KR100957973B1 - Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation - Google Patents

Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation Download PDF

Info

Publication number
KR100957973B1
KR100957973B1 KR1020070140115A KR20070140115A KR100957973B1 KR 100957973 B1 KR100957973 B1 KR 100957973B1 KR 1020070140115 A KR1020070140115 A KR 1020070140115A KR 20070140115 A KR20070140115 A KR 20070140115A KR 100957973 B1 KR100957973 B1 KR 100957973B1
Authority
KR
South Korea
Prior art keywords
cold deformation
less
hydrogen
weight
steel
Prior art date
Application number
KR1020070140115A
Other languages
Korean (ko)
Other versions
KR20090072115A (en
Inventor
양부영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070140115A priority Critical patent/KR100957973B1/en
Publication of KR20090072115A publication Critical patent/KR20090072115A/en
Application granted granted Critical
Publication of KR100957973B1 publication Critical patent/KR100957973B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 비금속개재물의 크기 및 압연조건 제어를 통하여 냉간변형 하에서 내 사우어 특성이 우수한 열연강재를 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a hot rolled steel having excellent sour resistance under cold deformation through controlling the size and rolling conditions of non-metallic inclusions.

상기 목적을 달성하기 위한 본 발명의 냉간변형 하에서 내 사우어 특성이 우수한 열연강판은 본 발명의 냉간변형 하에서 내 사우어 특성이 우수한 열연강판은 중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S: 0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Cu: 0.25% 이하(0%를 포함하지 않음), Ni:0.25%이하(0%를 포함하지 않음), Nb: 0.04~0.06%(0%를 포함하지 않음), V: 0.04~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003%와 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 비금속개재물이 존재하고, 상기 비금속개재물의 면적이 1000㎛2 이하를 가지며, 냉간변형 전후 경도차와 수소투과량이 존재하며, 상기 냉간변형 전후 경도차와 수소투과량이 하기 수식1을 만족하는 것을 특징으로 한다.Hot-rolled steel sheet having excellent sour resistance under cold deformation of the present invention for achieving the above object is a hot rolled steel sheet having excellent sour resistance under cold deformation of the present invention by weight%, C: 0.02 ~ 0.05%, Si: 0.05 ~ 0.5 %, Mn: 0.5-1.5%, P: 0.01% or less (without 0%), S: 0.001% or less (without 0%), Al: 0.02-0.05%, Cu: 0.25% or less ( Does not contain 0%), Ni: 0.25% or less (does not contain 0%), Nb: 0.04 to 0.06% (does not contain 0%), V: 0.04 to 0.06%, Ti: 0.005 to 0.02% , Cr: 0.1-0.5%, Ca: 0.0015-0.003% and the rest contains Fe and other unavoidable impurities, non-metallic inclusions are present, the area of the nonmetallic inclusions is 1000㎛ 2 or less, and before and after cold deformation hardness difference And a hydrogen permeation amount, and the hardness difference and the hydrogen permeation amount before and after the cold deformation satisfy the following Equation 1.

[수식1] X/a + Y/b ≤ 2.0 [Equation 1] X / a + Y / b ≤ 2.0

(단, X: 냉간변형 전후 경도차, Y: 수소투과량, a 및 b: 상수 (a=10, b=25))(However, X: hardness difference before and after cold deformation, Y: hydrogen permeability, a and b: constant (a = 10, b = 25))

사우어, 수소유기균열, 황화물응력부식, 비금속개재물 Sour, hydrogen organic crack, sulfide stress corrosion, non-metallic inclusions

Description

냉간변형 하에서 내 사우어 특성이 우수한 열연강판{Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation}Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation

본 발명은 고압의 천연가스 수송에 이용되는 라인파이프 강재에 관한 것으로서, 보다 상세하게는 냉간변형 하에서 내 사우어 특성이 우수한 열연강재에 관한 것이다.The present invention relates to a line pipe steel used for transporting high pressure natural gas, and more particularly, to a hot rolled steel having excellent sour resistance under cold deformation.

최근 에너지 수요 증가에 따라 열악한 환경의 유전 혹은 가스전이 개발됨에 따라 극지방의 H2S 가스 함유량이 높은 원유 혹은 천연가스 개발이 진행되고 있어, H2S 가스에 의한 강재의 파손 특성이 우수한 강재가 요구되고 있다.In recent years, as oil demand or oil fields in poor environments have been developed in accordance with the increase in energy demand, development of crude oil or natural gas with high H 2 S gas content in the polar regions is in progress, and thus, steels having excellent breakage characteristics due to H 2 S gas are required. It is becoming.

수소유기균열의 발생기구는 강재와 황화수소 분위기와의 부식반응에 의해 강재 표면에서 발생되는 수소가 원자상태로 강중에 침입 및 확산하여 강중에서 분자화됨에 의해 발생되는 수소가스 압력이 작용하여 균열이 발생되는 것으로 알려져 있다. 또한 최근 에너지원으로써 천연가스 요구가 증가되면서 고압의 천연가스 수송에 따라 라인파이프 강재에 높은 응력이 적용될 수 있으며 이에 대해 내 사우어 특성이 우수한 고강도 강재가 요구되고 있다.The mechanism of generating hydrogen organic cracks is caused by the hydrogen gas pressure generated by the infiltration and diffusion of hydrogen generated from the steel surface into the atomic state by the corrosion reaction between the steel material and the hydrogen sulfide atmosphere. It is known to become. In addition, as the demand for natural gas increases as a source of energy in recent years, high stress may be applied to line pipe steels according to high pressure natural gas transportation, and high strength steel having excellent sour resistance is required.

종래기술로 탄질화물의 미세분산 방법, 제어압연 또는 중심편석을 저감하는 방법이 제안되고 있다. 그러나 조관 및 파이프라인 시공시 발생되는 냉간변형에 의해 이러한 방법들에 의해 얻어진 특성이 저하되는 문제가 발생된다.In the prior art, a method for finely dispersing carbonitrides, controlling rolling or reducing center segregation has been proposed. However, there is a problem that the characteristics obtained by these methods are deteriorated by the cold deformation generated in the pipe and pipeline construction.

또한, 냉간변형 후 변형에 따른 강재 내 전위밀도 증가에 따라 강재의 수소흡장량이 증가하고 이로 인하여 수소취화 특성이 저하되는 문제가 있다. In addition, there is a problem in that the hydrogen occlusion amount of the steel increases with increasing the dislocation density in the steel according to the deformation after cold deformation, thereby reducing the hydrogen embrittlement characteristics.

또한, 냉간변형시 응력집중이 발생되면 집중부에 수소가 집중되어 균열발생 및 전파가 용이해지는 문제가 발생한다.In addition, when stress concentration occurs during cold deformation, hydrogen is concentrated in the concentrated portion, which causes a problem of easy cracking and propagation.

본 발명자는 냉간변형을 가한 상태에서 내 사우어 특성을 조사한 결과, 경도편차와 수소투과량에 따라 특성의 차이가 발생하는 것을 알 수 있었다. As a result of examining the sour characteristics in the state in which the cold deformation was applied, the inventors found that the characteristic difference occurs depending on the hardness deviation and the hydrogen permeation amount.

따라서 본 발명은 비금속개재물의 크기 및 미세조직 제어를 통하여 냉간변형 하에서 내 사우어 특성이 우수한 열연강재를 제공하는 것을 그 목적으로 한다.Accordingly, an object of the present invention is to provide a hot rolled steel having excellent sour resistance under cold deformation through controlling the size and microstructure of the nonmetallic inclusion.

상기 목적을 달성하기 위한 본 발명의 냉간변형 하에서 내 사우어 특성이 우수한 열연강판은 중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S: 0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Cu: 0.25% 이하(0%를 포함하지 않음), Ni:0.25%이하(0%를 포함하지 않음), Nb: 0.04~0.06%(0%를 포함하지 않음), V: 0.04~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003%와 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 비금속개재물이 존재하고, 상기 비금속개재물의 면적이 1000㎛2 이하를 가지며, 냉간변형 전후 경도차와 수소투과량이 존재하며, 상기 냉간변형 전후 경도차와 수소투과량이 하기 수식1을 만족하는 것을 특징으로 한다.Hot-rolled steel sheet having excellent sour resistance under cold deformation of the present invention for achieving the above object is by weight, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less (Does not contain 0%), S: 0.001% or less (does not contain 0%), Al: 0.02 to 0.05%, Cu: 0.25% or less (does not contain 0%), Ni: 0.25% or less ( Does not contain 0%), Nb: 0.04 to 0.06% (does not contain 0%), V: 0.04 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.5%, Ca: 0.0015 to 0.003% And the remainder include Fe and other unavoidable impurities, the non-metallic inclusions are present, the area of the nonmetallic inclusions is 1000㎛ 2 or less, the hardness difference before and after the cold deformation and the hydrogen permeability exists, and the hardness difference before and after the cold deformation Hydrogen permeation is characterized by satisfying the following formula (1).

[수식1] X/a + Y/b ≤ 2.0 [Equation 1] X / a + Y / b ≤ 2.0

(단, X: 냉간변형 전후 경도차, Y: 수소투과량, a 및 b: 상수 (a=10, b=25))(However, X: hardness difference before and after cold deformation, Y: hydrogen permeability, a and b: constant (a = 10, b = 25))

본 발명에 의할 경우 강재의 비금속개재물의 크기 및 압연조건의 제어를 통하여 내 수소유기균열성 및 황화물 응력부식 특성이 우수한 열연강판을 제공할 수 있는 효과가 있다.According to the present invention has the effect of providing a hot rolled steel sheet excellent in hydrogen organic crack resistance and sulfide stress corrosion characteristics through the control of the size and rolling conditions of the non-metallic inclusions of the steel.

이하, 본 발명의 성분범위에 대하여 구체적으로 설명한다.Hereinafter, the component range of this invention is demonstrated concretely.

C: 0.02~0.05중량%C: 0.02-0.05 wt%

상기 C는 강을 강화시키는데 가장 경제적이며 효과적인 합금성분으로, 0.02중량% 미만을 첨가되면 Nb, V 또는 Ti와 결합하여 강을 강화시키는 효과가 매우 적고, 0.05중량%를 초과하여 첨가되면 내 HIC 성을 저하시키는 중심편석이 증대되므로 그 함량을 0.02~0.05중량%로 제한하는 것이 바람직하다.The C is the most economical and effective alloying component to strengthen the steel, when less than 0.02% by weight of the combination of Nb, V or Ti is very effective to strengthen the steel, when added in excess of 0.05% by weight HIC resistance It is preferable to limit the content to 0.02 to 0.05% by weight since the central segregation to decrease the increase.

Si: 0.05~0.5중량%Si: 0.05-0.5 wt%

상기 Si는 탈산 및 고용강화에 유효한 성분으로, 0.05중량% 미만 첨가되면 탈산효과를 얻기 어렵고, 0.5중량%를 초과하여 첨가되면 용접성 및 취성을 저하시키므로, 그 함량을 0.05~0.5중량%로 제한하는 것이 바람직하다.The Si is an effective component for deoxidation and solid solution strengthening, and when it is added less than 0.05% by weight, it is difficult to obtain a deoxidation effect, and when it is added in excess of 0.5% by weight, the weldability and brittleness are reduced. It is preferable.

Mn: 0.5~1.5중량%Mn: 0.5-1.5 wt%

상기 Mn은 강도 및 인성 확보를 위하여 필수적인 성분으로, 0.5중량% 미만 첨가되면 강도와 인성을 확보하기 어렵고, 1.5중량%를 초과하여 첨가되면 연주시 중심편석을 조장하여 충격인성 및 내 HIC 성을 저하시키므로, 그 함량을 0.5~1.5중량%로 제한하는 것이 바람직하다.The Mn is an essential component for securing strength and toughness. If it is added less than 0.5% by weight, it is difficult to secure strength and toughness, and when it is added in excess of 1.5% by weight, Mn promotes central segregation during performance, thereby reducing impact toughness and HIC resistance. Therefore, it is preferable to limit the content to 0.5 to 1.5% by weight.

P: 0.01중량% 이하(0%를 포함하지 않음)P: 0.01% by weight or less (does not include 0%)

상기 P의 함량이 0.01중량%를 초과하여 첨가되면 연주시 Mn과 함께 중심편석을 조장하여 충격인성 및 유화물응력균열 저항성을 저하시킬 뿐만 아니라 용접성도 저하시키므로, 그 함량을 0.01중량% 이하로 제한한다.When the content of P is added in excess of 0.01% by weight, it promotes central segregation with Mn when playing, thereby reducing impact toughness and emulsion stress cracking resistance as well as reducing weldability, and thus limiting the content to 0.01% by weight or less. .

S: 0.001중량% 이하(0%를 포함하지 않음)S: 0.001% by weight or less (does not include 0%)

상기 S는 강중에서 Mn과 함께 MnS를 형성하여 취성을 크게 저하시키는 성분으로, 0.001중량%를 초과하여 함유되면 수소유기균열 저항성을 크게 감소시키므로, 그 함량을 0.001중량% 이하로 제한하는 것이 바람직하다.S is a component that greatly reduces brittleness by forming MnS together with Mn in steel. When S is contained in an amount exceeding 0.001% by weight, the hydrogen organic cracking resistance is greatly reduced, and the content thereof is preferably limited to 0.001% by weight or less. .

Al: 0.02~0.05중량%Al: 0.02-0.05 wt%

상기 Al은 Si와 함께 탈산작용을 하는 성분으로, 0.02중량% 미만 첨가되면 탈산효과를 얻기 어렵고, 0.05중량%를 초과하여 첨가되면 알루미나 집합체를 증가시켜 내수소유기균열성을 저하시키므로, 그 함량을 0.02~0.05중량%로 제한하는 것이 바람 직하다.Al is a component that deoxidizes with Si, and when it is added less than 0.02% by weight, it is difficult to obtain a deoxidation effect, and when it is added in excess of 0.05% by weight, the alumina aggregate is increased to lower the hydrogen-organic crack resistance. It is recommended to limit it to 0.02 ~ 0.05% by weight.

Nb: 0.04~0.06중량%, V: 0.04~0.06중량%Nb: 0.04-0.06 wt%, V: 0.04-0.06 wt%

상기 Nb 및 V는 소량 첨가에 의해 석출강화 효과를 나타내는 성분으로, 본 발명의 탄소범위에서는 각각 0.06중량% 초과시 석출강화에 의한 강도증가가 크지 않으므로, 그 함량을 각각 0.06중량% 이하로 제한하며, 0.04중량% 미만에서는 효과가 없다. 따라서 그 함량은 0.04~0.06중량%로 제한하는 것이 바람직하다.The Nb and V is a component showing the precipitation strengthening effect by the addition of a small amount, in the carbon range of the present invention, since the strength increase due to precipitation strengthening is more than 0.06% by weight, respectively, the content is limited to 0.06% by weight or less, It is not effective at less than 0.04% by weight. Therefore, the content is preferably limited to 0.04 to 0.06% by weight.

Ti: 0.005~0.02중량%Ti: 0.005-0.02 wt%

상기 Ti는 강중에서 TiN으로 석출되어 재가열시 오스테나이트의 결정립 성장을 억제함으로써 고강도 및 우수한 충격인성을 얻을 수 있게 하며 또한 TiC 등으로 석출되어 강을 강화하는 역할을 한다. 그러나, 본 발명의 탄소범위에서 상기 Ti의 함량이 0.005중량%는 그 효과를 얻기위한 최소량이며, 0.02중량%를 초과하면 상기 효과가 크지 않으므로, 그 함량을 0.005~0.02중량% 이하로 제한하는 것이 바람직하다.The Ti is precipitated with TiN in the steel to suppress the grain growth of austenite when reheated to obtain high strength and excellent impact toughness, and also precipitated by TiC, etc. to strengthen the steel. However, in the carbon range of the present invention, the content of Ti is 0.005% by weight, which is the minimum amount for obtaining the effect. If the content exceeds 0.02% by weight, the effect is not large. Therefore, the content of the Ti is limited to 0.005 to 0.02% by weight. desirable.

Cr: 0.1~0.5중량%Cr: 0.1-0.5 wt%

상기 Cr은 강도증가 및 내식성 확보를 위해 첨가된다. 0.1중량% 미만 첨가되면 상기 효과가 적고, 0.5중량%를 초과하여 첨가되면 국부부식 발생 위험이 증대되므로, 그 함량을 0.1~0.5중량%로 제한하는 것이 바람직하다.The Cr is added to increase strength and ensure corrosion resistance. If the amount is less than 0.1% by weight, the above effect is less. If the amount is added more than 0.5% by weight, the risk of local corrosion is increased, so the content is preferably limited to 0.1 to 0.5% by weight.

Cu: 0.25% 이하(0%를 포함하지 않음), Ni: 0.25% 이하(0%를 포함하지 않음)Cu: 0.25% or less (does not contain 0%), Ni: 0.25% or less (does not contain 0%)

Cu와 Ni은 강재 강도를 증가시키고 결정립을 미세화하는 효과를 가진다. 하지만 NACE 용액 A 조건에서는 내식성을 저하시키는 역할을 하는 것을 실험을 통하여 관찰되었다. 0.25% 초과하여 첨가하는 경우 강도증가 역할을 하나, 내식성 저하가 현저히 나타나기 때문에 0.25% 이하로 제한하며 이 범위에서는 Cr 첨가 함께 첨가되는 경우 내식성 저하 효과가 거의 나타나지 않는다.Cu and Ni have the effect of increasing the steel strength and miniaturizing grains. However, it was observed through the experiment that the role of reducing the corrosion resistance in NACE solution A conditions. When added in excess of 0.25%, the strength increases, but the corrosion resistance is markedly lowered, so it is limited to 0.25% or less. In this range, when the addition of Cr is added, the effect of reducing corrosion resistance is hardly observed.

Ca: 0.0015~0.003중량%Ca: 0.0015 to 0.003 wt%

상기 Ca는 유화물계 개재물의 형상을 구상화시킴으로써 수소유기균열발생 기점을 억제하는 역할을 하는 성분으로, 0.0015중량% 미만 첨가되면 상기 효과를 얻기가 어렵고, 0.003중량%를 초과하여 첨가되면 비금속개재물 양이 오히려 증가하여 수소유기균열 저항성을 저하시키므로, 그 함량을 0.0015~0.003중량%로 제한하는 것이 바람직하다.The Ca is a component that suppresses the origin of hydrogen organic crack generation by spheroidizing the shape of the emulsion-based inclusions, it is difficult to obtain the effect when added less than 0.0015% by weight, the amount of non-metallic inclusions is added more than 0.003% by weight Rather, it increases and decreases the hydrogen organic crack resistance, it is preferable to limit the content to 0.0015 ~ 0.003% by weight.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

(1) 비금속개재물의 면적 제한(1) Area limitation of nonmetallic inclusions

강재에 필수불가결하게 존재하는 비금속개재물은 열간압연단계에서 압연방향으로 파쇄되거나 연신되어 수소유기균열 혹은 황화물응력부식의 원인 역할을 하게 된다. 따라서 압연 전 강재의 비금속개재물을 제한함으로 내 사우어 특성을 향상시킬 수 있다. 1000㎛2 이하를 가지는 경우 내 사우어 특성 및 저온인성이 매우 우수하다. Non-metallic inclusions, which are indispensable in steel materials, are crushed or stretched in the rolling direction in the hot rolling step, and play a role of hydrogen organic crack or sulfide stress corrosion. Therefore, by limiting the non-metallic inclusions of the steel before rolling can improve the sour resistance. When it has 1000 micrometer <2> or less, sour resistance and low temperature toughness are very excellent.

(2) 변형 전후 경도차와 수소투과량의 관계 제한(2) Limiting the relationship between hardness difference and hydrogen permeation amount before and after deformation

변형된 강재는 가공경화 현상를 나타내게 되며, 이러한 가공경화는 재료내의 전위밀도 증가에 기인한다. 이러한 전위증가는 강재내의 수소흡장을 증가시며, 또한 강재의 수소투과량을 증가시키는 원인으로 작용한다. 수소흡장 및 수소투과량의 증가로 수소유기균열 혹은 황화물응력부식 개시에 필요한 수소량을 쉽게 넘어서게 되며, 이에 따라서 내 사우어 특성이 저하되는 원인이 된다. 따라서 다음과 같은 경도변화 및 수소투과량의 관계를 만족시키는 경우 냉간변형 후에도 내 사우어 특성저하가 감소된다.Deformed steel exhibits a work hardening phenomenon, which is due to an increase in dislocation density in the material. This increase in potential increases the hydrogen occlusion in the steel and also acts as a cause of increasing the hydrogen permeation of the steel. The increase in the amount of hydrogen occlusion and hydrogen permeation easily exceeds the amount of hydrogen required to initiate the hydrogen organic crack or sulphide stress corrosion, thereby causing a decrease in the sour properties. Therefore, when satisfactory relationship between hardness change and hydrogen permeation is satisfied as follows, sour resistance deterioration is reduced even after cold deformation.

[수식1] X/a + Y/b ≤ 2.0 [Equation 1] X / a + Y / b ≤ 2.0

(단, X: 냉간변형 전후 경도차, Y: 수소투과량, a 및 b: 상수 (a=10, b=25))(However, X: hardness difference before and after cold deformation, Y: hydrogen permeability, a and b: constant (a = 10, b = 25))

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.

상기 조성을 가지는 강 슬라브를 1150~1250℃ 범위에서 재가열한 후, 통상의 열간압연 조건하에서 압연한 후, 권취를 행한다. After reheating the steel slab having the above composition in the range of 1150 to 1250 ° C., the steel slab is rolled under ordinary hot rolling conditions and then wound.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예1)Example 1

하기 표 1과 같이 조성되는 강을 실험실에서 1150~1250℃ 범위에서 2~3시간 동안 재가열한 후, 통상의 열간압연 조건하에서 두께 12mm 두께로 압연, 550℃ 에서 권취모사하였다. 상기와 같이 제조된 강재에서 지름 50mm, 두께 10mm 의 시편을 가공하여 표면연마 및 탈지공정을 거쳐 1기압 H2S 가스로 포화된 5%NaCl + 0.5%CH3COOH 용액 중에서 100시간 침적 후 부식속도를 측정하였다. 측정결과를 표 1에 나타내었다. After reheating the steel composition as shown in Table 1 in the laboratory for 2 to 3 hours in the range of 1150 ~ 1250 ℃, rolled to a thickness of 12mm thick under ordinary hot rolling conditions, was wound at 550 ℃. Corrosion rate after 100 hours deposition in 5% NaCl + 0.5% CH 3 COOH solution saturated with 1 atm H 2 S gas through surface polishing and degreasing process by processing specimens of diameter 50mm and thickness 10mm from the steel produced as described above Was measured. The measurement results are shown in Table 1.

구분division CC SiSi MnMn PP SS AlAl NbNb VV TiTi CrCr CaCa CuCu NiNi 부식속도 (mpy)Corrosion rate (mpy) 강재1Steel 1 0.0300.030 0.230.23 1.271.27 0.00650.0065 0.0080.008 0.030.03 0.0420.042 0.0320.032 0.0150.015 -- 0.0020.002 0.170.17 0.200.20 11.211.2 강재2Steel 2 0.0450.045 0.220.22 1.301.30 0.00890.0089 0.0010.001 0.030.03 0.0510.051 0.0480.048 0.0100.010 -- 0.0020.002 0.280.28 -- 8.98.9 강재3Steel 3 0.0380.038 0.220.22 1.301.30 0.00550.0055 0.00150.0015 0.030.03 0.050.05 0.0500.050 0.0110.011 -- 0.00150.0015 -- 0.210.21 12.112.1 강재4Steel 4 0.0350.035 0.230.23 1.281.28 0.0100.010 0.0010.001 0.030.03 0.0530.053 0.0510.051 0.0150.015 0.150.15 0.00250.0025 0.220.22 0.20.2 5.15.1 강재5Steel 5 0.0410.041 0.210.21 1.311.31 0.0090.009 0.0010.001 0.030.03 0.0520.052 0.0420.042 0.0110.011 0.210.21 0.00210.0021 0.250.25 0.020.02 4.34.3 강재Steel 0.0410.041 0.210.21 1.311.31 0.0090.009 0.0010.001 0.030.03 0.0520.052 0.0420.042 0.0110.011 0.130.13 0.00210.0021 0.020.02 0.020.02 4.84.8

상기 표 1에서 알 수 있듯이 Cu-Ni 혹은 Cu, Ni 첨가강 (강재 1 내지 3) 의 부식속도가 Cr 첨가강 (강재 4 내지 5) 보다 매우 큼을 알 수 있다.As can be seen in Table 1, it can be seen that the corrosion rate of Cu-Ni or Cu, Ni-added steels (steels 1 to 3) is much higher than that of Cr-added steels (steels 4 to 5).

(실시예2)Example 2

냉간변형 후 수소유기균열 및 황화물응력부식 특성을 조사하기 위하여 하기 표 2와 같이 조성되는 강을 1150~1250℃ 범위에서 재가열한 후 850℃ 이상에서 압연마무리를 하고 Ar3 온도 이상에서 냉각개시하여 500~600℃ 범위에서 권취를 하였다. 이와 같이 얻어진 강재로부터 수소유기균열저항성은 NACE TM0284에 따라서 1기압 H2S 가스로 포화된 5%NaCl + 0.5%CH3COOH 용액 중에서 행하였고, 초음파 탐상법에 의해 균열정도를 관찰하였다. 또한 황화물 응력부식특성은 NACE TM0177 Method A 에 따라 수행하였으며, 사용시편은 NACE TM0177 Method A의 Full Size 환봉시편을 사용하였다. 황화물응력부식시험 시 시험편에 강재 항복응력의 80%를 가하였다. 시험 전 냉간변형은 판상시편을 이용하여 통상의 인장시험기를 사용 인장 3%의 변형을 가한 후 수소유기균열 시험 혹은 황화물응력부식 시험을 수행하였다. 시험 수행 전 5kg 하중하에서 Vickers 경도를 변형 전후 시험편에 대하여 측정을 하였다. After cold deformation, after re-heating the steel composition as shown in Table 2 in the range of 1150 ~ 1250 ℃ in order to investigate the hydrogen organic cracking and sulfide stress corrosion characteristics, rolling finish at 850 ℃ or higher and start cooling at above Ar3 temperature to 500 ~ Winding was carried out in 600 degreeC range. As such hydrogen induced crack resistance resulting from the steel material was a row from one atmosphere saturated with H 2 S gas 5% NaCl + 0.5% CH 3 COOH solution according to NACE TM0284, a crack was observed extent by the ultrasonic flaw detection method. In addition, sulfide stress corrosion characteristics were performed according to NACE TM0177 Method A, and full size round bar specimens of NACE TM0177 Method A were used. In the sulfide stress corrosion test, 80% of the steel yield stress was applied to the specimen. Before the test, the cold deformation was performed using a plate test specimen and subjected to a hydrogen organic crack test or a sulfide stress corrosion test after adding a strain of 3% using a general tensile tester. Vickers hardness was measured on the specimen before and after deformation under 5kg load before the test.

또한 수소투과량은 ASTM G148에 나타난 전기화학적 방법을 이용하여 측정하였다. 시편은 지름 30mm, 두께 1mm 시편을 채취하여 표면을 1200번 연마지까지 표면연마를 하여 사용하였다. 수소침입측은 1기압 H2S 가스로 포화된 5%NaCl + 0.5%CH3COOH 용액을 사용하였으며, 수소측정측은 0.1N NaOH 용액을 사용하였다. 투과수소량을 측정하기 위하여 시험편에 포화감홍전극 기준+0.15V 를 가해주어 수소투과전류치를 측정하였다. 시편을 용액에 노출시켜 시간에 따라 시편의 두께방향으로 투과되는 수소의 투과전류치는 시간에 따라서 서서히 증가를 하여 최종적인 정상상태에 도달하게 된다. 이때 정상치의 전류를 수소투과량으로 정의하였다. 그 결과를 하기 표 3에 나타내었다.Hydrogen permeation was also measured using the electrochemical method shown in ASTM G148. Specimens were used with 30mm diameter and 1mm thick specimens, and the surface was ground to 1200 times abrasive paper. The hydrogen intrusion side used 5% NaCl + 0.5% CH 3 COOH solution saturated with 1 atm H 2 S gas, and the hydrogen measurement side used 0.1N NaOH solution. In order to measure the amount of permeated hydrogen, a hydrogen permeation current value was measured by applying a saturated red electrode reference + 0.15V to the test piece. The permeation current of hydrogen transmitted in the thickness direction of the specimen by exposing the specimen to the solution gradually increases with time to reach the final steady state. At this time, the normal current was defined as the hydrogen permeation amount. The results are shown in Table 3 below.

구분division CC SiSi MnMn PP SS AlAl NbNb VV TiTi CrCr CaCa CuCu NiNi AA 0.0300.030 0.230.23 1.271.27 0.00650.0065 0.00080.0008 0.030.03 0.0420.042 0.0320.032 0.0150.015 0.210.21 0.0020.002 0.170.17 0.200.20 BB 0.0350.035 0.230.23 1.281.28 0.0100.010 0.0010.001 0.030.03 0.0530.053 0.0510.051 0.0150.015 0.180.18 0.00250.0025 0.220.22 0.20.2 CC 0.0450.045 0.220.22 1.301.30 0.00890.0089 0.0010.001 0.030.03 0.0510.051 0.0480.048 0.0100.010 0.250.25 0.0020.002 0.280.28 0.020.02 DD 0.0380.038 0.220.22 1.301.30 0.00550.0055 0.000150.00015 0.030.03 0.050.05 0.0500.050 0.0110.011 0.200.20 0.00150.0015 0.020.02 0.210.21

구분 division 게재물 면적 (㎛2)Placement area (㎛ 2 ) 변형량 (%)Strain (%) 변형 전 비커스경도 (Hv)Vickers hardness before deformation (Hv) 변형 후 비커스경도 (Hv)Vickers hardness after deformation (Hv) △Hv△ Hv 수소 투과량 (μA/cm2)Hydrogen permeation amount (μA / cm 2 ) (수식1)값Equation 1 수소유기균열 면적비 (CAR,%)Hydrogen organic crack area ratio (CAR,%) 황화물 응력부식 (SSCC)Sulfide Stress Corrosion (SSCC) Pass/ NonPassPass / NonPass AA 754754 33 182182 194194 1212 2222 2.082.08 00 FF XX 857857 33 193193 202202 99 1919 1.661.66 00 NFNF OO 736736 33 176176 186186 1010 1818 1.721.72 0.10.1 NFNF OO 852852 33 195195 203203 88 1919 1.561.56 0.10.1 NFNF OO 953953 33 201201 222222 2121 3232 3.383.38 16.216.2 FF XX 930930 33 186186 209209 2323 3131 3.543.54 2.42.4 FF XX 754754 33 176176 195195 1919 2828 3.023.02 6.86.8 FF XX BB 11181118 33 185185 197197 1212 2222 2.082.08 2.52.5 NFNF XX 11191119 33 194194 203203 99 2626 1.941.94 0.80.8 FF XX 11991199 33 185185 191191 66 1616 1.241.24 1.21.2 NFNF XX 10741074 33 175175 196196 2121 3232 3.383.38 21.321.3 FF XX CC 865865 33 182182 190190 88 1919 1.561.56 0.10.1 NFNF OO 932932 33 203203 215215 1212 2121 2.042.04 3.43.4 FF XX 945945 33 176176 187187 1111 1818 1.821.82 0.20.2 NFNF OO 963963 33 195195 210210 1515 2525 2.52.5 2.12.1 FF XX 897897 33 201201 214214 1313 1919 2.062.06 5.15.1 NFNF XX 898898 33 184184 201201 1717 1818 2.422.42 5.45.4 NFNF XX 865865 33 176176 197197 2121 3232 3.383.38 12.112.1 FF XX 978978 33 185185 210210 2525 2929 3.663.66 8.28.2 FF XX 853853 33 194194 220220 2626 3838 4.124.12 11.211.2 FF XX DD 882882 33 183183 188188 55 1414 1.061.06 00 NFNF OO 996996 33 175175 186186 1111 1919 1.861.86 0.10.1 NFNF OO 807807 33 175175 194194 1919 2929 3.063.06 14.914.9 FF XX 834834 33 205205 227227 2222 3434 3.563.56 16.216.2 FF XX 943943 33 184184 212212 2828 3232 4.084.08 10.210.2 FF XX

[수식1] X/a + Y/b ≤ 2.0 [Equation 1] X / a + Y / b ≤ 2.0

(단, X: 냉간변형 전후 경도차, Y: 수소투과량, a 및 b: 상수 (a=10, b=25))(However, X: hardness difference before and after cold deformation, Y: hydrogen permeability, a and b: constant (a = 10, b = 25))

SSCC: NF(Non-Failure), F(Failure)SSCC: Non-Failure (NF), F (Failure)

Pass/NonPass 기준: CAR 0.5% 이하 및 Non-FailurePass / NonPass Standard: CAR 0.5% or less and Non-Failure

상기 표3에 나타난 것과 같이, 강종 B 경우 강재내의 비금속개재물 면적이 1000㎛2 이상을 가지는 강재로 (수식1)의 조건을 만족하는 경우가 있으나, 수소유기균열 특성이 나쁘거나, 황화물 응력부식특성이 열위함을 알 수 있다.As shown in Table 3, in the case of steel type B, a steel material having a nonmetallic inclusion area in the steel having a diameter of 1000 μm 2 or more may satisfy the condition of Equation 1, but the hydrogen organic cracking property is poor, or the sulfide stress corrosion property is poor. Inferiority can be seen.

강재 A, C, D는 비금속개재물 면적이 1000㎛2 이하를 가지는 강재로 (수식1) 조건인 2 이하 값을 가지는 경우 수소유기균열 및 황화물응력부식 특성이 우수하게 나타난다.Steels A, C, and D are steels with a nonmetallic inclusion area of 1000 µm 2 or less, and have excellent hydrogen organic cracking and sulfide stress corrosion characteristics when having a value of 2 or less (Equation 1).

Claims (1)

중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S: 0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Cu: 0.25% 이하(0%를 포함하지 않음), Ni:0.25%이하(0%를 포함하지 않음), Nb: 0.04~0.06%(0%를 포함하지 않음), V: 0.04~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003%와 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 비금속개재물이 존재하고, 상기 비금속개재물의 면적이 1000㎛2 이하를 가지며, 냉간변형 전후 경도차와 수소투과량이 존재하며, 상기 냉간변형 전후 경도차와 수소투과량이 하기 수식1을 만족하는 것을 특징으로 하는 냉간변형 하에서 내 사우어 특성이 우수한 열연강판.By weight, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less (not including 0%), S: 0.001% or less (not including 0%) Al: 0.02 to 0.05%, Cu: 0.25% or less (without 0%), Ni: 0.25% or less (without 0%), Nb: 0.04 to 0.06% (without 0%) ), V: 0.04 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.5%, Ca: 0.0015 to 0.003% and the remainder contain Fe and other unavoidable impurities, and nonmetallic inclusions are present The inclusions have an area of 1000 μm 2 or less, the hardness difference before and after cold deformation and hydrogen permeation are present, and the sour resistance under cold deformation is characterized in that the hardness difference before and after cold deformation and hydrogen permeation satisfy the following formula (1). Excellent hot rolled steel sheet. [수식1] X/a + Y/b ≤ 2.0 [Equation 1] X / a + Y / b ≤ 2.0 (단, X: 냉간변형 전후 경도차, Y: 수소투과량, a 및 b: 상수 (a=10, b=25))(However, X: hardness difference before and after cold deformation, Y: hydrogen permeability, a and b: constant (a = 10, b = 25))
KR1020070140115A 2007-12-28 2007-12-28 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation KR100957973B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070140115A KR100957973B1 (en) 2007-12-28 2007-12-28 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070140115A KR100957973B1 (en) 2007-12-28 2007-12-28 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation

Publications (2)

Publication Number Publication Date
KR20090072115A KR20090072115A (en) 2009-07-02
KR100957973B1 true KR100957973B1 (en) 2010-05-17

Family

ID=41329378

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070140115A KR100957973B1 (en) 2007-12-28 2007-12-28 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation

Country Status (1)

Country Link
KR (1) KR100957973B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983156B (en) * 2019-11-27 2021-12-10 上海大学 Rare earth corrosion-resistant steel rich in alloying rare earth elements and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243737A (en) 1986-04-15 1987-10-24 Kobe Steel Ltd Steel sheet having superior resistance to hydrogen induced cracking
JPH09192783A (en) * 1996-01-19 1997-07-29 Nippon Steel Corp Production of steel for high toughness electric resistance welded steel tube excellent in sour resistance
KR20030053757A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel
KR20080042296A (en) * 2006-11-09 2008-05-15 주식회사 포스코 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243737A (en) 1986-04-15 1987-10-24 Kobe Steel Ltd Steel sheet having superior resistance to hydrogen induced cracking
JPH09192783A (en) * 1996-01-19 1997-07-29 Nippon Steel Corp Production of steel for high toughness electric resistance welded steel tube excellent in sour resistance
KR20030053757A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel
KR20080042296A (en) * 2006-11-09 2008-05-15 주식회사 포스코 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Also Published As

Publication number Publication date
KR20090072115A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
KR101686389B1 (en) High-strength hot-rolled steel coil for electric resistance welded line pipe having excellent sour resistance and method for manufacturing the same
CN111094610B9 (en) Steel pipe and steel plate
EP3128029B1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
EP3604584B1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
WO2011105385A1 (en) Super-high strength cold-rolled steel sheet having excellent bending properties
EP3859027B1 (en) High strength steel plate for sour-resistant line pipe and method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
EP3604592B1 (en) High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
KR101271888B1 (en) Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
EP3719148A1 (en) High-hardness steel product and method of manufacturing the same
EP3128030B1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
EP3859026B1 (en) High strength steel plate for sour-resistant line pipe and method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
EP3199657B1 (en) Steel strip for electric-resistance-welded steel pipe or tube, electric-resistance-welded steel pipe or tube, and process for producing steel strip for electric-resistance-welded steel pipe or tube
KR101639909B1 (en) Thick hot rolled steel plate having exellent hydrogen induced crack resistance and sulfide stress cracking and method for manufacturing the same
EP3626841B1 (en) High strength micro alloyed steel seamless pipe for sour service and high toughness applications
KR100957973B1 (en) Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation
KR20130131105A (en) High strength thick hot rolled steel plate having exellent hydrogen induced crack resistance and method for manufacturing the same
KR20110075627A (en) Api steel plate for line pipe and method for manufacturing the api steel plate
EP3677698A1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
KR100979046B1 (en) Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
KR20200017025A (en) Ultra heavy gauge hot rolled steel plate having excellent strength and high DWTT toughness at low temperature and method for manufacturing thereof
KR101461730B1 (en) Hot-rolled steel sheet having excellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
KR100957938B1 (en) Steel materials having excellent resistance of hydrogen induced crack and sulfide stress crack, and method for manufacturing the same
KR102236850B1 (en) Hot rolled steel plate having exellent hydrogen induced crack resistance and tensile property at high temperature and method of manufacturing the same
KR101490561B1 (en) Hot-rolled steel sheet having excellent hydrogen induced crack resistance and yield ratio and method of manufacturing the same
KR20080051667A (en) Steel plate having excellent hydrogen induced cracking resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190508

Year of fee payment: 10