KR20120071614A - Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same - Google Patents

Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same Download PDF

Info

Publication number
KR20120071614A
KR20120071614A KR1020100133229A KR20100133229A KR20120071614A KR 20120071614 A KR20120071614 A KR 20120071614A KR 1020100133229 A KR1020100133229 A KR 1020100133229A KR 20100133229 A KR20100133229 A KR 20100133229A KR 20120071614 A KR20120071614 A KR 20120071614A
Authority
KR
South Korea
Prior art keywords
less
value
temperature
thick
temperature toughness
Prior art date
Application number
KR1020100133229A
Other languages
Korean (ko)
Other versions
KR101271888B1 (en
Inventor
장성호
노윤조
홍순택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100133229A priority Critical patent/KR101271888B1/en
Publication of KR20120071614A publication Critical patent/KR20120071614A/en
Application granted granted Critical
Publication of KR101271888B1 publication Critical patent/KR101271888B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

PURPOSE: A wear-resistant thick plate with excellent low-temperature toughness for very thick articles and a manufacturing method thereof are provided to secure a martensite structure of 80vol.% or more in the center of a steel plate through reheating and quenching processes, thereby obtaining high hardness. CONSTITUTION: A wear-resistant thick plate with excellent low-temperature toughness for very thick articles comprises C of 0.19-0.30wt.%, Si of 0.15-0.3wt.%, Mn of 0.5-2.0wt.%, Cr of 0.1-1.5wt.%, Mo of 0.1-0.5wt.%, Ni of 0.1-0.5wt.%, V of 0.01-0.2wt.%, B of 0.0005-0.0050wt.%, Sol. Al of 0.005-0.1wt.%, P of 0.015wt.% or less, S of 0.010wt.% or less, one or more selected from the group consisting of Cu of 0.1-1.0wt.%, Ti of 0.01-0.03wt.%, and Nb of 0.01-0.05wt.%, and Fe and inevitable impurities of the remaining amount. The AGS(Austenite Grain Size) of the thick plate is average 30micron meters or less and 7 or greater in the standard of ASTM(American Society for Testing and Materials) E112. The matrix microstructure of the thick plate has 80vol.% of martensite including micro carbide/nitride.

Description

저온인성이 우수한 극후물 내마모용 후강판 및 그 제조방법{Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same}Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same}

본 발명은 포크레인, 불도져, 굴삭기 및 분쇄기 등에 이용되는 극후물 내마모용 후강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 합금설계와 제어압연 및 가속냉각의 적용을 통하여 저온인성이 우수한 극후물 내마모용 후강판 및 그 제조방법에 관한 것이다.
The present invention relates to a thick steel plate for wear resistance and a method of manufacturing the same, which are used in fork cranes, bulldozers, excavators and grinders, and more particularly, to ultra-thick materials having excellent low-temperature toughness through alloy design, application of controlled rolling and accelerated cooling It relates to a thick steel sheet for wear resistance and a method of manufacturing the same.

건설, 토목, 광산업, 시멘트 산업 등 많은 산업분야에 사용되는 중장비들의 경우 작업 시 마찰에 의한 마모가 심하게 발생됨에 따라 내마모의 특성을 나타내는 소재의 적용이 필요하다. In the case of heavy equipment used in many industries such as construction, civil engineering, mining, and cement industry, abrasion wear is seriously required, and thus, materials that exhibit wear resistance are required.

또한, 최근 상기 중장비들의 대형화에 따라 사용 중 마모량의 증가가 커짐으로 장비 사용수명의 연장을 위하여 극후물 내마모강의 적용에 대한 요구가 증가하고 있으며, 이와 함께 사용환경의 가혹화가 진행됨에 따라 용도상 강도, 경도, 내마모성과 함께 우수한 저온충격인성 특성을 필요로 한다. In addition, the recent increase in the amount of wear during use as the size of the heavy equipment is increased, the demand for the application of the ultra-thick wear-resistant steel for the extension of the service life of the equipment is increasing, along with the severe use of the environment for the purpose of use In addition to strength, hardness, and wear resistance, excellent low temperature impact toughness properties are required.

일반적으로 내마모성은 경도가 높아질수록 향상되므로 포크레인, 불도져, 굴삭기 및 착암기에 적용되는 소재의 경우 브리넬 경도 기준으로 360HB 이상의 경도값이 요구된다. In general, the wear resistance is improved as the hardness is increased, so the material applied to the forklift, bulldozer, excavator, and rock drill is required to have a hardness value of 360HB or more based on Brinell hardness.

이러한 고경도를 얻기 위해서 압연 후 Ac3 이상의 온도로 재가열 후 소입하는 방법이 일반적으로 널리 사용되고 있다. In order to obtain such high hardness, a method of quenching after reheating to a temperature of Ac 3 or more after rolling is generally widely used.

이와 관련하여 일본 특개평 2-179842호, 일본 특개평8-41535호 및 일본 특개소 61-166954호등에서는 높은 C함량과 Cr, Mo등의 경화능 향상원소를 다량 첨가함으로써 표면경도를 증가시키는 방법을 개시하고 있다.In this regard, Japanese Patent Laid-Open No. 2-179842, Japanese Patent Laid-Open No. 8-41535, and Japanese Patent Laid-Open No. 61-166954 disclose that surface hardness is increased by adding a high C content and a large amount of hardening enhancement elements such as Cr and Mo. A method is disclosed.

그러나, 극후물 강판의 제조를 위해서는 강판의 중심부에 경화능의 확보를 위하여 더 많은 경화능 원소의 첨가가 요구되어 지며 C과 경화능 합금을 다량으로 첨가함에 따라 제조비용이 상승하고 용접성 및 저온인성이 저하되는 문제점이 있다.However, in order to manufacture the ultra-thick steel sheet, it is required to add more hardenable elements in the center of the steel sheet to secure the hardenability, and as the amount of C and the hardenable alloy is added in large amounts, the manufacturing cost increases and the weldability and low temperature toughness are increased. There is a problem of this deterioration.

또한, 근래에는 중장비의 사용환경이 가혹해 짐에 따라 저온충격인성의 요구 사항이 엄격해지고 있다.In addition, in recent years, as the use environment of heavy equipment becomes severe, the requirements of low temperature impact toughness become strict.

이러한 저온충격인성 요구를 만족시키기 위한 하나의 방법으로서 일본 특개평 10-102185 등에는 재가열 소입 후 저온 소려 (약 200℃~550℃)를 통하여 강판의 잔류응력제거로 강판의 인성을 부여하는 방법이 개시되어 있다.As a method for satisfying such low temperature impact toughness requirements, Japanese Patent Application Laid-Open No. 10-102185 et al. Provides a method for imparting toughness of a steel sheet by removing residual stress of the steel sheet through low temperature consideration (about 200 ° C. to 550 ° C.) after reheating quenching. Is disclosed.

그러나, 이러한 방법의 경우에는 현장 적용시 열처리로의 온도를 올리고 내리는 처리에 많은 시간이 소요됨에 따라 생산성이 급격히 감소하는 문제점이 있고, 또한 최적 소려 조건을 적용하지 못하여 지나치게 높은 온도에서 소려처리할 경우 경도 및 내마모성의 감소를 가져오게 되고, 소려온도가 너무 낮거나 또는 소려시간이 충분하지 못할 경우 잔류응력을 제거하지 못하여 인성이 저하되는 등 최적 소려조건의 도출이 힘들다는 문제점이 있다.However, this method has a problem in that the productivity is drastically decreased due to the time required for raising and lowering the temperature of the heat treatment furnace in the field application, and also in the case of the sour processing at an excessively high temperature because the optimum consideration conditions are not applied. The hardness and abrasion resistance are reduced, and when the soaking temperature is too low or the soaking time is not sufficient, it is difficult to derive optimum solubility conditions, such as failure to remove the residual stress and the toughness.

또한, 합금성분 조절 외 제조방법의 조정에 의하여 저온인성을 확보하는 방법의 예로서 일본 특개 2002-20837 호등이 있는데, 이 방법에서는 압연종료 후 오스테나이트 온도로 재가열 하여 재압연을 실시하는 오스포밍 법을 적용함으로서 오스테나이트 결정립을 미세화시켜 인성을 개선하는 방법이 개시되었으나 현장 적용시 재가열 압연하는 방법의 적용이 어렵다는 문제점이 있다.In addition, Japanese Patent Application Laid-Open No. 2002-20837 discloses an example of a method of securing low temperature toughness by adjusting a manufacturing method other than alloy composition control. In this method, the re-rolling is performed by reheating to austenite temperature after rolling and performing re-rolling. Although a method of improving toughness by miniaturizing austenite grains has been disclosed by applying the present invention, there is a problem in that it is difficult to apply a method of reheat rolling in the field application.

본 발명은 전 두께에 대하여 내마모성이 우수함과 동시에 저온인성도 우수한 극후물 내마모용 후강판 및 그 제조방법을 제공하고자 하는 것이다.
It is an object of the present invention to provide a thick steel plate for extremely thick wear resistance and a method of manufacturing the same having excellent wear resistance with respect to the entire thickness and low temperature toughness.

본 발명의 일 측면에 의하면, 중량%로, C:0.19~0.30%, Si:0.15~0.3%, Mn:0.5~2.0%, Cr:0.1~1.5%, Mo:0.1~0.5%, Ni:0.1~0.5wt%, V:0.01~0.2wt%, B:0.0005~0.0050%, Sol.Al:0.005~0.1%, P:0.015%이하, 및 S:0.010%이하를 포함하고, 추가로 Cu:0.1~1.0wt%, Ti:0.01~0.03% 및 Nb:0.01~0.05%로 이루어진 그룹으로부터 선택된 1종 또는 2종 이상을 포함하고, 나머지는 불가피한 불순물 및 Fe로 조성되고, H값[ H값 = 2(0.024C)1/2ⅹ(Si + 1)ⅹ(3.5Mn + 1)ⅹ(2Cr + 1)ⅹ(0.5Ni + 1)ⅹ(3.0Mo + 1) ⅹ(1.8V + 1)ⅹ1.3 ]이 120 이상이고; 그리고 초정 오스테나이트 결정립 입도(AGS)가 ASTM E112 기준으로 7 이상으로 평균 30㎛이하이고, 기지 미세조직은 내부에 미세한 탄/질화물을 포함하고 있는 80부피% 이상 마르텐사이트를 포함하고, 전두께 경도값이 브리넬 경도값으로 360HB 이상인 저온인성이 우수한 극후물 내마모용 후강판이 제공된다.According to an aspect of the present invention, in weight%, C: 0.19 to 0.30%, Si: 0.15 to 0.3%, Mn: 0.5 to 2.0%, Cr: 0.1 to 1.5%, Mo: 0.1 to 0.5%, Ni: 0.1 0.5 wt%, V: 0.01-0.2 wt%, B: 0.0005-0.0050%, Sol.Al:0.005-0.1%, P: 0.015% or less, and S: 0.010% or less, and further Cu: 0.1 It includes one or two or more selected from the group consisting of ~ 1.0wt%, Ti: 0.01 ~ 0.03% and Nb: 0.01 ~ 0.05%, the remainder is composed of inevitable impurities and Fe, H value [H value = 2 (0.024C) 1/2 ⅹ (Si + 1) ⅹ (3.5Mn + 1) ⅹ (2Cr + 1) ⅹ (0.5Ni + 1) ⅹ (3.0Mo + 1) ⅹ (1.8V + 1) ⅹ1.3 ] Is at least 120; In addition, the primary austenite grain size (AGS) is 7 or more according to ASTM E112, and the average is 30 μm or less, and the matrix microstructure includes more than 80% by volume of martensite containing fine carbon / nitride therein and has a total thickness hardness. A thick steel plate for wear resistance of extreme thick products having a low temperature toughness of 360 HB or more as Brinell hardness value is provided.

상기 기지 미세조직은 80부피% 이상 마르텐사이트 조직과 20부피%이하의 베이나이트 조직으로 이루어질 수 있다.The matrix microstructure may be composed of martensite tissue of 80% by volume or more and bainite tissue of 20% by volume or less.

상기 탄/질화물은 100nm 이하의 미세한 M3X, M2X 및 MX [M=Fe, Cr, Mo, Ti, Nb; X=C, N] 탄/질화물 중의 1종 또는 2종 이상일 수 있다.The carbon / nitride is 100 nm or less fine M 3 X, M 2 X and MX [M = Fe, Cr, Mo, Ti, Nb; X = C, N] It may be one kind or two or more kinds of carbon / nitride.

본 발명의 다른 측면에 의하면, 중량%로, C:0.19~0.30%, Si:0.15~0.3%, Mn:0.5~2.0%, Cr:0.1~1.5%, Mo:0.1~0.5%, Ni:0.1~0.5wt%, V:0.01~0.2wt%, B:0.0005~0.0050%, Sol.Al:0.005~0.1%, P:0.015%이하, S:0.010%이하를 포함하고, 추가로 Cu:0.1~1.0wt%, Ti:0.01~0.03% 및 Nb:0.01~0.05%로 이루어진 그룹으로부터 선택된 1종 또는 2종 이상을 포함하고, 나머지는 불가피한 불순물 및 Fe로 조성되고; 그리고 H값[ H값 = 2(0.024C)1/2ⅹ(Si + 1)ⅹ(3.5Mn + 1)ⅹ(2Cr + 1)ⅹ(0.5Ni + 1)ⅹ(3.0Mo + 1) ⅹ(1.8V + 1)ⅹ1.3 ]이 120 이상인 슬라브를 1100℃~1250℃의 온도로 가열하고, Tnr~Ar3 사이의 온도에서 40% 이상의 누적압연 후 Ar3 이상에서 열간압연을 종료한 다음, 바로 400℃ 이하의 온도로 중심부의 냉각속도 5℃/s이상으로 가속냉각을 실시하고 이를 다시 880℃~930℃ 온도로 재가열 후 1.6t + 10~30분(t는 강재의 두께)동안 유지한 다음, 중심부의 냉각속도 10℃/s 이상으로 300℃이하의 온도로 냉각하는 저온인성이 우수한 극후물 내마모용 후강판의 제조방법이 제공된다.According to another aspect of the present invention, in weight%, C: 0.19 to 0.30%, Si: 0.15 to 0.3%, Mn: 0.5 to 2.0%, Cr: 0.1 to 1.5%, Mo: 0.1 to 0.5%, Ni: 0.1 0.5 wt%, V: 0.01 to 0.2 wt%, B: 0.0005 to 0.0050%, Sol.Al: 0.005 to 0.1%, P: 0.015% or less, S: 0.010% or less, and further Cu: 0.1 to 1.0 wt%, Ti: 0.01 to 0.03% and Nb: 0.01 to 0.05%, including one or two or more selected from the group consisting of the remainder being composed of inevitable impurities and Fe; H value [H value = 2 (0.024C) 1/2 ⅹ (Si + 1) ⅹ (3.5Mn + 1) ⅹ (2Cr + 1) ⅹ (0.5Ni + 1) ⅹ (3.0Mo + 1) ⅹ ( 1.8V + 1) ⅹ1.3] is 120 or more heated slab to a temperature of 1100 ℃ ~ 1250 ℃, 40% or more cumulative rolling at a temperature between Tnr ~ Ar 3 After the hot rolling over Ar 3 , Accelerated cooling is performed at a cooling rate of 5 ℃ / s or more at the temperature of 400 ℃ or lower, and then reheated to 880 ℃ ~ 930 ℃ and maintained for 1.6t + 10 ~ 30 minutes (t is the thickness of steel). Next, there is provided a method for producing a thick steel plate for wear resistance of ultra-thick material excellent in low temperature toughness of cooling to a temperature of less than 300 ℃ at a cooling rate of 10 ℃ / s or more in the center.

상기 Tnr 및 Ar3 는 다음과 같이 정의된다.Tnr and Ar 3 are defined as follows.

Tnr = 887 + 464C + 890Ti + 363Al - 357Si + (6445Nb - 644(Nb)1/2) + (732V - 230(V)1/2) Tnr = 887 + 464C + 890Ti + 363Al-357Si + (6445Nb-644 (Nb) 1/2 ) + (732V-230 (V) 1/2 )

Ar3 = 910 - 310C - 80Mn - 20Cu - 15Cr - 55Ni - 80Mo + 0.35(t-8) [t=판두께 (mm)]
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + 0.35 (t-8) [t = plate thickness (mm)]

본 발명에 의하면, 전 두께에 대하여 내마모성이 우수함과 동시에 저온인성도 우수한 내마모용 극후물 강판을 제공함으로써 극한지와 같은 가혹한 환경에서도 중장비등의 사용을 가능하게 해 준다.
According to the present invention, it is possible to use heavy equipment and the like in the harsh environment such as the cold place by providing the wear-resistant ultra thick steel sheet having excellent wear resistance with respect to the entire thickness and excellent low temperature toughness.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

(강의 성분 및 조직)(Lecture composition and organization)

C: 0.19 ~ 0.30중량%(이하, 단순히 "%"라고도 칭함)C: 0.19 to 0.30% by weight (hereinafter also referred to simply as "%")

상기 C는 마르텐사이트 조직을 갖는 강에서 강도와 경도를 증가시키는데 효과적이며 경화능 향상을 위하여 유익한 원소이나, 그 함량이 높을 경우 용접성 및 인성을 저하시키므로, 용접성 및 인성을 저하시키지 않고 본 발명에서 요구하는 경도를 확보하기 위해, 그 함량은 0.19~0.30%로 제한하는 것이 바람직하다.
The C is effective in increasing strength and hardness in steel having martensitic structure and is beneficial for improving the hardenability, but when the content thereof is high, the weldability and toughness are reduced, and thus the weldability and toughness are not required. In order to ensure the hardness, the content is preferably limited to 0.19 ~ 0.30%.

Si: 0.15 ~ 0.3%Si: 0.15 to 0.3%

상기 Si는 탈산과 고용강화에 따른 강도증가를 나타내는 원소이나, 그 함량이 높을 경우 용접성 감소 및 용접부 인성저하는 물론 모재의 인성을 저하시키므로, 그 함량은 0.15 ~ 0.3%로 제한하는 것이 바람직하다.
The Si is an element exhibiting an increase in strength due to deoxidation and solid solution strengthening, but when the content thereof is high, the weldability decreases and the toughness of the weld part decreases as well as the toughness of the base material. Therefore, the content thereof is preferably limited to 0.15 to 0.3%.

Al: 0.005 ~0.1%Al: 0.005 ~ 0.1%

상기 Al은 강한 탈산제로 용강중에 산소함량을 낮추어 청정강 제조에 효과적이나 0.1% 이상 첨가 시 제조원가가 상승함으로 0.005~0.1%로 한정하는 것이 바람직하다.
The Al is a strong deoxidizer to lower the oxygen content in the molten steel is effective in the production of clean steel, but when the addition of 0.1% or more increases the manufacturing cost is preferably limited to 0.005 ~ 0.1%.

Mn: 0.5 ~2.0%Mn: 0.5 ~ 2.0%

상기 Mn은 페라이트 생성을 억제하고 Ar3온도를 낮춤으로써 소입성을 효과적으로 상승시켜 재료의 강도를 증가시키는 원소이므로 극후물재 중심부 경도 확보를 위해서 많은 량을 첨가 하는 것이 좋으나, 탄소당량을 높여 재료의 용접성을 저하시키므로 그 함량은 0.5 ~ 2.0%로 제한하는 것이 바람직하다.
Since Mn is an element that suppresses the formation of ferrite and increases the hardenability by effectively lowering the Ar 3 temperature, thereby increasing the strength of the material, it is preferable to add a large amount to secure the hardness of the core material, but the carbon equivalent increases the weldability of the material. Since lowering the content is preferably limited to 0.5 to 2.0%.

Cr: 0.1 ~ 1.5%Cr: 0.1 to 1.5%

상기 Cr은 소입성을 증가시켜 재료의 강도를 증가시키며 미세한 탄화물과 질화물을 형성하여 조직을 미세화시켜 강도, 경도 등을 향상시키는 원소이나, 과도한 첨가시 용접성을 저하시키며 원가상승의 요인이 되므로, 그 함량은 0.1 ~ 1.5%로 제한하는 것이 바람직하다.
Cr is an element that increases the hardenability to increase the strength of the material and to form fine carbides and nitrides to refine the structure to improve the strength, hardness, etc., but when excessive addition decreases the weldability and causes a cost increase, The content is preferably limited to 0.1 to 1.5%.

Mo: 0.1 ~ 0.5%Mo: 0.1 to 0.5%

상기 Mo는 Cr과 같이 재료의 소입성을 증가시키며 미세한 탄화물을 형성하여 강도, 경도를 증가시키는데 매우 효과적인 원소이나, 고가의 원소로 다량 첨가시 제조비용이 상승하고 용접성을 저하시키므로, 그 함량은 0.1 ~ 0.5%로 제한하는 것이 바람직하다.
Mo is a very effective element to increase the hardenability of the material and to increase the strength, hardness by forming fine carbides, such as Cr, but when added to a large amount of expensive elements to increase the manufacturing cost and lower the weldability, the content is 0.1 It is desirable to limit to 0.5%.

Ni: 0.1 ~0.5%Ni: 0.1 ~ 0.5%

상기 Ni은 소입성을 향상시키며 고용강화 효과로 강도,경도를 증가시킴에도 불구하고 저온인성을 크게 향상시키는 원소이나 고가의 원소이므로 지나친 첨가시 제조원가의 상승요인이 되므로, 그 함량은 0.1 ~ 0.5%로 제한하는 것이 바람직하다.
Ni is an element or expensive element that greatly improves low-temperature toughness despite an increase in hardenability and an increase in strength and hardness due to a solid-solution strengthening effect. Therefore, Ni is an increase factor of manufacturing cost when excessively added, and thus the content is 0.1 to 0.5%. It is preferable to limit to.

V: 0.01 ~ 0.2%V: 0.01 to 0.2%

상기 V은 본 발명에서 중요한 원소중의 하나로 열간압연 후 재가열 시 VC 탄화물을 형성함으로 인하여 오스테나이트 결정립의 성장을 억제하고 재료의 소입성을 향상시켜 저온인성을 향상시키는 원소이지만, 고가의 원소이므로 지나친 첨가시 제조원가의 상승요인이 되므로, 그 함량은 0.01 ~ 0.2%로 제한하는 것이 바람직하다.
The V is one of the important elements in the present invention to suppress the growth of austenite grains and to improve the hardenability of the material by forming VC carbide during hot rolling after hot rolling, but to improve the low temperature toughness, but it is an excessive element Since the addition is a rising factor of the manufacturing cost, the content is preferably limited to 0.01 ~ 0.2%.

B: 0.0005 ~ 0.0050%B: 0.0005 to 0.0050%

상기 B은 소량의 첨가로도 재료의 소입성을 효과적으로 상승시켜 강도를 증가시키며, Mo, V, Ti과의 복합첨가에서 그 효과가 매우 큰 원소이나, 과도한 첨가시 인성 및 용접성을 저하시키므로, 그 함량은 0.0005 ~ 0.0050%로 제한하는 것이 바람직하다.
The B is effective to increase the hardenability of the material even with a small amount of addition, and increase the strength, and the effect is very high in the complex addition with Mo, V, Ti, but the toughness and weldability when excessive addition, The content is preferably limited to 0.0005 to 0.0050%.

Cu: 0.1 ~ 1.0%Cu: 0.1 ~ 1.0%

상기 Cu는 재료의 소입성을 향상시키며 고용강화로 인하여 강도와 경도를 향상시키는 원소이나 과도한 첨가시 표면결함을 발생시키며 열간가공성을 저해하므로, 그 함량은 0.1 ~ 1.0%로 제한하는 것이 바람직하다.
The Cu improves the hardenability of the material, and due to the solid solution strengthening element or surface strength when excessive addition or excessive addition and inhibits hot workability, the content is preferably limited to 0.1 ~ 1.0%.

Ti: 0.01 ~ 0.03%Ti: 0.01 to 0.03%

상기 Ti은 소입성 향상에 중요한 원소인 B의 효과를 극대화 하는 원소로 Ti은 TiN의 형성에 의하여 BN 형성을 억제하므로서 고용 B를 증가시켜 B에 의한 소입성 향상을 극대화시키며, 석출된 TiN은 오스테나이트 결정립에 피닝(Pining)됨에 의하여 결정립의 조대화를 억제시키는 효과를 나타내지만, 과도한 첨가시 Ti 석출물의 조대화에 의하여 인성의 저하와 제강시 편석 및 산화물 형성의 문제가 있어, 그 함량은 0.01 ~ 0.03%로 제한하는 것이 바람직하다.
Ti is an element maximizing the effect of B, which is an important element for improving the hardenability, and Ti is inhibited by the formation of TiN, thereby increasing the solid solution B to maximize the hardenability improvement by B, and precipitated TiN is austenite. The pinning of the nitrite grains has the effect of suppressing the coarsening of the grains, but due to the coarsening of Ti precipitates when excessively added, there is a problem of deterioration of toughness and segregation and oxide formation during steelmaking. It is desirable to limit to 0.03%.

Nb: 0.01 ~ 0.05%Nb: 0.01 to 0.05%

상기 Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, Nb(C,N)등의 탄질화물을 석출시킴으로써 강도의 증가와 오스테나이트 결정립 성장을 억제하는 중요한 원소이나, 다량으로 첨가할 경우 조대한 석출상의 형성으로 취성파괴의 기점이 되어 인성을 감소시키므로, 그 함량은 0.01 ~ 0.05%로 제한하는 것이 바람직하다.
Nb is an important element that is dissolved in austenite to increase the hardenability of austenite, and precipitates carbonitrides such as Nb (C, N) to suppress the increase in strength and austenite grain growth, but when added in large quantities Since the formation of coarse precipitated phase is a starting point of brittle fracture, the toughness is reduced, the content is preferably limited to 0.01 ~ 0.05%.

P: 0.015% 이하 P: 0.015% or less

상기 P는 저온인성을 저하시키는 원소로 그 함량을 낮게 제어해야 하나 제거를 위한 공정이 까다로워 과다한 비용이 소요되므로, 그 함량은 0.015% 이하의 범위로 관리하는 것이 바람직하다.
The P is an element that lowers the low-temperature toughness, but the content of the P is controlled to be low. However, the process for removing is difficult, and excessive cost is required. Therefore, the content is preferably controlled in the range of 0.015% or less.

S: 0.01% 이하S: 0.01% or less

상기 S는 P와 같이 저온인성을 감소시키는 원소로 강중 MnS 개재물을 형성하여 강의 물성을 저하시키므로 낮게 관리해야 하나 제거공정이 까다로워 과다한 비용이 소요되므로, 그 함량은 0.01% 이하로 관리하는 것이 바람직하다.
S is an element that reduces low-temperature toughness, such as P, so that MnS inclusions in steel lower the physical properties of the steel, and thus S must be kept low. However, since the removal process is difficult, excessive cost is required. .

H값: 120이상H value: 120 or more

H값 = 2(0.024C)1/2ⅹ(Si + 1)ⅹ(3.5Mn + 1)ⅹ(2Cr + 1)ⅹ(0.5Ni + 1)ⅹ(3.0Mo + 1) ⅹ(1.8V + 1)ⅹ1.3 으로 정의되는 H값을 120 이상으로 제한하는 이유는 H값이 120미만일 경우 50mmt 이상의 강판을 제조시 중심부에서 80부피% 이상의 마르텐사이트 조직을 확보할 수 없으므로 360HB 이상의 경도값을 얻을 수가 없어 내마모 특성이 저하되기 때문이다.
H value = 2 (0.024C) 1/2 ⅹ (Si + 1) ⅹ (3.5Mn + 1) ⅹ (2Cr + 1) ⅹ (0.5Ni + 1) ⅹ (3.0Mo + 1) ⅹ (1.8V + 1 The reason for limiting the H value defined by 1.3 is over 120. If the H value is less than 120, the hardness value of 360HB or more can not be obtained because the martensite structure of more than 80% by volume cannot be secured in the center of steel sheet of 50mmt or more. This is because there is no wear resistance.

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.

상기와 같이 조성되는 강을 일반압연 후 공냉한 다음 재가열 소입처리를 실시할 경우 일반적으로 조대한 초정 오스테나이트 결정립 (AGS)을 갖는 마르텐사이트 조직을 얻음으로 인하여 저온인성이 저하되게 된다.When the steel formed as described above is subjected to air-cooling after general rolling and then subjected to reheat quenching treatment, low-temperature toughness is lowered by obtaining martensite structure having coarse primary austenite grains (AGS).

이에, 본 발명에서는 상기와 같이 조성되는 강을 후술하는 바와 같이 적절한 제어압연과 가속냉각에 의하여 강판의 중심부까지 ASTM E112 기준으로 7 이상으로 평균 30㎛ 이하의 미세한 초정 오스테나이트 결정립크기를 갖는 80부피% 이상의 마르텐사이트 조직을 갖는 후강판을 제공한다.Therefore, in the present invention, as described below, the steel formed as described above, by volume control and accelerated cooling, has an average volume of 80 microns having a fine initial austenite grain size of 30 µm or less, which is 7 or more based on ASTM E112, based on ASTM E112. It provides a thick steel sheet having a martensite structure of at least%.

여기서, 초정 오스테나이트는 변태 전의 오스테나이트를 의미하는 것이다.Here, primary austenite means austenite before transformation.

상기 후강판은 80부피% 이상의 마르텐사이트와 나머지 베이나이트 조직으로 이루어질 수 있다.The thick steel plate may be composed of martensite and the remaining bainite structure of 80% by volume or more.

그리고 상기 강판의 내부조직 즉, 결정립 내부에는 미세한 탄/질화물이 형성되어 있다.In addition, fine carbon / nitride is formed in the internal structure of the steel sheet, that is, the grains.

상기 탄/질화물로는 100nm 이하의 미세한 M3X, M2X 및 MX [M=Fe, Cr, Mo, Ti, Nb; X=C, N] 탄/질화물 중 1종 또는 2종이상을 들수 있다.The carbon / nitride includes fine M 3 X, M 2 X, and MX [M = Fe, Cr, Mo, Ti, Nb; X = C, N] One or two or more of carbon / nitrides may be mentioned.

상기와 같이 열간압연시 제어압연과 가속냉각을 이유는 제어압연을 통하여 미세한 오스테나이트 조직을 형성시키며 곧 바로 가속냉각을 실시함으로 오스테나이트 결정립의 조대화를 억제하며 이와 함께 VC 석출을 최대한 억제하여 재가열 열처리 시 가속냉각으로 형성된 미세한 침상 페라이트 결정립 또는 베이나이트 내 미세한 탄/질화물로부터 오스테나이트 상이 형성됨으로 미세한 오스테나이트 결정립을 얻을 수 있으며 재가열 중 형성된 VC 탄화물이 오스테나이트 결정립계에 형성되어 결정립의 성장을 억제시킴으로 최종적으로 미세한 오스테나이트 결정립의 형성을 가능하게 하여 저온인성의 향상을 얻을 수 있으며 열처리 완료된 조직에 미세한 탄/질화물이 잔류함에 따른 강도 및 경도의 상승효과를 얻을 수 있다.The reason for the control rolling and accelerated cooling during hot rolling is to form a fine austenite structure through the control rolling and immediately accelerate the cooling to suppress the coarsening of the austenite grains and to suppress the precipitation of VC as much as possible to reheat it. As austenite phase is formed from fine needle-like ferrite grains formed by accelerated cooling or fine carbon / nitride in bainite, fine austenite grains can be obtained. Finally, it is possible to form fine austenite grains, thereby improving low-temperature toughness, and obtaining a synergistic effect of strength and hardness as fine carbon / nitride remains in the heat-treated tissue.

본 발명에서는 상기와 같이 조성되는 강 슬라브를 가열하는데, 가열온도는 1100℃~1250℃로 설정하는 것이 바람직하다.In the present invention, the steel slab formed as described above is heated, but the heating temperature is preferably set to 1100 ° C to 1250 ° C.

상기 강 슬라브의 가열온도를 1100~1250℃로 설정하는 이유는 상기 강 슬라브의 가열온도가 1100℃ 미만인 경우에는 Nb등 용질원자의 고용이 어렵고, 1250℃를 초과하는 경우에는 오스테나이트 결정립의 조대화를 억제하기 어렵기 때문이다.The reason why the heating temperature of the steel slab is set to 1100 to 1250 ° C. is that when the heating temperature of the steel slab is less than 1100 ° C., it is difficult to dissolve solute atoms such as Nb, and when the temperature exceeds 1250 ° C., coarsening of austenite grains occurs. This is because it is difficult to suppress.

이후, 열간압연은 Tnr~Ar3 사이의 온도에서 40% 이상의 누적압연 후 열간압연을 종료한다. After that, hot rolling ends the hot rolling after cumulative rolling of 40% or more at a temperature between Tnr and Ar 3 .

Tnr~Ar3 사이에서 압연을 실시하는 이유는 Tnr 온도 이상에서 압연을 종료할 경우 오스테나이트 재결정의 발생으로 오스테나이트 결정립의 조대화가 발생될 수 있으며, Ar3이하의 온도에서 압연을 종료할 경우 압연중 페라이트상이 형성됨에 따라 균일한 재질을 확보하기 어려우며 강도의 저하가 발생될 수 있기 때문이다.The reason why rolling is performed between Tnr and Ar 3 is that when the rolling is terminated above the Tnr temperature, coarsening of austenite grains may occur due to austenite recrystallization, and when rolling is terminated at a temperature below Ar 3 . This is because as the ferrite phase is formed during rolling, it is difficult to secure a uniform material and a decrease in strength may occur.

Tnr = 887 + 464C + 890Ti + 363Al - 357Si + (6445Nb - 644(Nb)1/2) + (732V - 230(V)1/2) Tnr = 887 + 464C + 890Ti + 363Al-357Si + (6445Nb-644 (Nb) 1/2 ) + (732V-230 (V) 1/2 )

Ar3 = 910 - 310C - 80Mn - 20Cu - 15Cr - 55Ni - 80Mo + 0.35(t-8) [t=판두께 (mm)]Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + 0.35 (t-8) [t = plate thickness (mm)]

또한, 누적압하율이 40% 이하일 경우 극후물 제조시 중심부까지 균일한 압연조직을 얻을 수 없어 두께 방향으로 재질의 불균일이 발생할 수 있으며 오스테나이트 결정립의 미세화를 얻을 수 없다.In addition, when the cumulative reduction ratio is 40% or less, a uniform rolled structure may not be obtained until the center of the ultra-thick material is manufactured, and non-uniformity of material may occur in the thickness direction, and micronization of austenite grains may not be obtained.

상기 방법으로 열간압연된 강판을 압연종료 후 곧바로 400℃ 이하의 온도로 강판의 중심부 냉각속도가 5℃/s이상으로 가속냉각을 실시한다. The hot-rolled steel sheet by the above method is subjected to accelerated cooling at a central cooling rate of 5 ° C./s or more at a temperature of 400 ° C. or less immediately after the end of rolling.

가속냉각을 실시하는 이유는 가속냉각을 실시하지 않을 경우 제어압연을 통하여 미세화된 오스테나이트 결정립이 공냉과정에서 조대화가 발생하여 최종적으로 미세한 결정립을 얻을 수 없기 때문이다.The reason why the accelerated cooling is performed is that when the accelerated cooling is not performed, the austenitic grains refined through the control rolling are coarsened in the air cooling process, and thus finally fine grains cannot be obtained.

가속냉각 시 냉각속도를 5℃/s이상으로 제한하는 이유는 냉각속도가 5℃/s 미만일 경우 미세한 침상의 페라이트 또는 베이나이트 조직을 얻을 수 없어 재가열 소입처리후 결정립 미세화 효과를 얻을 수 없기 때문이다.The reason why the cooling rate is limited to 5 ° C / s or more during accelerated cooling is that when the cooling rate is less than 5 ° C / s, fine needle-like ferrite or bainite structure cannot be obtained, and thus the grain refining effect cannot be obtained after the reheating quenching treatment. .

제어압연 및 가속냉각 종료 후 냉각된 강판을 880 ~ 930℃ 온도로 1.6t +(10~30분)[단,t는 강재의 두께(mm)]동안 재가열 후 10℃/s 이상의 냉각속도로 300℃ 이하의 온도까지 소입처리를 실시한다. After completion of controlled rolling and accelerated cooling, the cooled steel sheet is reheated for 1.6t + (10 ~ 30 minutes) [t is the thickness of steel (mm)] at 880 ~ 930 ℃, but 300 at 10 ℃ / s or more The quenching treatment is carried out to a temperature of not more than ° C.

재가열 온도가 880℃ 보다 낮을 경우 고용원소들의 재고용이 어려워 강도확보가 어려워지고 냉각 후 균일한 탄화물의 확보가 어려우며, 930℃보다 높아질 경우 결정립 성장이 일어나 인성의 저하를 유발하게 된다. If the reheating temperature is lower than 880 ℃, it is difficult to re-employment of the employment element is difficult to secure the strength, it is difficult to secure a uniform carbide after cooling, and when it is higher than 930 ℃ grain growth occurs to cause toughness.

또한, 재가열 시간을 1.6t +(10~30분)[단,t는 강재의 두께(mm)]으로 제한하는 이유는 상기 시간보다 적으면 조직의 균질화가 어렵고 그 이상의 유지시간에서는 생산성이 저해되기 때문이다. In addition, the reason for limiting the reheating time to 1.6t + (10 to 30 minutes) [where t is the thickness of the steel (mm)] is less than the above time, so that the homogenization of the tissue is difficult and the productivity is inhibited at the above holding time. Because.

또한, 냉각속도를 10℃/s 이상으로 제한하는 이유는 10℃/s 이하의 냉각속도에서는 극후물재의 중심부까지 80부피% 이상의 마르텐사이트 조직의 확보가 어렵기 때문이다.In addition, the reason why the cooling rate is limited to 10 ° C / s or more is that at a cooling rate of 10 ° C / s or less, it is difficult to secure martensite structure of 80% by volume or more to the center of the ultra-thin material.

상기 열처리 공정을 거쳐 제조된 본 발명의 강판은 50mmt이상 극후물 강판의 전 두께에서 80부피% 이상의 마르텐사이트 조직을 갖고 결정립 내부에는 미세한 탄/질화물을 형성하여 전 두께에서 360HB 이상의 경도값을 가지며, ASTM E112 기준으로 7 이상으로 평균 30㎛ 이하의 미세한 초정 오스테나이트 결정립 크기를 가짐으로 -40℃에서의 샤르피 충격 에너지 값이 40J 이상을 만족하여 우수한 내마모성 및 저온인성을 확보할 수 있다. The steel sheet of the present invention manufactured through the heat treatment process has a martensite structure of 80% by volume or more in the total thickness of the ultra-thick steel plate of 50mmt or more, and forms fine carbon / nitride inside the grains, and has a hardness value of 360HB or more at the total thickness. It has a fine primary austenite grain size of 30 μm or less on average based on ASTM E112, and the Charpy impact energy value at −40 ° C. satisfies 40 J or more, thereby ensuring excellent wear resistance and low temperature toughness.

상기 미세조직은 80부피% 이상 마르텐사이트 조직과 20부피%이하의 베이나이트 조직으로 이루어질 수 있다.The microstructure may be composed of martensite tissue of 80% by volume or more and bainite tissue of 20% by volume or less.

상기 탄/질화물은 100nm 이하의 미세한 M3X, M2X 및 MX [M=Fe, Cr, Mo, Ti, Nb; X=C, N] 탄/질화물 중의 1종 또는 2종 이상일 수 있다.
The carbon / nitride is 100 nm or less fine M 3 X, M 2 X and MX [M = Fe, Cr, Mo, Ti, Nb; X = C, N] It may be one kind or two or more kinds of carbon / nitride.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 1과 같은 화학조성을 갖는 슬라브를 제작한 후 1100℃~1250℃의 온도범위에서 가열하고 하기 표 2와 같은 조건으로 압연 및 가속냉각을 실시한 후 910℃에서 재가열 소입처리를 실시하여 강판을 제조하였다. To prepare a slab having a chemical composition as shown in Table 1, and then heated in a temperature range of 1100 ℃ ~ 1250 ℃ and subjected to rolling and accelerated cooling under the conditions shown in Table 2 and then subjected to the reheat quenching treatment at 910 ℃ It was.

하기 조건으로 제조된 강판에 대하여 초정 오스테나이트 결정립 크기(AGS) 및 강판의 경도 및 샤르피 충격인성값을 측정하고, 그 결과를 하기 표 2에 나타내었다.For steel sheets manufactured under the following conditions, primary austenite grain size (AGS), hardness and Charpy impact toughness values of the steel sheets were measured, and the results are shown in Table 2 below.

경도측정은 ISO-6506 규격에 준하여 브리넬 경도계로 측정하고, 강판의 1/2t 지점을 절단하여 연마 후 측정하였다. 측정값은 랜덤하게 5회를 측정하여 평균치를 이용한 것이다.Hardness measurement was measured with a Brinell hardness tester in accordance with the ISO-6506 standard, and cut after polishing the 1 / 2t point of the steel sheet. The measured value was measured five times at random and used the average value.

초정 오스테나이트 결정립 크기(AGS)는 강판의 1/2t 부위로부터 경면 연마 후 시험편을 채취하고 이것을 AGS 부식용액으로 에칭 후 광학현미경을 이용하여 500배로 관찰하고 화상해석에 의하여 결정립 크기를 측정하여 평균을 구한 것이다.The primary austenite grain size (AGS) is obtained by mirror-polishing specimens from 1 / 2t of steel plate, and then etched with AGS corrosion solution and observed 500 times using an optical microscope.The average grain size is measured by image analysis. I got it.

모재의 저온인성은 강판의 1/2t 부위로부터 시편을 채취하여 V 노치 시험편을 제작 후 -40℃에서 샤르피 충격시험을 5회 실시하여 평균을 구한 것이다.
The low temperature toughness of the base material was obtained by taking the specimen from 1 / 2t of steel plate and making V notched specimens, and performing the Charpy impact test five times at -40 ℃.

강종
Steel grade
화학성분(중량%)Chemical composition (% by weight) Ceq
Ceq
H
H
CC SiSi MnMn PP SS AlAl CrCr NiNi CuCu VV BB TiTi NbNb MoMo





foot
persons
River
AA 0.190.19 0.30.3 1.61.6 0.010.01 0.0020.002 0.030.03 0.50.5 0.30.3 0.20.2 0.050.05 0.00200.0020 0.0150.015 0.020.02 0.30.3 0.660.66 182182
BB 0.220.22 0.30.3 1.51.5 0.010.01 0.0020.002 0.030.03 0.50.5 0.20.2 0.20.2 0.050.05 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.650.65 150150 CC 0.250.25 0.20.2 1.31.3 0.010.01 0.0020.002 0.030.03 0.40.4 0.30.3 0.20.2 0.050.05 0.00200.0020 0.0150.015 0.020.02 0.30.3 0.650.65 146146 DD 0.20.2 0.30.3 1.51.5 0.010.01 0.0020.002 0.030.03 0.50.5 0.30.3 0.20.2 0.10.1 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.640.64 161161 EE 0.220.22 0.30.3 1.41.4 0.010.01 0.0020.002 0.030.03 0.50.5 0.30.3 0.20.2 0.10.1 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.650.65 160160 FF 0.240.24 0.20.2 1.31.3 0.010.01 0.0020.002 0.030.03 0.40.4 0.30.3 00 0.10.1 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.620.62 130130 GG 0.240.24 0.30.3 0.850.85 0.0060.006 0.0010.001 0.050.05 0.80.8 0.50.5 00 0.020.02 0.00200.0020 0.0150.015 0.0150.015 0.30.3 0.640.64 166166 HH 0.250.25 0.30.3 1.41.4 0.010.01 0.0020.002 0.030.03 0.40.4 0.30.3 00 0.020.02 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.630.63 135135 II 0.230.23 0.30.3 1.61.6 0.010.01 0.0020.002 0.030.03 0.40.4 0.30.3 00 0.020.02 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.640.64 144144 JJ 0.270.27 0.20.2 1.21.2 0.010.01 0.0020.002 0.030.03 0.50.5 0.30.3 00 0.020.02 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.630.63 126126





ratio
School
River
KK 0.150.15 0.30.3 1.21.2 0.0100.010 0.0010.001 0.0350.035 0.40.4 0.30.3 00 00 0.00140.0014 0.0150.015 0.020.02 0.20.2 0.490.49 8989
LL 0.140.14 0.40.4 1.31.3 0.0100.010 0.0090.009 0.030.03 0.10.1 00 00 0.010.01 0.00400.0040 0.020.02 0.020.02 0.150.15 0.410.41 5353 MM 0.120.12 0.30.3 1.11.1 0.0110.011 0.0010.001 0.050.05 1.01.0 0.050.05 00 0.010.01 0.00150.0015 0.020.02 0.0150.015 0.20.2 0.570.57 112112 NN 0.160.16 0.20.2 1.11.1 0.0110.011 0.0010.001 0.100.10 0.60.6 00 00 00 0.00200.0020 00 0.020.02 0.20.2 0.500.50 8484 OO 0.150.15 0.30.3 1.31.3 0.0150.015 0.0020.002 0.040.04 0.30.3 00 00 00 0.00100.0010 0.010.01 00 00 0.430.43 4646 PP 0.10.1 0.30.3 1.31.3 0.0080.008 0.0020.002 0.030.03 0.50.5 00 00 00 0.00200.0020 0.0150.015 0.020.02 0.20.2 0.460.46 7575 QQ 0.350.35 0.20.2 1.11.1 0.0080.008 0.0020.002 0.030.03 0.50.5 0.30.3 0.20.2 00 0.00200.0020 00 00 0.20.2 0.710.71 130130

시편No.Specimen No. 강종Steel grade 판두께
(mm)
Plate thickness
(mm)
Tnr
(℃)
Tnr
(℃)
Ar3
(℃)
Ar 3
(℃)
압연종료
온도(℃)
Rolling finish
Temperature (℃)
가속냉각
속도
(℃/s)
Accelerated cooling
speed
(℃ / s)
AGS
(㎛)
AGS
(Μm)
경도값
[1/2t]
(HB)
Longitude value
[1 / 2t]
(HB)
vE[-40℃]
(J)
vE [-40 ℃]
(J)
발명재1Invention 1 AA 8080 915915 665665 800800 55 2929 405405 4545 발명재2Invention 2 BB 5050 929929 677677 750750 1010 2525 396396 5959 발명재3Invention 3 CC 5050 979979 672672 750750 88 2525 387387 6868 발명재4Invention 4 DD 7070 935935 678678 800800 77 3030 395395 5353 발명재5Invention 5 EE 6060 945945 654654 800800 1010 2424 401401 5555 발명재6Invention 6 FF 6060 989989 687687 800800 1010 2626 375375 5858 발명재7Invention Material7 GG 8080 923923 698698 750750 55 3030 384384 4949 발명재8Invention Material 8 HH 5050 940940 676676 750750 1010 2323 378378 5656 발명재9Invention Material 9 II 6060 931931 666666 800800 88 2626 381381 5757 발명재10Invention 10 JJ 5050 976976 690690 750750 1010 2222 375375 6868 비교재1Comparative Material 1 KK 7070 913913 723723 10501050 -- 8585 240240 1212 비교재2Comparative Material 2 LL 5050 860860 743743 10001000 -- 7070 260260 1818 비교재3Comparative Material 3 MM 8080 874874 745745 10201020 -- 9090 320320 1313 비교재4Comparative Material 4 NN 5050 964964 741741 980980 -- 6868 290290 2222 비교재5Comparative Material 5 OO 5050 873873 749749 950950 -- 6565 210210 2828 비교재6Comparative Material 6 PP 5050 888888 745745 10001000 -- 7272 270270 1515 비교재7Comparative Material7 QQ 8080 989989 663663 10301030 -- 9292 370370 1010 비교재8Comparative Material 8 AA 8080 915915 665665 10001000 -- 7575 398398 88 비교재9Comparative Material 9 EE 5050 945945 654654 10201020 -- 6363 394394 1111 비교재10Comparative Material 10 KK 7070 913913 723723 800800 55 3030 234234 3434 비교재11Comparative Material 11 QQ 8080 989989 663663 750750 55 2929 372372 2828

상기 표 2에 나타난 바와 같이, 비교재(1-6)의 경우에는 C, Ni, V 등의 첨가량이 적고 경화능 향상 원소의 첨가 부족으로 H값이 120 이하로 설계되어 소입처리 후에도 강판의 중심부의 경화능을 확보하지 못하여 80부피% 이상의 마르텐사이트 조직을 확보하지 못하고 대부분 영역에서 베이나이트 조직을 얻음으로서 360HB 이상의 경도를 얻을 수 없었으며, 일반압연의 적용으로 압연종료온도가 Tnr 이상에서 종료함에 따라 냉각 중 오스테나이트 결정립의 성장이 발생하여 재열처리 소입처리 후 조대한 AGS를 갖음에 따라 우수한 저온인성을 얻을 수 없다. As shown in Table 2, in the case of the comparative material (1-6), the amount of addition of C, Ni, V, etc. is small and the H value is designed to be 120 or less due to the lack of addition of the hardenability improving element, and thus the center of the steel sheet even after the hardening treatment. Hardness of more than 360HB could not be obtained by obtaining bainite structure in most areas because it could not secure hardening ability of 80% by volume, and rolling end temperature was over Tnr due to the application of general rolling. As a result, growth of austenite grains occurs during cooling, and coarse AGS is obtained after the reheat treatment quenching treatment, so that excellent low-temperature toughness cannot be obtained.

또한, 비교재(7-9)의 경우에는 H값이 120 이상으로 설계되었으나 일반압연의 적용으로 오스테나이트 결정립 미세화에 따른 저온인성의 향상 효과를 얻을 수 없다.In addition, in the case of the comparative material 7-9, the H value is designed to be 120 or more, but it is not possible to obtain the effect of improving the low temperature toughness due to the refinement of the austenite grains by applying general rolling.

또한, 비교재(10)의 경우에는 Tnr~Ar3 온도에서 제어압연을 적용하고 가속냉각을 실시함에 따라 오스테나이트 결정립 미세화 효과를 얻을 수 있으나, H값이 120이하로 설계됨에 따라 극후물 제조시 중심부 경화능을 확보하지 못하여 80부피% 이상의 마르텐사이트 조직을 얻지 못하고 대부분 영역에서 베이나이트 조직을 얻음으로써 360HB 이상의 경도와 우수한 저온충격인성을 얻을 수 없다.In addition, in the case of the comparative material 10, austenitic grain refining effect can be obtained by applying controlled rolling at Tnr ~ Ar 3 temperature and performing accelerated cooling, but when manufacturing the ultra-thick material as the H value is designed to be 120 or less. Since the hardenability of the core is not secured, martensite structure of more than 80% by volume is not obtained, and bainite structure is obtained in most areas, and thus hardness and excellent low temperature impact toughness of 360HB cannot be obtained.

또한, 비교강(11)의 경우에는 H값이 120이상으로 설계되었으며, Tnr~Ar3 온도에서 제어압연을 적용하고 가속냉각을 실시하여 오스테나이트 미세화 효과를 얻었으나 C함량이 본 발명 범위를 초과하여 첨가됨에 따라 우수한 저온충격인성을 얻을 수 없다.In addition, in the case of the comparative steel 11, the H value was designed to be 120 or more, and control rolling was applied at Tnr ~ Ar 3 temperature and accelerated cooling to obtain the austenite refining effect, but the C content exceeded the scope of the present invention. As it is added, excellent low temperature impact toughness cannot be obtained.

이에 반하여, 발명재(1-10)의 경우에는 본 발명에서 제어하는 성분계를 모두 만족하며 Tnr~Ar3 온도범위에서 제어압연을 실시하고 3℃/s이상의 냉각속도로 냉각을 실시하고 재가열 소입처리를 실시함에 따라 강판의 중심부 80부피% 이상의 마르텐사이트 조직을 확보할 수 있어 우수한 경도값을 얻음과 동시에 오스테나이트 미세화 효과에 의하여 저온충격인성이 매우 우수한 것을 알 수 있다.
On the contrary, in the case of the invention material (1-10), all of the component systems controlled by the present invention are satisfied, and control rolling is performed in the temperature range of Tnr to Ar 3, cooling at a cooling rate of 3 ° C./s or more, and reheat quenching treatment. By carrying out the martensite structure of 80% by volume or more in the center of the steel sheet can be secured to obtain an excellent hardness value and at the same time it can be seen that the low temperature impact toughness is very excellent due to the austenite micronization effect.

Claims (4)

중량%로, C:0.19~0.30%, Si:0.15~0.3%, Mn:0.5~2.0%, Cr:0.1~1.5%, Mo:0.1~0.5%, Ni:0.1~0.5wt%, V:0.01~0.2wt%, B:0.0005~0.0050%, Sol.Al:0.005~0.1%, P:0.015%이하, 및 S:0.010%이하를 포함하고, 추가로 Cu:0.1~1.0wt%, Ti:0.01~0.03% 및 Nb:0.01~0.05%로 이루어진 그룹으로부터 선택된 1종 또는 2종 이상을 포함하고, 나머지는 불가피한 불순물 및 Fe로 조성되고, H값[ H값 = 2(0.024C)1/2ⅹ(Si + 1)ⅹ(3.5Mn + 1)ⅹ(2Cr + 1)ⅹ(0.5Ni + 1)ⅹ(3.0Mo + 1) ⅹ(1.8V + 1)ⅹ1.3 ]이 120 이상이고; 그리고
초정 오스테나이트 결정립 입도(AGS)가 ASTM E112 기준으로 7 이상으로 평균 30㎛이하이고, 기지 미세조직은 내부에 미세한 탄/질화물을 포함하고 있는 80부피% 이상 마르텐사이트를 포함하고, 전두께 경도값이 브리넬 경도값으로 360HB 이상인 저온인성이 우수한 극후물 내마모용 후강판.
By weight%, C: 0.19-0.30%, Si: 0.15-0.3%, Mn: 0.5-2.0%, Cr: 0.1-1.5%, Mo: 0.1-0.5%, Ni: 0.1-0.5 wt%, V: 0.01 0.2 wt%, B: 0.0005-0.050%, Sol.Al:0.005-0.1%, P: 0.015% or less, and S: 0.010% or less, further Cu: 0.1-1.0 wt%, Ti: 0.01 At least one selected from the group consisting of ˜0.03% and Nb: 0.01˜0.05%, the remainder being composed of inevitable impurities and Fe, and the H value [H value = 2 (0.024C) 1/2 ⅹ (Si + 1) ⅹ (3.5Mn + 1) ⅹ (2Cr + 1) ⅹ (0.5Ni + 1) ⅹ (3.0Mo + 1) ⅹ (1.8V + 1) ⅹ1.3] is at least 120; And
The primary austenite grain size (AGS) is 7 or more based on ASTM E112, average 30 μm or less, and the matrix microstructure contains 80% by volume or more martensite containing fine carbon / nitride inside, and the total thickness hardness value. A thick steel plate for extremely thick wear resistance that has excellent low temperature toughness of 360 HB or higher with this Brinell hardness value.
제1항에 있어서, 상기 기지 미세조직은 80부피% 이상 마르텐사이트 조직과 20부피%이하의 베이나이트 조직으로 이루어지는 것을 특징으로 하는 저온인성이 우수한 극후물 내마모용 후강판.The thick steel sheet for wear resistance according to claim 1, wherein the matrix microstructure comprises 80% by volume or more of martensite and 20% by volume of bainite structure. 제1항에 있어서, 상기 탄/질화물은 100nm 이하의 미세한 M3X, M2X 및 MX [M=Fe, Cr, Mo, Ti, Nb; X=C, N] 탄/질화물 중의 1종 또는 2종 이상인 것을 특징으로 하는저온인성이 우수한 극후물 내마모용 후강판.The method of claim 1, wherein the carbon / nitride is 100 nm or less fine M 3 X, M 2 X and MX [M = Fe, Cr, Mo, Ti, Nb; X = C, N] A thick steel plate for wear resistance of ultra-thickness having excellent low temperature toughness, characterized in that it is one kind or two or more kinds of carbon / nitride. 중량%로, C:0.19~0.30%, Si:0.15~0.3%, Mn:0.5~2.0%, Cr:0.1~1.5%, Mo:0.1~0.5%, Ni:0.1~0.5wt%, V:0.01~0.2wt%, B:0.0005~0.0050%, Sol.Al:0.005~0.1%, P:0.015%이하, S:0.010%이하를 포함하고, 추가로 Cu:0.1~1.0wt%, Ti:0.01~0.03% 및 Nb:0.01~0.05%로 이루어진 그룹으로부터 선택된 1종 또는 2종 이상을 포함하고, 나머지는 불가피한 불순물 및 Fe로 조성되고; 그리고 H값[ H값 = 2(0.024C)1/2ⅹ(Si + 1)ⅹ(3.5Mn + 1)ⅹ(2Cr + 1)ⅹ(0.5Ni + 1)ⅹ(3.0Mo + 1) ⅹ(1.8V + 1)ⅹ1.3 ]이 120 이상인 슬라브를 1100℃~1250℃의 온도로 가열하고, Tnr[Tnr = 887 + 464C + 890Ti + 363Al - 357Si + (6445Nb - 644(Nb)1/2) + (732V - 230(V)1/2) ] ~ Ar3 [Ar3 = 910 - 310C - 80Mn - 20Cu - 15Cr - 55Ni - 80Mo + 0.35(t-8) (t=판두께 (mm))]사이의 온도에서 40% 이상의 누적압연 후 Ar3 이상에서 열간압연을 종료한 다음, 바로 400℃ 이하의 온도로 중심부의 냉각속도 5℃/s이상으로 가속냉각을 실시하고 이를 다시 880℃~930℃ 온도로 재가열 후 1.6t + 10~30분(t는 강재의 두께)동안 유지한 다음, 중심부의 냉각속도 10℃/s 이상으로 300℃이하의 온도로 냉각하는 저온인성이 우수한 극후물 내마모용 후강판의 제조방법.By weight%, C: 0.19-0.30%, Si: 0.15-0.3%, Mn: 0.5-2.0%, Cr: 0.1-1.5%, Mo: 0.1-0.5%, Ni: 0.1-0.5 wt%, V: 0.01 0.2 wt%, B: 0.0005 to 0.0050%, Sol.Al: 0.005 to 0.1%, P: 0.015% or less, S: 0.010% or less, and further Cu: 0.1 to 1.0 wt%, Ti: 0.01 to One or two or more selected from the group consisting of 0.03% and Nb: 0.01-0.05%, the remainder being composed of inevitable impurities and Fe; H value [H value = 2 (0.024C) 1/2 ⅹ (Si + 1) ⅹ (3.5Mn + 1) ⅹ (2Cr + 1) ⅹ (0.5Ni + 1) ⅹ (3.0Mo + 1) ⅹ ( 1.8V + 1) ⅹ1.3] above 120 is heated to a temperature of 1100 ℃ ~ 1250 ℃, Tnr [Tnr = 887 + 464C + 890 Ti + 363Al-357Si + (6445Nb-644 (Nb) 1/2 ) + (732V-230 (V) 1/2 )] ~ Ar 3 [Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + 0.35 (t-8) (t = plate thickness (mm))] After 40% or more cumulative rolling at the temperature between the end of the hot rolling at Ar 3 or more, and then accelerated cooling to the cooling rate of 5 ℃ / s or more at the center of the temperature of less than 400 ℃ immediately 880 ℃ ~ 930 ℃ After reheating to temperature, it is maintained for 1.6t + 10 ~ 30 minutes (t is the thickness of steel), and then it is used for extreme wear resistance with excellent low temperature toughness that cools below 300 ℃ with cooling rate of 10 ℃ / s or more at the center. Method of manufacturing thick steel sheet.
KR1020100133229A 2010-12-23 2010-12-23 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same KR101271888B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100133229A KR101271888B1 (en) 2010-12-23 2010-12-23 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100133229A KR101271888B1 (en) 2010-12-23 2010-12-23 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same

Publications (2)

Publication Number Publication Date
KR20120071614A true KR20120071614A (en) 2012-07-03
KR101271888B1 KR101271888B1 (en) 2013-06-05

Family

ID=46706565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100133229A KR101271888B1 (en) 2010-12-23 2010-12-23 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same

Country Status (1)

Country Link
KR (1) KR101271888B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014045552A1 (en) * 2012-09-19 2016-08-18 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
KR101696094B1 (en) * 2015-08-21 2017-01-13 주식회사 포스코 Steel sheet having superior hardness and method for manufacturing the same
WO2018117481A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 High-hardness wear-resistant steel and method for manufacturing same
WO2018168248A1 (en) * 2017-03-13 2018-09-20 Jfeスチール株式会社 Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
KR20190022845A (en) * 2016-08-09 2019-03-06 제이에프이 스틸 가부시키가이샤 High Strength Steel Sheet and Manufacturing Method Thereof
WO2019125083A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
KR20190076762A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR20190077916A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Abrasion resistance steel having excellent homogeneous material properties and method for manufacturing the same
EP3859043A4 (en) * 2018-09-27 2021-10-27 Posco Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
EP3901316A4 (en) * 2018-12-19 2022-01-26 Posco Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387371B2 (en) * 1997-07-18 2003-03-17 住友金属工業株式会社 High tensile steel excellent in arrestability and weldability and manufacturing method
JP4427110B2 (en) 1998-09-03 2010-03-03 新日本製鐵株式会社 Press forming method of thin steel sheet for processing
JP3899014B2 (en) 2002-11-06 2007-03-28 新日本製鐵株式会社 Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same
JP4379085B2 (en) 2003-11-07 2009-12-09 Jfeスチール株式会社 Manufacturing method of high strength and high toughness thick steel plate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014045552A1 (en) * 2012-09-19 2016-08-18 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
KR101696094B1 (en) * 2015-08-21 2017-01-13 주식회사 포스코 Steel sheet having superior hardness and method for manufacturing the same
WO2017034216A1 (en) * 2015-08-21 2017-03-02 주식회사 포스코 High-hardness steel sheet, and manufacturing method therefor
CN107923023A (en) * 2015-08-21 2018-04-17 Posco公司 High rigidity steel plate and its manufacture method
JP2018528325A (en) * 2015-08-21 2018-09-27 ポスコPosco High hardness steel plate and manufacturing method thereof
KR20190022845A (en) * 2016-08-09 2019-03-06 제이에프이 스틸 가부시키가이샤 High Strength Steel Sheet and Manufacturing Method Thereof
WO2018117481A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 High-hardness wear-resistant steel and method for manufacturing same
KR20180073368A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Wear resistant steel havinh high hardness and method for manufacturing the same
US11401572B2 (en) 2016-12-22 2022-08-02 Posco High-hardness wear-resistant steel and method for manufacturing same
US11060172B2 (en) 2017-03-13 2021-07-13 Jfe Steel Corporation Abrasion-resistant steel plate and method of manufacturing same
JP2019131892A (en) * 2017-03-13 2019-08-08 Jfeスチール株式会社 Abrasion resistant steel sheet, and manufacturing method of abrasion resistant steel sheet
CN110366603A (en) * 2017-03-13 2019-10-22 杰富意钢铁株式会社 The manufacturing method of wear-resistant steel plate and wear-resistant steel plate
JPWO2018168248A1 (en) * 2017-03-13 2019-03-22 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
WO2018168248A1 (en) * 2017-03-13 2018-09-20 Jfeスチール株式会社 Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
CN110366603B (en) * 2017-03-13 2021-12-10 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet
US11371125B2 (en) 2017-12-22 2022-06-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
KR20190076762A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR20190076790A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2019125083A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
US11473178B2 (en) 2017-12-22 2022-10-18 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
EP3730654A4 (en) * 2017-12-22 2020-10-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
KR20190077916A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Abrasion resistance steel having excellent homogeneous material properties and method for manufacturing the same
WO2019132310A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor
EP3859043A4 (en) * 2018-09-27 2021-10-27 Posco Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
EP3901316A4 (en) * 2018-12-19 2022-01-26 Posco Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same

Also Published As

Publication number Publication date
KR101271888B1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
KR101271888B1 (en) Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
CN110100034B (en) High-hardness wear-resistant steel and method for manufacturing same
KR102119959B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR101271954B1 (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
KR102175570B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR101908818B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
KR101899687B1 (en) Wear resistant steel having high hardness and method for manufacturing same
JP2008297571A (en) Abrasion resistant steel sheet having excellent workability, and its production method
JP2008169443A (en) Wear-resistant steel sheet superior in workability and manufacturing method therefor
KR20180074229A (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
KR20180073074A (en) Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
KR101322092B1 (en) Wear Resistant Steel Plate Having Excellent Low-Temperature Toughness And Weldability, And Method For Manufacturing The Same
KR102164112B1 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
KR20120071615A (en) Wear resistant steel plate having excellent low-temperature toughness and weldability, and method for manufacturing the same
WO2018061101A1 (en) Steel
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR102031443B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR20200047319A (en) High manganese austenitic steel having high yield strength and manufacturing method for the same
JP2008214736A (en) Wear resistant steel sheet having excellent workability, and method for producing the same
KR102255825B1 (en) Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
KR101867677B1 (en) Steel wire rod having enhanced delayed fracture resistance and method for manufacturing the same
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP2019026927A (en) Thick steel sheet and manufacturing method of thick steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170529

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 7