KR20110075627A - Api steel plate for line pipe and method for manufacturing the api steel plate - Google Patents

Api steel plate for line pipe and method for manufacturing the api steel plate Download PDF

Info

Publication number
KR20110075627A
KR20110075627A KR1020090132125A KR20090132125A KR20110075627A KR 20110075627 A KR20110075627 A KR 20110075627A KR 1020090132125 A KR1020090132125 A KR 1020090132125A KR 20090132125 A KR20090132125 A KR 20090132125A KR 20110075627 A KR20110075627 A KR 20110075627A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
temperature
api
line pipe
Prior art date
Application number
KR1020090132125A
Other languages
Korean (ko)
Other versions
KR101304824B1 (en
Inventor
서종현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090132125A priority Critical patent/KR101304824B1/en
Publication of KR20110075627A publication Critical patent/KR20110075627A/en
Application granted granted Critical
Publication of KR101304824B1 publication Critical patent/KR101304824B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Abstract

PURPOSE: An API steel sheet for a line pipe and a manufacturing method thereof are provided to enable application of the API steel sheet to an oil pipeline installed in a cold region. CONSTITUTION: A method for manufacturing an API steel sheet for a line pipe is as follows. A steel slab is heated to a temperature of 1210-1280°C and extracted at a temperature of 1140-1160°C. Rough rolling is implemented in a condition where the reduction ratio per pass of the final three passes is 6.0-7.0% below the austenite recrystallization temperature(Tnr). Finish rolling is implemented at a rolling initiation temperature of 915-945°C. Cooling implemented to lower the temperature of the steel sheet from 710-770°C to 450-500°C at a cooling rate of 10-60°C/sec.

Description

라인 파이프용 API 강판 및 그 제조방법{API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate}API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate}

본 발명은 일교차가 심하고 영하의 환경에서 라인파이프로 사용할 수 있는 강관용 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는, 저온인성이 우수할 뿐만 아니라 DWTT(Drop Weight Tear Test) 시험 시 조대한 역파단이 발생하지 않는 라인 파이프용 API 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet for a steel pipe that can be used as a line pipe in a sub-zero environment and a sub-zero environment, and more particularly, to excellent low-temperature toughness and to coarse during DWTT (Drop Weight Tear Test) tests. The present invention relates to an API steel sheet for a line pipe which does not cause reverse fracture, and a method of manufacturing the same.

API 강재란 미국 석유협회 (American Petroleum Institute)에서 규정한 규격을 지닌 강재로서 용도에 따라 심층의 유전에서 지상으로 원유나 가스를 운반하는 유정용 강관 (Casing & Tubing), 해양 자원 개발을 위해 해상이나 해중에 설치되는 해양구조물 (Off- shore Structure)에 사용되는 강재, 그리고 원유나 천연가스를 유전에서 정제공장 또는 정제공장에서 실수요자까지 운반하는 송유관 (Line Pipe)으로 나누어 진다.API steels are steels with specifications defined by the American Petroleum Institute, which are used for casing & tubing, which carries oil or gas from deep oil fields to ground, depending on the purpose, and for marine or marine development It is divided into steel used for off-shore structure, and line pipe that carries crude oil or natural gas from oilfield to refinery or refinery to real customer.

석유 및 천연가스 수송에 사용되는 송유관은 용접에 의해 수 백~수 천 Km까 지 설치되고 있으며, 최근 한랭지역 및 H2S 함유 가스전 증가로 인해 부설 환경이 가혹해지면서 고강도, 저온 인성 및 수소유기균열 특성에 대한 요구 수준이 엄격해지고 있다.Oil pipelines used for petroleum and natural gas transportation are installed from hundreds to thousands of kilometers by welding. Recently, due to the increased cold field and H 2 S-containing gas field, the installation environment is severe and high strength, low temperature toughness and hydrogen organic The level of demand for cracking properties is increasing.

특히, 최근에는 저온인성에 대한 주요 평가 방법인 DWTT (Drop Weight Tear Test)시험 시 발생되는 역파단도 규제 요건 중의 하나로 요구하고 있는 실정이다.In particular, in recent years, the reverse rupture generated during the DWTT (Drop Weight Tear Test) test, which is a major evaluation method for low temperature toughness, is also required as one of regulatory requirements.

DWTT 시험은 저온인성에 대한 평가방법으로서, 이 방법에서는 노치가 형성된 시편을 냉각하고 해머로 노치가 형성된 부위의 반대편 부위에 충격을 가하여 파괴된 파면의 인성 부분이 차지하는 면적 비율 즉, 연성파면율(SA)로 평가한다. The DWTT test is a method for evaluating low temperature toughness, in which the area ratio occupied by the toughness portion of the fractured surface fractured by cooling the notched specimen and impacting the opposite side of the notched region with a hammer (i.e. SA).

상기 역파단은 DWTT 시험 시 노치가 형성된 부위의 반대편에 형성되는 파단을 의미하는 것으로서, 연성파면율(SA)이 높은 경우에는 역파단의 크기는 미세화된다.The reverse fracture refers to the fracture formed on the opposite side of the notched portion during the DWTT test. When the SA is high, the reverse fracture becomes fine.

강판의 저온인성 특성을 향상키기 위한 기술로는 니오븀(Nb), 티타늄(Ti) 및 바나듐(V) 같은 소입성 원소의 적어도 1종을 첨가하여 결정립을 미세화하는 방법등을 들 수 있다.Techniques for improving the low temperature toughness characteristics of the steel sheet include a method of refining crystal grains by adding at least one of sintering elements such as niobium (Nb), titanium (Ti), and vanadium (V).

그러나, 이러한 종래 방법의 경우에는 DWTT 시험 시 발생되는 조대한 역파단을 개선하는데는 한계가 있다.However, this conventional method has a limitation in improving coarse reverse breaking generated in the DWTT test.

따라서, 저온인성이 우수할 뿐만 아니라 DWTT 시험 시 조대한 역파단이 발생하지 않는 라인 파이프용 API강판의 제조기술이 요구되고 있는 실정이다.Therefore, there is a demand for a manufacturing technology of an API steel sheet for a line pipe that is excellent in low temperature toughness and does not cause coarse reverse breakage during DWTT testing.

본 발명은 저온인성이 우수할 뿐만 아니라 DWTT 시험 시 조대한 역파단이 발생하지 않는 라인 파이프용 API강판 및 그 제조방법을 제공하는 것이다.The present invention provides an API steel sheet for a line pipe and a method of manufacturing the same, which are excellent in low temperature toughness and do not cause coarse reverse breakage during DWTT testing.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로, 탄소(C): 0.04 ~ 0.08%, 규소(Si): 0.1~0.4%, 망간(Mn): 1.2~1.7%, 니오븀(Nb): 0.03 ~ 0.06%, 알루미늄(Al): 0.01 ~ 0.1%, 인(P): 0.020% 이하, 황(S): 0.004% 이하, 크롬(Cr): 0.01~ 1.0%, 몰리브덴(Mo): 0.10 ~ 0.18%, 바나듐(V): 0.03 ~ 0.06%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고; The present invention is in weight%, carbon (C): 0.04-0.08%, silicon (Si): 0.1-0.4%, manganese (Mn): 1.2-1.7%, niobium (Nb): 0.03-0.06%, aluminum (Al) ): 0.01 to 0.1%, phosphorus (P): 0.020% or less, sulfur (S): 0.004% or less, chromium (Cr): 0.01 to 1.0%, molybdenum (Mo): 0.10 to 0.18%, vanadium (V): 0.03 to 0.06%, balance Fe and other unavoidable impurities;

조직이 침상 페라이트 단상 또는 90Vol.% 이상의 침상 페라이트와 10Vol.%이하의 베이나이트로 이루어지고; 그리고 90%이상의 연성파면율을 갖는 라인 파이프용 API 강판에 관한 것이다. The tissue consists of acicular ferrite single phase or acicular ferrite of 90 vol.% Or more and bainite of 10 vol.% Or less; And it relates to an API steel sheet for line pipe having a ductility of 90% or more.

상기 강판에는 니켈(Ni): 0.3%이하, 티타늄(Ti): 0.03%이하 및 구리(Cu): 0.01 ~ 0.3%로 이루어지는 그룹으로부터 선택된 1종 또는 2종 이상이 추가로 첨가될 수 있다.One or more selected from the group consisting of nickel (Ni): 0.3% or less, titanium (Ti): 0.03% or less and copper (Cu): 0.01 to 0.3% may be further added to the steel sheet.

또한, 본 발명은 중량%로, 탄소(C): 0.04 ~ 0.08%, 규소(Si): 0.1~0.4%, 망 간(Mn): 1.2~1.7%, 니오븀(Nb): 0.03 ~ 0.06%, 알루미늄(Al): 0.01 ~ 0.1%, 인(P): 0.020% 이하, 황(S): 0.004% 이하, 크롬(Cr): 0.01~ 1.0%, 몰리브덴(Mo): 0.10 ~ 0.18%, 바나듐(V): 0.03 ~ 0.06%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브(Slab)를 1210~1280℃로 가열하고 1140 ~ 1160℃의 온도로 슬라브를 추출하여 오스테나이트 재결정 온도(Tnr)이하에서 마지막 3패스의 패스당 압하율이 6.0 ~7.0%가 되는 조건으로 조압연을 실시한 후, 915 ~ 945℃의 압연 개시 온도조건으로 마무리압연을 행하고, 710 ~ 770℃에서 냉각을 시작하여 10 ~ 60℃/sec의 냉각속도로 450 ~ 500℃의 온도까지 냉각하는 라인 파이프용 API 강판의 제조방법에 관한 것이다. In addition, the present invention by weight, carbon (C): 0.04 ~ 0.08%, silicon (Si): 0.1 ~ 0.4%, manganese (Mn): 1.2 ~ 1.7%, niobium (Nb): 0.03 ~ 0.06%, Aluminum (Al): 0.01 to 0.1%, phosphorus (P): 0.020% or less, sulfur (S): 0.004% or less, chromium (Cr): 0.01 to 1.0%, molybdenum (Mo): 0.10 to 0.18%, vanadium ( V): A steel slab containing 0.03 to 0.06%, balance Fe and other unavoidable impurities is heated to 1210 to 1280 ° C, and the slab is extracted to a temperature of 1140 to 1160 ° C, below the austenite recrystallization temperature (Tnr). Rough rolling was performed under the condition that the rolling reduction per pass of the last three passes was 6.0 to 7.0%, followed by finishing rolling under the rolling start temperature condition of 915 to 945 ° C, and starting cooling at 710 to 770 ° C to 10 to 60 degrees. The present invention relates to a method for producing an API steel sheet for a line pipe cooled to a temperature of 450 to 500 ° C. at a cooling rate of ° C./sec.

상기 강 슬라브에는 니켈(Ni): 0.3%이하, 티타늄(Ti): 0.03%이하 및 구리(Cu): 0.01 ~ 0.3%로 이루어지는 그룹으로부터 선택된 1종 또는 2종 이상이 추가로 첨가될 수 있다.One or more selected from the group consisting of nickel (Ni): 0.3% or less, titanium (Ti): 0.03% or less and copper (Cu): 0.01 to 0.3% may be further added to the steel slab.

상술한 바와 같이, 본 발명에 의해 제조된 강판은 저온인성이 우수할 뿐만 아니라 DWTT 시험 시 조대한 역파단이 발생하지 않으므로, 한랭지역 등에 설치되는 송유관용 강판 등에 적용될 수 있다.As described above, the steel sheet produced by the present invention is not only excellent in low temperature toughness but coarse reverse fracture does not occur during the DWTT test, it can be applied to a steel pipe for an oil pipe installed in a cold region or the like.

이하, 본 발명의 강 조성의 한정 이유에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the reason for limitation of the steel composition of this invention is demonstrated in detail.

C : 0.04~0.08 중량%C: 0.04-0.08 wt%

C는 고강도 파이프의 강도를 확보하기 위하여 첨가되는 필수적인 원소로서, 충분한 강도를 확보하기 위해서는 0.04중량%이상 첨가되어야 한다.C is an essential element added to secure the strength of the high-strength pipe, and should be added at least 0.04% by weight to secure sufficient strength.

그러나, C 함량이 0.08중량%를 초과하는 경우에는 초석 세멘타이트 조직이 형성되어 균열이 발생하기 때문에 피로 강도가 현저히 저하하게 된다. 따라서, C 함량은 0.04~0.08 중량%로 제한하는 것이 바람직하다. However, when the C content is more than 0.08% by weight, the cornerstone cementite structure is formed and cracks occur, so that the fatigue strength is significantly lowered. Therefore, the C content is preferably limited to 0.04 to 0.08% by weight.

Si : 0.1~0.4 중량%Si: 0.1-0.4 wt%

Si는 Al을 보조하여 용강을 탈산하는 역할을 수행하고 또한 페라이트 내에 고용되어 모재강도를 강화시키는 고용강화 효과를 가지며, 이러한 효과를 얻기 위하여 0.1 중량% 이상 첨가하는 것이 바람직하다.Si plays a role of deoxidizing molten steel by assisting Al and has a solid solution strengthening effect that is solid-dissolved in ferrite to strengthen the base material strength, and it is preferable to add 0.1 wt% or more to obtain such an effect.

그러나, Si을 0.4중량% 보다 과다하게 첨가하면 압연시 Si에 의한 붉은형 스케일이 형성되어 강판표면 형상이 나쁘게 되며 현장 용접성 및 용접 열 영향부의 인성을 저하시킨다. 따라서, Si의 함량은 0.1~0.4 중량%으로 제한하는 것이 바람직하다. However, when Si is added in excess of 0.4% by weight, a reddish scale due to Si is formed during rolling, resulting in a bad shape of the steel sheet surface and deteriorating in situ weldability and toughness of the weld heat affected zone. Therefore, the content of Si is preferably limited to 0.1 to 0.4% by weight.

Mn : 1.2~1.7중량%Mn: 1.2-1.7 wt%

Mn은 강재 내에 존재할 경우 강재의 소입성을 향상시켜 강도를 확보하는데 유익한 원소이며, 이러한 강재의 경화능 향상을 위해 1.2중량% 이상 첨가하는 것이 바람직하다. Mn is an element that is beneficial to secure the strength by improving the hardenability of the steel when present in the steel, it is preferable to add 1.2% by weight or more in order to improve the hardenability of such steel.

그러나, Mn의 함량이 1.7 중량%를 초과하는 경우에는 경화능을 불필요하게 증가시켜 압연시 페라이트의 변태속도를 저하시키고, 용접시 저온조직의 발생가능성을 높인다. 따라서, 상기 Mn의 함량은 1.2~1.7 중량%로 한정하는 것이 바람직하다.However, when the content of Mn exceeds 1.7% by weight, the hardenability is unnecessarily increased to lower the transformation rate of ferrite during rolling and increase the possibility of low temperature structure during welding. Therefore, the content of Mn is preferably limited to 1.2 to 1.7% by weight.

니오븀(Nb): 0.03~0.06 중량%Niobium (Nb): 0.03 to 0.06 wt%

니오븀(Nb)은 강중에서 화합물 형태(NbC, NbN)로 존재하여 오스테나이트 재결정 온도(Tnr)를 상승시켜 조직의 조대화를 방지하고 결정립을 미세화하여 인성과 연성을 향상시키는 원소로서, 이러한 첨가효과를 얻기 위해서는 0.03중량%이상 첨가되어야 하지만, 0.06중량%를 초과하는 경우에는 용접성이 떨어지고 원가상승을 가져오므로, 상기 니오븀(Nb)의 함량은 0.03~0.06 중량%로 제한하는 것이 바람직하다.Niobium (Nb) is an element that exists in the form of compounds (NbC, NbN) in steel and raises austenite recrystallization temperature (Tnr) to prevent coarsening of tissues and to refine grains to improve toughness and ductility. In order to obtain 0.03% by weight or more, but more than 0.06% by weight, since the weldability is lowered and the cost rises, the content of niobium (Nb) is preferably limited to 0.03 to 0.06% by weight.

크롬(Cr): 0.01 ~ 1.0 중량%Chromium (Cr): 0.01 to 1.0 wt%

Cr은 표면 탈탄 방지, 내산화성 및 소입성을 확보하는데 유용한 원소이다. 그러나 Cr 함량이 0.01중량% 미만인 경우에는 충분한 내산화성, 표면 탈탄 및 소입성 효과 등을 확보하기 어렵다. 또한, 1.0 중량%를 초과하는 경우에는 변형저항성의 저하를 초래하여 오히려 강도저하로 이어질 수 있다. 따라서 Cr의 함량은 0.01 ~ 1.0중량%로 제한하는 것이 바람직하다.Cr is an element useful for preventing surface decarburization, securing oxidation resistance and quenching resistance. However, when the Cr content is less than 0.01% by weight, it is difficult to secure sufficient oxidation resistance, surface decarburization and quenching effects. In addition, when exceeding 1.0% by weight may lead to a decrease in the deformation resistance, rather it may lead to a decrease in strength. Therefore, the content of Cr is preferably limited to 0.01 to 1.0% by weight.

몰리브덴(Mo): 0.10 ~ 0.18 중량%,Molybdenum (Mo): 0.10 to 0.18% by weight,

Mo은 경화능을 향상시켜 강도를 향상시키고 오스테나이트 재결정 온도(Tnr)를 상승시켜 인성을 향상시키는 원소로서, 이러한 첨가효과를 얻기 위해서는 몰리브덴(Mo)은 0.10중량%이상 첨가되어야 하지만, 0.18 중량%를 초과하여 첨가되는 경우에는 고가의 원소이므로, 비용이 증가된다.Mo is an element that improves hardenability by improving strength and increases austenite recrystallization temperature (Tnr), thereby improving toughness. Molybdenum (Mo) must be added at least 0.10% by weight in order to obtain such an effect, but it is 0.18% by weight. If it is added in excess, it is an expensive element, the cost is increased.

바나듐(V): 0.03 ~ 0.06 중량%Vanadium (V): 0.03 to 0.06 wt%

V은 탄화물이나 질화물 등의 석출물을 형성하여 결정입을 미세화 하여 강도 및 인성을 증가시키는 원소로서, 이러한 첨가효과를 얻기 위해서는 0.03 중량%이상 첨가되어야 하지만, 너무 많이 함유되는 경우에는 오스테나이트 열처리 시 모재에 용해되지 않은 조대한 탄화물량이 증가하게 되어 석출강화 효과가 저하되므로, V의 함량은 0.03 ~ 0.06 중량%로 제한하는 것이 바람직하다.V is an element that increases the strength and toughness by forming precipitates such as carbides or nitrides to refine grains. To obtain such an additive effect, V is added in an amount of 0.03% by weight or more. Since the amount of coarse carbide which is not dissolved is increased and the precipitation strengthening effect is lowered, the content of V is preferably limited to 0.03 to 0.06% by weight.

알루미늄(Al): 0.01 ~ 0.1 중량%Aluminum (Al): 0.01 to 0.1 wt%

Al은 탈산을 목적으로 첨가되는 성분으로서, 충분한 탈산을 위해서는 0.01중량%이 첨가되어야 하지만, 0.1중량%를 초과하여 첨가되는 경우에는 비금속개재물이 형성되어 인성을 저하시키므로 Al의 함량은 0.01 ~ 0.1 중량%로 제한하는 것이 바람직하다.Al is a component added for the purpose of deoxidation, but 0.01 wt% should be added for sufficient deoxidation, but if it is added in excess of 0.1 wt%, non-metallic inclusions are formed to reduce toughness, so the Al content is 0.01 to 0.1 wt%. It is desirable to limit to%.

티타늄(Ti), 니켈(Ni) 및 구리(Cu)는 필요에 따라 첨가되는 원소이다.Titanium (Ti), nickel (Ni) and copper (Cu) are elements added as needed.

티타늄(Ti): 0.03 중량%이하Titanium (Ti): less than 0.03% by weight

Ti은 탈산 및 석출강화를 위하여 첨가되며, 그 함량은 0.03 중량%이하로 제한하는 것이 바람직하다.Ti is added for deoxidation and precipitation strengthening, and its content is preferably limited to 0.03% by weight or less.

니켈(Ni): 0.3 중량% 이하Nickel (Ni): 0.3 wt% or less

Ni은 강의 조직을 미세화시켜 강도 및 인성을 향상시키는 원소로서, 그 함량은 0.3 중량%이하로 제한하는 것이 바람직하다.Ni is an element that refines the steel structure to improve strength and toughness, and the content thereof is preferably limited to 0.3 wt% or less.

구리(Cu): 0.01 ~ 0.3 중량%Copper (Cu): 0.01 to 0.3 wt%

Cu 는 내부식성을 향상시키는 원소로서, 내부식성을 향상시키기 위해서는 0.01중량%이상 첨가되어야 하지만, 0.3중량%를 초과하여 첨가하는 경우에는 고가 원소이므로 비용이 증가된다.Cu is an element that improves the corrosion resistance, but in order to improve the corrosion resistance, 0.01 wt% or more should be added, but when it is added in excess of 0.3 wt%, the cost is increased.

인(P): 0.020 중량% 이하 Phosphorus (P): 0.020 wt% or less

P는 강 제조시 불가피하게 함유되며, 응고시 슬라브 중심부에 쉽게 편석되는 원소로서 취성을 유발하므로 가능한 한 낮게 제어하는 것이 바람직하며, 이론상 P의 함량을 0%로 제한하는 것이 가능하나, 제조공정상 필연적으로 첨가될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 상기 P의 함량의 상한은 0.020 중 량%로 한정하는 것이 바람직하다.P is inevitably contained in steel production, and it is preferable to control it as low as possible because it causes brittleness as an element easily segregated in the center of slab during solidification.In theory, it is possible to limit the content of P to 0%, but it is inevitable in manufacturing process. It can only be added. Therefore, it is important to manage the upper limit, the upper limit of the content of P is preferably limited to 0.020% by weight.

황(S): 0.004 중량% 이하 Sulfur (S): 0.004 wt% or less

S는 강 제조시 불가피하게 함유되는 원소이며, Mn과 친화력이 좋기 때문에 MnS 형태로 존재하여 압연시 압착되지 않으며, 길게 연신되는 특징을 가진다. 또한 적열취성을 일으키므로 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 S의 함량을 0%로 제한하는 것이 가능하나, 제조공정상 필연적으로 첨가될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 상기 S의 함량의 상한은 0.004중량%로 한정하는 것이 바람직하다.S is an element that is inevitably contained in steel production, and because it has a good affinity with Mn, it is present in the form of MnS and is not compressed during rolling, and has a feature of being elongated. In addition, it is preferable to suppress the content as much as possible because it causes red light brittleness. In theory, it is possible to limit the content of S to 0%, but inevitably be added in the manufacturing process. Therefore, it is important to manage the upper limit, the upper limit of the content of S is preferably limited to 0.004% by weight.

본 발명의 강판은 침상 페라이트 단상 또는 90Vol.% 이상의 침상 페라이트와 10Vol.%이하의 베이나이트로 이루어진 조직을 갖고, 또한, 90%이상의 연성파면율을 갖는다.The steel sheet of the present invention has a structure consisting of acicular ferrite single phase or acicular ferrite of 90 vol.% Or more and bainite of 10 vol.% Or less, and has a flexible wavefront ratio of 90% or more.

따라서, 본 발명의 강판은 DWTT (Drop Weight Tear Test) 시험 시 조대한 역파단이 발생하지 않는다.Therefore, the steel sheet of the present invention does not cause coarse reverse breakage during the DWTT test.

이하, 본 발명의 라인 파이프용 API 강판의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of the API steel plate for line pipes of this invention is demonstrated.

상기와 같이 조성되는 강 슬라브(Slab)를 가열, 압연 및 냉각 공정을 거쳐 후판재로 만들어지는데, 이 제조공정에 대하여 설명한다.The steel slab formed as described above is made of a thick plate through heating, rolling, and cooling processes, and this manufacturing process will be described.

슬라브 가열온도 및 추출온도: 1210 ~ 1280℃ 및 1140 ~ 1160℃Slab heating and extraction temperature: 1210 ~ 1280 ℃ and 1140 ~ 1160 ℃

슬라브의 가열공정은 후속되는 압연공정을 원할히 수행하고 목표하는 강판의 물성을 충분히 얻을 수 있도록 강을 가열하는 공정이므로 목적에 맞게 적절한 온도범위 내에서 가열공정이 수행되어야 한다. The heating process of the slab is a process of smoothly performing the subsequent rolling process and heating the steel to sufficiently obtain the properties of the target steel sheet, so the heating process should be performed within an appropriate temperature range according to the purpose.

상기 가열공정에서 중요한 것은 강판 내부의 석출형 원소들이 충분히 고용될 수 있을 정도로 균일하게 가열하여야 할 뿐만 아니라 너무 높은 가열온도로 인하여 결정립이 과다하게 조대화되는 것을 최대한 방지하여야 한다는 것이다. What is important in the heating process is that not only the precipitated elements inside the steel sheet should be heated uniformly so as to be sufficiently dissolved, but also the maximum protection against excessive coarsening of grains due to too high a heating temperature is important.

만일, 강의 가열온도가 1210℃ 미만으로 될 경우에는 Nb 등이 강중에 재고용되지 못하여 강판의 고강도화를 이루기 어려울 뿐 아니라 부분 재결정이 발생하여 오스테나이트 결정립이 균일하지 않게 형성되어 고인성화가 어려우며, 상기 1280℃를 초과할 경우에는 오스테나이트 결정립이 지나치게 조대화 되어 결국 강판의 결정립 크기가 증가하는 원인을 제공하게 되며, 그 결과 강판의 강도 및 인성이 극히 열화된다. 따라서, 슬라브 가열온도는 1210 ~ 1280℃로 제한하는 것이 바람직하다.If the heating temperature of the steel is less than 1210 ℃, Nb is not reusable in the steel, it is difficult to achieve high strength of the steel sheet, and partial recrystallization occurs to form austenite grains unevenly, which makes it difficult to toughen the 1280. When it exceeds the ℃ austenite grains are too coarse to provide a cause for the increase in the grain size of the steel sheet, as a result of which the strength and toughness of the steel sheet is extremely degraded. Therefore, the slab heating temperature is preferably limited to 1210 ~ 1280 ℃.

상기와 같이 가열된 슬라브의 추출온도는 1140 ~ 1160℃로 제한한다.The extraction temperature of the slab heated as above is limited to 1140 ~ 1160 ℃.

압연조건Rolling condition

상기한 온도로 추출된 슬라브를 오스테나이트 재결정 온도(Tnr)이하에서 마지막 3패스의 패스당 압하율이 6.0 ~ 7.0%가 되는 조건으로 조압연한다. The slab extracted at the above temperature is roughly rolled under the austenite recrystallization temperature (Tnr) under the condition that the reduction ratio per pass of the last three passes is 6.0 to 7.0%.

상기 조압연은 오스테나이트 재결정 온도(Tnr)이하에서 5회 이상의 다단계 압연을 실시하는 것이 바람직하다.The rough rolling is preferably performed at least five times of multi-stage rolling at an austenite recrystallization temperature (Tnr) or less.

상기와 같이, 오스테나이트 재결정 온도(Tnr)이하에서 마지막 3패스의 패스당 압하율이 6.0 ~7.0%가 되는 조건으로 조압연함으로써 결정립을 연신, 변형 및 미세화 시키고 결정립 내부에 변형에 의한 전위를 발달시켜 냉각시 침상(acicular) 페라이트 조직으로 변태할 수 있는 핵생성 자리를 제공하여 미세한 침상(acicular) 페라이트를 형성함으로써 인성을 향상시킬 수 있다.As described above, by rough rolling under austenite recrystallization temperature (Tnr) under the condition that the rolling reduction per pass of the last three passes becomes 6.0 to 7.0%, the grains are stretched, deformed, and refined, and the dislocations due to deformation are developed inside the grains. By providing a nucleation site that can be transformed into acicular ferrite tissue during cooling to improve the toughness by forming a fine acicular ferrite.

상기 마지막 3패스의 패스당 압하율이 6.0% 미만인 경우에는 결정립의 미세화가 충분하지 않고, 7.0%를 초과하는 경우에는 조압연 후의 강판의 온도가 너무 낮아져 마무리압연이 곤란하게 되므로, 마지막 3패스의 패스당 압하율은 6.0 ~ 7.0%로 제한하는 것이 바람직하다.If the rolling reduction per pass of the last three passes is less than 6.0%, the grain size is not sufficiently refined. If the reduction rate exceeds 7.0%, the temperature of the steel sheet after rough rolling becomes too low to make the finish rolling difficult. The reduction ratio per pass is preferably limited to 6.0 to 7.0%.

다음에, 상기와 같이 조압연한 후, 915 ~ 945℃의 압연 개시 온도조건으로 마무리압연을 행하고, 710 ~ 770℃에서 냉각을 시작하여 10 ~ 60℃/sec의 냉각속도로 450 ~ 500℃의 온도까지 냉각한다.Next, after rough rolling as described above, finish rolling is carried out under a rolling start temperature condition of 915 to 945 ° C., and cooling is started at 710 to 770 ° C. to 450 to 500 ° C. at a cooling rate of 10 to 60 ° C./sec. Cool to temperature.

냉각속도: 10~60 ℃/secCooling rate: 10 ~ 60 ℃ / sec

상기 냉각속도가 10℃/sec 미만일 경우 다각형 페라이트가 다량 생성될 수 있어 강도 및 저온인성을 확보할 수 없게 된다. If the cooling rate is less than 10 ° C / sec polygon ferrite can be generated a large amount can not secure strength and low temperature toughness.

그러나, 냉각속도가 60℃/sec를 초과할 경우 냉각종료온도를 제어하기가 쉽지 않을 뿐 아니라 마르텐사이트 등의 저온변태상이 너무 많이 생성되어 저온인성에 좋지 않은 영향을 미친다. 또한, 냉각속도가 60 ℃/sec를 초과할 경우에는 본 발명에서 대상으로 하고 있는 강판의 특성상 과다한 냉각수량으로 인하여 강판의 뒤틀림 현상이 발생하여 형상제어가 불량하게 된다.However, when the cooling rate exceeds 60 ℃ / sec is not only easy to control the cooling end temperature, but too low temperature transformation phase, such as martensite is generated too badly affects the low temperature toughness. In addition, when the cooling rate exceeds 60 ℃ / sec due to the excessive amount of cooling water due to the characteristics of the steel sheet to be the object of the present invention, the distortion of the steel sheet occurs, the shape control is poor.

따라서, 상기 냉각속도는 10 ~ 60 ℃/sec로 제한하는 것이 바람직하다.Therefore, the cooling rate is preferably limited to 10 ~ 60 ℃ / sec.

냉각종료온도: 450 ~ 500℃Cooling end temperature: 450 ~ 500 ℃

강판의 내부조직을 제어하기 위해서는 냉각속도의 효과가 충분히 발현되는 온도까지 냉각하여 줄 필요가 있다. 만일 냉각을 정지하는 온도인 냉각정지온도가 500℃를 초과할 경우에는 강판 내부에 미세한 결정립을 가진 침상형 페라이트 및 베이나이트를 충분히 형성하기 어렵게 되어 인장강도를 향상시키는 효과가 미흡하게 된다. 따라서, 상기 냉각 정지온도의 상한은 500℃로 한정할 필요가 있다. 그러나, 냉각정지 온도가 450℃ 미만이 될 경우에는 그 효과가 포화될 뿐만 아니라 과다 냉각으로 인하여 마르텐사이트 등이 형성되어 저온인성이 나빠지는 문제가 발생될 수 있다.In order to control the internal structure of the steel sheet, it is necessary to cool it to a temperature at which the effect of the cooling rate is sufficiently manifested. If the cooling stop temperature, which is the temperature at which the cooling stops, exceeds 500 ° C., it becomes difficult to sufficiently form needle-like ferrite and bainite having fine grains in the steel sheet, and thus the effect of improving the tensile strength is insufficient. Therefore, the upper limit of the said cooling stop temperature needs to be limited to 500 degreeC. However, when the cooling stop temperature is less than 450 ℃ may not only saturate the effect but also martensite is formed due to excessive cooling, which may cause a problem of low temperature toughness.

따라서, 상기 냉각종료온도는 450 ~ 500℃로 제한하는 것이 바람직하다.Therefore, the cooling end temperature is preferably limited to 450 ~ 500 ℃.

상기와 같이 제조된 강판의 조직은 침상 페라이트 단상 또는 90Vol.% 이상의 침상 페라이트와 10Vol.%이하의 베이나이트로 이루어지도록 하는 것이 바람직하다.The structure of the steel sheet prepared as described above is preferably composed of acicular ferrite single phase or acicular ferrite of 90 vol.% Or more and bainite of 10 vol.% Or less.

또한, 상기 강판은 90%이상의 연성파면율을 갖고, 또한 DWTT (Drop Weight Tear Test) 시험 시 조대한 역파단이 발생하지 않는다.In addition, the steel sheet has a ductile fracture rate of 90% or more, and coarse reverse fracture does not occur during the DWTT (Drop Weight Tear Test) test.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표1과 같은 성분계를 만족하는 300mm 두께의 강 슬라브를 1220℃로 가열하여 하기 표2의 추출온도조건으로 슬라브를 추출하고, 하기 표 2의 조건으로 오스테나이트 재결정 온도(Tnr)이하에서 조압연, 마무리압연 및 냉각하여 두께 24mm의 강판을 제조하여, DWTT 시험에 의해 연성파면율(SA)을 측정하고, 그 결과를 하기 표 2에 함께 나타내었다. Steel slabs having a thickness of 300 mm satisfying the component system shown in Table 1 were heated to 1220 ° C. to extract the slabs under the extraction temperature conditions of Table 2 below, and roughly rolled under the austenite recrystallization temperature (Tnr) under the conditions of Table 2 below. After the finish rolling and cooling to prepare a steel sheet having a thickness of 24mm, the ductile wave ratio (SA) was measured by the DWTT test, the results are shown in Table 2 together.

여기서, 조압연은 총 13패스를 실시하였으며, 마지막 3패스의 패스당 압하율은 하기 표 2와 같다.Here, the rough rolling was carried out a total of 13 passes, the reduction ratio per pass of the last three passes are shown in Table 2 below.

또한, 하기 표 2의 발명재(1)및 비교재에 대하여 DWTT 시험 시 역파단 발생여부를 관찰하고, 그 결과를 발명재 1의 것은 도 1에 나타내고, 비교재의 것은 도 2에 나타내었다. 또한, 발명재(1) 및 비교재에 대하여 미세조직사진을 관찰하고, 그 결과를 발명재 1의 것은 도 3에 나타내고, 비교재의 것은 도 4에 나타내었다. In addition, the invention material (1) and the comparative material of the following Table 2 observed the occurrence of reverse break during the DWTT test, the results of the invention material 1 is shown in Figure 1, the comparative material is shown in Figure 2. In addition, the microstructure photograph was observed about the invention material (1) and the comparative material, and the result of invention material 1 is shown in FIG. 3, and the comparative material is shown in FIG.

강종
Steel grade
화학성분(중량%)Chemical composition (% by weight)
CC SiSi MnMn NbNb CrCr VV NiNi MoMo TiTi P*P * S*S * TnrTnr AR3AR3 발명강Invention steel 0.060.06 0.250.25 1.551.55 0.0450.045 0.10.1 0.050.05 0.20.2 0.150.15 0.0150.015 120120 3030 993993 766766 비교강Comparative steel 0.0650.065 0.20.2 1.551.55 0.040.04 0.10.1 -- 0.150.15 -- 0.0120.012 120120 2020 10001000 767767

(단, 표 1에서 *표시된 원소의 함량단위는 ppm임)(However, the content unit of the * indicated element in Table 1 is ppm)

시편 No.
Psalm No.
강종Steel grade 슬라브추출온도(℃)Slab extraction temperature (℃) 조압시마지막 3패스의 패스당 압하율(%)Rolling rate per pass of Jojoshima last three passes (%) 마무리압연시 미재결정압하율 (%)Uncrystallized rolling reduction rate at finish rolling (%) 압연종료온도(℃)Rolling end temperature (℃) 냉각종료온도(℃)Cooling end temperature (℃) 냉각속도
(℃/S)
Cooling rate
(℃ / S)
연성파면율(SA)(%)Ductility Rate (SA) (%)
발명재1Invention 1
발명강

Invention steel
11451145 6.46.4 7878 830830 475475 4242 9898
발명재2Invention 2 11501150 6.16.1 7878 830830 470470 4545 9494 발명재3Invention 3 11551155 6.76.7 7878 830830 480480 5050 9898 비교재Comparative material 비교강Comparative steel 11601160 5.65.6 7878 825825 480480 4040 5656

상기 표2에 나타난 바와 같이, 본 발명의 강 조성 및 제조조건을 만족하는 발명재(1-3)는 연성파면율(SA)이 94%이상으로서, 인성이 우수하고, 도 1에 나타난 바와 같이, DWTT 시 역파단도 미세하게 발생하였다. 또한, 발명재(1)의 경우에는 도 3에 나타난 바와 같이 그 조직이 침상 페라이트였다.As shown in Table 2, the inventive material (1-3) that satisfies the steel composition and manufacturing conditions of the present invention has a SA of 94% or more, excellent toughness, as shown in FIG. , DWTT also occurred finely during DWTT. In addition, in the invention material (1), the structure was needle-like ferrite as shown in FIG.

이에 반하여, 비교재의 경우에는 연성파면율(SA)이 56%로 인성이 좋지 않을 뿐만 아니라 도 2에 나타난 바와 같이 DWTT 시험 시 역파단이 조대하게 발생하였다.On the contrary, in the case of the comparative material, the ductile fracture ratio (SA) was 56%, not only good toughness, but also coarse fracture occurred in the DWTT test as shown in FIG. 2.

또한, 비교재의 경우에는 도 4에 나타난 바와 같이 그 조직이 베이나이틱 페라이트였다.In the case of the comparative material, the structure was bainitic ferrite as shown in FIG. 4.

도 1은 발명재(1)의 DWTT 시험시 발생된 역파단면을 나타내는 사진1 is a photograph showing a reverse cross section generated during the DWTT test of the invention (1)

도 2는 비교재의 DWTT 시험시 발생된 역파단면을 나타내는 사진Figure 2 is a photograph showing the reverse cross-section generated during the DWTT test of the comparative material

도 3은 발명재(1)의 미세조직사진3 is a microstructure photograph of the invention material (1)

도 4는 비교재의 미세조직사진4 is a microstructure photograph of the comparative material

Claims (4)

중량%로, 탄소(C): 0.04 ~ 0.08%, 규소(Si): 0.1~0.4%, 망간(Mn): 1.2~1.7%, 니오븀(Nb): 0.03 ~ 0.06%, 알루미늄(Al): 0.01 ~ 0.1%, 인(P): 0.020% 이하, 황(S): 0.004% 이하, 크롬(Cr): 0.01~ 1.0%, 몰리브덴(Mo): 0.10 ~ 0.18%, 바나듐(V): 0.03 ~ 0.06%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고; 조직이 침상 페라이트 단상 또는 90Vol.% 이상의 침상 페라이트와 10Vol.%이하의 베이나이트로 이루어지고; 그리고 90%이상의 연성파면율을 갖는 라인 파이프용 API 강판.By weight%, Carbon (C): 0.04 to 0.08%, Silicon (Si): 0.1 to 0.4%, Manganese (Mn): 1.2 to 1.7%, Niobium (Nb): 0.03 to 0.06%, Aluminum (Al): 0.01 To 0.1%, phosphorus (P): 0.020% or less, sulfur (S): 0.004% or less, chromium (Cr): 0.01 to 1.0%, molybdenum (Mo): 0.10 to 0.18%, vanadium (V): 0.03 to 0.06 %, Balance Fe and other unavoidable impurities; The tissue consists of acicular ferrite single phase or acicular ferrite of 90 vol.% Or more and bainite of 10 vol.% Or less; And API steel sheets for line pipes having a ductile fracture rate of 90% or more. 제1항에 있어서, 상기 강판은 니켈(Ni): 0.3%이하, 티타늄(Ti): 0.03%이하 및 구리(Cu): 0.01 ~ 0.3%로 이루어지는 그룹으로부터 선택된 1종 또는 2종 이상을 추가로 포함하는 것을 특징으로 하는 라인 파이프용 API 강판.The steel sheet further comprises one or two or more selected from the group consisting of nickel (Ni): 0.3% or less, titanium (Ti): 0.03% or less and copper (Cu): 0.01 to 0.3%. API steel sheet for line pipe, characterized in that it comprises. 중량%로, 탄소(C): 0.04 ~ 0.08%, 규소(Si): 0.1~0.4%, 망간(Mn): 1.2~1.7%, 니오븀(Nb): 0.03 ~ 0.06%, 알루미늄(Al): 0.01 ~ 0.1%, 인(P): 0.020% 이하, 황(S): 0.004% 이하, 크롬(Cr): 0.01~ 1.0%, 몰리브덴(Mo): 0.10 ~ 0.18%, 바나듐(V): 0.03 ~ 0.06%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브(Slab)를 1210~1280℃로 가열하고 1140 ~ 1160℃의 온도로 슬라브를 추출하여 오스테나이트 재결정 온도(Tnr)이하에서 마지막 3패스의 패스당 압하율이 6.0 ~7.0%가 되는 조건으로 조압연을 실시한 후, 915 ~ 945℃의 압연 개시 온도조건으 로 마무리압연을 행하고, 710 ~ 770℃에서 냉각을 시작하여 10 ~ 60℃/sec의 냉각속도로 450 ~ 500℃의 온도까지 냉각하는 라인 파이프용 API 강판의 제조방법.By weight%, Carbon (C): 0.04 to 0.08%, Silicon (Si): 0.1 to 0.4%, Manganese (Mn): 1.2 to 1.7%, Niobium (Nb): 0.03 to 0.06%, Aluminum (Al): 0.01 To 0.1%, phosphorus (P): 0.020% or less, sulfur (S): 0.004% or less, chromium (Cr): 0.01 to 1.0%, molybdenum (Mo): 0.10 to 0.18%, vanadium (V): 0.03 to 0.06 Steel slab containing%, remainder Fe and other unavoidable impurities is heated to 1210 ~ 1280 ℃ and the slab is extracted to a temperature of 1140 ~ 1160 ℃, per the last 3 passes under the austenite recrystallization temperature (Tnr) After rough rolling under the condition that the reduction ratio is 6.0 to 7.0%, finish rolling is carried out under the rolling start temperature conditions of 915 to 945 ° C, and the cooling is started at 710 to 770 ° C to cool 10 to 60 ° C / sec. Method for producing an API steel sheet for line pipe cooling to a temperature of 450 ~ 500 ℃ at a speed. 제3항에 있어서, 상기 강 슬라브는 니켈(Ni): 0.3%이하, 티타늄(Ti): 0.03%이하 및 구리(Cu): 0.01 ~ 0.3%로 이루어지는 그룹으로부터 선택된 1종 또는 2종이상을 추가로 포함하는 것을 특징으로 하는 라인 파이프용 API 강판의 제조방법.The method of claim 3, wherein the steel slab is one or more selected from the group consisting of nickel (Ni): 0.3% or less, titanium (Ti): 0.03% or less and copper (Cu): 0.01 to 0.3%. Method for producing an API steel sheet for a line pipe, characterized in that it comprises a.
KR1020090132125A 2009-12-28 2009-12-28 API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate KR101304824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090132125A KR101304824B1 (en) 2009-12-28 2009-12-28 API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090132125A KR101304824B1 (en) 2009-12-28 2009-12-28 API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate

Publications (2)

Publication Number Publication Date
KR20110075627A true KR20110075627A (en) 2011-07-06
KR101304824B1 KR101304824B1 (en) 2013-09-05

Family

ID=44915605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090132125A KR101304824B1 (en) 2009-12-28 2009-12-28 API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate

Country Status (1)

Country Link
KR (1) KR101304824B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111526A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
CN109682658A (en) * 2018-12-27 2019-04-26 中国石油天然气集团有限公司 Avoid the DWTT sample and its method of big wall thickness high tenacity X80 steel pipe DWTT abnormal fracture
CN116288017A (en) * 2023-05-22 2023-06-23 江苏省沙钢钢铁研究院有限公司 Large thick-wall low-temperature-resistant pipeline steel and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486985A (en) * 2013-09-07 2014-01-01 鞍钢股份有限公司 Drop-weight tear test sample fracture shearing area detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851189B1 (en) 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
KR100815717B1 (en) * 2006-11-02 2008-03-20 주식회사 포스코 High strength linepipe steel plate for large diameter pipe with high low-temperature ductility and hic resistance at the h2s containing environment and manufacturing method thereof
JP5223375B2 (en) * 2007-03-01 2013-06-26 新日鐵住金株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and method for producing the same
KR100979007B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Ultra-High Strength Steel Sheet For Line Pipe Having Excellent Low Temperature Toughness And Method For Manufacturing The Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111526A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
CN109682658A (en) * 2018-12-27 2019-04-26 中国石油天然气集团有限公司 Avoid the DWTT sample and its method of big wall thickness high tenacity X80 steel pipe DWTT abnormal fracture
CN109682658B (en) * 2018-12-27 2021-06-01 中国石油天然气集团有限公司 DWTT test sample for avoiding DWTT abnormal fracture of large-wall-thickness high-toughness X80 steel pipe and method thereof
CN116288017A (en) * 2023-05-22 2023-06-23 江苏省沙钢钢铁研究院有限公司 Large thick-wall low-temperature-resistant pipeline steel and manufacturing method thereof
CN116288017B (en) * 2023-05-22 2023-07-25 江苏省沙钢钢铁研究院有限公司 Large thick-wall low-temperature-resistant pipeline steel and manufacturing method thereof

Also Published As

Publication number Publication date
KR101304824B1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
CA2620054C (en) Seamless steel pipe for line pipe and a process for its manufacture
KR101271954B1 (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
EP1546417B1 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
KR20210018414A (en) Seek hot-rolled H-beam having a yield strength of 500 megapascal and its manufacturing method
US20140251512A1 (en) Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
KR102119975B1 (en) High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio
KR20120071614A (en) Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
KR101568520B1 (en) High strength and toughness hot rolled steel sheet having excellent hic resistance, steel pipe produced by the same and method for manufacturing thereof
KR101536478B1 (en) Pressure vessel steel with excellent low temperature toughness and sulfide stress corrosion cracking, manufacturing method thereof and manufacturing method of deep drawing article
KR20200066512A (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
US20080283161A1 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
KR100951249B1 (en) Steel palte with high sohic resistance and low temperature toughness at the h2s containing environment and manufacturing
KR101304824B1 (en) API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate
KR20190077180A (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR102164107B1 (en) High strength steel plate having superior elongation percentage and excellent low-temperature toughness, and manufacturing method for the same
KR20200047926A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR101647226B1 (en) Steel plate having excellent fracture resistance and yield ratio, and method for manufacturing the same
KR20200017025A (en) Ultra heavy gauge hot rolled steel plate having excellent strength and high DWTT toughness at low temperature and method for manufacturing thereof
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101185271B1 (en) High strength steel sheet for line pipe with excellent resistance to hydrogen induced cracking properties and method of manufacturing the same
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
CN114761599B (en) Steel material excellent in sulfide stress corrosion cracking resistance and method for producing same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 7