012 0.420.42 0.00250.0025 2.52.5 16021602 비교강6Comparative Steel 6 0.0320.032 0.20.2 1.61.6 0.00960.0096 0.0010.001 0.030.03 0.0520.052 0.0510.051 0.020.02 0.320.32 0.00300.0030 33 503503

구분division 강종Steel grade 미재결정 압하율(%)Uncrystallized rolling reduction rate (%) 압연마무리온도(℃)Rolling Finish Temperature (℃) 냉각속도 (℃/sec)Cooling rate (℃ / sec) 권취온도 (℃)Winding temperature (℃) HIC (Car, %)HIC (Car,%) 충격에너지(J)Impact energy (J) 발명재1Invention 1 발명강1Inventive Steel 1 7272 850850 1818 540540 00 486486 발명재2Invention 2 발명강2Inventive Steel 2 8080 845845 2222 560560 00 469469 비교재1Comparative Material 1 발명강1Inventive Steel 1 7575 775775 2121 545545 2.52.5 413413 비교재2Comparative Material 2 발명강1Inventive Steel 1 7272 845845 33 520520 4.54.5 386386 비교재3Comparative Material 3 발명강2Inventive Steel 2 6363 855855 1515 650650 3.23.2 365365 비교재4Comparative Material 4 발명강2Inventive Steel 2 6464 850850 1717 520520 00 372372 비교재5Comparative Material 5 비교강1Comparative Steel 1 7575 842842 1616 545545 5.25.2 281281 비교재6Comparative Material 6 비교강2Comparative Steel 2 7575 850850 1818 500500 6.26.2 204204 비교재7Comparative Material7 비교강3Comparative Steel 3 8383 855855 1919 520520 2.12.1 402402 비교재8Comparative Material 8 비교강4Comparative Steel 4 7676 851851 1515 520520 3.63.6 412412 비교재9Comparative Material 9 비교강5Comparative Steel 5 7676 855855 1616 550550 3.23.2 214214 비교재10Comparative Material 10 비교강6Comparative Steel 6 7272 860860 1515 540540 00 385385

상기 표 2에서 나타난 바와 같이, 본 발명의 성분범위를 만족하는 발명강 (1,2)을 이용하여 본 발명의 제조방법에 따라 제조된 발명재(1,2)의 경우, HIC 0, 충격에너지 469J, 486J으로 우수한 내수소유기균열성 및 저온인성을 확보할 수 있었다. As shown in Table 2, in the case of the invention material (1,2) manufactured according to the production method of the present invention using the invention steel (1,2) satisfying the component range of the present invention, HIC 0, impact energy 469J and 486J were able to secure excellent hydrogen organic cracking resistance and low temperature toughness.

그러나, 본 발명의 성분범위를 만족하는 발명강(1,2)을 이용하더라도 본 발명의 제조방법에 따라 제조되지 않은 비교재(1-4)의 경우, 수소유기균열이 발생하거나 또는 저온인성이 우수한 강재를 확보할 수 없었다.However, even when using the inventive steel (1, 2) that satisfies the component range of the present invention, in the case of the comparative material (1-4) not manufactured according to the production method of the present invention, hydrogen organic cracking or low temperature toughness Could not secure excellent steels.

또한, 본 발명의 성분범위를 만족하지 않는 비교재(1~10)의 경우, 본 발명에서 목표로 하는 내수소유기균열성 및 저온인성을 확보할 수 없었는데, 특히 본 발명이 목표로 하는 비금속개재물의 면적을 만족하지 않는 비교재 6,7 및 9의 경우 압연조건은 만족함에도 HIC 특성과 저온 인성이 열위함을 알 수 있고, Ca/S비가 낮은 비교재 5와 Ca/S비가 높은 비교재 6 모두 HIC 특성과 저온 인성이 열위함을 확인할 수 있었다.In addition, in the case of the comparative materials (1 to 10) that do not satisfy the component range of the present invention, it was not possible to secure the hydrogen cracking resistance and low temperature toughness targeted by the present invention, in particular the non-metallic inclusions targeted by the present invention In the case of comparative materials 6,7 and 9 which do not satisfy the area of, it is found that the HIC characteristics and low-temperature toughness are inferior even though the rolling conditions are satisfied, and the comparative material 5 having a low Ca / S ratio and the comparative material 6 having a high Ca / S ratio Both HIC characteristics and low temperature toughness were inferior.

상술한 바와 같이, 본 발명에 따르면, 비금속 개재물의 면적과 압연 제어에 의해 우수한 내수소유기균열성과 저온인성을 갖는 열연강재를 제공할 수 있는 효과가 있다.As described above, according to the present invention, it is possible to provide a hot rolled steel having excellent hydrogen-organic crack resistance and low temperature toughness by controlling the area and rolling control of the nonmetallic inclusion.

Claims (2)

중량%로, C : 0.02~0.05%, Si : 0.05~0.5%, Mn : 0.5~1.5%, P : 0.01% 이하, S : 0.001% 이하, Al : 0.02~0.05%, Nb : 0.04~0.06%, V : 0.04~0.06%, Ti : 0.005~0.02%, Cr : 0.1 ~ 0.3%, Ca : 0.0015~0.003%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ca 및 S가 1.5≤Ca/S≤4를 만족하며, 비금속 개재물의 면적이 t/4 위치를 중심으로 면적 10mm × 20mm 내에 1000㎛2 이하인 내수소유기균열성과 저온인성이 우수한 열연강재.By weight%, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 to 0.05%, Nb: 0.04 to 0.06% , V: 0.04% to 0.06%, Ti: 0.005% to 0.02%, Cr: 0.1% to 0.3%, Ca: 0.0015% to 0.003%, remaining Fe and other inevitable impurities, and Ca and S are 1.5≤Ca / S≤ The hot rolled steel material which satisfies 4 and is excellent in hydrogen-organic cracking resistance and low temperature toughness whose base metal inclusion area is 1000 micrometers 2 or less in the area of 10 mm x 20 mm centering on t / 4 position. 중량%로, C : 0.02~0.05%, Si : 0.05~0.5%, Mn : 0.5~1.5%, P : 0.01% 이하, S : 0.001% 이하, Al : 0.02~0.05%, Nb : 0.04~0.06%, V : 0.04~0.06%, Ti : 0.005~0.02%, Cr : 0.1 ~ 0.3%, Ca : 0.0015~0.003%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ca 및 S가 1.5≤Ca/S≤4를 만족하며, 비금속 개재물의 면적이 t/4 위치를 중심으로 면적 10mm × 20mm 내에 1000㎛2 이하인 강 슬라브를 1150℃~1250℃에서 재가열하고, 미재결정 온도 이하에서 70% 이상의 압하량으로 열간압연한 다음, Ar3 변태점 이상에서 마무리 열간압연하고, 열간압연 종료 후 10~30℃/sec의 속도로 450~600℃까지 냉각한 후 권취하는 내수소유기균열성과 저온인성이 우수한 열연강재의 제조방법.By weight%, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 to 0.05%, Nb: 0.04 to 0.06% , V: 0.04% to 0.06%, Ti: 0.005% to 0.02%, Cr: 0.1% to 0.3%, Ca: 0.0015% to 0.003%, remaining Fe and other inevitable impurities, and Ca and S are 1.5≤Ca / S≤ satisfies 4, and re-heating the steel slab 1000㎛ 2 or less in the non-metallic inclusions in an area of t / 4 in the center area of 10mm × 20mm a location in 1150 ℃ ~ 1250 ℃ and hot below the non-recrystallized temperature of at least 70% rolling reduction After rolling, finish hot rolling at the Ar 3 transformation point or more, and after the end of hot rolling, manufacture the hot rolled steel having excellent resistance to hydrogen organic cracking and low temperature toughness after cooling to 450-600 ° C at a rate of 10-30 ° C / sec. Way.
KR1020060110520A 2006-11-09 2006-11-09 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same KR100832982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060110520A KR100832982B1 (en) 2006-11-09 2006-11-09 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060110520A KR100832982B1 (en) 2006-11-09 2006-11-09 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20080042296A true KR20080042296A (en) 2008-05-15
KR100832982B1 KR100832982B1 (en) 2008-05-27

Family

ID=39649036

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060110520A KR100832982B1 (en) 2006-11-09 2006-11-09 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100832982B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957973B1 (en) * 2007-12-28 2010-05-17 주식회사 포스코 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation
KR100979046B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
KR20180072499A (en) 2016-12-21 2018-06-29 주식회사 포스코 High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243737A (en) * 1986-04-15 1987-10-24 Kobe Steel Ltd Steel sheet having superior resistance to hydrogen induced cracking
KR100435445B1 (en) * 1996-10-22 2004-08-25 주식회사 포스코 Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979046B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
KR100957973B1 (en) * 2007-12-28 2010-05-17 주식회사 포스코 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation
KR20180072499A (en) 2016-12-21 2018-06-29 주식회사 포스코 High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same

Also Published As

Publication number Publication date
KR100832982B1 (en) 2008-05-27

Similar Documents

Publication Publication Date Title
KR101485236B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
KR101485237B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP2019504210A (en) Steel for pressure vessels excellent in resistance to hydrogen induced cracking (HIC) and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP2011225980A (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
US9994941B2 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
KR20190042022A (en) METHOD FOR MANUFACTURING STRENGTH STEEL STRIP WITH IMPROVED CHARACTERISTICS FOR ADDITIONAL TREATMENT
KR20120049622A (en) Ultra high strength cold rolled steel sheet, galvanized steel sheet and method for manufacturing thereof
CN107208207B (en) High-strength steel sheet and method for producing same
WO2016157257A1 (en) High-strength steel sheet and production method therefor
CN115216688B (en) 800 MPa-grade hot-rolled low-alloy high-strength steel, steel matrix thereof and preparation method thereof
KR20080042296A (en) Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
JP2007231352A (en) Precipitation hardening high strength steel sheet and its production method
KR20130131105A (en) High strength thick hot rolled steel plate having exellent hydrogen induced crack resistance and method for manufacturing the same
KR101657812B1 (en) Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same
KR101988763B1 (en) High-strength steel sheet having excellent formability and quality of surface, and method for manufacturing thereof
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR100979046B1 (en) Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
US11603574B2 (en) High-ductility high-strength steel sheet and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130513

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140521

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 11