KR20030053757A - Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel - Google Patents

Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel Download PDF

Info

Publication number
KR20030053757A
KR20030053757A KR1020010083747A KR20010083747A KR20030053757A KR 20030053757 A KR20030053757 A KR 20030053757A KR 1020010083747 A KR1020010083747 A KR 1020010083747A KR 20010083747 A KR20010083747 A KR 20010083747A KR 20030053757 A KR20030053757 A KR 20030053757A
Authority
KR
South Korea
Prior art keywords
less
steel
stress corrosion
corrosion cracking
cracking resistance
Prior art date
Application number
KR1020010083747A
Other languages
Korean (ko)
Inventor
노광섭
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010083747A priority Critical patent/KR20030053757A/en
Publication of KR20030053757A publication Critical patent/KR20030053757A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: Provided is a method for manufacturing a line pipe steel with excellent sulfide stress corrosion cracking resistance by suppressing the formation of MnS inclusion. CONSTITUTION: The method includes the steps of reheating a steel slab comprising C 0.01 to 0.10 wt.%, 0.05 wt.% or less of Si, 0.20 wt.% or less of Mn, 0.015 wt.% or less of P, 0.01 wt.% or less of S, Al 0.01 to 0.1 wt.%, Ca 0.001 to 0.005 wt.%, a balance of Fe and incidental impurities to the temperature range of 1100 to 1300 deg.C, wherein the steel slab further comprises at least one element selected from 0.09 wt.% or less of Nb, 0.09 wt.% or less of V, 0.05 wt.% or less of Ti; hot rolling the reheated steel slab, wherein finish hot rolling temperature is 950 to 800°C; and coiling the hot rolled steel sheet at 500 to 700°C.

Description

유화물 응력 부식 균열 저항성이 우수한 라인파이프 강 및 그 제조방법 {Line Pipe Steel with Excellent Sulfide Stress Corrosion Cracking Resistance and Method for Manufacturing the Steel}Line Pipe Steel with Excellent Sulfide Stress Corrosion Cracking Resistance and Method for Manufacturing the Steel}

본 발명은 원유 혹은 천연가스수송용 라인파이프의 소재로 사용되는 유화물 응력 부식 균열 저항성이 우수한 라인파이프 강 및 그 제조방법에 관한 것으로서, 보다 상세하게는 Mn을 의도적으로 첨가하지 않는 유화물 응력 부식 균열 저항성이 우수한 Mn 비첨가형 라인파이프 강 및 그 제조방법에 관한 것이다.The present invention relates to a line pipe steel excellent in emulsion stress corrosion cracking resistance used as a raw material of the crude oil or natural gas transport line pipes, and to a method of manufacturing the same, and more specifically to the emulsion stress corrosion cracking resistance without intentionally adding Mn A superior Mn non-added linepipe steel and a method of manufacturing the same.

최근 H2S 함량이 높은 유전 혹은 가스전의 개발 및 수송효율을 높이기 위한 고압 수송에 따라서 원유 혹은 천연가스에 포함된 H2S 가스에 의한 라인파이프의 부식이 큰 문제가 되고 있고, 따라서, 유화물 응력 부식 균열 저항성이 요구되고 있다.In recent years, corrosion of line pipes due to H 2 S gas contained in crude oil or natural gas has become a big problem in accordance with high pressure transportation to improve the development and transportation efficiency of oil or gas fields with high H 2 S content. Corrosion cracking resistance is required.

현재 유화물 응력 부식 균열 저항성에 대해서는 수많은 특허가 출원/등록되어 있다.Numerous patents have been filed / registered for emulsion stress corrosion cracking resistance at present.

그 일례로, 최근 특개평 7-278659에서는 Cr을 첨가하여 유화물 응력 부식 균열 저항성을 향상시키는 방법을 제시하고 있고, 그리고 일특개평 6-293916에서는 Cu 첨가에 의한 유화물 응력 부식 균열 저항성을 향상시키는 방법을 제시하고 있다.For example, in Japanese Patent Laid-Open No. 7-278659, a method for improving emulsion stress corrosion cracking resistance by adding Cr is disclosed. Suggesting.

그러나, 상기한 방법들의 근원에는 기본적으로 Mn이 함유되어 있으며, 이로 인한 MnS의 형성으로 야기되는 유화물 응력 부식 균열 저항성의 손상을 방지하기 위해 Cr, Cu 등의 원소들이 첨가된다.However, the sources of the above methods basically contain Mn, and elements such as Cr and Cu are added to prevent the damage of the emulsion stress corrosion cracking resistance caused by the formation of MnS.

따라서, 유화물 응력 부식 균열 저항성을 향상시키기 위한 방법에 대하여 수 많은 연구들이 진행되어 왔으며, 그 결과중의 하나로서, 1999년 일본철강협회 주관의 제171.172회 서산기념기술강좌에 서술되어 있는 방법을 들수 있다.('강관의 주요제품과 제조법 개론', 1999년, 주우금속공업 강관사업부, p8 참조)Therefore, a number of studies have been conducted on the method for improving the emulsion stress corrosion cracking resistance, and one of the results is the method described in the 171.172 Seosan Commemorative Technical Lecture held by the Japan Iron and Steel Association in 1999. (See 'Overview of Major Products and Manufacturing Methods of Steel Pipes', 1999, Juwoo Metal Industry Steel Pipe Division, p. 8)

상기 강좌에는 유화물 응력 부식 균열 저항성을 향상시키기 위해서는 MnS의 형성을 방지하여야 하고 이를 위해서는 Mn 첨가량을 저감시키고 불순원소로 존재하는 S 함량을 극력 저감하여야 하고(10ppm 이하), Ca 첨가에 의한 개재물의 형상제어 실시, 진공처리에 의한 청정강 제조, 강괴 제조시의 중심편석을 억제하기 위한 P 함량 감소 (150ppm 이하), 수소침입 방지를 위한 Cu 첨가 등이 제시되어 있다.In this course, in order to improve emulsion stress corrosion cracking resistance, the formation of MnS should be prevented. For this purpose, the amount of Mn added should be reduced and the amount of S present as an impure element should be reduced as much as possible (10 ppm or less). Controlled execution, clean steel production by vacuum treatment, P content reduction (150 ppm or less) for suppressing central segregation during ingot production, Cu addition for hydrogen intrusion prevention, and the like are proposed.

이 중 특히 유화물 응력 부식 균열이 발생되는 기점으로 작용하는 연신상의 MnS 개재물의 역할은 매우 중요하다.Of these, the role of the MnS inclusions in the elongated phase, which act as a starting point of the emulsion stress corrosion cracking, is particularly important.

그러나, 실제로 상기와 같은 모든 처리를 실시하였다 하더라도 소재의 제조방법 및 가공열처리 기술 등에 따라 소재의 유화물 응력 부식 균열 저항성은 크게 변화되고 있다.However, even if all of the above treatments are actually performed, the emulsion stress corrosion cracking resistance of the material is greatly changed depending on the method of manufacturing the material and the heat treatment technology.

본 발명은 Mn을 첨가하지 않은 상태에서 기타 화학성분 및 제조공정을 적절히 제어하므로써 유화물 응력 부식 균열 저항성이 우수한 라인 파이프 강을 제공하고자 하는데, 그 목적이 있다.An object of the present invention is to provide a line pipe steel having excellent emulsion stress corrosion cracking resistance by appropriately controlling other chemical components and manufacturing processes without adding Mn.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로 C:0.01~0.10%, Si: 0.50% 이하, Mn: 0.0(무첨가) 또는 0.20% 이하, P:0.015%이하, S: 0.01%이하, Al: 0.01~0.1%, Ca: 0.001~0.005%를 기본으로 하고, 여기에 Nb: 0.09%이하, V: 0.09% 이하, 및 Ti: 0.05% 이하를 복합 혹은 단독 함유하고, Cu: 0.50% 이하, Ni: 0.50% 이하 및 Cr: 0.50% 이하를 단독 또는 복합으로 함유하고, 잔부 Fe 및 불가피한 불순물로 조성되는 유화물 응력 부식 균열 저항성이 우수한 라인파이프 강에 관한 것이다.In the present invention, C: 0.01 to 0.10%, Si: 0.50% or less, Mn: 0.0 (no addition) or 0.20% or less, P: 0.015% or less, S: 0.01% or less, Al: 0.01 to 0.1%, Ca : 0.001% to 0.005% based on Nb: 0.09% or less, V: 0.09% or less, and Ti: 0.05% or less, or a combination thereof alone, Cu: 0.50% or less, Ni: 0.50% or less and Cr : Relates to a linepipe steel containing 0.50% or less of a single or combination, and excellent in emulsion stress corrosion cracking resistance composed of residual Fe and unavoidable impurities.

또한, 본 발명은 상기한 본 발명의 유화물 응력 부식 균열 저항성이 우수한 라인파이프 강을 제조하는 방법에 관한 것이다.The present invention also relates to a method for producing line pipe steel excellent in the above-mentioned emulsion stress corrosion cracking resistance of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명 강의 화학성분을 제한한 이유에 대하여 설명한다.The reason for limiting the chemical composition of the steel of the present invention is explained.

상기 C는 강을 강화시키는데 가장 경제적이고 효과적인 합금원소이나, 다량 첨가시 용접성, 유화물 응력 부식 균열 저항성 등이 저하되기 때문에 본 발명에서는 0.01~0.10%로 제한한다.The C is the most economical and effective alloying element for strengthening the steel, but the weldability, emulsion stress corrosion cracking resistance, etc. are reduced when added in a large amount is limited to 0.01 to 0.10% in the present invention.

본 발명에서 C의 함량의 하한값을 0.01%로 설정하는 이유는 강을 강화시키기 위하여 첨가하는 Nb, V 혹은 Ti와 결합하여 효과를 발휘하는 최소량이기 때문이다.The reason for setting the lower limit of the content of C in the present invention to 0.01% is because it is a minimum amount that combines with Nb, V or Ti added to strengthen the steel to exert the effect.

한편, C를 다량 첨가시 취성문제를 일으키며, 대상의 펄라이트 형성에 의해 유화물응력 부식 균열 저항성을 저하시키므로, C의 함량의 상한값은 0.10%로 제한하는 것이 바람직하다.On the other hand, the addition of a large amount of C causes brittleness problems, and lowers the emulsion stress corrosion cracking resistance by the formation of the target pearlite, the upper limit of the content of C is preferably limited to 0.10%.

상기 Si은 일반적으로 용강의 탈산 및 고용강화효과를 갖는 원소로서, 그 함량이 0.50% 이상이 되면 용접성 등이 열화되기 때문에 0.5% 이하로 제한하는 것이 바람직하다.The Si is generally an element having the effect of deoxidation and solid solution strengthening of molten steel. If the content is 0.50% or more, the weldability and the like deteriorate, so it is preferable to limit it to 0.5% or less.

상기 Mn은 강도 및 인성 확보를 위하여 필수적인 원소로 통상 0.5%-2.0% 정도를 첨가시키는 것이 일반적이다.The Mn is generally added to about 0.5% -2.0% as an essential element for securing strength and toughness.

그러나, 본 발명에서는 Mn 을 다량 첨가하는 경우 연주시 중심편석을 조장하고 MnS 형성에 의한 충격인성 및 유화물 응력 부식 균열 저항성을 저하시키기 때문에 첨가하지 않거나 최대 0.2% 이하로 제한한다.However, in the present invention, when a large amount of Mn is added, it promotes central segregation during play and reduces impact toughness and emulsion stress corrosion cracking resistance due to MnS formation.

즉, 본 발명에 있어서 Mn은 의도적으로는 첨가하지 않으나, 다른 성분들을 첨가하기 위하여 합금철을 사용할 때 합금철에 존재하는 Mn 함량에 따라 0.2%까지 불가피하게 함유되는 것이며, 그 함량은 가능한 적은 것이 바람직하며, 그 함량의 상한은 0.2%로 제한한다.That is, in the present invention, Mn is not intentionally added, but inevitably contained up to 0.2% depending on the Mn content present in the ferroalloy when using ferroalloy to add other components, the content of which is as small as possible Preferably, the upper limit of the content is limited to 0.2%.

그러나, 후술하는 바와 같이 Mn이 0.2% 이하로 존재함에 따라 목적으로 하는 유화물 응력부식 균열 저항성이 열화되는 현상이 일어나기 때문에 적정량의 Cu, Ni, Cr 등을 단독 또는 복합첨가하므로써 유화물 응력부식 균열 저항성을 비약적으로 향상시킬 수 있다However, as described below, since Mn is present at 0.2% or less, the target emulsion stress corrosion cracking resistance is deteriorated. Thus, by adding an appropriate amount of Cu, Ni, Cr, etc. alone or in combination, the emulsion stress corrosion cracking resistance is increased. We can greatly improve

상기 P 는 연주시 Mn과 함께 중심편석을 조장하여 충격인성 및 유화물 응력 부식 균열 저항성을 저하시키고, 또한 용접성도 저하시키므로, 그 함량은 0.015%이하로제한하는 것이 바람직하다.P promotes central segregation with Mn during play, thereby lowering impact toughness and emulsion stress corrosion cracking resistance, and also lowering weldability, so that the content thereof is preferably limited to 0.015% or less.

상기 S 는 강 중에서 Mn과 함께 MnS를 형성하여 취성을 크게 저하시키고, 특히 유화물 응력 부식 균열 저항성을 크게 감소시키나 본 발명에서는 Mn을 거의 첨가하지 않기 때문에 0.01%이하로 제한하여도 무방하다.S forms MnS together with Mn in the steel to greatly reduce brittleness, and in particular, greatly reduces emulsion stress corrosion cracking resistance, but may be limited to 0.01% or less because Mn is hardly added in the present invention.

상기 Al은 일반적으로 탈산강에는 함유되는 원소로서, 적어도 0.01% 이상을 첨가하여야 탈산의 효과를 나타낸다.Al is generally an element contained in the deoxidized steel, and at least 0.01% or more must be added to exhibit the effect of deoxidation.

또한, 본 발명에서는 Si 첨가에 의한 탈산을 억제시켰기 때문에 Al 첨가에 의한 탈산 효과를 강화하기 위하여 최대 0.1% 까지 첨가시켰으며 Al을 다량 첨가 시에는 강도 증가의 효과까지 동반하는 부수 효과를 나타낸다.In addition, in the present invention, since deoxidation by addition of Si was suppressed, up to 0.1% was added in order to enhance the deoxidation effect by Al addition, and when a large amount of Al was added, it shows a side effect accompanied by the effect of increasing the strength.

상기 Ca는 강중 개재물인 MnS 형상을 제어하여 내취성을 향상시키는 원소로서 그 첨가효과를 얻기 위해서는 0.001%이상을 첨가하여야 하며, 0.005%이상 첨가되는 경우에는 Ca계 개재물이 다량 형성되어 오히려 내취성 및 용접성을 저하시키는 원인이 된다.The Ca is an element that improves the odor resistance by controlling the MnS shape of steel inclusions, and in order to obtain the effect of addition, more than 0.001% should be added. It causes a decrease in weldability.

따라서, 상기 의 함량은 0.001∼0.005%로 설정하는 것이 바람직하다.Therefore, the content of is preferably set to 0.001 to 0.005%.

상기 Nb 및 V는 소량 첨가에 의한 석출강화 효과를 나타내며, 각각 0.09% 이상에서는 석출강화에 의한 강도증가가 크지 않기 때문에 그 상한은 각각 0.09%로 한정하는 것이 바람직하다.The Nb and V show a precipitation strengthening effect by the addition of a small amount, and the upper limit is preferably limited to 0.09% because the strength increase due to precipitation strengthening is not large at 0.09% or more, respectively.

상기 Ti는 강 중에서 TiN으로 석출되어 재가열 시 오오스테나이트의 결정립 성장을 억제하므로써 고강도 및 우수한 충격인성을 얻을 수 있게 끔 하며 또한 TiC 등으로 석출되어 강을 강화하는 역할을 한다.The Ti is precipitated with TiN in the steel to suppress the grain growth of the austenite when reheated to obtain a high strength and excellent impact toughness, and also precipitated by TiC, etc. serves to strengthen the steel.

그러나, 상기 Ti의 함량이 0.05% 이상인 경우에는 그 효과가 크지 않으므로, 그 상한은 0.05%로 한정하는 것이 바람직하다.However, since the effect is not large when the content of Ti is 0.05% or more, the upper limit is preferably limited to 0.05%.

상기 Cu, Ni 및 Cr은 유화물응력 부식 균열을 방해하는 유용한 원소이며 동시에 본 발명에서는 Mn이 첨가도지 않은 상황에서 강의 강도를 증가시키고 결정립을 미세화하는데 효과적이기 때문에 첨가되는 원소이다.The Cu, Ni, and Cr are useful elements for preventing emulsion stress corrosion cracking, and at the same time, in the present invention, Mn is added because it is effective in increasing the strength of steel and miniaturizing grains.

상기 Cu, Ni 및 Cr의 각각의 상한을 각각 0.5% 이하로 정한 것은 첨가원소의 량을 증가시킴에 따라 경제성을 잃기 때문이다.The upper limit of each of Cu, Ni, and Cr is set at 0.5% or less because the economical efficiency is lost as the amount of the added element is increased.

상기와 같이 조성되는 강을 통상의 조건으로 열간압연 및 권취하므로써, 본 발명에서는 유화물 응력 부식 균열 저항성이 우수한 고강도 라인파이프 강을 제조할 수 있다.By hot rolling and winding the steel formed as described above under ordinary conditions, in the present invention, high strength line pipe steel excellent in emulsion stress corrosion cracking resistance can be produced.

본 발명은 열간압연 및 권취는 통상의 조건으로 행하면, 충분하고, 특별히 한정되지 않지만, 바람직한 가열온도는1100~1300℃정도이고, 압연종료 온도는 950~800℃이고, 그리고 권취온도는 500~700℃이다.In the present invention, hot rolling and winding are performed under ordinary conditions, and are not particularly limited. Preferably, the heating temperature is about 1100 to 1300 ° C, the rolling end temperature is 950 to 800 ° C, and the winding temperature is 500 to 700. ℃.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

표 1 에 나타낸 바와 같은 화학성분을 가지는 발명강과 비교강을 진공유도 용해로를 이용하여 잉고트를 제조한 후 열간압연하였다.Ingots were manufactured by hot-rolling the inventive steel and the comparative steel having the chemical composition as shown in Table 1 using a vacuum induction melting furnace.

열간압연 조건은 판재를 제조하기 위하여 상업 적용되고 있는 조건으로 하였다.Hot rolling conditions were made into the conditions which are commercially applied in order to manufacture a board | plate material.

즉, 1100~1300℃ 온도 범위에서 충분한 시간동안(1~3시간) 가열한 후, 압연종료 온도를 하기 표 2의 조건으로 하여 두께 12mm까지 압연하였으며 수냉각에 의해 하기표 2의 권취온도로 냉각하고 권취효과를 부여하기 위하여 그 온도에서 1 시간 유지 후 노냉하였다.That is, after heating for a sufficient time (1 to 3 hours) in the temperature range of 1100 ~ 1300 ℃, the rolling finish temperature was rolled up to 12mm thick under the conditions of Table 2 and cooled to the winding temperature of Table 2 by water cooling In order to impart a coiling effect, the resultant was cooled in a furnace after 1 hour at that temperature.

이와 같이 얻어진 열연강재를 이용하여 인장특성 및 유화물 응력 부식 균열 저항성을 조사하고, 그 결과를 하기 표 2에 나타내었다.Tensile properties and emulsion stress corrosion cracking resistance were investigated using the hot rolled steel thus obtained, and the results are shown in Table 2 below.

하기 표 2에서의 유화물 응력 부식 균열 저항성 평가는 1 기압의 H2S 가스로 포화된 상온의 5%NaCl 및 0.5% 초산이 혼합된 용액 중에서 행하였다.(NACE 시험규격 TM0177-96 기준)The evaluation of the emulsion stress corrosion cracking resistance in Table 2 was performed in a solution containing 5% NaCl and 0.5% acetic acid at room temperature saturated with 1 atm of H 2 S gas.

환형 인장시험편을 상기의 용액 중에 침적시킨 상태에서, 인장시험을 통하여 구해진 각 소재의 항복응력의 72%에 해당하는 응력을 가한 후 파괴여부를 비교 판단한 것이다.In the state in which the annular tensile test piece was immersed in the above-mentioned solution, a stress corresponding to 72% of the yield stress of each material obtained through the tensile test was applied, and then the fracture was determined.

하기 표 2에서 내SSCC성A는 유화물 응력 부식 균열 저항성 (Sulfide Stress Corrosion Cracking)항복응력의 72% 응력 부가 상태에서의 파단시간를 나타낸다.In the following Table 2, SSCC resistance A represents the break time at 72% stress addition state of the sulfide stress corrosion cracking (Sulfide Stress Corrosion Cracking) yield stress.

상기 표 2에 나타난 바와 같이, 본 발명에 따라 강 성분을 조성하는 경우(발명강5-8)에는 본 발명의 범위를 벗어나는 비교강(1-4)에 비하여 유화물응력부식 저항성이 우수함을 알 수 있다.As shown in Table 2, when forming a steel component according to the present invention (invention steel 5-8), it can be seen that the emulsion stress corrosion resistance is superior to the comparative steel (1-4) outside the scope of the present invention. have.

비교강(1-4)의 경우 Mn첨가가 없는데도 불구하고 유화물응력부식 저항성이 작게 나타나는 것은 Mn 비첨가에 따른 강의 강인성이 저하되고 결정립 조대화에 기인하는 것이다.In the case of comparative steel (1-4), even though there is no Mn addition, the resistance of emulsion stress corrosion is small is due to the decrease in toughness of the steel due to no Mn addition and grain coarsening.

즉, Mn을 첨가하지 않음에 따라 동일한 압연조건으로 제조하여도 결정립이 조대화되어 유화물 응력 부식 균열 저항성이 현저히 저하되는데 비하여 Cu, Ni, Cr 등을 첨가한 경우는 큰 변화없이 우수한 유화물 응력 부식 균열 저항성을 보여주고 있다.That is, even if it is manufactured under the same rolling conditions without adding Mn, crystal grains are coarsened and emulsion stress corrosion cracking resistance is remarkably lowered. However, when Cu, Ni, Cr, etc. are added, excellent emulsion stress corrosion cracking is not caused. It's showing resistance.

이상의 결과는 본 발명강이 H2S 함유 분위기에서 유화물 응력 부식 균열 저항성이 우수함을 보여주고 있다.The above results show that the inventive steel has excellent emulsion stress corrosion cracking resistance in an H 2 S containing atmosphere.

상술한 바와 같이, 본 발명은 Mn을 함유하지 않거나 극히 소량을 함유시키므로써 유화물 응력 부식 균열 저항성이 우수하고, 특히 제강공정에서 Mn과 결합되는 S의저감을 위한 노력을 완화시킬 수 있는 바, H2S함유 원유 및 천연가스용 파이프강재 분야에 보다 효과적으로 적용될 수 있는 효과가 있는 것이다.As described above, the present invention is excellent in emulsion stress corrosion cracking resistance by not containing Mn or containing a very small amount, and in particular, it is possible to alleviate efforts to reduce S combined with Mn in the steelmaking process. 2 S-containing crude oil and natural gas can be applied more effectively in the field of pipe steels.

Claims (2)

중량%로 C:0.01~0.10%, Si: 0.50% 이하, Mn: 0.20% 이하, P: 0.015%이하, S: 0.01%이하, Al: 0.01~0.1%, 및 Ca: 0.001~0.005%를 기본으로 하고, 여기에 Nb: 0.09%이하, V: 0.09% 이하, 및 Ti: 0.05% 이하를 복합 또는 단독 함유하고, Cu: 0.50% 이하, Ni: 0.50% 이하 및 Cr: 0.50% 이하를 단독 또는 복합으로 함유하고, 잔부 Fe 및 불가피한 불순물로 조성되는 것을 특징으로 하는 유화물 응력 부식 균열 저항성이 우수한 라인파이프 강By weight%, based on C: 0.01 to 0.10%, Si: 0.50% or less, Mn: 0.20% or less, P: 0.015% or less, S: 0.01% or less, Al: 0.01 to 0.1%, and Ca: 0.001 to 0.005% Here, Nb: 0.09% or less, V: 0.09% or less, and Ti: 0.05% or less are mixed or contained alone, Cu: 0.50% or less, Ni: 0.50% or less and Cr: 0.50% or less Linepipe steel with excellent emulsion stress corrosion cracking resistance, which is contained in a composite and composed of residual Fe and unavoidable impurities. 중량%로 C:0.01~0.10%, Si: 0.50% 이하, Mn: 0.20% 이하, P: 0.015%이하, S: 0.01%이하, Al: 0.01~0.1%, 및 Ca: 0.001~0.005%를 기본으로 하고, 여기에 Nb: 0.09%이하, V: 0.09% 이하, 및 Ti: 0.05% 이하를 복합 또는 단독 함유하고, Cu: 0.50% 이하, Ni: 0.50% 이하 및 Cr: 0.50% 이하를 단독 또는 복합으로 함유하고, 잔부 Fe 및 불가피한 불순물로 조성되는 강을 1100~1300℃ 온도 범위로 가열한 후, 압연종료 온도를 950~800℃로 열간압연한 다음, 500~700℃에서 권취하는 것을 특징으로 하는 유화물 응력 부식 균열 저항성이 우수한 라인파이프 강의 제조방법By weight%, based on C: 0.01 to 0.10%, Si: 0.50% or less, Mn: 0.20% or less, P: 0.015% or less, S: 0.01% or less, Al: 0.01 to 0.1%, and Ca: 0.001 to 0.005% Here, Nb: 0.09% or less, V: 0.09% or less, and Ti: 0.05% or less are mixed or contained alone, Cu: 0.50% or less, Ni: 0.50% or less and Cr: 0.50% or less It is characterized in that the steel contained in the composite, the remainder Fe and the inevitable impurities are heated to a temperature range of 1100 ~ 1300 ℃, the hot rolling end temperature to 950 ~ 800 ℃, then wound at 500 ~ 700 ℃ Method for manufacturing line pipe steel with excellent emulsion stress corrosion cracking resistance
KR1020010083747A 2001-12-24 2001-12-24 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel KR20030053757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083747A KR20030053757A (en) 2001-12-24 2001-12-24 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083747A KR20030053757A (en) 2001-12-24 2001-12-24 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel

Publications (1)

Publication Number Publication Date
KR20030053757A true KR20030053757A (en) 2003-07-02

Family

ID=32212419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083747A KR20030053757A (en) 2001-12-24 2001-12-24 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel

Country Status (1)

Country Link
KR (1) KR20030053757A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086853A1 (en) * 2005-02-21 2006-08-24 Bluescope Steel Limited Linepipe steel
KR100957973B1 (en) * 2007-12-28 2010-05-17 주식회사 포스코 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation
KR100979046B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
AU2006214807B2 (en) * 2005-02-21 2011-11-03 Bluescope Steel Limited Linepipe steel
KR101717142B1 (en) 2015-12-17 2017-03-17 주식회사 포스코 Method for heat treatment of welded joint having excellent ssc resistant property
CN108624811A (en) * 2018-06-04 2018-10-09 南京钢铁股份有限公司 A kind of antiacid anti-corrosion pipe line steel of big heavy wall and its production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086853A1 (en) * 2005-02-21 2006-08-24 Bluescope Steel Limited Linepipe steel
AU2006214807B2 (en) * 2005-02-21 2011-11-03 Bluescope Steel Limited Linepipe steel
US9487841B2 (en) 2005-02-21 2016-11-08 Bluescope Steel Limited Linepipe steel
KR100979046B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
KR100957973B1 (en) * 2007-12-28 2010-05-17 주식회사 포스코 Hot Rolled Steel Sheet having Excellent Sour Resistance Properties in Cold Deformation
KR101717142B1 (en) 2015-12-17 2017-03-17 주식회사 포스코 Method for heat treatment of welded joint having excellent ssc resistant property
CN108624811A (en) * 2018-06-04 2018-10-09 南京钢铁股份有限公司 A kind of antiacid anti-corrosion pipe line steel of big heavy wall and its production method
CN108624811B (en) * 2018-06-04 2020-07-14 南京钢铁股份有限公司 Large thick-wall acid-resistant corrosion-resistant pipeline steel and production method thereof

Similar Documents

Publication Publication Date Title
WO2013044640A1 (en) Steel plate with low yield ratio high toughness and manufacturing method thereof
KR20120074638A (en) Ultra thick steel sheet for pressure vessel having excellent central properties and hydrogen induced cracking resistance, and method for manufacturing the same
KR101978074B1 (en) High strength steel and method of manufacturing the same
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
WO2020166538A1 (en) High-mn steel and method for manufacturing same
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
CN114807760A (en) Tungsten-containing sulfuric acid dew point corrosion resistant steel and production method thereof
EP3899062A1 (en) Hot rolled and steel and a method of manufacturing thereof
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR101185336B1 (en) STEEL PLATE WITH HIGH STRENGTH OF 500MPa GRADE AND LOW TEMPERATURE TOUGHNESS AND METHOD FOR MANUFACTURING THE SAME
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
KR20120097160A (en) High strength steel plate and method of manufacturing the same
KR20150124810A (en) High strength steel sheet and method of manufacturing the same
KR20030053757A (en) Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel
KR100832982B1 (en) Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
KR101899736B1 (en) Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same
KR101166967B1 (en) Steel plate with high strength and low temperature toughness and method of manufacturing the steel
KR20130002175A (en) Steel and method of manufacturing the steel and manufacturing method of steel pipe using the steel
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
KR20040059294A (en) Method for manufacturing linepipe steel strips to minimize the deviation of yield strength through the longitudinal direction
KR101572317B1 (en) Shape steel and method of manufacturing the same
CN114761599B (en) Steel material excellent in sulfide stress corrosion cracking resistance and method for producing same
JP7332692B2 (en) High-strength structural steel and its manufacturing method
KR101290418B1 (en) Steel sheet and method of manufacturing the steel sheet
KR100544619B1 (en) High Strength Line Pipe Steel with Excellent Sulfide Stress Corrosion Cracking Resistance and Method for Manufacturing the Line Pipe Steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080616

Effective date: 20090723