JP2018528325A - High hardness steel plate and manufacturing method thereof - Google Patents

High hardness steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP2018528325A
JP2018528325A JP2018509544A JP2018509544A JP2018528325A JP 2018528325 A JP2018528325 A JP 2018528325A JP 2018509544 A JP2018509544 A JP 2018509544A JP 2018509544 A JP2018509544 A JP 2018509544A JP 2018528325 A JP2018528325 A JP 2018528325A
Authority
JP
Japan
Prior art keywords
less
excluding
steel sheet
content
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018509544A
Other languages
Japanese (ja)
Other versions
JP6843119B2 (en
Inventor
ヨン−ロク イム、
ヨン−ロク イム、
ジュン−サン チャン、
ジュン−サン チャン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2018528325A publication Critical patent/JP2018528325A/en
Application granted granted Critical
Publication of JP6843119B2 publication Critical patent/JP6843119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

本発明の一側面は、500HB以上のブリネル硬度を得るために、最小炭素含量の関係式に従って鋼組成を設定して500HB以上のブリネル硬度を有する高硬度鋼板及びその製造方法を提供することにある。
本発明の一側面は、熱間圧延された熱延鋼板を冷却する工程を含んで製造される500HB以上のブリネル硬度を有する高硬度鋼板であって、炭素(C)の最小含量が下記関係式(1)を満たし、
[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
95vol.%以上のマルテンサイト相を含む微細組織を有し、並びに
500HB以上のブリネル硬度を有する高硬度鋼板及びその製造方法に関する。
One aspect of the present invention is to provide a high-hardness steel sheet having a Brinell hardness of 500 HB or more by setting a steel composition according to a relational expression of the minimum carbon content in order to obtain a Brinell hardness of 500 HB or more, and a method for manufacturing the same. .
One aspect of the present invention is a high-hardness steel plate having a Brinell hardness of 500 HB or more manufactured including a step of cooling a hot-rolled hot-rolled steel plate, and the minimum content of carbon (C) is represented by the following relational expression: Satisfy (1)
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]
95 vol. The present invention relates to a high-hardness steel sheet having a microstructure containing a martensite phase of at least% and having a Brinell hardness of 500 HB or more and a method for producing the same.

Description

本発明は、様々な分野に使用される高硬度鋼板及びその製造方法に関する。   The present invention relates to a high-hardness steel sheet used in various fields and a method for producing the same.

高い硬度を有する鋼板は、耐摩耗性と荷重支持能力に優れるため、長い使用寿命と耐久性を保証することができ、様々な部品に使用されている。   A steel sheet having a high hardness is excellent in wear resistance and load carrying capacity, so that it can guarantee a long service life and durability, and is used in various parts.

特に、耐摩耗鋼の場合、ブリネル硬度を基準としてその等級が規定されているが、通常、HB(ブリネル硬度)350級から、上はHB600級までの多様な硬度レベルで製造されている。   In particular, in the case of wear-resistant steel, the grade is defined based on the Brinell hardness, but it is usually manufactured at various hardness levels from HB (Brinell hardness) 350 to HB600.

また、高い硬度を有する鋼板は、高い強度も同時に有するようになるため、衝突部材、補強材のように、高強度の構造を活用する部門においても使用することができ、部品軽量化と効率化の側面から高い経済的価値を有する。   Steel sheets with high hardness also have high strength at the same time, so they can be used in departments that use high-strength structures such as impact members and reinforcements, reducing the weight and efficiency of parts. Has high economic value in terms of

このような高硬度鋼板は、通常、オーステナイト温度領域から常温への冷却過程において鋼板をマルテンサイトあるいはベイナイト組織に相変態させ、このような低温変態組織 が有する高い硬度と強度を活用している。   Such a high-hardness steel sheet normally utilizes the high hardness and strength of such a low-temperature transformation structure by transforming the steel sheet into a martensite or bainite structure in the cooling process from the austenite temperature range to room temperature.

しかしながら、従来技術では、部品により要求される硬度を得るために、様々な成分及び工程を制御する方案が考案されているものの、一元化した硬度を得るための基準については提示されていない。   However, in the prior art, a method for controlling various components and processes is devised in order to obtain the hardness required by a part, but no standard for obtaining a unified hardness is presented.

本発明の一側面は、500HB以上のブリネル硬度を得るために、最小炭素含量の関係式を用いて鋼組成が設定された500HB以上のブリネル硬度を有する高硬度鋼板を提供しようとするものである。   One aspect of the present invention is to provide a high hardness steel plate having a Brinell hardness of 500 HB or more in which a steel composition is set using a relational expression of a minimum carbon content in order to obtain a Brinell hardness of 500 HB or more. .

本発明の他の一側面は、500HB以上のブリネル硬度を得るために、最小炭素含量の関係式に従って鋼組成を設定して500HB以上のブリネル硬度を有する高硬度鋼板を製造する方法を提供しようとするものである。   Another aspect of the present invention is to provide a method for manufacturing a high hardness steel plate having a Brinell hardness of 500 HB or more by setting a steel composition according to a relational expression of a minimum carbon content in order to obtain a Brinell hardness of 500 HB or more. To do.

本発明の好ましい一側面は、熱間圧延された熱延鋼板を冷却する工程を含んで製造される鋼板であって、
重量%で、炭素(C):0.05〜0.3%、ケイ素(Si):0.5%以下(0%を除く)、マンガン(Mn):2.5%以下(0%を除く)、クロム(Cr):1.5%以下(0%を除く)、モリブデン(Mo):1.0%以下(0%を除く)、ニッケル(Ni):1.0%以下(0%を除く)、ニオブ(Nb):0.1%以下(0%を除く)、チタン(Ti):0.1%以下(0%を除く)、バナジウム(V):0.1%以下(0%を除く)、ホウ素(B):0.01%以下(0%を除く)、アルミニウム(Al):0.1%以下(0%を除く)、残部鉄(Fe)、及びその他不可避な不純物からなり;
上記炭素(C)の最小含量が下記関係式(1)を満たし、
[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
95vol.%以上のマルテンサイト相を含む微細組織を有し、並びに
500HB以上のブリネル硬度を有する高硬度鋼板に関する。
A preferred aspect of the present invention is a steel plate manufactured including a step of cooling a hot-rolled hot-rolled steel plate,
By weight%, carbon (C): 0.05 to 0.3%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 2.5% or less (excluding 0%) ), Chromium (Cr): 1.5% or less (excluding 0%), molybdenum (Mo): 1.0% or less (excluding 0%), nickel (Ni): 1.0% or less (0% Niobium (Nb): 0.1% or less (excluding 0%), Titanium (Ti): 0.1% or less (excluding 0%), Vanadium (V): 0.1% or less (0%) Boron (B): 0.01% or less (excluding 0%), Aluminum (Al): 0.1% or less (excluding 0%), the remainder iron (Fe), and other inevitable impurities Become;
The minimum content of carbon (C) satisfies the following relational expression (1),
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]
95 vol. The present invention relates to a high-hardness steel sheet having a microstructure containing a martensite phase of at least% and having a Brinell hardness of at least 500 HB.

本発明の好ましい他の一側面は、重量%で、炭素(C):0.05〜0.3%、ケイ素(Si):0.5%以下(0%を除く)、マンガン(Mn):2.5%以下(0%を除く)、クロム(Cr):1.5%以下(0%を除く)、モリブデン(Mo):1.0%以下(0%を除く)、ニッケル(Ni):1.0%以下(0%を除く)、ニオブ(Nb):0.1%以下(0%を除く)、チタン(Ti):0.1%以下(0%を除く)、バナジウム(V):0.1%以下(0%を除く)、ホウ素(B):0.01%以下(0%を除く)、アルミニウム(Al):0.1%以下(0%を除く)、残部鉄(Fe)、及びその他不可避な不純物からなる鋼スラブを熱延鋼板として熱間圧延した後、冷却して、95vol.%以上のマルテンサイト相を含む微細組織、及び500HB以上のブリネル硬度を有する鋼板を製造する方法であって、上記炭素(C)の最小含量が下記関係式(1)を満たす高硬度鋼板の製造方法に関する。
[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
Another preferred aspect of the present invention is, by weight, carbon (C): 0.05 to 0.3%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 2.5% or less (excluding 0%), chromium (Cr): 1.5% or less (excluding 0%), molybdenum (Mo): 1.0% or less (excluding 0%), nickel (Ni) : 1.0% or less (excluding 0%), niobium (Nb): 0.1% or less (excluding 0%), titanium (Ti): 0.1% or less (excluding 0%), vanadium (V ): 0.1% or less (excluding 0%), Boron (B): 0.01% or less (excluding 0%), Aluminum (Al): 0.1% or less (excluding 0%), balance iron A steel slab composed of (Fe) and other inevitable impurities is hot-rolled as a hot-rolled steel sheet, and then cooled to 95 vol. % Of a martensite phase and a steel sheet having a Brinell hardness of 500 HB or more, wherein the minimum content of carbon (C) satisfies the following relational expression (1). Regarding the method.
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]

本発明の一側面によると、95vol.%以上のマルテンサイト相を含む微細組織、及び500HB以上のブリネル硬度を有する鋼板を製造するために、より経済的で、一元化した鋼板成分設計を可能にする効果がある。   According to one aspect of the present invention, 95 vol. In order to produce a steel sheet having a microstructure containing a martensite phase of at least% and a Brinell hardness of 500 HB or more, there is an effect that enables more economical and unified steel sheet component design.

高硬度鋼板に関する従来技術は、部品により要求される硬度を得るために様々な成分及び工程を制御する方案が提案されているが、一元化した硬度を得るための成分基準などについては提示されていない。   In the prior art related to high-hardness steel sheets, a method of controlling various components and processes in order to obtain the hardness required by the parts has been proposed, but no component standard for obtaining a unified hardness has been presented. .

そこで、本発明者らは、高い硬度と強度を確保するために、鋼板の微細組織を95vol.%以上のマルテンサイト組織として形成するとき、必要な硬度レベルを確保するための成分設計の条件などについて研究及び実験を行い、その結果に基づいて本発明を完成するに至った。   Therefore, the present inventors set the microstructure of the steel sheet to 95 vol. When forming a martensite structure of at least%, research and experiment were conducted on the conditions of component design for ensuring the required hardness level, and the present invention was completed based on the results.

即ち、本発明の主な技術的思想の一つは、高い硬度と強度を確保するために、鋼板の微細組織を95vol.%以上のマルテンサイト組織として形成するに際して、必要な硬度レベルを確保するための成分設計の条件を提示することであり、それに従って、95vol.%以上のマルテンサイト相を含む微細組織、及び500HB以上のブリネル硬度を有する鋼板をより経済的に製造することができ、さらに、一元化した硬度を得ることができる。   That is, one of the main technical ideas of the present invention is that the microstructure of the steel sheet is 95 vol. % Of the martensite structure in the formation of the composition, it is to present the conditions of the component design to ensure the required hardness level, and accordingly, 95 vol. It is possible to more economically manufacture a steel sheet having a microstructure including a martensite phase of at least% and a Brinell hardness of at least 500 HB, and further, a unified hardness can be obtained.

以下、本発明の好ましい一側面による鋼板について説明する。   Hereinafter, a steel sheet according to a preferred aspect of the present invention will be described.

炭素(C):0.05〜0.3重量%(以下、「%」という。)
炭素(C)の含量は、0.05〜0.3%であることができる。
Carbon (C): 0.05 to 0.3% by weight (hereinafter referred to as “%”)
The content of carbon (C) can be 0.05-0.3%.

炭素の含量が0.05%未満であると、オーステナイト領域からの冷却時に、マルテンサイト変態が生じ難くなることがあり、また、炭素の含量が0.3%を超えると、鋼材の脆弱性が増加し、部品の安定性を保証できなくなることがある。   When the carbon content is less than 0.05%, martensitic transformation may not easily occur during cooling from the austenite region, and when the carbon content exceeds 0.3%, the brittleness of the steel may be reduced. The stability of the parts may not be guaranteed.

上記炭素(C)の含量は、0.19〜0.3%であることができる。   The carbon (C) content may be 0.19 to 0.3%.

ケイ素(Si):0.5%以下(0%を除く)
ケイ素(Si)の含量は0.5%以下(0%を除く)であることができる。
Silicon (Si): 0.5% or less (excluding 0%)
The content of silicon (Si) can be 0.5% or less (excluding 0%).

ケイ素は、鋼材の耐摩耗性を増加させることから、硬度を活用する用途で好まれる合金元素である。但し、Siの添加量が過度に多いと、鋼材の表面特性及びめっき性が悪化し、再加熱時に完全なオーステナイト化が進行しない可能性がある。   Silicon is an alloying element that is preferred for applications utilizing hardness because it increases the wear resistance of steel. However, if the amount of Si added is excessively large, the surface properties and plating properties of the steel material deteriorate, and complete austenitization may not proceed during reheating.

上記ケイ素(Si)の含量は0.21〜0.5%であることができる。さらに、上記ケイ素(Si)の含量は0.253〜0.34%であることができる。   The silicon (Si) content may be 0.21 to 0.5%. Further, the silicon (Si) content may be 0.253 to 0.34%.

マンガン(Mn):2.5%以下(0%を除く)、及びクロム(Cr):1.5%以下(0%を除く)
マンガン(Mn)とクロム(Cr)は、いずれもマルテンサイト変態点を大きく低下させる元素であり、通常、鋼に添加される元素の中で炭素に続いて変態点低下の効果が大きく、低価の元素であるため、経済的に活用できる元素である。
Manganese (Mn): 2.5% or less (excluding 0%), and chromium (Cr): 1.5% or less (excluding 0%)
Manganese (Mn) and chromium (Cr) are both elements that greatly lower the martensitic transformation point. Usually, among elements added to steel, the effect of lowering the transformation point is large following carbon, and the low price. It is an element that can be used economically.

上記マンガン含量の上限は、2.5%に制限することが好ましく、上記クロム含量の上限は、1.5%に制限することが好ましい。   The upper limit of the manganese content is preferably limited to 2.5%, and the upper limit of the chromium content is preferably limited to 1.5%.

上記マンガンとクロムの含量が過度に高いと、オーステナイトが常温で残留するようになり、目標とする95vol.%以上のマルテンサイト組織が得られなくなる恐れがある。   If the manganese and chromium contents are excessively high, austenite will remain at room temperature, and the target 95 vol. % Or more martensite structure may not be obtained.

上記マンガンの含量は1.4〜2.5%であることができる。さらに、上記マンガンの含量は2.1〜2.5%であることができる。   The manganese content may be 1.4 to 2.5%. Further, the manganese content may be 2.1 to 2.5%.

モリブデン(Mo):1.0%以下(0%を除く)、及びニッケル(Ni):1.0%以下(0%を除く)
モリブデン(Mo)とニッケル(Ni)は、マルテンサイト変態開始温度を低下させる元素である。
Molybdenum (Mo): 1.0% or less (excluding 0%) and nickel (Ni): 1.0% or less (excluding 0%)
Molybdenum (Mo) and nickel (Ni) are elements that lower the martensitic transformation start temperature.

しかしながら、マルテンサイト変態開始温度を低下させる程度は、MnとCrよりは低く、高価な元素であるため、これらの元素の添加量の上限は、それぞれ1.0%に制限することが好ましい。   However, since the extent to which the martensitic transformation start temperature is lowered is lower than that of Mn and Cr and is an expensive element, the upper limit of the amount of these elements added is preferably limited to 1.0%.

ニオブ(Nb):0.1%以下(0%を除く)、及びチタン(Ti):0.1%以下(0%を除く)
ニオブ(Nb)とチタン(Ti)は、それぞれ0.1%以下(0%を除く)のレベルで添加することができ、オーステナイト結晶粒微細化によって鋼板の衝撃特性を改善するという効果がある。しかしながら、Nb及びTiを過度に多く添加すると、結晶粒境界を固定するNb炭窒化物の粗大化を引き起こし、結晶粒微細化効果を減少させるため、その上限は、それぞれ0.1%に限定することが好ましい。
Niobium (Nb): 0.1% or less (excluding 0%) and titanium (Ti): 0.1% or less (excluding 0%)
Niobium (Nb) and titanium (Ti) can be added at a level of 0.1% or less (excluding 0%), respectively, and have the effect of improving the impact properties of the steel sheet by refining austenite crystal grains. However, when Nb and Ti are added excessively, the Nb carbonitride that fixes the crystal grain boundary is coarsened and the effect of refining the crystal grain is reduced. Therefore, the upper limit is limited to 0.1% each. It is preferable.

一方、Tiは、Bの添加時に、BをNから保護するために必須に添加する場合が多く、チタン(Ti)が鋼中の炭素又は窒素と先に反応してTiC又はTiNを形成することで、ホウ素(B)の添加効果を上げる。この場合、チタン(Ti)の含量は、鋼中の窒素量との化学量論に基づき、下記の関係式2を満たせばよい。   On the other hand, Ti is often added to protect B from N when B is added, and titanium (Ti) reacts first with carbon or nitrogen in the steel to form TiC or TiN. Thus, the effect of adding boron (B) is increased. In this case, the content of titanium (Ti) may satisfy the following relational expression 2 based on the stoichiometry with the amount of nitrogen in the steel.

[関係式2]
Ti(wt%)>N(wt%)×3.42
[Relational expression 2]
Ti (wt%)> N (wt%) × 3.42

バナジウム(V):0.1%以下(0%を除く)
バナジウム(V)は、0.1%以下(0%を除く)のレベルで添加することができ、微細なV炭化物を形成することで、析出硬化及び溶接部の物性低下を防止する役割を果たす。
Vanadium (V): 0.1% or less (excluding 0%)
Vanadium (V) can be added at a level of 0.1% or less (excluding 0%), and plays a role of preventing precipitation hardening and deterioration of physical properties of welds by forming fine V carbides. .

その添加量が過度に多いと、炭化物の粗大化によってその効果が減少するため、その含量の上限は、0.1%に制限することが好ましい。   If the amount added is excessively large, the effect is reduced due to the coarsening of the carbide, so the upper limit of the content is preferably limited to 0.1%.

ホウ素(B):0.01%以下(0%を除く)
ホウ素(B)は、0.01%以下(0%を除く)のレベルで添加することができるが、フェライト及びパーライトの核生成を阻害して、鋼材の硬化能を大幅に向上させる元素であり、鋼材の厚さが厚いほど、その活用度が非常に大きくなる。
Boron (B): 0.01% or less (excluding 0%)
Boron (B) can be added at a level of 0.01% or less (excluding 0%), but it is an element that inhibits the nucleation of ferrite and pearlite and greatly improves the hardenability of the steel material. The greater the steel thickness, the greater the utilization.

本発明では、最終微細組織を95vol.%以上のマルテンサイトとして得るにあたり、その製造過程に対する制約は特になく、必要に応じて、硬化能確保のためにBを添加することができる。但し、Bの含量が過度に多く添加されると、却って、フェライト相やパーライト相の核生成サイトとして作用し、硬化能を損なうようになるため、その含量の上限は、0.01%に制限することが好ましい。   In the present invention, the final microstructure is 95 vol. There is no particular restriction on the production process in obtaining martensite of more than%, and B can be added to ensure curability as necessary. However, if an excessive amount of B is added, it acts as a nucleation site for ferrite phase and pearlite phase and impairs the hardenability, so the upper limit of the content is limited to 0.01%. It is preferable to do.

アルミニウム(Al):0.1%以下(0%を除く)
アルミニウム(Al)は、脱酸と結晶粒微細化のために添加し、その含量は、0.1%以下(0%を除く)に制限することが好ましい。
Aluminum (Al): 0.1% or less (excluding 0%)
Aluminum (Al) is added for deoxidation and crystal grain refinement, and its content is preferably limited to 0.1% or less (excluding 0%).

前述した元素以外の残りは、鉄(Fe)、及びその他不可避な不純物を含む。   The remainder other than the elements described above contains iron (Fe) and other inevitable impurities.

本発明では、上記炭素(C)の最小含量が下記関係式(1)を満たす。   In the present invention, the minimum content of carbon (C) satisfies the following relational expression (1).

[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]

上記関係式(1)は、上記ケイ素(Si)、マンガン(Mn)、クロム(Cr)、モリブデン(Mo)、ニッケル(Ni)、及びクロム(Cr)の組成から500HB以上のブリネル硬度を得るための最小炭素(C)含量を示す。   The relational expression (1) is for obtaining a Brinell hardness of 500 HB or more from the composition of the silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), and chromium (Cr). Is the minimum carbon (C) content.

上記炭素(C)含量が0.05〜0.3重量%を満たしていたとしても、上記関係式(1)を満たしていなければ、500HB以上のブリネル硬度を得ることができない。   Even if the carbon (C) content satisfies 0.05 to 0.3% by weight, a Brinell hardness of 500 HB or more cannot be obtained unless the relational expression (1) is satisfied.

上記関係式(1)は、例えば、下記関係式(3)を用いて設計されてもよい。   The relational expression (1) may be designed using the following relational expression (3), for example.

[関係式3]
HB(ブリネル硬度)=100.4+830.5*C+86.5*Mn+28.8*Si+73.4*Cr+44.5*Ni+28.8*Mo+0.252*C.R.
[ここで、C、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
[Relational expression 3]
HB (Brinell hardness) = 100.4 + 830.5 * C + 86.5 * Mn + 28.8 * Si + 73.4 * Cr + 44.5 * Ni + 28.8 * Mo + 0.252 * C. R.
[Here, C, Mn, Si, Cr, Ni, and Mo are values indicating the content of each element in% by weight. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]

上記関係式(3)から、HB≧500になるための最小炭素含量に対する関係式(1)を導出することができる。   From the relational expression (3), the relational expression (1) for the minimum carbon content for HB ≧ 500 can be derived.

また、本発明の鋼板の成分範囲内において関係式(3)を用いることによって、350HB以上のいかなる必要硬度レベルを得るための適正な合金成分設計の条件を導出することもできる。   Also, by using the relational expression (3) within the component range of the steel sheet of the present invention, it is possible to derive appropriate alloy component design conditions for obtaining any required hardness level of 350 HB or higher.

本発明の鋼板の微細組織は、95vol.%以上のマルテンサイト相を含む。   The microstructure of the steel sheet of the present invention is 95 vol. % Martensite phase.

上記マルテンサイト相の分率が95vol.%未満であると、目的とする強度及び硬度を確保できなくなることもある。   The martensite phase fraction is 95 vol. If it is less than%, the intended strength and hardness may not be ensured.

本発明の鋼板の微細組織は、マルテンサイト以外の第2相組織であって、5.0vol.%未満のフェライト及びベイナイトのうち1種又は2種を含むことができる。   The microstructure of the steel sheet of the present invention is a second phase structure other than martensite, and is 5.0 vol. % Or less of ferrite and bainite can be included.

本発明の鋼板は、500HB以上のブリネル硬度を有する。   The steel sheet of the present invention has a Brinell hardness of 500 HB or more.

以下、本発明の好ましい他の一側面による鋼板の製造方法について説明する。   Hereinafter, a method for producing a steel sheet according to another preferred aspect of the present invention will be described.

本発明の好ましい他の一側面による鋼板の製造方法では、重量%で、炭素(C):0.05〜0.3%、ケイ素(Si):0.5%以下(0%を除く)、マンガン(Mn):2.5%以下(0%を除く)、クロム(Cr):1.5%以下(0%を除く)、モリブデン(Mo):1.0%以下(0%を除く)、ニッケル(Ni):1.0%以下(0%を除く)、ニオブ(Nb):0.1%以下(0%を除く)、チタン(Ti):0.1%以下(0%を除く)、バナジウム(V):0.1%以下(0%を除く)、ホウ素(B):0.01%以下(0%を除く)、アルミニウム(Al):0.1%以下(0%を除く)、残部鉄(Fe)、及びその他不可避な不純物からなる鋼スラブを熱延鋼板として熱間圧延した後、冷却して、95vol.%以上のマルテンサイト相を含む微細組織、及び500HB以上のブリネル硬度を有する鋼板を製造する。   In the method for producing a steel sheet according to another preferred aspect of the present invention, the weight (%) of carbon (C): 0.05 to 0.3%, silicon (Si): 0.5% or less (excluding 0%), Manganese (Mn): 2.5% or less (excluding 0%), Chromium (Cr): 1.5% or less (excluding 0%), Molybdenum (Mo): 1.0% or less (excluding 0%) Nickel (Ni): 1.0% or less (excluding 0%), Niobium (Nb): 0.1% or less (excluding 0%), Titanium (Ti): 0.1% or less (excluding 0%) ), Vanadium (V): 0.1% or less (excluding 0%), boron (B): 0.01% or less (excluding 0%), aluminum (Al): 0.1% or less (0% ), The remaining iron (Fe), and a steel slab composed of other inevitable impurities are hot-rolled as a hot-rolled steel sheet, and then cooled to 95 vol. A steel sheet having a microstructure containing a martensite phase of at least% and a Brinell hardness of at least 500 HB is manufactured.

上記鋼スラブの炭素(C)の最小含量は、下記関係式(1)を満たす。   The minimum content of carbon (C) in the steel slab satisfies the following relational expression (1).

[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]

上記鋼スラブを、熱延鋼板として熱間圧延する前に再加熱することができる。   The steel slab can be reheated before hot rolling as a hot rolled steel sheet.

スラブ再加熱条件は、特に限定されず、均質化が進行すればよい。   Slab reheating conditions are not particularly limited as long as homogenization proceeds.

スラブ再加熱温度は、1100〜1300℃が好ましい。   The slab reheating temperature is preferably 1100 to 1300 ° C.

上記熱間圧延条件は、特に限定されるものではないが、熱間仕上げ圧延温度は、オーステナイト化が十分進行する温度であればよい。   The hot rolling conditions are not particularly limited, but the hot finish rolling temperature may be a temperature at which austenitization sufficiently proceeds.

上記熱間仕上げ圧延温度は、例えば、870〜930℃であることができ、全熱間圧延は、加熱炉から抽出した後、1150℃〜熱間仕上げ圧延温度の温度範囲で行うことができる。   The hot finish rolling temperature can be, for example, 870 to 930 ° C., and the total hot rolling can be performed in the temperature range of 1150 ° C. to the hot finish rolling temperature after extraction from the heating furnace.

上記熱延鋼板の冷却時における冷却速度は、95vol.%以上のマルテンサイト相が得られる冷却速度であれば、特に限定されるものではなく、例えば、20℃/s以上、好ましくは20〜150℃/sである。   The cooling rate during the cooling of the hot-rolled steel sheet is 95 vol. The cooling rate is not particularly limited as long as the martensite phase of at least% is obtained, and is, for example, 20 ° C./s or more, preferably 20 to 150 ° C./s.

上記熱延鋼板の冷却時における冷却終了温度は、Ms点(マルテンサイト変態開始温度)以下であり、95vol.%以上のマルテンサイト相が得られる温度であれば、特に限定されるものではない。   The cooling end temperature during cooling of the hot-rolled steel sheet is equal to or lower than the Ms point (martensitic transformation start temperature), and is 95 vol. % Is not particularly limited as long as it is a temperature at which a martensite phase of at least% can be obtained.

以下、実施例を通じて本発明をより具体的に説明する。但し、このような実施例は本発明を例示するためのものであり、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrating the present invention, and the present invention is not limited thereto.

下記表1の組成(単位:重量%)を有するA〜Qの17種類の鋼を使用して実験した。   Experiments were performed using 17 types of steels A to Q having the composition shown in Table 1 below (unit:% by weight).

下記表1の鋼の組成は、いずれも本発明の組成範囲を満たす。   All the steel compositions in Table 1 below satisfy the composition range of the present invention.

下記表1の鋼組成を有し、厚さ30mm及び幅200mmの鋼板を製造した後、1200℃で180分間再加熱した。次いで、再加熱された鋼板を900℃の熱間仕上げ温度範囲で熱間圧延することで、厚さ3.0mmの熱延鋼板を製造し、200℃まで下記表2の冷却速度で冷却した。   A steel sheet having the steel composition shown in Table 1 below and having a thickness of 30 mm and a width of 200 mm was manufactured, and then reheated at 1200 ° C. for 180 minutes. Next, the reheated steel sheet was hot-rolled in a hot finishing temperature range of 900 ° C. to produce a hot-rolled steel sheet having a thickness of 3.0 mm and cooled to 200 ° C. at the cooling rate shown in Table 2 below.

上記のように製造された熱延鋼板のブリネル硬度(HB)及び微細組織を測定し、その結果を下記表2に示した。   The Brinell hardness (HB) and microstructure of the hot-rolled steel sheet produced as described above were measured, and the results are shown in Table 2 below.

下記表2の第2相組織では、マルテンサイト以外の第2相組織を示しており、第2相以外の組織はマルテンサイトであり、100%マルテンサイトは100%Mとして示した。   In the second phase structure of Table 2 below, the second phase structure other than martensite is shown, the structure other than the second phase is martensite, and 100% martensite is shown as 100% M.

下記の第2相組織において、Fはフェライトを示し、Bはベイナイトを示し、Mはマルテンサイトを示す。   In the following second phase structure, F represents ferrite, B represents bainite, and M represents martensite.

また、下記表2には、関係式(1)により求められた必要炭素含量、実際炭素含量、及び実際炭素含量と必要炭素含量との差を併せて示した。   Table 2 below also shows the required carbon content, the actual carbon content, and the difference between the actual carbon content and the required carbon content determined by the relational expression (1).

Figure 2018528325
Figure 2018528325

Figure 2018528325
Figure 2018528325

上記表2において、本発明のように実際炭素含量が必要炭素含量よりも高い発明例1〜9では、ブリネル硬度(HB)値が500HB以上であることがわかる。   In Table 2 above, it can be seen that in Invention Examples 1 to 9, where the actual carbon content is higher than the required carbon content as in the present invention, the Brinell hardness (HB) value is 500 HB or more.

一方、実際炭素含量が必要炭素含量よりも低い比較例1〜9では、ブリネル硬度値が500HB未満であることがわかる。   On the other hand, in Comparative Examples 1 to 9 where the actual carbon content is lower than the necessary carbon content, it can be seen that the Brinell hardness value is less than 500 HB.

以上、実施例を参照して説明したが、当該技術分野の熟練した当業者は、添付の特許請求の範囲に記載された本発明の思想及び領域から外れない範囲内で、本発明を多様に修正及び変更できることが理解できるであろう。   Although the present invention has been described with reference to the embodiments, those skilled in the art can make various changes to the present invention without departing from the spirit and scope of the present invention described in the appended claims. It will be understood that modifications and changes can be made.

Claims (12)

熱間圧延された熱延鋼板を冷却する工程を含んで製造される鋼板であって、
重量%で、炭素(C):0.05〜0.3%、ケイ素(Si):0.5%以下(0%を除く)、マンガン(Mn):2.5%以下(0%を除く)、クロム(Cr):1.5%以下(0%を除く)、モリブデン(Mo):1.0%以下(0%を除く)、ニッケル(Ni):1.0%以下(0%を除く)、ニオブ(Nb):0.1%以下(0%を除く)、チタン(Ti):0.1%以下(0%を除く)、バナジウム(V):0.1%以下(0%を除く)、ホウ素(B):0.01%以下(0%を除く)、アルミニウム(Al):0.1%以下(0%を除く)、残部鉄(Fe)、及びその他不可避な不純物からなり;
前記炭素(C)の最小含量が下記関係式(1)を満たし、
[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
95vol.%以上のマルテンサイト相を含む微細組織を有し、並びに
500HB以上のブリネル硬度を有する、高硬度鋼板。
A steel plate manufactured including a step of cooling a hot-rolled hot-rolled steel plate,
By weight%, carbon (C): 0.05 to 0.3%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 2.5% or less (excluding 0%) ), Chromium (Cr): 1.5% or less (excluding 0%), molybdenum (Mo): 1.0% or less (excluding 0%), nickel (Ni): 1.0% or less (0% Niobium (Nb): 0.1% or less (excluding 0%), Titanium (Ti): 0.1% or less (excluding 0%), Vanadium (V): 0.1% or less (0%) Boron (B): 0.01% or less (excluding 0%), Aluminum (Al): 0.1% or less (excluding 0%), the remainder iron (Fe), and other inevitable impurities Become;
The minimum content of carbon (C) satisfies the following relational expression (1),
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]
95 vol. % High-hardness steel sheet having a microstructure containing a martensite phase of at least% and having a Brinell hardness of at least 500 HB.
前記微細組織は、マルテンサイト以外の第2相組織として、5.0vol.%未満のフェライト及びベイナイトのうち1種又は2種を含むことを特徴とする、請求項1に記載の高硬度鋼板。   The fine structure is 5.0 vol. As a second phase structure other than martensite. The high-hardness steel sheet according to claim 1, comprising one or two of less than% ferrite and bainite. 前記関係式(1)は、下記関係式(3)から導出されたものであることを特徴とする、請求項1に記載の高硬度鋼板。
[関係式3]
HB(ブリネル硬度)=100.4+830.5*C+86.5*Mn+28.8*Si+73.4*Cr+44.5*Ni+28.8*Mo+0.252*C.R.
[ここで、C、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
The high hardness steel plate according to claim 1, wherein the relational expression (1) is derived from the following relational expression (3).
[Relational expression 3]
HB (Brinell hardness) = 100.4 + 830.5 * C + 86.5 * Mn + 28.8 * Si + 73.4 * Cr + 44.5 * Ni + 28.8 * Mo + 0.252 * C. R.
[Here, C, Mn, Si, Cr, Ni, and Mo are values indicating the content of each element in% by weight. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]
前記炭素(C)の含量は0.19〜0.3%であることを特徴とする、請求項1乃至請求項3のいずれか一項に記載の高硬度鋼板。   The high-hardness steel sheet according to any one of claims 1 to 3, wherein the carbon (C) content is 0.19 to 0.3%. 前記ケイ素(Si)の含量は0.21〜0.5%であることを特徴とする、請求項1乃至請求項3のいずれか一項に記載の高硬度鋼板。   The high-hardness steel sheet according to any one of claims 1 to 3, wherein a content of the silicon (Si) is 0.21 to 0.5%. 前記マンガンの含量は1.4〜2.5%であることを特徴とする、請求項1乃至請求項3のいずれか一項に記載の高硬度鋼板。   The high-hardness steel plate according to any one of claims 1 to 3, wherein the manganese content is 1.4 to 2.5%. 重量%で、炭素(C):0.05〜0.3%、ケイ素(Si):0.5%以下(0%を除く)、マンガン(Mn):2.5%以下(0%を除く)、クロム(Cr):1.5%以下(0%を除く)、モリブデン(Mo):1.0%以下(0%を除く)、ニッケル(Ni):1.0%以下(0%を除く)、ニオブ(Nb):0.1%以下(0%を除く)、チタン(Ti):0.1%以下(0%を除く)、バナジウム(V):0.1%以下(0%を除く)、ホウ素(B):0.01%以下(0%を除く)、アルミニウム(Al):0.1%以下(0%を除く)、残部鉄(Fe)、及びその他不可避な不純物からなる鋼スラブを熱延鋼板として熱間圧延した後、冷却して、95vol.%以上のマルテンサイト相を含む微細組織、及び500HB以上のブリネル硬度を有する鋼板を製造する方法であって、前記炭素(C)の最小含量が下記関係式(1)を満たす、高硬度鋼板の製造方法。
[関係式1]
C(炭素(C)の最小含量)≧0.481−0.104Mn−0.035Si−0.088Cr−0.054Ni−0.035Mo−0.0003C.R.
[ここで、Mn、Si、Cr、Ni、及びMoは各元素の含有量を重量%で示した値であり、C.R.は熱延鋼板の冷却時における冷却速度を示した値であり、単位は℃/sである。]
By weight%, carbon (C): 0.05 to 0.3%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 2.5% or less (excluding 0%) ), Chromium (Cr): 1.5% or less (excluding 0%), molybdenum (Mo): 1.0% or less (excluding 0%), nickel (Ni): 1.0% or less (0% Niobium (Nb): 0.1% or less (excluding 0%), Titanium (Ti): 0.1% or less (excluding 0%), Vanadium (V): 0.1% or less (0%) Boron (B): 0.01% or less (excluding 0%), Aluminum (Al): 0.1% or less (excluding 0%), the remainder iron (Fe), and other inevitable impurities The steel slab to be hot-rolled as a hot-rolled steel plate is cooled and then cooled to 95 vol. % Of a high-strength steel sheet having a microstructure containing a martensite phase of at least% and a steel sheet having a Brinell hardness of 500 HB or more, wherein the minimum content of carbon (C) satisfies the following relational expression (1): Production method.
[Relational expression 1]
C (minimum content of carbon (C)) ≧ 0.481-0.104 Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003 C.I. R.
[Mn, Si, Cr, Ni, and Mo are values in which the content of each element is expressed in terms of weight%. R. Is a value indicating the cooling rate during cooling of the hot-rolled steel sheet, and the unit is ° C./s. ]
前記熱延鋼板の冷却時における冷却速度は、20〜150℃/sであることを特徴とする、請求項7に記載の高硬度鋼板の製造方法。   The method for producing a high-hardness steel sheet according to claim 7, wherein a cooling rate during cooling of the hot-rolled steel sheet is 20 to 150 ° C / s. 前記熱延鋼板の冷却時における冷却終了温度は、Ms点(マルテンサイト変態開始温度)以下であることを特徴とする、請求項7又は請求項8に記載の高硬度鋼板の製造方法。   The method for producing a high-hardness steel sheet according to claim 7 or 8, wherein a cooling end temperature during cooling of the hot-rolled steel sheet is equal to or lower than an Ms point (martensitic transformation start temperature). 前記炭素(C)の含量は0.19〜0.3%であることを特徴とする、請求項7又は請求項8に記載の高硬度鋼板の製造方法。   The method for producing a high hardness steel plate according to claim 7 or 8, wherein the carbon (C) content is 0.19 to 0.3%. 前記ケイ素(Si)の含量は0.21〜0.5%であることを特徴とする、請求項7又は請求項8に記載の高硬度鋼板の製造方法。   The method for producing a high-hardness steel sheet according to claim 7 or 8, wherein the silicon (Si) content is 0.21 to 0.5%. 前記マンガンの含量は1.4〜2.5%であることを特徴とする、請求項7又は請求項8に記載の高硬度鋼板の製造方法。   The method for producing a high-hardness steel sheet according to claim 7 or 8, wherein the manganese content is 1.4 to 2.5%.
JP2018509544A 2015-08-21 2016-08-18 High hardness steel sheet and its manufacturing method Active JP6843119B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0117985 2015-08-21
KR1020150117985A KR101696094B1 (en) 2015-08-21 2015-08-21 Steel sheet having superior hardness and method for manufacturing the same
PCT/KR2016/009079 WO2017034216A1 (en) 2015-08-21 2016-08-18 High-hardness steel sheet, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2018528325A true JP2018528325A (en) 2018-09-27
JP6843119B2 JP6843119B2 (en) 2021-03-17

Family

ID=57835400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018509544A Active JP6843119B2 (en) 2015-08-21 2016-08-18 High hardness steel sheet and its manufacturing method

Country Status (6)

Country Link
US (1) US20180237875A1 (en)
EP (2) EP3339464A4 (en)
JP (1) JP6843119B2 (en)
KR (1) KR101696094B1 (en)
CN (1) CN107923023B (en)
WO (1) WO2017034216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031708A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Abrasion resistant steel material excellent in fatigue resistant characteristics
JP2021031711A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Method for manufacturing wear resistant steel material excellent in fatigue resistance property

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031446B1 (en) * 2017-12-22 2019-11-08 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR102031443B1 (en) 2017-12-22 2019-11-08 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR102045646B1 (en) * 2017-12-26 2019-11-15 주식회사 포스코 Abrasion resistance steel having excellent homogeneous material properties and method for manufacturing the same
KR102175570B1 (en) * 2018-09-27 2020-11-06 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
DE102019215055A1 (en) * 2019-09-30 2021-04-01 Thyssenkrupp Steel Europe Ag Process for manufacturing a steel product and a corresponding steel product
CN113215488B (en) * 2021-05-07 2022-06-17 马鞍山钢铁股份有限公司 Heat-treatment-free NM360 wear-resistant steel plate and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277678A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp High hardness hot rolled steel sheet having excellent weldability, workability and resistance to penetration by high speed impact and production method therefor
WO2011061812A1 (en) * 2009-11-17 2011-05-26 住友金属工業株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
CN102517509A (en) * 2012-01-06 2012-06-27 江苏省沙钢钢铁研究院有限公司 HB500 (Brinell Hardness 500) wear-resistant steel plate and preparation method thereof
KR20120071614A (en) * 2010-12-23 2012-07-03 주식회사 포스코 Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same
JP2012214891A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same
JP2014025130A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Wear resistant steel sheet having excellent impact wear resistance and method for producing the same
WO2014045552A1 (en) * 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536828B1 (en) * 1997-09-22 2006-02-28 카가쿠기쥬쯔죠 킨조쿠자이료 기쥬쯔켄큐죠 Grain steel based on fine-ferrite and method thereof
JP3736320B2 (en) * 2000-09-11 2006-01-18 Jfeスチール株式会社 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same
CN1950531B (en) * 2004-04-28 2010-05-05 杰富意钢铁株式会社 Member for machine construction and production method therefor
CN103146997B (en) * 2013-03-28 2015-08-26 宝山钢铁股份有限公司 A kind of low-alloy high-flexibility wear-resistant steel plate and manufacture method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277678A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp High hardness hot rolled steel sheet having excellent weldability, workability and resistance to penetration by high speed impact and production method therefor
WO2011061812A1 (en) * 2009-11-17 2011-05-26 住友金属工業株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
KR20120071614A (en) * 2010-12-23 2012-07-03 주식회사 포스코 Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same
JP2012214891A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same
CN102517509A (en) * 2012-01-06 2012-06-27 江苏省沙钢钢铁研究院有限公司 HB500 (Brinell Hardness 500) wear-resistant steel plate and preparation method thereof
JP2014025130A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Wear resistant steel sheet having excellent impact wear resistance and method for producing the same
WO2014045552A1 (en) * 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031708A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Abrasion resistant steel material excellent in fatigue resistant characteristics
JP2021031711A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Method for manufacturing wear resistant steel material excellent in fatigue resistance property
JP7163887B2 (en) 2019-08-21 2022-11-01 Jfeスチール株式会社 Wear-resistant steel with excellent fatigue resistance
JP7163889B2 (en) 2019-08-21 2022-11-01 Jfeスチール株式会社 Manufacturing method for wear-resistant steel with excellent fatigue resistance

Also Published As

Publication number Publication date
CN107923023A (en) 2018-04-17
EP3339464A4 (en) 2018-08-08
EP3339464A1 (en) 2018-06-27
JP6843119B2 (en) 2021-03-17
EP4324954A2 (en) 2024-02-21
KR101696094B1 (en) 2017-01-13
CN107923023B (en) 2020-04-24
WO2017034216A1 (en) 2017-03-02
US20180237875A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6843119B2 (en) High hardness steel sheet and its manufacturing method
JP7043185B2 (en) High manganese wear resistant steel with excellent weldability
US8852366B2 (en) Method for producing steel pipe with excellent expandability
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2022502569A (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
WO2021104417A1 (en) Carbon steel and austenitic stainless steel rolling clad plate and manufacturing method therefor
JP2020509189A (en) Thick steel plate excellent in cryogenic impact toughness and method for producing the same
JP7032537B2 (en) High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method
JP6152375B2 (en) Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method
JP6843246B2 (en) High-strength steel sheet with excellent burring property in low temperature range and its manufacturing method
JP6754494B2 (en) High-strength high-manganese steel with excellent low-temperature toughness and its manufacturing method
JP2019502818A (en) Steel plate material excellent in low-temperature toughness and hydrogen-induced crack resistance, and method for producing the same
JP7232910B2 (en) Chromium-molybdenum steel sheet with excellent creep strength and its manufacturing method
JP7018509B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP4452191B2 (en) Manufacturing method of high-stretch flange-formable hot-rolled steel sheet with excellent material uniformity
KR20120087611A (en) High strength steel plate for line pipe and method of manufacturing the same
JP2021508006A (en) High-strength austenitic high-manganese steel and its manufacturing method
KR20130110648A (en) Ultra high strength steel sheet and method of manufacturing the steel sheet
KR101185232B1 (en) Api hot-rolled steel with high strength and high toughness and method for manufacturing the api hot-rolled steel
KR101246466B1 (en) METHOD OF MANUFACTURING EXCELLENT FORMABILITY HOT ROLLED STEEL SHEET HAVING 1000MPa GRADE AND HOT ROLLED STEEL SHEET FABRICATED USING THEREOF
KR101586883B1 (en) High strength steel and method of manufacturing the same
KR20200062467A (en) Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same
KR20150049660A (en) High strength steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190722

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190723

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190830

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190903

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200107

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200915

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201221

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210126

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6843119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250