KR20200062467A - Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same - Google Patents

Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same Download PDF

Info

Publication number
KR20200062467A
KR20200062467A KR1020180147775A KR20180147775A KR20200062467A KR 20200062467 A KR20200062467 A KR 20200062467A KR 1020180147775 A KR1020180147775 A KR 1020180147775A KR 20180147775 A KR20180147775 A KR 20180147775A KR 20200062467 A KR20200062467 A KR 20200062467A
Authority
KR
South Korea
Prior art keywords
less
hot
steel sheet
rolled steel
strength
Prior art date
Application number
KR1020180147775A
Other languages
Korean (ko)
Inventor
한성경
서용찬
신영문
김주은
박대범
이정훈
유용재
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020180147775A priority Critical patent/KR20200062467A/en
Publication of KR20200062467A publication Critical patent/KR20200062467A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

An objective of the present invention is to provide a high-strength hot-rolled steel sheet with excellent economic efficiency and a manufacturing method thereof. According to an aspect of the present invention, the manufacturing method of a high-strength hot-rolled steel sheet comprises: a step of heating a steel slab comprising 0.04-0.07 wt% of carbon (C), 0-0.03 wt% (excluding 0 wt%) of silicon (Si), 1.3-1.5 wt% of manganese (Mn), 0-0.018 wt% (excluding 0 wt%) of phosphorus (P), 0-0.005 wt% (excluding 0 wt%) of sulfur (S), 0.01-0.05 wt% of aluminum (Al), 0.11-0.13 wt% of titanium (Ti), 0.02-0.03 wt% of niobium (Nb), 0-0.01 wt% (excluding 0 wt%) of vanadium (V), 0-0.06 wt% (excluding 0 wt%) of nitrogen (N), 0-0.1 wt% (excluding 0 wt%) of chromium (Cr)+molybdenum (Mo)+nickel (Ni), 0-0.1 wt% (excluding 0 wt%) of copper (Cu)+tin (Sn), and the balance iron (Fe) and inevitable impurities to 1,140-1,200°C; a step of hot-rolling the heated steel slab at 870-910°C to obtain a hot-rolled sheet; and a step of cooling the hot-rolled sheet to 570-610°C at an average cooling rate of 10-30°C and then winding the hot-rolled sheet.

Description

열연 강판 및 그 제조방법{HOT-ROLLED STEEL SHEET FOR EARTHQUAKE-RESISTANT STEEL PIPE AND METHOD FOR MANUFACTURING THE SAME}Hot rolled steel sheet and its manufacturing method{HOT-ROLLED STEEL SHEET FOR EARTHQUAKE-RESISTANT STEEL PIPE AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 열간 압연을 통해 700MPa 이상의 인장강도를 갖는 열연 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet and a method of manufacturing the same, and more particularly, to a hot rolled steel sheet having a tensile strength of 700 MPa or more through hot rolling and a method of manufacturing the same.

최근 건설 현장에서는 시공의 경제성 확보를 위해 고강도재 적용을 통해 부재의 수명을 늘이고 또한 부재의 경량화를 통해 시공시간 및 운송비 저감에 대한 요구가 증대되고 있다. 기존의 고강도 열연 강판의 경우 니오븀(Nb) 및 바나듐(V) 석출물을 주요 강도 확보 기구로 활용하는데, 이 방안을 통해 70kg급 열연강판을 제조하기 위해서는 다량의 합금철 첨가로 인한 제조비용 상승이 문제가 된다. 이러한 문제를 해결하기 위해서는 인장강도 70kg급의 강도를 가지면서, 합금철에 소요되는 비용이 경제적인 열연 소재의 개발이 필요하다.Recently, at construction sites, the demand for reducing construction time and transportation costs is increasing through the application of high-strength materials to increase the economical efficiency of construction, and the reduction of construction time and transportation cost through weight reduction of components. In the case of the existing high-strength hot-rolled steel sheet, niobium (Nb) and vanadium (V) precipitates are used as a main strength securing mechanism. In order to manufacture a 70 kg-class hot-rolled steel sheet through this method, the manufacturing cost is increased due to the addition of a large amount of ferroalloy. Becomes. In order to solve this problem, it is necessary to develop a hot-rolled material having a tensile strength of 70 kg and an economical cost for alloy iron.

이에 관련된 기술로는 대한민국 등록특허공보 제10-1827750호(2018.02.05 등록, 고강도 열연 강판 및 그의 제조 방법)가 있다.As a related technology, there is Korean Patent Registration No. 10-1827750 (registered on Feb. 2018, high-strength hot-rolled steel sheet and manufacturing method thereof).

본 발명이 해결하고자 하는 과제는, 고가의 합금원소를 다른 성분으로 대체하여 경제성이 우수한 70kg급 열연 강판 및 그 제조방법을 제공하는 데 있다.The problem to be solved by the present invention is to provide a 70kg class hot rolled steel sheet having excellent economic efficiency and a manufacturing method thereof by replacing expensive alloy elements with other components.

본 발명의 일 측면에 따른 고강도 열연 강판은, 중량%로, 탄소(C): 0.04 ~ 0.07%, 실리콘(Si): 0 초과 0.03% 이하, 망간(Mn): 1.3 ~ 1.5%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.005% 이하, 알루미늄(Al): 0.01 ~ 0.05%, 티타늄(Ti): 0.11 ~ 0.13%, 니오븀(Nb): 0.02 ~ 0.03%, 바나듐(V): 0 초과 0.01% 이하, 질소(N): 0 초과 006% 이하, 잔여 철(Fe) 및 기타 불가피한 불순물을 포함하고, 크롬(Cr), 몰리브덴(Mo), 니켈(Ni)의 합계 함량이 0 초과 0.1% 이하이며, 구리(Cu), 주석(Sn)의 합계 함량이 0 초과 0.1% 이하인 것을 특징으로 한다.High-strength hot-rolled steel sheet according to an aspect of the present invention, by weight, carbon (C): 0.04 ~ 0.07%, silicon (Si): more than 0 0.03% or less, manganese (Mn): 1.3 ~ 1.5%, phosphorus (P ): more than 0 0.018% or less, sulfur (S): more than 0 0.005% or less, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.11 to 0.13%, niobium (Nb): 0.02 to 0.03%, vanadium (V): more than 0 and less than 0.01%, nitrogen (N): more than 0 and less than 006%, including residual iron (Fe) and other unavoidable impurities, sum of chromium (Cr), molybdenum (Mo), nickel (Ni) It is characterized in that the content is more than 0 and 0.1% or less, and the total content of copper (Cu) and tin (Sn) is more than 0 and 0.1% or less.

본 발명에 있어서, 상기 열연 강판은 인장강도(TS): 700MPa 이상, 항복강도(YP): 550MPa 이상, 및 연신율(EL): 20% 이상일 수 있다.In the present invention, the hot-rolled steel sheet may have a tensile strength (TS): 700 MPa or more, a yield strength (YP): 550 MPa or more, and an elongation (EL): 20% or more.

본 발명의 다른 측면에 따른 고강도 열연 강판의 제조방법은, 중량%로, 탄소(C): 0.04 ~ 0.07%, 실리콘(Si): 0 초과 0.03% 이하, 망간(Mn): 1.3 ~ 1.5%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.005% 이하, 알루미늄(Al): 0.01 ~ 0.05%, 티타늄(Ti): 0.11 ~ 0.13%, 니오븀(Nb): 0.02 ~ 0.03%, 바나듐(V): 0 초과 0.01% 이하, 질소(N): 0 초과 006% 이하, 크롬(Cr)+몰리브덴(Mo)+니켈(Ni): 0 초과 0.1% 이하, 구리(Cu)+주석(Sn): 0 초과 0.1% 이하, 잔여 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1,140 ~ 1,200℃의 온도로 가열하는 단계; 상기 가열된 강 슬라브를 870 ~ 910℃에서 열간 압연하여 열연 판재를 얻는 단계; 및 상기 열연 판재를 10 ~ 30℃의 평균냉각속도로 570 ~ 610℃까지 냉각한 후 권취하는 단계를 포함하는 것을 특징으로 한다.Method for manufacturing a high-strength hot-rolled steel sheet according to another aspect of the present invention, by weight%, carbon (C): 0.04 ~ 0.07%, silicon (Si): more than 0 0.03% or less, manganese (Mn): 1.3 ~ 1.5%, Phosphorus (P): more than 0 and 0.018% or less, sulfur (S): more than 0 and 0.005% or less, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.11 to 0.13%, niobium (Nb): 0.02 to 0.03 %, Vanadium (V): more than 0 and less than 0.01%, nitrogen (N): more than 0 and 006% or less, chromium (Cr) + molybdenum (Mo) + nickel (Ni): more than 0 and 0.1% or less, copper (Cu) + Tin (Sn): heating the steel slab containing residual iron (Fe) and other unavoidable impurities to a temperature of 1,140 to 1,200° C., more than 0 and 0.1% or less; Hot-rolling the heated steel slab at 870-910°C to obtain a hot-rolled sheet material; And cooling the hot rolled sheet to 570 to 610°C at an average cooling rate of 10 to 30°C, and then winding it up.

본 발명에 있어서, 상기 열연 강판은 인장강도(TS): 700MPa 이상, 항복강도(YP): 550MPa 이상, 및 연신율(EL): 20% 이상일 수 있다.In the present invention, the hot-rolled steel sheet may have a tensile strength (TS): 700 MPa or more, a yield strength (YP): 550 MPa or more, and an elongation (EL): 20% or more.

본 발명에 따르면, 원가 대비 강도 상승이 열위한 니오븀(Nb) 및 바나듐(V)의 첨가량을 제한하고 석출경화 원소인 티타늄(Ti)을 사용하면서도 700MPa 이상의 인장강도를 확보할 수 있으므로 경제성 측면에서 매우 유리하다.According to the present invention, it is very economical because it can secure the tensile strength of 700MPa or more while limiting the addition amount of niobium (Nb) and vanadium (V) for increasing the strength compared to the cost and using the precipitation hardening element titanium (Ti). It is advantageous.

도 1은 본 발명의 실시예에 따른 고강도 열연 강판의 제조방법을 개략적으로 나타낸 공정 순서도이다.1 is a process flow chart schematically showing a method of manufacturing a high strength hot rolled steel sheet according to an embodiment of the present invention.

이하, 첨부한 도면을 참고하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에서 설명하는 실시예들에 한정되지 않는다. 본 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily practice. The present invention can be implemented in many different forms, and is not limited to the embodiments described herein. Throughout this specification, the same reference numerals are assigned to the same or similar components. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention are omitted.

본 발명의 발명자들은 연구를 거듭한 결과, 제조 비용을 절감하기 위해 합금원소 중 원가 대비 강도 상승량이 낮은 니오븀(Nb) 및 바나듐(V)의 첨가량을 제한하고 티타늄(Ti)을 첨가함으로써 70kg급의 인장강도를 확보할 수 있는 성분계를 설정할 수 있었다. As a result of repeated research, the inventors of the present invention limit the addition amount of niobium (Nb) and vanadium (V) having a low strength increase compared to the cost among alloying elements, and add titanium (Ti) to reduce the manufacturing cost. A component system capable of securing tensile strength could be set.

이하, 본 발명의 고강도 열연 강판에 대해 구체적으로 설명한다.Hereinafter, the high-strength hot-rolled steel sheet of the present invention will be described in detail.

고강도 열연 강판High strength hot rolled steel sheet

본 발명의 일 측면인 고강도 열연 강판은, 중량%로, 탄소(C): 0.04 ~ 0.07%, 실리콘(Si): 0 초과 0.03% 이하, 망간(Mn): 1.3 ~ 1.5%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.005% 이하, 알루미늄(Al): 0.01 ~ 0.05%, 티타늄(Ti): 0.11 ~ 0.13%, 니오븀(Nb): 0.02 ~ 0.03%, 바나듐(V): 0 초과 0.01% 이하, 질소(N): 0 초과 006% 이하, 크롬(Cr)+몰리브덴(Mo)+니켈(Ni): 0 초과 0.1% 이하, 구리(Cu)+주석(Sn): 0 초과 0.1% 이하를 포함한다.High-strength hot-rolled steel sheet, which is one aspect of the present invention, by weight, carbon (C): 0.04 to 0.07%, silicon (Si): more than 0 to 0.03% or less, manganese (Mn): 1.3 to 1.5%, phosphorus (P) : More than 0 0.018% or less, sulfur (S): more than 0 0.005% or less, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.11 to 0.13%, niobium (Nb): 0.02 to 0.03%, vanadium ( V): more than 0 and less than 0.01%, nitrogen (N): more than 0 and less than 006%, chromium (Cr) + molybdenum (Mo) + nickel (Ni): more than 0 and less than 0.1%, copper (Cu) + tin (Sn) : It contains more than 0 and 0.1% or less.

상기 성분들 외 나머지는 철(Fe)과 제강 공정 등에서 불가피하게 함유되는 불순물로 이루어진다.The rest of the above components are made of iron (Fe) and impurities which are inevitably contained in the steelmaking process.

이하, 본 발명에 따른 저항복비를 만족하는 고강도 열연 강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.Hereinafter, the role and content of each component included in the high-strength hot-rolled steel sheet that satisfies the resistivity ratio according to the present invention will be described.

탄소(C): 0.04 ~ 0.07중량%Carbon (C): 0.04 to 0.07% by weight

탄소(C)는 강의 강도, 인성 및 용접부 인성에 영향을 미치는 원소이다. 또한, 강재의 경화능을 증가시키는 원소로서, 열간 마무리 압연 후 냉각시 페라이트 변태를 지연시켜 펄라이트의 분율을 증가시킴으로써, 항복강도뿐만 아니라 인장강도를 증가시킨다. 다만, 그 함량이 강판 전체의 0.04중량% 미만인 경우 합금원소의 첨가 등을 통하여 충분한 인장 강도 확보는 가능하나 원하는 항복강도 및 연신율 확보가 어렵다. 반대로, 탄소(C)의 첨가량이 0.07중량%를 초과하는 경우에는 초정 페라이트 형성으로 인한 슬라브에 크랙이 발생할 가능성이 높아지며, 인성의 저하 및 용접성의 저하를 초래하고 펄라이트 상의 분율이 높아져 원하는 미세조직을 제어하기 어려워진다. 따라서, 탄소(C)의 함량을 강판 전체의 0.04 ~ 0.07중량%로 첨가하는 것이 바람직하다.Carbon (C) is an element that affects the strength, toughness and toughness of welds. In addition, as an element to increase the hardenability of the steel material, by increasing the fraction of pearlite by delaying the ferrite transformation upon cooling after hot finish rolling, the tensile strength as well as the yield strength is increased. However, if the content is less than 0.04% by weight of the entire steel sheet, it is possible to secure sufficient tensile strength through the addition of alloy elements, etc., but it is difficult to secure the desired yield strength and elongation. Conversely, when the amount of carbon (C) added exceeds 0.07% by weight, the possibility of cracks in the slab due to the formation of super ferrite increases, leading to a decrease in toughness and a decrease in weldability, and a high percentage of pearlite phase to achieve the desired microstructure. It becomes difficult to control. Therefore, it is preferable to add the content of carbon (C) at 0.04 to 0.07% by weight of the entire steel sheet.

실리콘(Si): 0 초과 0.03중량% 이하Silicon (Si): more than 0 and 0.03% by weight or less

실리콘(Si)은 탈산제로 작용하며, 고용강화에 효과적으로 작용하는 원소이다. 또한 페라이트 안정화 원소로서 페라이트 형성을 유도함으로써 강의 인성 및 연성을 개선하는데 효과적이다. 그러나, 가열로에서 적스케일을 생성시킴으로써 다량 첨가시 강의 표면을 악화시키는 문제를 줄 수 있으며 또한 산화물 생성으로 인해 용접성을 떨어뜨리는 문제를 가지고 있다. 따라서, 상기 실리콘(Si)의 첨가량을 강판 전체의 0.03중량% 이하로 제한하는 것이 바람직하다.Silicon (Si) acts as a deoxidizer and is an element that effectively acts to strengthen solid solution. It is also effective in improving the toughness and ductility of steel by inducing ferrite formation as a ferrite stabilizing element. However, by creating a red scale in the heating furnace, it may cause a problem of deteriorating the surface of the steel when added in large quantities, and also has a problem of deteriorating weldability due to oxide formation. Therefore, it is preferable to limit the addition amount of the silicon (Si) to 0.03% by weight or less of the entire steel sheet.

망간(Mn): 1.3 ~ 1.5중량%Manganese (Mn): 1.3 to 1.5% by weight

망간(Mn)은 철(Fe)과 비슷한 원자 직경을 갖는 치환형 원소로서, 고용강화에 매우 효과적이며 강의 경화능을 향상시켜 열처리 후 강도확보에 효과적인 원소이다. 또한, 오스테나이트 안정화 원소로서, 페라이드, 펄라이트 변태를 지연시킴으로써 페라이트의 결정립 미세화에 기여할 수 있다. 망간(Mn)이 첨가량이 1.3중량% 미만인 경우 그 효과가 미미하고, 1.5중량%를 초과하여 첨가시에는 탄소당량을 높여 용접성을 크게 떨어뜨리고 MnS 게재물 생성 및 슬라브/ 코일에 중심편석 등을 발생시킴으로써 강의 연성 및 충격특성을 크게 떨어뜨린다. 따라서, 망간(Mn)의 함량은 강판 전체의 1.3 ~ 1.5중량%로 제한하는 것이 바람직하다.Manganese (Mn) is a substitutional element having an atomic diameter similar to iron (Fe), which is very effective for solid solution strengthening and improves the hardenability of steel and is effective in securing strength after heat treatment. In addition, as an austenite stabilizing element, it is possible to contribute to the refinement of ferrite grains by delaying ferrite and pearlite transformation. If the amount of manganese (Mn) added is less than 1.3% by weight, the effect is negligible, and when it exceeds 1.5% by weight, the carbon equivalent is increased to significantly reduce the weldability, generating MnS publications and generating central segregation in the slab/coil. By doing so, the ductility and impact characteristics of the steel are greatly reduced. Therefore, the content of manganese (Mn) is preferably limited to 1.3 to 1.5% by weight of the entire steel sheet.

알루미늄(Al): 0.01 ~ 0.05중량%Aluminum (Al): 0.01 ~ 0.05 wt%

알루미늄(Al)은 탈산제로 작용하며 강판 전체의 0.01 ~ 0.05중량% 첨가하는 것이 바람직하다. 알루미늄(Al)을 0.01중량% 미만으로 첨가할 경우 탈산효과가 미미하며, 0.05중량%를 초과하여 첨가할 경우 강 내에 존재하는 질소(N)와 결합하여 조대한 AlN계 질화물을 생성한다.Aluminum (Al) acts as a deoxidizer and it is preferable to add 0.01 to 0.05% by weight of the entire steel sheet. When aluminum (Al) is added in an amount of less than 0.01% by weight, the deoxidizing effect is negligible, and when it is added in an amount of more than 0.05% by weight, it is combined with nitrogen (N) present in the steel to produce coarse AlN-based nitride.

티타늄(Ti): 0.11 ~ 0.13중량%Titanium (Ti): 0.11 ~ 0.13% by weight

티타늄(Ti)은 고온안정성이 높은 Ti(C, N) 석출물을 생성시킴으로써, 슬라브 가열 단계에서 오스테나이트 결정립의 조대화를 방해하여 강재의 인성을 향상시킬 수 있다. 티타늄(Ti)은 0.11중량% 미만으로 첨가되는 경우 충분한 강화 효과를 얻을 수 없으며, 0.13중량%를 초과하는 경우 조대한 석출물을 생성시킴으로써 강의 충격, DWTT 특성을 저하시킬 수 있으며 제조단가가 상승하고 연성 확보에 어려움이 있다. 따라서, 상기 티타늄(Ti)은 강판 전체의 0.11 ~ 0.13중량%의 함량으로 첨가하는 것이 바람직하다.Titanium (Ti) can improve the toughness of the steel by preventing the coarsening of the austenite grains in the slab heating step by generating a high temperature stability Ti(C, N) precipitate. Titanium (Ti) is less than 0.11% by weight, a sufficient strengthening effect cannot be obtained, and if it exceeds 0.13% by weight, the coarse precipitates can be generated to deteriorate the impact of the steel and DWTT properties, and the manufacturing cost increases and the ductility increases. It is difficult to secure. Therefore, the titanium (Ti) is preferably added in an amount of 0.11 to 0.13% by weight of the entire steel sheet.

니오븀(Nb): 0.02 ~ 0.03중량%Niobium (Nb): 0.02 to 0.03% by weight

니오븀(Nb)은 탄소와 결합하여 강도 증가에 영향을 끼치는 탄화물을 형성하므로 강판 전체의 0.02 ~ 0.03중량% 첨가하는 것이 좋다. 니오븀(Nb)을 0.02중량% 미만으로 첨가할 경우 충분한 강화 효과를 얻을 수 없고, 0.03중량%를 초과하는 경우 제조 단가가 상승할 뿐 아니라 연성 확보에 어려움이 있다.Niobium (Nb) is combined with carbon to form carbides that affect the increase in strength, so it is good to add 0.02 to 0.03% by weight of the entire steel sheet. When niobium (Nb) is added in an amount of less than 0.02% by weight, a sufficient reinforcing effect cannot be obtained, and when it exceeds 0.03% by weight, the manufacturing cost increases and there is difficulty in securing ductility.

바나듐(V): 0 초과 0.01중량% 이하Vanadium (V): more than 0 and less than 0.01% by weight

바나듐(V)은 탄소와 결합하여 강도를 향상시키지만, 원가 대비 강도 상승이 열위한 원소이기 때문에 본 발명은 그 첨가량을 0.01중량% 이하로 제한한다.Vanadium (V) combines with carbon to improve strength, but the present invention limits its addition amount to 0.01% by weight or less because the strength increase compared to cost is an element that is inferior.

크롬(Cr), 몰리브덴(Mo), 니켈(Ni)의 합계 함량: 0 초과 0.1중량% 이하Total content of chromium (Cr), molybdenum (Mo), and nickel (Ni): more than 0 and 0.1% by weight or less

크롬(Cr), 몰리브덴(Mo), 니켈(Ni)은 고용 강화에 효과적으로 작용하여 강도를 향상시키는 원소들이다. 하지만 경화능을 향상시키는 원소들로서, 다량 첨가시 연신율이 크게 감소하기 때문에, 본 발명에서는 그들의 합계 함량을 0.1중량% 이하로 제한하였다.Chromium (Cr), molybdenum (Mo), and nickel (Ni) are elements that improve strength by effectively acting in solid solution strengthening. However, as elements to improve the hardenability, since the elongation is greatly reduced when added in large amounts, in the present invention, their total content is limited to 0.1% by weight or less.

구리(Cu), 주석(Sn)의 합계 함량: 0 초과 0.1중량% 이하Total content of copper (Cu) and tin (Sn): more than 0 and 0.1% by weight or less

구리(Cu)와 주석(Sn)은 합금의 녹는 점이 낮은 금속으로, 열간 압연 시 강판 표면의 결정립계에 용융하여 견고한 스케일을 생성시켜 디스케일링을 어렵게 하는 원소들이다. 따라서, 구리(Cu)와 주석(Sn)의 합계 함량을 0.1중량% 이하로 제한하는 것이 바람직하다.Copper (Cu) and tin (Sn) are metals with a low melting point of alloys, and are elements that make descaling difficult by forming a solid scale by melting at the grain boundaries of the steel sheet during hot rolling. Therefore, it is preferable to limit the total content of copper (Cu) and tin (Sn) to 0.1% by weight or less.

그 외 불가피한 첨가 원소: 인(P), 황(S), 질소(N)Other inevitable additive elements: phosphorus (P), sulfur (S), nitrogen (N)

그 외 불가피한 원소로서 인(P), 황(S), 질소(N)가 있다. 인(P)의 경우 강의 제조 공정 중 편석될 확률이 높으며 인의 편석은 인성을 저하시키고 성형 후 일정 시간이 지난 후에 파괴가 되는 지연 파괴의 원인이 된다. 따라서 강 중의 인(P)의 함량은 0.018중량% 이하로 제한하는 것이 바람직하다. 황(S)은 강의 인성 및 용접성을 저해하고 망간(Mn)과 결합하여 MnS를 형성함으로써 강의 내식성 및 충격특성을 저하시킨다. 이에, 본 발명에서는 상기 황(S)의 함량을 강판 전체의 0.005중량% 이하로 제한하였다. 또한, 질소(N)는 니오븀(Nb) 등과 결합하여 탄질화물을 형성함으로써 결정립을 미세화하지만, 고용 질소가 증가하여 강 내의 티타늄(Ti)과 경합하여 조대한 TiN계 석출물을 형성할 뿐 아니라, 형성된 TiN은 슬라브의 재가열 과정에서도 충분히 강 내에 고용되지 못해 조대한 석출물로 존재하게 된다. 따라서, 상기 질소(N)는 60ppm 이하로 그 첨가량을 제한한다.Other inevitable elements include phosphorus (P), sulfur (S), and nitrogen (N). In the case of phosphorus (P), there is a high probability of segregation during the steel manufacturing process, and segregation of phosphorus degrades toughness and causes delayed destruction, which occurs after a certain time after molding. Therefore, the content of phosphorus (P) in the steel is preferably limited to 0.018% by weight or less. Sulfur (S) inhibits the toughness and weldability of the steel and combines with manganese (Mn) to form MnS, thereby reducing the corrosion resistance and impact properties of the steel. Thus, in the present invention, the content of the sulfur (S) was limited to 0.005% by weight or less of the entire steel sheet. Further, nitrogen (N) combines with niobium (Nb) and the like to form carbonitrides to refine crystal grains, but solid nitrogen increases to compete with titanium (Ti) in steel to form coarse TiN-based precipitates. TiN is not sufficiently employed in the steel even during the slab reheating process, resulting in coarse precipitate. Therefore, the amount of nitrogen (N) is limited to 60 ppm or less.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다.The remaining component of the invention is iron (Fe). However, in the normal manufacturing process, unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and thus cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, they are not specifically mentioned in this specification.

상기한 합금 조성을 갖는 본 발명에 따른 열연 강판은 700MPa 이상의 인장 강도(TS)와, 550MPa 이상의 항복강도(YP) 및 16% 이상의 연신율을 나타낸다. 본 발명의 열연 강판에 따르면, 원가 대비 강도 상승이 열위한 니오븀(Nb) 및 바나듐(V)의 첨가량을 제한하고 석출경화 원소인 티타늄(Ti)을 사용하면서도 700MPa 이상의 인장강도를 확보할 수 있으므로 경제성 측면에서 매우 유리하다.The hot rolled steel sheet according to the present invention having the above-described alloy composition exhibits a tensile strength (TS) of 700 MPa or more, a yield strength (YP) of 550 MPa or more, and an elongation of 16% or more. According to the hot rolled steel sheet of the present invention, since the increase in strength compared to the cost limits the amount of niobium (Nb) and vanadium (V) for heat and uses titanium (Ti), which is a precipitation hardening element, it is possible to secure a tensile strength of 700 MPa or more, which is economical. Very advantageous in terms.

상술한 성분계 및 후술하는 공정 조건의 제어에 의하여 저원가형 70kg급 열연 강판을 제조할 수 있다. 이하, 본 발명의 다른 측면인 저항복비를 만족하는 고강도 열연 강판의 제조방법에 대하여 상세히 설명한다.By controlling the above-described component system and the process conditions described below, a low-cost 70 kg grade hot rolled steel sheet can be manufactured. Hereinafter, a method for manufacturing a high-strength hot-rolled steel sheet that satisfies another aspect of the present invention, that is, resistive ratio, will be described in detail.

고강도 열연 강판의 제조방법Manufacturing method of high strength hot rolled steel sheet

도 1은 본 발명의 실시예에 따른 고강도 열연 강판의 제조방법을 개략적으로 나타낸 공정 순서도이다.1 is a process flow chart schematically showing a method of manufacturing a high strength hot rolled steel sheet according to an embodiment of the present invention.

본 발명의 다른 측면인 저항복비를 만족하는 고강도 열연 강판의 제조방법은 상기 열연 강판의 합금 조성비를 만족하는 강 슬라브를 1,180 ~ 1,220℃의 온도에서 재가열하는 단계, 상기 가열된 강 슬라브를 880 ~ 920℃의 마무리 압연온도에서 열간압연하는 단계, 및 열간 압연된 판재를 냉각 후 560 ~ 640℃의 온도에서 권취하는 단계를 포함한다.Another aspect of the present invention is a method of manufacturing a high-strength hot-rolled steel sheet that satisfies the resistivity ratio, re-heating a steel slab that satisfies the alloy composition ratio of the hot-rolled steel sheet at a temperature of 1,180 to 1,220°C, and 880 to 920 the heated steel slab. Hot rolling at a finish rolling temperature of ℃, and cooling the hot rolled sheet material and then winding at a temperature of 560 ~ 640 ℃.

슬라브 재가열 단계(S110)Slab reheating step (S110)

상기의 합금 조성을 갖는 강 슬라브를 재가열하여 주조 시 편석된 성분의 재고용 및 석출물의 재고용시킨다. 구체적으로, 중량%로, 탄소(C): 0.04 ~ 0.07%, 실리콘(Si): 0 초과 0.03% 이하, 망간(Mn): 1.3 ~ 1.5%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.005% 이하, 알루미늄(Al): 0.01 ~ 0.05%, 티타늄(Ti): 0.11 ~ 0.13%, 니오븀(Nb): 0.02 ~ 0.03%, 바나듐(V): 0 초과 0.01% 이하, 질소(N): 0 초과 006% 이하, 크롬(Cr)+몰리브덴(Mo)+니켈(Ni): 0 초과 0.1% 이하, 구리(Cu)+주석(Sn): 0 초과 0.1% 이하, 및 나머지 철(Fe) 및 기타 불순물을 포함하는 강 슬라브를 1,180℃ ~ 1,220℃의 SRT(Slab Reheating Temperature)에서 2시간 이상 가열한다. 상기 슬라브는 슬라브 재가열 단계(S110) 이전에 실시되는 연속주조과정에 의하여 제조되는 강 슬라브일 수 있다.The steel slab having the above alloy composition is reheated to restock the segregated components during casting and restock. Specifically, by weight, carbon (C): 0.04 to 0.07%, silicon (Si): more than 0 and 0.03% or less, manganese (Mn): 1.3 to 1.5%, phosphorus (P): more than 0 and 0.018% or less, sulfur (S): more than 0 0.005% or less, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.11 to 0.13%, niobium (Nb): 0.02 to 0.03%, vanadium (V): more than 0 and less than 0.01% , Nitrogen (N): more than 0 and 006% or less, chromium (Cr) + molybdenum (Mo) + nickel (Ni): more than 0 and 0.1% or less, copper (Cu) + tin (Sn): more than 0 and 0.1% or less, and The steel slab containing the remaining iron (Fe) and other impurities is heated for 2 hours or more at SRT (Slab Reheating Temperature) of 1,180°C to 1,220°C. The slab may be a steel slab manufactured by a continuous casting process performed before the slab reheating step (S110).

슬라브 재가열 온도가 1,180℃ 미만일 경우에는 가열온도가 충분하지 않아 열간 압연시 압연 부하가 커지는 문제가 있다. 또한, 석출물이 고용 온도에 이르지 못해 열간압연시 미세한 석출물로 재석출되지 못하여 오스테나이트의 결정립 성장을 억제하지 못해 오스테나이트 결정립이 급격히 조대화되는 문제점이 있다. 또한, 재가열 온도가 1,220℃를 초과할 경우, 오스테나이트 결정립이 급격히 조대화되거나 또는 탈탄 현상이 발생하여 제조되는 강의 강도 및 저온인성 확보가 어려운 문제점이 있다.When the slab reheating temperature is less than 1,180°C, the heating temperature is not sufficient, and there is a problem in that the rolling load increases during hot rolling. In addition, there is a problem in that the austenite grains are rapidly coarsened because the precipitates do not reach the solid solution temperature, and thus do not reprecipitate as fine precipitates during hot rolling, so that the grain growth of austenite cannot be suppressed. In addition, when the reheating temperature exceeds 1,220°C, there is a problem in that it is difficult to secure the strength and low-temperature toughness of the steel produced by the austenite crystal grains being rapidly coarsened or decarburization.

열간 압연 단계(S120)Hot rolling step (S120)

상기와 같이 슬라브를 가열한 다음에는, 가열된 슬라브에 대해 열간압연을 실시한다. 압연 온도는 오스테나이트 재결정영역 이상에서 실시하는 것이 바람직하다. 더욱 바람직하게는, 마무리 압연온도(FDT): 880 ~ 920℃에서 마무리 압연을 실시한다. 압연에 의해 주조 중에 형성된 덴드라이트 등 주조 조직이 파괴되고 오스테나이트의 크기를 작게 하는 효과를 얻을 수 있다. 이러한 효과를 얻기 위하여, 압연 온도는 880 ~ 920℃로 제어하는 것이 바람직하다. 마무리 압연 온도가 920℃를 초과할 경우 강판의 표면 스케일 발생으로 인해 강판의 품질이 저하될 우려가 있다. 또한, 880℃ 미만의 압연 온도에서는 결정립이 미세화되어 강도가 상승하나 압연부하 증가 및 생산성 감소를 야기할 수 있다.After heating the slab as described above, hot rolling is performed on the heated slab. It is preferable to perform the rolling temperature in the austenite recrystallization region or more. More preferably, finish rolling temperature (FDT): finish rolling is performed at 880 to 920°C. By rolling, a casting structure such as dendrites formed during casting is destroyed, and an effect of reducing the size of austenite can be obtained. In order to obtain this effect, it is preferable to control the rolling temperature to 880 ~ 920 ℃. When the finish rolling temperature exceeds 920°C, there is a concern that the quality of the steel sheet is deteriorated due to surface scale generation of the steel sheet. In addition, at a rolling temperature of less than 880°C, crystal grains are refined to increase strength, but may increase rolling load and decrease productivity.

냉각 및 권취 단계(S130)Cooling and coiling step (S130)

상기 열간압연 후에는 열연 판재를 소정의 권취 온도까지 냉각한다. 상세하게는, 상기 압연된 열연 판재를 30 ~ 100℃/sec의 평균 냉각속도로 권취 온도까지 냉각한다. 상기 냉각은 공냉 또는 수냉 모두 가능하다. 강판의 내부조직을 제어하기 위해서는 냉각속도를 제어하는 것이 중요한데, 30℃/sec 미만의 냉각속도에서는 충분히 냉각이 이루어지지 않아 고온에서 생성되는 스케일을 야기할 가능성이 있으며, 100℃/sec을 초과하는 냉각속도에서는 판재의 평탄도를 확보하기 어려운 단점이 있다.After the hot rolling, the hot rolled sheet material is cooled to a predetermined coiling temperature. Specifically, the rolled hot-rolled sheet material is cooled to a coiling temperature at an average cooling rate of 30 to 100°C/sec. The cooling may be air cooling or water cooling. In order to control the internal structure of the steel sheet, it is important to control the cooling rate. At a cooling rate of less than 30°C/sec, cooling is not sufficiently performed, which may cause scale generated at high temperature, and exceeds 100°C/sec. At the cooling rate, there is a disadvantage that it is difficult to secure the flatness of the plate material.

상기 냉각은 권취 온도까지 냉각하는 것이 바람직하다. 본 발명에서 상기 권취 온도는 560 ~ 640℃를 만족하는 것이 바람직하다. 상기 권취 온도는 적정량의 페라이트와 펄라이트를 확보하기 위함이며, 권취 온도가 너무 높을 경우에는 조대한 페라이트 및 펄라이트가 생성되어 강도 확보가 어렵다. 권취 온도가 640℃를 초과할 경우에는 조대립의 형성으로 항복비는 감소하나 인성이 저하되고 목표하는 강도에 미달될 문제가 발생할 수 있는 반면, 권취 온도가 560℃ 미만으로 저온일 경우에는 조직이 미세하게 되어 강도와 인성은 증가할 수 있으나, 연신율을 충족시키기 어렵다.The cooling is preferably cooled to the coiling temperature. In the present invention, it is preferable that the coiling temperature satisfies 560 to 640°C. The coiling temperature is to ensure an appropriate amount of ferrite and pearlite, and when the coiling temperature is too high, coarse ferrite and pearlite are generated, making it difficult to secure strength. When the coiling temperature exceeds 640°C, the yield ratio decreases due to the formation of coarse grains, but toughness may decrease and problems may occur that fall below the target strength, whereas when the coiling temperature is lower than 560°C, the tissue As it becomes fine, strength and toughness may increase, but it is difficult to meet the elongation.

이하, 실시예를 통하여 본 발명을 상세히 설명하나, 이는 본 발명의 바람직한 실시예일뿐 본 발명의 범위가 이러한 실시예의 기재범위에 의하여 제한되는 것은 아니다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Hereinafter, the present invention will be described in detail through examples, but this is only a preferred embodiment of the present invention, and the scope of the present invention is not limited by the scope of the examples. The contents not described here will be sufficiently technically inferred by those skilled in the art, and thus the description thereof will be omitted.

실시예Example

하기 표 1 및 표 2의 성분 조성(중량%, 나머지는 Fe와 불가피한 불순물임)을 갖는 실시예와 비교예의 강 슬라브들을 준비하고, 표 3에 제시된 조건으로 슬라브 재가열, 열간 압연, 냉각 및 권취를 행하였다. 이후 항복강도(YP), 인장강도(TS) 및 연신율(EL)을 각각 측정하여 그 결과를 표 3에 함께 나타내었다.Steel slabs of Examples and Comparative Examples having the component composition (% by weight, the rest being Fe and inevitable impurities) of Tables 1 and 2 below were prepared, and the slabs were reheated, hot rolled, cooled, and coiled under the conditions shown in Table 3. Was done. Thereafter, yield strength (YP), tensile strength (TS), and elongation (EL) were measured, respectively, and the results are shown in Table 3.

구분division 성분(중량%)Ingredient (% by weight) CC SiSi MnMn PP SS AlAl TiTi 실시예Example 0.0540.054 0.0120.012 1.341.34 0.0070.007 0.0040.004 0.0230.023 0.120.12 비교예1Comparative Example 1 0.0650.065 0.0160.016 1.411.41 0.0140.014 0.0030.003 0.0330.033 0.030.03 비교예2Comparative Example 2 0.06640.0664 0.2310.231 1.71.7 0.01740.0174 0.00130.0013 0.0370.037 0.020.02 비교예3Comparative Example 3 0.05640.0564 0.1980.198 1.4941.494 0.01510.0151 0.0010.001 0.0280.028 0.0110.011 비교예4Comparative Example 4 0.580.58 0.5030.503 1.781.78 0.0130.013 0.0010.001 0.0390.039 0.060.06 비교예5Comparative Example 5 0.120.12 0.9330.933 2.152.15 0.0130.013 0.0030.003 0.0370.037 0.0030.003 비교예6Comparative Example 6 0.1740.174 0.0770.077 1.4171.417 0.01340.0134 0.00190.0019 0.0310.031 0.0010.001 비교예7Comparative Example 7 0.08720.0872 0.2880.288 2.2672.267 0.01190.0119 0.00040.0004 0.0320.032 0.0020.002

구분division 성분(중량%)Ingredient (% by weight) NbNb VV Cr+Mo+NiCr+Mo+Ni NN Cu+SnCu+Sn 실시예Example 0.0240.024 0.0010.001 0.030.03 0.00440.0044 0.0220.022 비교예1Comparative Example 1 0.0560.056 0.0020.002 0.030.03 0.00530.0053 0.0190.019 비교예2Comparative Example 2 0.0690.069 0.040.04 0.250.25 0.00500.0050 0.0140.014 비교예3Comparative Example 3 0.0640.064 0.0590.059 0.180.18 0.00370.0037 0.0140.014 비교예4Comparative Example 4 0.0480.048 0.0040.004 0.590.59 0.00360.0036 0.0220.022 비교예5Comparative Example 5 0.0020.002 0.0040.004 0.410.41 0.00390.0039 0.0200.020 비교예6Comparative Example 6 0.0510.051 0.0020.002 0.030.03 0.00370.0037 0.0150.015 비교예7Comparative Example 7 0.0020.002 0.0040.004 0.430.43 0.00490.0049 0.0160.016

구분division 제조 조건Manufacturing conditions 물성Properties SRT(℃)SRT(℃) FDT(℃)FDT(℃) CT(℃)CT(℃) TS(MPa)TS(MPa) YP(MPa)YP(MPa) EL(%)EL(%) 실시예Example 11961196 911911 623623 775775 765765 2020 비교예1Comparative Example 1 11961196 878878 634634 631631 591591 3030 비교예2Comparative Example 2 12011201 805805 571571 678.5678.5 613.7613.7 2929 비교예3Comparative Example 3 12061206 848848 591.9591.9 640.2640.2 568.9568.9 3131 비교예4Comparative Example 4 12161216 895895 450450 985985 931931 77 비교예5Comparative Example 5 11811181 911911 425.6425.6 10741074 755755 1414 비교예6Comparative Example 6 11661166 875875 574.3574.3 656.1656.1 531.1531.1 1515 비교예7Comparative Example 7 12071207 880880 529.7529.7 797.1797.1 687687 1111

표 1 내지 표 3을 참조하면, 합금 원소의 조성비 및 제조 조건을 모두 만족한 실시예의 강은 목표로 하는 인장 강도, 항복 강도 및 연신율을 모두 충족하였다.Referring to Tables 1 to 3, the steels of the Examples satisfying both the compositional ratios of the alloying elements and the production conditions met all of the target tensile strength, yield strength, and elongation.

비교예 1, 2 및 3의 강은 석출 강화 원소인 티타늄(Ti) 함량의 부족으로 목표로 하는 인장 강도(700MPa 이상)를 확보할 수 없었다.The steels of Comparative Examples 1, 2 and 3 could not secure the target tensile strength (700 MPa or more) due to the lack of the titanium (Ti) content as a precipitation strengthening element.

비교예 4의 강은 인장 강도 및 항복 강도는 확보하였으나, 탄소 함량 초과 및 권취 온도 미달로 목표로 하는 연신율(20% 이상)을 확보할 수 없었다.The tensile strength and yield strength of the steel of Comparative Example 4 were secured, but the target elongation (20% or more) could not be secured due to excess carbon content and insufficient winding temperature.

비교예 5의 강은 인장 강도 및 항복 강도는 확보하였으나, 경화능 원소인 크롬(Cr)+몰리브덴(Mo)+니켈(Ni) 함량 초과 및 권취 온도 미달로 목표로 하는 연신율을 확보하지 못하였다.The tensile strength and yield strength of the steel of Comparative Example 5 were secured, but the target elongation was not secured due to exceeding the chromium (Cr) + molybdenum (Mo) + nickel (Ni) content as a hardenability element and insufficient winding temperature.

비교예 6의 강은 석출 강화 원소인 티타늄(Ti) 함량의 부족으로 목표로 하는 인장 강도(700MPa)를 확보할 수 없었으며, 탄소(C) 함량의 초과로 목표로 하는 연신율을 확보할 수 없었다.The steel of Comparative Example 6 could not secure the target tensile strength (700 MPa) due to the lack of the precipitation strengthening element titanium (Ti) content, and could not secure the target elongation due to the excess of the carbon (C) content. .

비교예 7의 강은 목표로 하는 인장 강도 및 항복 강도는 확보하였으나, 경화능 원소인 망간(Mn)의 함량 초과 및 권취 온도 미달로 목표로 하는 연신율을 확보할 수 없었다.The target tensile strength and yield strength of the steel of Comparative Example 7 were secured, but the target elongation could not be secured because the content of the hardenability element manganese (Mn) was exceeded and the coiling temperature was not reached.

상술한 바와 같이, 본 발명에 따르면, 탄소(C), 망간(Mn), 티타늄(Ti), 니오븀(Nb) 등의 합금원소의 함량과 압연 온도, 권취 온도 등의 공정 조건을 제어함으로써 경제성이 우수하면서도 70kg급의 고강도 열연 강판을 제조할 수 있다.As described above, according to the present invention, the economical efficiency by controlling the content of alloying elements such as carbon (C), manganese (Mn), titanium (Ti), niobium (Nb) and process conditions such as rolling temperature and coiling temperature It is possible to manufacture a high-strength hot-rolled steel sheet of 70 kg.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.In the above, although the description has been mainly focused on the embodiment of the present invention, various changes or modifications can be made at the level of those skilled in the art. It can be said that such modifications and variations belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention should be judged by the claims set forth below.

Claims (4)

중량%로, 탄소(C): 0.04 ~ 0.07%, 실리콘(Si): 0 초과 0.03% 이하, 망간(Mn): 1.3 ~ 1.5%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.005% 이하, 알루미늄(Al): 0.01 ~ 0.05%, 티타늄(Ti): 0.11 ~ 0.13%, 니오븀(Nb): 0.02 ~ 0.03%, 바나듐(V): 0 초과 0.01% 이하, 질소(N): 0 초과 006% 이하, 잔여 철(Fe) 및 기타 불가피한 불순물을 포함하고,
크롬(Cr), 몰리브덴(Mo), 니켈(Ni)의 합계 함량이 0 초과 0.1% 이하이며,
구리(Cu), 주석(Sn)의 합계 함량이 0 초과 0.1% 이하인,
열연 강판.
In weight percent, carbon (C): 0.04 to 0.07%, silicon (Si): more than 0 and 0.03% or less, manganese (Mn): 1.3 to 1.5%, phosphorus (P): more than 0 and 0.018% or less, sulfur (S) : More than 0 and less than 0.005%, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.11 to 0.13%, niobium (Nb): 0.02 to 0.03%, vanadium (V): more than 0 and less than 0.01%, nitrogen ( N): more than 0 and less than 006%, contains residual iron (Fe) and other inevitable impurities,
The total content of chromium (Cr), molybdenum (Mo), and nickel (Ni) is more than 0 and 0.1% or less,
The total content of copper (Cu) and tin (Sn) is more than 0 and 0.1% or less,
Hot rolled steel sheet.
제1항에 있어서,
상기 열연 강판은,
인장강도(TS): 700MPa 이상, 항복강도(YP): 550MPa 이상, 및 연신율(EL): 20% 이상인,
열연 강판.
According to claim 1,
The hot rolled steel sheet,
Tensile strength (TS): 700MPa or more, yield strength (YP): 550MPa or more, and elongation (EL): 20% or more,
Hot rolled steel sheet.
중량%로, 탄소(C): 0.04 ~ 0.07%, 실리콘(Si): 0 초과 0.03% 이하, 망간(Mn): 1.3 ~ 1.5%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.005% 이하, 알루미늄(Al): 0.01 ~ 0.05%, 티타늄(Ti): 0.11 ~ 0.13%, 니오븀(Nb): 0.02 ~ 0.03%, 바나듐(V): 0 초과 0.01% 이하, 질소(N): 0 초과 006% 이하, 크롬(Cr)+몰리브덴(Mo)+니켈(Ni): 0 초과 0.1% 이하, 구리(Cu)+주석(Sn): 0 초과 0.1% 이하, 잔여 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1,140 ~ 1,200℃의 온도로 가열하는 단계;
상기 가열된 강 슬라브를 870 ~ 910℃에서 열간 압연하여 열연 판재를 얻는 단계; 및
상기 열연 판재를 10 ~ 30℃의 평균냉각속도로 570 ~ 610℃까지 냉각한 후 권취하는 단계를 포함하는,
열연 강판의 제조방법.
In weight percent, carbon (C): 0.04 to 0.07%, silicon (Si): more than 0 and 0.03% or less, manganese (Mn): 1.3 to 1.5%, phosphorus (P): more than 0 and 0.018% or less, sulfur (S) : More than 0 and less than 0.005%, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.11 to 0.13%, niobium (Nb): 0.02 to 0.03%, vanadium (V): more than 0 and less than 0.01%, nitrogen ( N): more than 0 and less than 006%, chromium (Cr) + molybdenum (Mo) + nickel (Ni): more than 0 0.1%, copper (Cu) + tin (Sn): more than 0 and less than 0.1%, residual iron (Fe ) And other inevitable impurities to heat the steel slab to a temperature of 1,140 ~ 1,200 ℃;
Hot-rolling the heated steel slab at 870-910°C to obtain a hot-rolled sheet material; And
Cooling the hot-rolled sheet material to an average cooling rate of 10 ~ 30 ℃ to 570 ~ 610 ℃ comprising the step of winding,
Method for manufacturing hot rolled steel sheet.
제3항에 있어서,
상기 열연 강판은,
인장강도(TS): 700MPa 이상, 항복강도(YP): 550MPa 이상, 및 연신율(EL): 20% 이상인,
열연 강판의 제조방법.


According to claim 3,
The hot rolled steel sheet,
Tensile strength (TS): 700MPa or more, yield strength (YP): 550MPa or more, and elongation (EL): 20% or more,
Method for manufacturing hot rolled steel sheet.


KR1020180147775A 2018-11-26 2018-11-26 Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same KR20200062467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180147775A KR20200062467A (en) 2018-11-26 2018-11-26 Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180147775A KR20200062467A (en) 2018-11-26 2018-11-26 Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20200062467A true KR20200062467A (en) 2020-06-04

Family

ID=71081316

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180147775A KR20200062467A (en) 2018-11-26 2018-11-26 Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20200062467A (en)

Similar Documents

Publication Publication Date Title
WO2009066863A1 (en) High strength and low yield ratio steel for structure having excellent low temperature toughness
KR101225387B1 (en) Hot-rolled steel plate with improved weldability and method of manufacturing the same
KR101505279B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR20160014998A (en) Steel sheet and method of manufacturing the same
KR20190035422A (en) Method of manufacturing hot rolled steel sheet and hot rolled steel sheet manufactured thereby
KR101786258B1 (en) The steel sheet having high-strength and excellent heat affected zone toughness and method for manufacturing the same
KR101505299B1 (en) Steel and method of manufacturing the same
KR102155430B1 (en) Ultra-high strength and high toughness steel plate and method for manufacturing the same
KR101435320B1 (en) Method of manufacturing steel
KR101797367B1 (en) High carbon hot-rolled steel sheet and method of manufacturing the same
KR20200062467A (en) Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same
KR20200061921A (en) Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same
KR101455469B1 (en) Thick steel sheet and method of manufacturing the same
KR101424889B1 (en) Steel and method of manufacturing the same
KR101572317B1 (en) Shape steel and method of manufacturing the same
KR102503451B1 (en) Hot rolled steel sheet having excellent earthquake-resistant property and method of manufacturing the same
KR102366001B1 (en) High strength hot rolled steel and method of manufacturing the same
KR101546124B1 (en) Hot-rolled steel and method of manufacturing the same
KR101185198B1 (en) Heat resistant steel with excellent reheating cracking resistance and high temperature strength and method of manufacturing the heat resistant steel
KR101267624B1 (en) Structural steel and method of manufacturing the structural steel
KR101185289B1 (en) High strength steel exellent in low-temperature toughness welding part and method of manufacturing the high strength steel
KR20220040532A (en) High strength hot rolled steel sheet for steel pipe and method of manufacturing the same
KR20150112490A (en) Steel and method of manufacturing the same
KR101149251B1 (en) HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 650MPa GRADE WITH LOW YIELD RATIO AND METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL
KR101467048B1 (en) Thick steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
E601 Decision to refuse application