JP3899014B2 - Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same - Google Patents

Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same Download PDF

Info

Publication number
JP3899014B2
JP3899014B2 JP2002322443A JP2002322443A JP3899014B2 JP 3899014 B2 JP3899014 B2 JP 3899014B2 JP 2002322443 A JP2002322443 A JP 2002322443A JP 2002322443 A JP2002322443 A JP 2002322443A JP 3899014 B2 JP3899014 B2 JP 3899014B2
Authority
JP
Japan
Prior art keywords
toughness
rolling
base material
affected zone
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002322443A
Other languages
Japanese (ja)
Other versions
JP2004156095A (en
Inventor
仁志 古谷
達也 熊谷
政昭 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002322443A priority Critical patent/JP3899014B2/en
Publication of JP2004156095A publication Critical patent/JP2004156095A/en
Application granted granted Critical
Publication of JP3899014B2 publication Critical patent/JP3899014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、母材及び溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法に関するものである。この製法で製造した鋼材は、造船、橋梁、建築、海洋構造物、圧力容器、ラインパイプなどの溶接構造物一般に用いることができるが、各構造物のうち母材あるいは溶接熱影響部の靱性確保が困難となる板厚40mm以上の鋼板を適用する部位での使用において特に有効である。
【0002】
【従来の技術】
近年の構造物の大型化に伴い、強度や板厚の要求水準は高くなる一方であり、高強度かつ厚手、しかも母材靱性や溶接熱影響部靱性、さらには溶接性にも優れる鋼材が求められている。母材靱性や溶接熱影響部靱性を考慮した場合、合金元素の添加量は極力控えた上で強度の確保を図る必要があり、これを達成するための手法は、例えば下記の特許文献1〜4などに開示されている。これらは、主として製造条件の規定により組織を微細化し、靱性の向上を図ったものである。
【0003】
【特許文献1】
特開昭59−200723号公報
【0004】
【特許文献2】
特開平2−205627号公報
【0005】
【特許文献3】
特開平6−93332号公報
【0006】
【特許文献4】
特開平10−158778号公報
【0007】
前記特許文献1には、未再結晶域での圧下量を50%以上として、さらに圧延パス間時間や圧延終了後の冷却開始時間を制御することで微細なフェライト組織を得ると記述されている。このように未再結晶域で導入される加工とその後の回復過程を制御することは組織微細化に対して非常に有効であるものの、この手法で製造した鋼板の組織はフェライトが主体となるため、引張強さの高い鋼板、例えば600MPa超の引張強さの鋼板を製造することは困難である。
【0008】
一方、前記特許文献2,4及び3は、いずれもベイナイトを含む組織の靱性を向上する方法を開示している。
特許文献2に記載の発明は、B(ホウ素)添加による焼入性向上効果の活用を規定している。しかし、焼入性低下を抑制するために圧下率を30%以下としており、組織微細化による靱性向上の程度は小さい。
【0009】
特許文献4に記載の発明では、未再結晶域での圧下量を50%以上とし、冷却速度を制御することで微細なベイナイトとフェライトの混合組織を生成させ、靱性向上をはかっている。しかし、未再結晶温度域で導入された加工下部組織からのベイナイトの核生成促進、加工下部組織によるベイナイトの成長抑制、フェライト生成によるベイナイト分断などを通じた最終組織の大幅な微細化は、未再結晶温度域での圧下量と圧延後の冷却速度を主たる制御指針とするのみでは不十分であり、最大の組織微細化効果は得られない。
【0010】
また、同様の視点による前記特許文献3に記載の発明では、未再結晶温度域での圧下量や冷却速度の制御のみでなく、圧延後の冷却開始までの時間を「直ちに」と規定しており、圧延最終パス時点での加工下部組織は回復が抑制された状態で加速冷却されるため、組織微細化には有利と考えられる。しかし、組織微細化効果を得るための「直ちに」の定量的指標、すなわち圧延終了後何秒以内に加速冷却を開始すべきかが明確でなく、効果発現の信頼性を疑問視せざるを得ない。さらに、未再結晶温度域での圧下率が50%以上となっているため、圧下率の確保が困難となる厚手材ではこの手法を使用することはできない。
【0011】
以上挙げたように、ベイナイトを含む組織の微細化を考える場合には、ベイナイトの核生成サイト増大やベイナイトラスの成長抑制、フェライト生成によるベイナイトの分断等を通じた組織微細化に寄与する加工下部組織の導入量や不均一性、さらに逐次進行する回復や再結晶の制御が非常に重要であり、上記に述べたような指針のみでは最大限の効果を得るには不十分である。しかもこれら技術の根幹となっている未再結晶域での大圧下率は板厚の大きい鋼板を製造する上では大きな障害となり、かつ生産性を大きく阻害する。
【0012】
【発明が解決しようとする課題】
本発明は、上記の問題点を解消し、母材及び溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板及びその製造方法を提供することを課題としている。
【0013】
【課題を解決するための手段】
発明者らは、種々の製造条件による組織微細化の検討を進めた結果、鋼中の析出物の制御や圧延前、圧延中、圧延後の幅広い範囲での冷却制御が重要であることを新たに知見し、この有効な範囲を限定するに至り、本発明を完成したもので、その要旨とするところは以下の通りである。
【0014】
(1)鋼が、質量%で、
C :0.005〜0.2%、 Si:0.01〜1%、
Mn:0.1〜2%、 P :0.02%以下、
S :0.02%以下、 N :0.0001〜0.01%、
B :0.0005〜0.005%、 Al:0.001〜0.1%
を含有し、残部がFe及び不可避的不純物からなる鋼組成とし、Bを含有する炭化物、窒化物、炭窒化物のなかで円相当直径の寸法が50nm以上10000nm以下のものの個数密度が5.0×107 個/mm2 未満であり、該個数密度をBの添加量で除した値が2.0×1010個/(mm2 ・質量%)未満であり、ベイナイトとマルテンサイトの体積率の和が60%以上のベイナイト主体組織であり、さらにベイナイト中で隣接組織との結晶方位差が15度以上となる領域の平均寸法が20μm以下であることを特徴とする、母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
(2)質量%で、さらに、
Nb:0.001〜0.1%、 Ti:0.001〜0.2%、
V :0.001〜0.2%
の1種または2種以上を含有することを特徴とする、前記(1)に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
(3)質量%で、さらに、
Cu:0.005〜1%、 Ni:0.01〜2%、
Cr:0.01〜1%、 Mo:0.01〜1%
の1種または2種以上を含有することを特徴とする、前記(1)または(2)のに記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
(4)質量%で、さらに、
Ca:0.0005〜0.02%、 Mg:0.0005〜0.02%、
REM:0.001〜0.1%
の1種または2種以上を含有することを特徴とする、前記(1)ないし(3)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
【0015】
(5)質量%で、
C :0.005〜0.2%、 Si:0.01〜1%、
Mn:0.1〜2%、 P :0.02%以下、
S :0.02%以下、 N :0.0001〜0.01%、
B :0.0005〜0.005%、Al:0.001〜0.1%
を含有し、残部がFe及び不可避的不純物からなる鋼組成を有する鋼片または鋳片を、1050℃以上1350℃以下の温度域に加熱し、該温度域に20分以上保持をした後に圧延を開始し、圧延をAr3 点以上950℃以下で終了した後、20秒以内に鋼板表面の平均冷却速度が0.5℃/s以上の冷却を行い、350℃以上で冷却を終了した後空冷することを特徴とする、Bを含有する炭化物、窒化物、炭窒化物のなかで円相当直径の寸法が50nm以上10000nm以下のものの個数密度が5.0×10 7 個/mm 2 未満であり、該個数密度をBの添加量で除した値が2.0×10 10 個/(mm 2 ・質量%)未満であり、ベイナイトとマルテンサイトの体積率の和が60%以上のベイナイト主体組織であり、さらにベイナイト中で隣接組織との結晶方位差が15度以上となる領域の平均寸法が20μm以下である母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(6)質量%で、
C :0.005〜0.2%、 Si:0.01〜1%、
Mn:0.1〜2%、 P :0.02%以下、
S :0.02%以下、 N :0.0001〜0.01%、
B :0.0005〜0.005%、 Al:0.001〜0.1%
を含有し、残部がFe及び不可避的不純物からなる鋼組成を有する鋼片または鋳片を、1050℃以上1350℃以下の温度域に加熱し、該温度域に20分以上保持をした後に圧延を開始し、圧延をAr3 点以上950℃以下で終了した後、20秒以内に鋼板表面の平均冷却速度が0.5℃/s以上の冷却を行い、350℃未満で冷却を終了した後空冷し、さらにその後に900℃以下の温度で焼き戻しを行うことを特徴とする、Bを含有する炭化物、窒化物、炭窒化物のなかで円相当直径の寸法が50nm以上10000nm以下のものの個数密度が5.0×10 7 個/mm 2 未満であり、該個数密度をBの添加量で除した値が2.0×10 10 個/(mm 2 ・質量%)未満であり、ベイナイトとマルテンサイトの体積率の和が60%以上のベイナイト主体組織であり、さらにベイナイト中で隣接組織との結晶方位差が15度以上となる領域の平均寸法が20μm以下である母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(7)質量%で、さらに、
Nb:0.001〜0.1%、 Ti:0.001〜0.2%、
V :0.001〜0.2%
の1種または2種以上を含有することを特徴とする、前記(5)または(6)に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(8)質量%で、さらに、
Cu:0.005〜1%、 Ni:0.01〜2%、
Cr:0.01〜1%、 Mo:0.01〜1%
の1種または2種以上を含有することを特徴とする、前記(5)ないし(7)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(9)質量%で、さらに、
Ca:0.0005〜0.02%、Mg:0.0005〜0.02%、
REM:0.001〜0.1%
の1種または2種以上を含有することを特徴とする、前記(5)ないし(8)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa 級高強度鋼板の製造方法。
【0016】
(10)加熱後の鋼片または鋳片を、鋼塊表面の平均冷却速度が2℃/s以上で1050℃以下Ar3 点以上の温度まで冷却し、復熱後に圧延を開始することを特徴とする、前記(5)ないし(9)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(11)再結晶温度未満700℃以上で実施する圧延の圧下率を70%以上とすることを特徴とする、前記(5)ないし(10)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(12)全ての圧延パスにおける圧下率を平均した値が25%以上であることを特徴とする、前記(5)ないし(11)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(13)圧延最終パスの圧下率が25%以上であることを特徴とする、前記(5)ないし(12)に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
(14)圧延パス間の一部あるいは全てにおいて、鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、復熱後に次の圧延パスを実施することを特徴とする、前記(5)ないし(13)のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
【0017】
【発明の実施の形態】
本発明を詳細に説明する。
発明者らは、圧延プロセスにおける冷却の効果を最大限に活用するために、様々な冷却過程を取り入れた圧延実験を行い、組織微細化に対する影響を調べた。強度レベルは570MPa以上800MPa級までを対象とした。この結果、母材及び溶接熱影響部の靱性確保に関して、以下の手法が非常に有効であることを見いだした。
【0018】
最も重要な点は、Bの存在状態を規定することである。具体的には、Bを含有する炭化物、窒化物、炭窒化物の中で50nm以上10000nm以下のものの個数密度が5.0×107 個/mm2 未満であり、該個数密度をBの添加量で除した値が2.0×1010個/(mm2 ・質量%)未満と規定する。これは、50nm以上10000nmの範囲にある粗大析出物が上記範囲にある場合には、焼入性を高める固溶Bが変態温度域で多量に残存し、変態強化による強度増大が顕著に現れることを新たに知見したためである。
Bを含む炭化物、窒化物、炭窒化物の個数密度が5.0×107 個/mm2 以上の場合は、特に強度増大量が低下し、さらに母材靭性も低下するため、Bを含有する炭化物、窒化物、炭窒化物の個数密度を5.0×10 7 /mm2 未満と限定する。
【0019】
また、Bを含有する炭化物、窒化物、炭窒化物の絶対的個数はBの添加量増大とともに大きくなるため、その添加量に対して個数密度の上限値を規定する必要がある。Bを含有する炭化物、窒化物、炭窒化物のなかで50nm以上10000nm以下のものの個数密度をBの添加量で除した値が2.0×1010個/(mm2 ・質量%)以上の場合は、たとえ個数密度が5.0×107 個/mm2 未満であっても強度増大効果が小さくなるため、Bを含有する炭化物、窒化物、炭窒化物のなかで50nm以上10000nm以下のものの個数密度をBの添加量で除した値を2.0×1010個/(mm2 ・質量%)未満と規定した。
【0020】
なお、ここでBを含有する炭化物、窒化物、炭窒化物というのは、例えばBNなどである。また、前記の炭化物、窒化物、炭窒化物が他の酸化物、硫化物、炭化物、窒化物、炭窒化物、例えばAl2 3 、MnS、AlNなどと複合して析出した場合にもこれを含めるものとする。
【0021】
本発明ではBを含有する炭化物、窒化物、炭窒化物の寸法が50nm以上10000nm以下のものを規定しているが、これら炭化物、窒化物、炭窒化物の寸法を測定する方法は以下の通りである。
鋼材を下記の非特許文献1に示すような選択的腐食技術により腐食し、この後下記の非特許文献2に示すような抽出レプリカ法により電子顕微鏡試料を作製し、透過型電子顕微鏡で倍率1万倍の明視野像の観察を行い、個々の粒子の面積から算出した円相当直径をもってその寸法とする。
【0022】
【非特許文献1】
「防食技術」第37号、1988年12月、腐食防食協会発行、776〜778頁、
【0023】
【非特許文献2】
「電子顕微鏡Q&A」、1996年12月15日、アグネ承風社発行、174頁
【0024】
また、Bを含有する炭化物、窒化物、炭窒化物の個数密度は、同じく透過型電子顕微鏡で撮影した倍率1万倍の明視野写真をその総面積が1000μm2 以上となる枚数だけ撮影し、この領域内に存在するBを含有する炭化物、窒化物、炭窒化物のうちその寸法が50nm以上10000nm以下であるものの個数を測定し、これを撮影した領域の面積で除した値とする。さらに、個数密度を添加量で除した値を算出する際の添加量は、鋼材の成分分析により得られた全B量を質量%で表した値とする。
【0025】
また、本発明が対象とする570MPa以上の高強度と母材および溶接熱影響部の高靱性を両立させるためには、以下の点が重要である。母材の靱性を向上させるためには、一定の方位差を有する組織単位を微細化することが重要となる。特にベイナイト中で隣接組織との結晶方位差が15度以上となる領域を考えた場合、この領域の平均寸法が20μm以下である場合に、靱性が非常に高くなることを知見した。このことから、ベイナイト中で隣接組織との方位差が15度以上となる領域の平均寸法を20μm以下と規定する。
【0026】
一方、溶接熱影響部の靱性を高めるためには合金元素の添加量を極力低くすることが望ましい。一定の強度で合金元素の添加量を低減するためには、ベイナイトやマルテンサイトの体積率を一定量以上確保することが有効であり、特にベイナイトとマルテンサイトの体積率の和が60%以上である場合に合金元素の添加量低減効果が大となるため、本発明におけるベイナイトとマルテンサイトの体積率の和を60%以上と規定する。
なお、ベイナイト中で隣接組織との方位差が15度以上となる領域の平均寸法については、EBSPにより1.0×105 μm2 の領域について解析した結果得られる平均面積より円相当の平均直径を計算するものとする。
【0027】
以下に、合金成分の添加量を規定した理由を述べる。
Cは、強度確保に必須の元素であるため、その添加量を0.005%以上とする。しかし、一方でC量の増大は粗大析出物の生成による母材靱性や溶接性の低下を招くためその上限を0.2%とする。
【0028】
Nは、Bの窒化物形成を通じて焼入性を低下させるため、極力低減することが望ましく、その上限を0.01%とする。一方下限値は、コストを勘案して0.0001%とする。
【0029】
Bは、焼入性の増大に有効な元素であり、その添加量を0.0005%以上とする。しかし、一方でB量の増大は粗大析出物の生成により母材靭性の低下を招くためその上限を0.005%とする。
【0030】
Si、Mnは強度確保の観点から必要に応じて添加する。
Siは、強度確保及び脱酸に必要な元素であるため、その添加量を0.01%以上とする。しかし、一方でSi量の増大は溶接性を低下させるためその上限を1%とする。
【0031】
Mnは強化元素として有用であるが、過剰な添加は溶接性を低下させるため、その範囲を0.1%以上2%以下とする。
【0032】
Alは、脱酸材として添加される他、窒化物の形成により固溶B量を増大する効果のある元素であり、その添加量を0.001%以上とする。しかし、一方でAl量の増大は母材靭性の低下を招くためその上限を0.1%とする。
【0033】
Pは不純物元素であり低い方が望ましく、0.02%以下とする。特に、フェライトに固溶したPは母材の延性を低下させるため、望ましくは0.015%以下とする。
【0034】
Sは、不純物元素であり低い方が望ましく、0.02%以下とする。SはMnSの生成により母材靱性を低下させるため、望ましくは0.01%以下とする。
【0035】
Ti、Nb、Vは固溶N量の低減や析出強化のため必要に応じて添加する。
Tiは、窒化物の形成による固溶N量の低減を通じてBの焼入性を向上させることや、微細析出物による強度確保に有効な元素であるため、その添加量を0.001%以上とする。しかし、一方でTi量の増大は粗大析出物の生成による母材靭性や溶接性の低下を招くためその上限を0.2%とする。
【0036】
Nbは、窒化物の形成による固溶N量の低減を通じてBの焼入性を向上させることや、微細析出物による強度確保に有効な元素であるため、その添加量を0.001%以上とする。しかし、一方でNb量の増大は粗大析出物の生成による母材靭性や溶接性の低下を招くためその上限を0.1%とする。
【0037】
Vは、窒化物の形成による固溶N量の低減を通じてBの焼入性を向上させることや、微細析出物による強度確保に有効な元素であるため、その添加量を0.001%以上とする。しかし、一方でV量の増大は粗大析出物の生成による母材靭性の低下を招くためその上限を0.2%とする。
【0038】
Cu、Ni、Cr、Moは、強度確保の観点から必要に応じて添加する。
Cuは、強度確保のため必要に応じて添加する。0.005%未満の添加ではその効果は小さく、一方、1%を超える添加は溶接性を低下させるため、その範囲を0.01〜1%とする。
【0039】
Niは、強度確保のために必要に応じて添加する。0.01%未満の添加ではその効果は小さく、一方、2%を超える添加は溶接性を低下させるため、その範囲を0.01〜2%とする。
【0040】
Crは、強度確保のために必要に応じて添加する。0.01%未満の添加ではその効果は小さく、一方、1%を超える添加は母材靱性や溶接性を低下させるため、その範囲を0.01〜1%とする。
【0041】
Moは、強度確保のために必要に応じて添加する。0.01%未満の添加ではその効果が小さく、一方、1%を超える添加は母材靱性や溶接性を低下させるため、その範囲を0.01〜1%とする。
【0042】
また、Ca,Mg,REMの1種または2種以上の添加により、母材介在物制御、溶接熱影響部の加熱オーステナイトの微細化や粒内からの変態核生成を通じて母材靱性及び溶接熱影響部靱性を高めることができる。この効果を発揮するためには、Ca及びMgはそれぞれ0.0005%以上、REMは0.001%以上の添加が必要である。一方、過剰に添加すると硫化物や酸化物が粗大化して母材靱性や延性の低下をもたらすため、その上限値をCa,Mgで0.02%、REMで0.1%とする。
【0043】
次に、上記の鋼材を得るための製造方法について規定する。最も重要な点は、圧延前の加熱、圧延終了温度、圧延最終パス後の冷却の条件をそれぞれ規定することである。
本発明の鋼組成を有する鋼片または鋳片を加熱する条件は、凝固時に析出した析出物を十分に固溶するために1050℃以上に加熱の上、この温度域に20分以上保持する必要がある。また、1350℃を超える温度まで加熱したのちに20分以上保持することは、オーステナイトの粗大化による最終組織の粗大化を通じて母材靭性の低下をもたらすため、加熱温度の上限を1350℃とした。
なお、保持時間については、設定加熱温度に達した後設定温度±50℃以内にある時間を指す。また、加熱温度は鋼板表面で測定した値とし、その測定精度を高めるため3箇所以上の測定の平均値とすることが望ましい。
【0044】
実際の鋳造から圧延に至る過程では、鋳造後の鋼塊を常温まで冷却することなく直接圧延を開始する場合がある。この場合においても、鋳造後の鋼塊の温度が1050℃未満の場合には析出物を固溶させるため、1050℃以上1350℃未満に加熱の上20分以上保持する必要があるが、1050℃以上の場合にはその時点でも固溶量が大きいためそのまま圧延を開始することが可能である。
【0045】
圧延の仕上温度に関しては、これを900℃超とした場合には、オーステナイト中の加工下部組織が回復や再結晶により減少し、ベイナイトやマルテンサイトを微細化する効果が低下する。一方、圧延の仕上温度をAr3 点未満とした場合には、フェライトが加工され靭性が大幅に低下する。よって、圧延の仕上げ温度は900℃以下Ar3 点以上とする。
圧延の仕上げ温度とは、圧延の最終パスの直前温度、たとえば圧延機直前に取り付けられた温度計にて測定した鋼板表面の温度を指し、測定精度を高めるためには3点以上の平均値を採用することが望ましい。Ar3 点は、たとえば圧延を想定した熱加工履歴を与え、種々の温度から急冷を行った組織を観察することにより、変態が開始する温度として推定が可能である。
【0046】
圧延を仕上げた後に加速冷却を実施するための条件は本発明で最も重要な製造上の要件である。具体的には、圧延を仕上げた後20秒以内に鋼板表面の平均冷却速度が0.5℃/s以上の冷却を行う。これには2つの重要な理由がある。
一つは、圧延時に導入された加工下部組織の回復を極力抑制した状態で加速冷却を実施し、該下部組織をベイナイトの変態核やベイナイト成長に対する抵抗、さらには微細なフェライトの生成核として最大限有効活用し、ベイナイトやマルテンサイトの組織を大幅に微細化するためである。
【0047】
もう一つが、圧延時に導入された加工下部組織にBの窒化物、炭窒化物が析出する以前に加速冷却を開始することで充分な焼入性を確保することである。
圧延終了後20秒超で加速冷却を開始した場合には、既に進行した回復過程により組織微細化効果が低減し、さらにBの炭化物や炭窒化物の生成により焼入性が低下するため、これを20秒以内とした。なお、圧延終了後加速冷却を開始するまでの時間が10秒以内の場合には組織微細化の効果が一層顕著となるため、望ましくはこれを10秒以内とする。
【0048】
また、圧延後20秒以内に実施する冷却の速度は0.5℃/s以上とする。この冷却速度はベイナイトやマルテンサイト主体組織を得るために必須であり、0.5℃/s未満ではフェライト主体の組織となり強度が不足する。冷却速度は速いほどよいが、設備コストなどの観点から100℃/sを上限とすることが好ましい。なお、圧延を仕上げた後20秒以内とは、圧延の最終パス圧下を受けた鋼板の一部位が0.5℃/s以上の平均冷却速度で冷却が開始されるまでの時間を意味する。鋼板表面の平均冷却速度とは、例えば放射温度計により測定された鋼板表面温度の単位時間当たりの変化量を意味し、測定精度を高めるため3箇所以上を測定してその平均値を採用することが望ましい。
【0049】
以上の手法により、合金成分量を極力抑制した上で微細なベイナイト主体の組織を製造することができ、高い強度を確保するとともに母材の靱性を大幅に高め、さらに、同一の強度を達成するために必要な合金元素量が大幅に低減されるため、溶接熱影響部靱性も向上させることができる。
【0050】
なお、本発明ではTi、Nb、Vは必要に応じて添加することとしているが、圧延仕上げ後20秒以内に鋼板表面の冷却速度が0.5℃/s以上で冷却を行うことにより、オーステナイト中での粗大析出物の生成が抑制され、変態時あるいは変態後に微細析出するため、従来にくらべ格段に高く強度を増大させることができる。この効果は本発明の主要な構成要件ではないものの、副次的な溶接性向上要件として必要に応じて使用することが望ましい。
【0051】
圧延終了後20秒以内に鋼板表面の冷却速度が0.5℃/s以上で冷却を開始した後は、必要に応じて焼き戻しを行うことができる。冷却終了温度が350℃以上の場合や焼き戻し温度が900℃を超える場合には強度が低下することから、圧延終了後20秒以内に鋼板表面の冷却速度が0.5℃/s以上で冷却を開始した後は、冷却終了温度を350℃未満とし、焼き戻し温度は900℃以下とする。また、焼き戻しを行わない場合には、冷却終了温度を350℃未満とした場合には母材靱性が大幅に低下するため、冷却終了温度を350℃以上と規定する。
【0052】
本発明で規定した鋼材を得るための製造方法としては、上記の条件とあわせて下記の要件を満足することが望ましい。
粗圧延については、母材靱性と生産性を低下させない条件で所定の圧下を加えることが重要である。粗圧延の開始温度が950℃未満となる場合には、加熱後に圧延を開始するまでの時間が長くなり生産性が大きく低下するため、一方開始温度が1100℃超ではオーステナイトが粗大化して最終組織の粗大化を通じて母材靱性が低下するため、粗圧延の開始温度は1100℃以下950℃以上とする。
粗圧延の終了温度が900℃未満となる場合には、仕上圧延時の圧延温度が低くなり圧延能率が低下して生産性が低下するため、一方終了温度が1100℃を超えるとオーステナイトが粗大化して最終組織の粗大化を通じて母材靱性が低下するため、粗圧延の終了温度は1100℃以下900℃以上とする。
【0053】
また、粗圧延での圧下率が90%を超える場合には、圧延温度が上記の範囲にある場合でもBを含む粗大炭化物、粗大窒化物、粗大炭窒化物の析出量が増大するため、粗圧延での圧下率は90%以下とする。
また、粗圧延での圧下率が20%未満の場合にはオーステナイトが十分に微細化せず母材靭性が低下するため、粗圧延での圧下率は20%以上とする。
【0054】
なお、ここでの粗圧延とは、制御圧延による種々の効果を発現させるために行う高温側、低温側2段階の圧延のうち高温側での圧延を指し、低音側での圧延は仕上げ圧延と呼ばれる。低温側での圧延の開始にあたっては、所定の開始温度までの時間待ちが生じるのが一般的であり、低温側圧延の開始温度という管理指標の存在により粗圧延、仕上げ圧延を区別するものとする。しかし、全圧延過程の途中で圧延開始温度の管理指標が存在しない場合には、粗圧延を900℃以上における圧延とする。また、粗圧延の開始温度や終了温度は圧延機の直前直後に取り付けられた温度計により測定された鋼板表面の温度とし、測定精度を高めるため3点以上の平均値を採用することが望ましい。また圧下率とは、圧延前の板厚から圧延後の板厚を引いた値を圧延前の板厚で除した値の百分率表示である。
【0055】
仕上圧延は組織の微細化効果を充分に得るために1000℃以下で開始し、フェライトの加工により母材靱性が低下するのを抑制するためこれをAr3 点以上とする。また仕上圧延の圧下率は、充分な組織微細化効果を得るために40%以上とすることが望ましい。なお、上記で規定した圧下率とは、圧延前の鋼板の厚さから圧延後の厚さを引き、圧延前の鋼板厚さで除した値の百分率表示である。
【0056】
本発明では、以下に述べる製造方法を必要に応じて組み合わせることで、鋼板の特性を一層向上することが可能である。
第一に、圧延開始前の冷却の制御が有効である。具体的には、加熱後の鋼片、鋳片を、圧延開始前に鋼板表面の平均冷却速度が2℃/s以上でAr3 点以上1050℃以下の温度まで冷却し、復熱後に圧延を開始する。圧延開始前にこの冷却を実施するのは、一端圧延を開始した後は圧延最終パスまでの間の温度待ち時間を低減できるよう予め温度を低下させるためである。これにより、未再結晶温度域での加工組織の導入が回復や再結晶の影響を極力受けずに可能となり、組織の微細化に対して有効である。
【0057】
この方法は従来圧下量の増大が困難であった厚手材で特に有効であり、圧延開始温度の低温化によりこれまで以上に未再結晶温度域の圧下率を確保することが可能であり、さらに圧延に先立つ水冷と復熱過程により鋼板内部と表面に温度差が生じ、相対的に変形抵抗の小さい板厚中心部での再結晶オーステナイトの微細化や加工下部組織の導入が促進され、母材全体に加え板厚中心部の靱性が大きく向上する。この効果は2℃/s未満では小さいため、これを2℃/s以上とした。冷却速度は速いほどよいが、設備コストなどの観点から100℃/sを上限とすることが好ましい。
【0058】
なお、圧延前の冷却温度をAr3 点以上1050℃以下としたのは、1050℃超では未再結晶域での圧下量が減少して十分な組織微細化効果が得られないためであり、Ar3 以上としたのは、Ar3 未満の温度まで冷却すると鋼板表層部近傍ではオーステナイトとフェライトの二相域圧延となり、圧延による加工フェライトが鋼中に残存することで靱性低下を招くためである。
なお、ここにいう復熱とは、冷却された表面と未冷却の内部との温度勾配が時間と共に緩和される結果、表面温度が上昇する現象であり、本発明においては、鋼板中心部の温度と表面温度の差が50℃未満になった時点、あるいは冷却後20秒以上経過した時点を指す。
【0059】
第二に、再結晶温度未満700℃以上の圧下率を70%以上とすることが有効である。これは、未再結晶域での圧延により粒内への加工組織導入が進み、特に低温変態の場合には格段の組織微細化効果が得られ、母材靭性と溶接性の一層の向上が可能となる。上限は圧延負荷の観点から150%とすることが望ましい。
なお、ここでの圧下率は再結晶温度未満で圧延を行う直前の板厚と最終板厚の差を再結晶温度未満で圧延を行う直前の板厚で除した値の百分率表示である。
【0060】
第三に、圧延1パス当たりの平均圧下率を25%以上とすることが有効である。平均圧下率を25%以上とすることで、圧延により導入された加工下部組織の局所的集中を強め、組織微細化効果が一層顕著となり、母材靭性が向上する。しかも、強度を一定とした場合には合金元素の添加量を削減可能であるため、溶接熱影響部の靭性も向上する。平均圧下率が25%未満では有意な効果が得られないため、これを25%以上とした。上限は圧延負荷の観点から50%とすることが好ましい。なお、平均圧下率とは各圧延パスの圧下率、すなわち圧延パス前の板厚と圧延パス後の板厚の差を圧延パス前の板厚で除した値の百分率表示の平均値である。
【0061】
第四に、圧延最終パスの圧下率を25%以上とすることが有効である。圧延最終パスの圧下率を高めることで、特に低温変態の場合に大きな析出強化量増大効果と組織微細化効果が得られる。この値が25%未満では効果が小さいため、圧延最終パスの圧下率を25%以上とした。なお、上限は圧延負荷の観点から95%とすることが好ましい。
【0062】
第五に、圧延パス間の一部あるいは全てにおいて、鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、復熱後に次の圧延パスを実施することが有効である。圧延パスの間に前記の冷却を実施するのは、圧延パス間での加工下部組織の回復を抑制し、かつ温度を低下させることで制御圧延効果を増大させることができる。さらに、鋼板表層部と中心部に温度差をつけることで内部の変形抵抗を相対的に小さくして、板厚中心部への加工下部組織の導入を促進し、これにより組織を微細化して板厚中心部の靱性を高める効果もある。パス間冷却を行うことにより圧延開始から終了までの時間が短縮され、生産性の向上にも大きく寄与する。パス間の冷却による上記効果は、圧延パス間の鋼板表面における平均冷却速度が2℃/s未満では効果が小さいため、2℃/s以上とする必要がある。冷却速度は速いほどよいが設備コストなどの観点から100℃/sを上限とすることが好ましい。圧延パス間の冷却については必ずしも全圧延パス間について実施する必要はなく、要求される靱性に応じてそれを選択することができる。
【0063】
圧延パス間の冷却開始温度及び停止温度は、この圧延パス間冷却がオーステナイトの再結晶温度域及び未再結晶温度域の両方で効果を有することから、上限を圧延開始温度とすることが好ましい。一方、Ar3 点以下に冷却された場合には、引き続く圧延によりフェライトが加工され靱性が低下するため、圧延パス間冷却の停止温度の下限を鋼板表面温度でAr3 点以上とすることが好ましい。
なお、ここにいう復熱とは、冷却された表面と未冷却の内部との温度勾配が時間と共に緩和される結果、表面温度が上昇する現象であり、本発明においては、鋼板中心部の温度と表面温度の差が100℃未満になった時点、あるいは冷却後5秒以上経過した時点を指す。
【0064】
【実施例】
種々の化学成分の供試鋼材を用いて、種々の製造条件で製造した板厚20〜80mmの鋼板について、母材の引張強さ、靱性および溶接熱影響部靱性を評価した。鋼板の化学成分とCeq.、Pcm、Bを含有する炭化物、炭窒化物、窒化物のなかで50nm以上10000nm以下のものの個数密度、個数密度をBの添加量で除した値、ベイナイトとマルテンサイトの体積率、結晶方位差が15度以上となる領域の平均寸法を表1(表1−1、表1−2)に、製造条件を表2 (表2−1、表2−2)に、母材の引張強さ、靱性および溶接熱影響部靱性を表3に示す。
【0065】
引張強さは、鋼板の1/4t部(板厚中心と表面との中間)から圧延方向に垂直に採取したJIS4号サブサイズ引張試験片を用いて常温試験により測定した。母材靱性は、鋼板の1/4t部から圧延方向と試験片の長手方向が垂直になるように、さらにノッチが板厚貫通方向となるように採取したJIS4号シャルピー試験片を用い、−20℃で試験を実施し、衝撃吸収エネルギーを測定した。
なお、引張強さについては同一条件で実施した2本の試験結果の平均値を採用し、母材靱性については同一温度で3本の試験を実施し、その平均値を採用した。溶接熱影響部靱性は、鋼板に入熱10kJ/mmのサブマージアーク溶接を実施し、ノッチ底部位が1/4t、ボンドに対応するように採取したシャルピー試験片により−20℃での衝撃吸収エネルギーとして測定した。試験は同一温度で3本実施し、その平均値を採用した。
【0066】
発明例1は、0.31という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が大きいため、強度は600MPaを超え、さらに低Ceq.かつ組織が微細化しているため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例1は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成して変態強化量が小さく低強度であり、発明例1に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。また比較例2は、仕上圧延後に加速冷却を開始するまでの時間は20秒以内であるものの、C量が本発明の成分範囲を外れているため、母材靱性、溶接熱影響部靱性が大幅に低下しており、発明例1に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0067】
発明例2は、0.40という非常に低いCeq.で引張強さ700MPa程度を達成するため、Bを添加し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が大きいため、強度は700MPaを超え、さらに低Ceq.かつ組織が微細化しているため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例3は仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成して変態強化量が小さく低強度であり、発明例2に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。また比較例4は、仕上圧延後に加速冷却を開始するまでの時間は20秒以内であるものの、N量が本発明の成分範囲を外れているため、母材靱性、溶接熱影響部靱性が大幅に劣化しており、発明例2に比べて母材強度と母材靱性および溶接熱影響部靱性のバランスが大きく劣っている。
【0068】
発明例3は、0.44という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が大きいため、強度は800MPaを超え、さらに低Ceq.かつ組織が微細化しているため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例5は仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成して変態強化量が小さく低強度であり、発明例3に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。また比較例6は、仕上圧延後に加速冷却を開始するまでの時間は20秒以内であるものの、B量が成分範囲を外れているため、母材靱性、溶接熱影響部靱性が大幅に低下しており、発明例3に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0069】
発明例4は、0.31という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が大きいため、強度は600MPaを超え、さらに低Ceq.、組織微細化、Ca、Mg添加のため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例7は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成して変態強化量が小さく低強度であり、発明例4に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0070】
発明例5は、0.44という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が大きいため、強度は800MPaを超え、さらに低Ceq.、組織微細化、REM添加のため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。一方、比較例8は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成して変態強化量が小さく低強度であり、発明例5に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0071】
発明例6は、0.28という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、さらに仕上圧延後10秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、さらに低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例9は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成して変態強化量が小さく低強度であり、さらに加熱温度が本発明の範囲よりも高いために母材靱性が大幅に低下しており、発明例6に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0072】
発明例7は、0.44という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、さらに仕上圧延後10秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、さらに低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例10は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらに圧延の仕上温度が本発明の範囲よりも高いため、母材靱性が大幅に低下しており、発明例7に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0073】
発明例8は、0.30という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、さらに圧延前に2℃/s以上の冷却を実施し、仕上圧延後20秒以内に加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、さらに低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例11は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているために粗大析出物が多量に生成し、強度が低く、発明例8に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0074】
発明例9は、0.40という非常に低いCeq.で引張強さ700MPa程度を達成するため、Bを添加し、さらに仕上圧延中に2℃/s以上のパス間冷却を実施し、仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は700MPaを超え、さらに低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、低Pcmであることから溶接性にも優れている。
一方、比較例12は、仕上圧延中に2℃/s以上のパス間冷却を実施しているものの、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているために粗大析出物が多量に生成し、強度が低く、しかもB添加量が本発明の範囲を超えているために粗大析出物が多量に生成し、母材および溶接熱影響部の靱性が低下し、発明例9に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0075】
発明例10は、0.45という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、さらに粗圧延、仕上圧延中に2℃/s以上のパス間冷却を実施し、未再結晶温度域での圧下率を70%以上とし、仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例13は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、発明例10に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0076】
発明例11は、0.31という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、さらに圧延最終パスの圧下率を25%以上とし、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例14は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらに仕上圧延の終了温度がAr3 点よりも低くなっているために母材靱性が大幅に低下し、発明例11に比べて母材強度と母材靱性および溶接熱影響部接性のバランスが大きく劣っている。
【0077】
発明例12は、0.39という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、さらに圧延の平均圧下率を25%以上とし、さらに仕上圧延後10秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例15は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、発明例12に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0078】
発明例13は、0.28という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、圧延前に2℃/s以上の冷却を実施し、未再結晶温度域での圧下率を70%以上とし、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例16は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらにC量が本発明の範囲を超えているために母材と溶接熱影響部の靱性が大幅に低下し、発明例13に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0079】
発明例14は、0.28という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、圧延前に2℃/s以上の冷却を実施し、未再結晶温度域での圧下率を70%以上とし、圧延最終パスの圧下率を25%以上とし、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例17は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらにN量が本発明の範囲を超えているために母材と溶接熱影響部の靱性が大幅に低下し、発明例14に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0080】
発明例15は、0.29という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、圧延平均および最終パスの圧下率を25%以上とし、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例18は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらにB量が本発明の範囲を超えているために母材と溶接熱影響部の靱性が大幅に低下し、発明例15に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0081】
発明例16は、0.29という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、圧延平均の圧下率を25%以上とし、圧延中に2℃/s以上のパス間冷却を実施し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例19は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらに加熱温度が本発明の範囲を超えているために母材靱性が大幅に低下し、発明例16に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0082】
発明例17は、0.27という非常に低いCeq.で引張強さ600MPa程度を達成するため、Bを添加し、未再結晶温度域での圧下率を70%以上とし、圧延平均および最終の圧下率を25%以上とし、圧延中に2℃/s以上のパス間冷却を実施し、さらに仕上圧延後10秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は600MPaを超え、かつ低Ceq.、組織微細化、Mg添加のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例20は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらに仕上圧延の終了温度が本発明の範囲より低くなっているために母材靱性が大幅に低下し、発明例17に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0083】
発明例18は、0.40という非常に低いCeq.で引張強さ700MPa程度を達成するため、Bを添加し、未再結晶温度域での圧下率を70%以上とし、圧延最終の圧下率を25%以上とし、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は700MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例21は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらにMn量が本発明の範囲を超えているために母材靱性が大幅に低下し、発明例18に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0084】
発明例19は、0.40という非常に低いCeq.で引張強さ700MPa程度を達成するため、Bを添加し、圧延前に冷却速度2℃/s以上の冷却を実施し、未再結晶温度域での圧下率を70%以上とし、圧延平均および最終の圧下率を25%以上とし、圧延中に2℃/s以上の加速冷却を実施し、さらに仕上圧延後10秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は700MPaを超え、かつ低Ceq.、組織微細化、Ca添加のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例22は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、強度が低く、さらに加熱温度が本発明の範囲を超えているために母材靱性が大幅に低下し、発明例19に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0085】
発明例20は、0.40という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、圧延前に冷却速度2℃/s以上の冷却を実施し、未再結晶温度域での圧下率を70%以上とし、圧延中に2℃/s以上の加速冷却を実施し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例23は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらにC量が本発明の範囲を超えているために母材靱性、溶接熱影響部靱性が大幅に低下し、発明例20に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0086】
発明例21は、0.40という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、圧延前に冷却速度2℃/s以上の冷却を実施し、未再結晶温度域での圧下率を70%以上とし、圧延平均の圧下率を25%以上とし、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例24は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらにN量が本発明の範囲を超えているために母材靱性、溶接熱影響部靱性が大幅に低下し、発明例21に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0087】
発明例22は、0.40という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、圧延最終パスの圧下率を25%以上とし、圧延中に冷却速度2℃/s以上の加速冷却を実施し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例25は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらにB量が本発明の範囲を超えているために母材靱性、溶接熱影響部靱性が大幅に低下し、発明例22に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0088】
発明例23は、0.40という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、圧延前に冷却速度2℃/s以上の加速冷却を実施し、未再結晶温度域の圧下率を70%以上とし、圧延平均および最終パスの圧下率を25%以上とし、圧延中に冷却速度2℃/s以上の加速冷却を実施し、さらに仕上圧延後20秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化、Ca、REM添加のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例26は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらに加熱温度が本発明の範囲を超えているために母材靱性が大幅に低下し、発明例23に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0089】
発明例24は、0.37という非常に低いCeq.で引張強さ800MPa程度を達成するため、Bを添加し、圧延前に冷却速度2℃/s以上の加速冷却を実施し、未再結晶温度域の圧下率を70%以上とし、圧延平均および最終パスの圧下率を25%以上とし、圧延中に冷却速度2℃/s以上の加速冷却を実施し、さらに仕上圧延後10秒以内の加速冷却を実施したものである。粗大析出物の生成量が少なく、変態強化量が極めて大きいため、強度は800MPaを超え、かつ低Ceq.、組織微細化、Mg添加のため母材靱性、溶接熱影響部靱性が非常に優れ、さらに低Pcmであることから溶接性にも優れている。
一方、比較例27は、仕上圧延後に加速冷却を開始するまでの時間が20秒を超えているため、粗大析出物が多量に生成し、さらに圧延仕上温度が本発明の範囲を下回っているために母材靱性が大幅に低下し、発明例24に比べて母材強度と母材および溶接熱影響部の靱性のバランスが大きく劣っている。
【0090】
以上の実施例から、本発明により製造された鋼材である発明例1〜24の鋼板は、同一の強度で比較した場合の母材靱性や溶接熱影響部靱性に極めて優れた鋼材であることは明白である。
【0091】
【表1】

Figure 0003899014
【0092】
【表2】
Figure 0003899014
【0093】
【表3】
Figure 0003899014
【0094】
【表4】
Figure 0003899014
【0095】
【表5】
Figure 0003899014
【0096】
【発明の効果】
本発明によれば、幅広い強度範囲で母材及び溶接熱影響部の靱性に優れた引張強さ570ないし800MPA級高強度鋼板およびその製造方法を提供することが可能であり、産業上の価値の高い発明であるといえる。[0001]
BACKGROUND OF THE INVENTION
  The present invention is excellent in the toughness of the base material and the weld heat affected zone.Tensile strength 570 to 800 MPa class high strengthThe present invention relates to a method for manufacturing a steel sheet. Steel materials produced by this method can be used for general welded structures such as shipbuilding, bridges, buildings, marine structures, pressure vessels, line pipes, etc., but the toughness of the base material or weld heat affected zone of each structure is ensured. This is particularly effective when used in a portion where a steel plate having a thickness of 40 mm or more is applied.
[0002]
[Prior art]
With the recent increase in size of structures, the required level of strength and plate thickness is increasing, and there is a need for steel materials that are high in strength and thick, and have excellent base material toughness, weld heat affected zone toughness, and excellent weldability. It has been. When considering base material toughness and weld heat-affected zone toughness, it is necessary to ensure the strength while keeping the addition amount of alloying elements as small as possible, and methods for achieving this include, for example, the following Patent Documents 1 to 4 and the like. These are intended to refine toughness and improve the toughness mainly by the definition of manufacturing conditions.
[0003]
[Patent Document 1]
JP 59-200723 A
[0004]
[Patent Document 2]
JP-A-2-205627
[0005]
[Patent Document 3]
JP-A-6-93332
[0006]
[Patent Document 4]
JP-A-10-158778
[0007]
Patent Document 1 describes that a fine ferrite structure is obtained by controlling the time between rolling passes and the cooling start time after the end of rolling, with the reduction amount in the non-recrystallized region being 50% or more. . Although controlling the processing introduced in the non-recrystallized region and the subsequent recovery process is very effective for refining the structure, the structure of the steel sheet manufactured by this method is mainly composed of ferrite. It is difficult to produce a steel plate having a high tensile strength, for example, a steel plate having a tensile strength exceeding 600 MPa.
[0008]
On the other hand, Patent Documents 2, 4 and 3 each disclose a method for improving the toughness of a structure containing bainite.
The invention described in Patent Document 2 defines the use of the effect of improving hardenability by adding B (boron). However, the rolling reduction is set to 30% or less in order to suppress the hardenability deterioration, and the degree of improvement in toughness due to the refinement of the structure is small.
[0009]
In the invention described in Patent Document 4, the reduction amount in the non-recrystallized region is set to 50% or more, and a fine mixed structure of bainite and ferrite is generated by controlling the cooling rate, thereby improving toughness. However, significant refinement of the final structure through the promotion of bainite nucleation from the processed substructure introduced in the non-recrystallization temperature range, the suppression of bainite growth by the processed substructure, and the bainite fragmentation by ferrite formation has not been repeated. It is not sufficient to use only the amount of reduction in the crystallization temperature range and the cooling rate after rolling as the main control guideline, and the maximum structure refinement effect cannot be obtained.
[0010]
Further, in the invention described in Patent Document 3 from the same viewpoint, not only the reduction amount and the cooling rate in the non-recrystallization temperature range but also the time until the start of cooling after rolling is defined as “immediately”. In addition, the processing substructure at the time of the final rolling pass is accelerated and cooled in a state in which recovery is suppressed, which is considered advantageous for refining the structure. However, it is not clear how quickly "immediate" quantitative index to obtain the microstructure refinement effect, that is, how many seconds after the end of rolling should start accelerated cooling, and the reliability of the effect must be questioned. . Furthermore, since the rolling reduction in the non-recrystallization temperature region is 50% or more, this method cannot be used for thick materials that make it difficult to secure the rolling reduction.
[0011]
As mentioned above, when considering refinement of a structure containing bainite, the processed substructure that contributes to refinement of the structure through bainite nucleation site increase, bainite lath growth inhibition, bainite fragmentation by ferrite formation, etc. The amount of introduction and non-uniformity, and the recovery and recrystallization control that progress sequentially are very important, and the guidelines as described above are insufficient to obtain the maximum effect. Moreover, the large rolling reduction in the non-recrystallized region, which is the basis of these technologies, is a major obstacle to manufacturing a steel plate having a large thickness, and greatly impedes productivity.
[0012]
[Problems to be solved by the invention]
  The present invention has solved the above problems and has excellent toughness of the base material and the weld heat affected zone.Tensile strength 570 to 800 MPa class high strengthIt is an object to provide a steel plate and a manufacturing method thereof.
[0013]
[Means for Solving the Problems]
As a result of studying the refinement of the structure under various production conditions, the inventors have newly found that control of precipitates in steel and cooling control in a wide range before, during and after rolling are important. As a result, the present invention has been completed by limiting the effective range, and the gist of the present invention is as follows.
[0014]
(1) Steel is mass%,
    C: 0.005 to 0.2%, Si: 0.01 to 1%,
    Mn: 0.1 to 2%, P: 0.02% or less,
    S: 0.02% or less, N: 0.0001-0.01%,
    B: 0.0005 to 0.005%, Al: 0.001 to 0.1%
And the balance is Fe and inevitable impurities, and the number density of B-containing carbides, nitrides and carbonitrides having a circle equivalent diameter of 50 nm to 10,000 nm is 5.0. × 107Piece / mm2The value obtained by dividing the number density by the amount of addition of B is 2.0 × 10TenPieces / (mm2・ Mass%) and the sum of volume fractions of bainite and martensite is 60% or more.Bainite main organizationFurthermore, the toughness of the base material and the weld heat-affected zone is excellent, characterized in that the average dimension of the region where the crystal orientation difference with the adjacent structure is 15 degrees or more in bainite is 20 μm or less.Tensile strength 570 to 800 MPa class high strengthsteel sheet.
(2) In mass%,
    Nb: 0.001 to 0.1%, Ti: 0.001 to 0.2%,
    V: 0.001 to 0.2%
It is excellent in the toughness of the base material and the weld heat affected zone as described in (1) above, characterized by containing one or more ofTensile strength 570 to 800 MPa class high strengthsteel sheet.
(3) In mass%,
    Cu: 0.005 to 1%, Ni: 0.01 to 2%,
    Cr: 0.01-1%, Mo: 0.01-1%
It is excellent in the toughness of the base material and the weld heat affected zone according to (1) or (2), characterized by containing one or more ofTensile strength 570 to 800 MPa class high strengthsteel sheet.
(4) In mass%,
    Ca: 0.0005 to 0.02%, Mg: 0.0005 to 0.02%,
    REM: 0.001 to 0.1%
The tensile strength of 570 to 800 MPa excellent in toughness of the base material and the weld heat-affected zone according to any one of (1) to (3), characterized by containing one or more of Grade high strength steel sheet.
[0015]
(5) In mass%,
    C: 0.005 to 0.2%, Si: 0.01 to 1%,
    Mn: 0.1 to 2%, P: 0.02% or less,
    S: 0.02% or less, N: 0.0001-0.01%,
    B: 0.0005 to 0.005%, Al: 0.001 to 0.1%
A steel slab or slab having a steel composition consisting of Fe and inevitable impurities in the balance is heated to a temperature range of 1050 ° C. or higher and 1350 ° C. or lower, and after being held in the temperature range for 20 minutes or longer, rolling is performed. Start and finish rolling at Ar3 point or more and 950 ° C or less, then cool the steel sheet with an average cooling rate of 0.5 ° C / s or more within 20 seconds, and finish cooling at 350 ° C or more and then air-cool. It is characterized byAmong the carbides, nitrides, and carbonitrides containing B, the number density of a circle equivalent diameter of 50 nm to 10,000 nm is 5.0 × 10 7 Piece / mm 2 The value obtained by dividing the number density by the amount of addition of B is 2.0 × 10 Ten Pieces / (mm 2 The average dimension of the region where the sum of the volume fractions of bainite and martensite is 60% or more, and the crystal orientation difference with the adjacent structure is 15 degrees or more in bainite. 20 μm or lessExcellent toughness of base metal and weld heat affected zoneTensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
(6) In mass%,
    C: 0.005 to 0.2%, Si: 0.01 to 1%,
    Mn: 0.1 to 2%, P: 0.02% or less,
    S: 0.02% or less, N: 0.0001-0.01%,
    B: 0.0005 to 0.005%, Al: 0.001 to 0.1%
A steel slab or slab having a steel composition consisting of Fe and inevitable impurities in the balance is heated to a temperature range of 1050 ° C. or higher and 1350 ° C. or lower, and after being held in the temperature range for 20 minutes or longer, rolling is performed. After starting and rolling at an Ar3 point or more and 950 ° C or less, the steel sheet is cooled at an average cooling rate of 0.5 ° C / s or more within 20 seconds, and after cooling at less than 350 ° C, air cooling is performed. And then tempering at a temperature of 900 ° C. or lower.Among the carbides, nitrides, and carbonitrides containing B, the number density of a circle equivalent diameter of 50 nm to 10,000 nm is 5.0 × 10 7 Piece / mm 2 The value obtained by dividing the number density by the amount of addition of B is 2.0 × 10 Ten Pieces / (mm 2 The average dimension of the region where the sum of the volume fractions of bainite and martensite is 60% or more, and the crystal orientation difference with the adjacent structure is 15 degrees or more in bainite. 20 μm or lessExcellent toughness of base metal and weld heat affected zoneTensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
(7) In mass%,
    Nb: 0.001 to 0.1%, Ti: 0.001 to 0.2%,
    V: 0.001 to 0.2%
It is excellent in the toughness of the base material and the weld heat affected zone according to (5) or (6), characterized by containing one or more ofTensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
(8) In mass%,
    Cu: 0.005 to 1%, Ni: 0.01 to 2%,
    Cr: 0.01-1%, Mo: 0.01-1%
The base material according to any one of the above (5) to (7) and excellent toughness of the weld heat affected zone, characterized by containing one or more ofTensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
(9) In mass%,
    Ca: 0.0005 to 0.02%, Mg: 0.0005 to 0.02%,
    REM: 0.001 to 0.1%
The base material according to any one of the above (5) to (8) and excellent toughness of the weld heat affected zone, characterized by containing one or more ofTensile strength 570 to 800 MPa Class high strengthA method of manufacturing a steel sheet.
[0016]
(10) The steel slab or slab after heating is cooled to a temperature of 1050 ° C. or less Ar 3 point or more at an average cooling rate of the steel ingot surface of 2 ° C./s or more, and rolling is started after reheating. The manufacturing method of the tensile strength 570 thru | or 800 MPa class high strength steel plate excellent in the toughness of the base material and welding heat affected zone of any one of said (5) thru | or (9).
(11) The base material and welding heat described in any one of (5) to (10) above, wherein the rolling reduction rate of the rolling performed at a temperature lower than the recrystallization temperature of 700 ° C. or higher is 70% or higher. A method for producing a high-strength steel sheet having a tensile strength of 570 to 800 MPa that is excellent in toughness of the affected part.
(12) The average value of the rolling reduction ratios in all rolling passes is 25% or more, wherein the base material and the weld heat affected zone according to any one of (5) to (11) above Excellent toughnessTensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
(13) The rolling reduction of the final pass of the rolling is 25% or more, and is excellent in the toughness of the base material and the weld heat affected zone according to (5) to (12) aboveTensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
(14) In the part or all of the rolling passes, cooling is performed such that the average cooling rate of the steel sheet surface is 2 ° C./s or more, and the next rolling pass is performed after reheating, (5) Thru | or the toughness of the base material and welding heat affected zone of any one of (13)Tensile strength 570 to 800 MPa class high strengthA method of manufacturing a steel sheet.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention will be described in detail.
  The inventors conducted rolling experiments incorporating various cooling processes in order to make maximum use of the cooling effect in the rolling process, and investigated the influence on the refinement of the structure. Strength level is 570 MPaClassmore thanUp to 800MPa classTargeted. As a result, it has been found that the following method is very effective for securing the toughness of the base material and the weld heat affected zone.
[0018]
  The most important point is to define the existence state of B. Specifically, the number density of carbides, nitrides, and carbonitrides containing B that are 50 nm or more and 10,000 nm or less is 5.0 × 10 5.7Piece / mm2The value obtained by dividing the number density by the amount of addition of B is 2.0 × 10TenPieces / (mm2(Mass%) This is because, when coarse precipitates in the range of 50 nm to 10000 nm are in the above range, a large amount of solid solution B that enhances hardenability remains in the transformation temperature range, and the increase in strength due to transformation strengthening appears remarkably. This is because of the new knowledge.
  The number density of carbides, nitrides, and carbonitrides containing B is 5.0 × 107Piece / mm2 More thanIn this case, particularly, the amount of increase in strength is decreased, and the base material toughness is also decreased. Therefore, the number density of carbide, nitride, and carbonitride containing B is set to 5.0 ×.10 7 Pieces/ Mm2Limited to less than.
[0019]
  In addition, since the absolute number of carbides, nitrides, and carbonitrides containing B increases as the addition amount of B increases, it is necessary to define an upper limit value of the number density for the addition amount. The value obtained by dividing the number density of carbides, nitrides, and carbonitrides containing B by 50 nm to 10,000 nm by the amount of addition of B is 2.0 × 10TenPieces / (mm2·mass%)More thanIf the number density is 5.0 × 107Piece / mm2Since the effect of increasing the strength is reduced even if it is less than 1, the value obtained by dividing the number density of B-containing carbides, nitrides, carbonitrides from 50 nm to 10000 nm by the addition amount of B is 2.0 ×. 10TenPieces / (mm2(Mass%)
[0020]
In addition, the carbide | carbonized_material, nitride, and carbonitride containing B here are BN etc., for example. In addition, the above-mentioned carbide, nitride, carbonitride may be other oxides, sulfides, carbides, nitrides, carbonitrides such as Al.2OThree, MnS, AlN and the like are also included in the case of precipitation.
[0021]
In the present invention, B-containing carbides, nitrides, and carbonitrides have dimensions of 50 nm to 10000 nm, and methods for measuring the dimensions of these carbides, nitrides, and carbonitrides are as follows. It is.
The steel material is corroded by a selective corrosion technique as shown in Non-Patent Document 1 below, and then an electron microscope sample is prepared by an extraction replica method as shown in Non-Patent Document 2 below, and the magnification is 1 with a transmission electron microscope. Observe a 10,000 times bright field image, and use the equivalent circle diameter calculated from the area of each particle as the dimension.
[0022]
[Non-Patent Document 1]
"Anti-corrosion technology" No. 37, December 1988, issued by the Corrosion and Anti-corrosion Association, pages 776-778,
[0023]
[Non-Patent Document 2]
“Electron Microscope Q & A”, December 15, 1996, published by Agne Jofusha, p. 174
[0024]
The number density of carbides, nitrides, and carbonitrides containing B is the same as that of a bright-field photograph taken with a transmission electron microscope at a magnification of 10,000 times with a total area of 1000 μm.2Photographed as many as the above, and measured the number of carbides, nitrides, and carbonitrides containing B existing in this region whose dimensions were 50 nm or more and 10,000 nm or less, and the area of the region in which this was photographed The value divided by. Furthermore, the addition amount at the time of calculating the value obtained by dividing the number density by the addition amount is a value representing the total B amount obtained by the component analysis of the steel material in mass%.
[0025]
  Moreover, the following points are important in order to achieve both the high strength of 570 MPa or more and the high toughness of the base material and the weld heat affected zone, which are the objects of the present invention. In order to improve the toughness of the base material, it is important to refine the structure unit having a certain orientation difference. In particularIn bainiteConsidering a region where the crystal orientation difference with the adjacent structure is 15 degrees or more, it was found that the toughness becomes very high when the average dimension of this region is 20 μm or less. From this,In bainiteThe average dimension of the region where the orientation difference with the adjacent tissue is 15 degrees or more is defined as 20 μm or less.
[0026]
  On the other hand, in order to increase the toughness of the weld heat affected zone, it is desirable to reduce the addition amount of the alloy element as much as possible. In order to reduce the addition amount of the alloy element with a constant strength, it is effective to secure a volume ratio of bainite and martensite of a certain amount or more, especially when the sum of the volume ratio of bainite and martensite is 60% or more. In some cases, the effect of reducing the addition amount of the alloying element becomes large, so the sum of the volume fractions of bainite and martensite in the present invention is defined as 60% or more.
  In addition,In bainiteAbout the average dimension of the area | region where an azimuth | direction difference with an adjacent structure | tissue is 15 degree | times or more, it is 1.0x10 by EBSP.Fiveμm2The average diameter corresponding to the circle is calculated from the average area obtained as a result of analyzing the region.
[0027]
The reason why the addition amount of the alloy component is specified will be described below.
Since C is an element essential for ensuring the strength, its addition amount is set to 0.005% or more. However, on the other hand, an increase in the amount of C causes a decrease in base metal toughness and weldability due to the formation of coarse precipitates, so the upper limit is made 0.2%.
[0028]
N decreases the hardenability through the formation of nitride of B, so it is desirable to reduce it as much as possible, and the upper limit is made 0.01%. On the other hand, the lower limit is set to 0.0001% in consideration of cost.
[0029]
B is an element effective for increasing hardenability, and its addition amount is set to 0.0005% or more. However, on the other hand, an increase in the amount of B causes a decrease in the base material toughness due to the formation of coarse precipitates, so the upper limit is made 0.005%.
[0030]
  Si, Mn is added as necessary from the viewpoint of securing strength.
  Since Si is an element necessary for securing strength and deoxidation, its addition amount is set to 0.01% or more. However, on the other hand, an increase in the amount of Si decreases weldability, so the upper limit is made 1%.
[0031]
Mn is useful as a strengthening element, but excessive addition reduces weldability, so the range is made 0.1% to 2%.
[0032]
In addition to being added as a deoxidizing material, Al is an element that has an effect of increasing the amount of dissolved B due to the formation of nitrides, and the amount added is 0.001% or more. However, on the other hand, an increase in the amount of Al causes a decrease in the base material toughness, so the upper limit is made 0.1%.
[0033]
P is an impurity element and is preferably as low as 0.02% or less. In particular, P dissolved in ferrite reduces the ductility of the base material, so it is preferably made 0.015% or less.
[0034]
S is an impurity element and is preferably low, and is 0.02% or less. S is desirably 0.01% or less because S lowers the toughness of the base material due to the generation of MnS.
[0035]
  Ti, Nb, and V are added as necessary to reduce the amount of dissolved N and strengthen the precipitation.
  Ti is hardenability of B by reducing the amount of dissolved N due to the formation of nitrides.ImproveAnd is an element effective for securing the strength due to fine precipitates, so the addition amount is made 0.001% or more. However, on the other hand, an increase in the amount of Ti causes a decrease in base metal toughness and weldability due to the formation of coarse precipitates, so the upper limit is made 0.2%.
[0036]
  Nb is a hardenability of B by reducing the amount of dissolved N due to the formation of nitrides.ImproveAnd is an element effective for securing the strength due to fine precipitates, so the addition amount is made 0.001% or more. However, on the other hand, an increase in the amount of Nb causes a decrease in base metal toughness and weldability due to the formation of coarse precipitates, so the upper limit is made 0.1%.
[0037]
  V is the hardenability of B by reducing the amount of dissolved N due to the formation of nitrides.ImproveAnd is an element effective for securing the strength due to fine precipitates, so the addition amount is made 0.001% or more. However, on the other hand, an increase in the amount of V causes a decrease in the base material toughness due to the formation of coarse precipitates, so the upper limit is made 0.2%.
[0038]
Cu, Ni, Cr, and Mo are added as necessary from the viewpoint of securing strength.
Cu is added as necessary to ensure strength. If the addition is less than 0.005%, the effect is small. On the other hand, the addition exceeding 1% lowers the weldability, so the range is made 0.01 to 1%.
[0039]
Ni is added as necessary to ensure strength. If the addition is less than 0.01%, the effect is small. On the other hand, the addition exceeding 2% lowers the weldability, so the range is made 0.01 to 2%.
[0040]
Cr is added as necessary to ensure strength. If the addition is less than 0.01%, the effect is small. On the other hand, the addition exceeding 1% lowers the base metal toughness and weldability, so the range is made 0.01 to 1%.
[0041]
Mo is added as needed to ensure strength. If the addition is less than 0.01%, the effect is small. On the other hand, the addition exceeding 1% lowers the base metal toughness and weldability, so the range is made 0.01 to 1%.
[0042]
In addition, by adding one or more of Ca, Mg, and REM, base metal toughness and welding heat influence through control of base material inclusions, refinement of heated austenite in weld heat affected zone and generation of transformation nuclei from within grains. The toughness of the part can be increased. In order to exhibit this effect, it is necessary to add 0.0005% or more of Ca and Mg and 0.001% or more of REM, respectively. On the other hand, if it is added excessively, sulfides and oxides are coarsened and the base material toughness and ductility are reduced. Therefore, the upper limit is set to 0.02% for Ca and Mg and 0.1% for REM.
[0043]
Next, a manufacturing method for obtaining the above steel material will be defined. The most important point is to define heating conditions before rolling, rolling finishing temperature, and cooling conditions after the final rolling pass, respectively.
The condition for heating the steel slab or slab having the steel composition of the present invention is to heat at 1050 ° C. or higher and keep it in this temperature range for 20 minutes or more in order to sufficiently dissolve the precipitate deposited at the time of solidification. There is. Further, holding for 20 minutes or more after heating to a temperature exceeding 1350 ° C. brings about a decrease in the base material toughness through the coarsening of the final structure due to the austenite coarsening, so the upper limit of the heating temperature was set to 1350 ° C.
In addition, about holding time, after reaching preset heating temperature, the time which exists in preset temperature +/- 50 degreeC is pointed out. Further, the heating temperature is a value measured on the surface of the steel sheet, and it is desirable to set the average value of three or more measurements in order to increase the measurement accuracy.
[0044]
In the process from actual casting to rolling, rolling may be started directly without cooling the ingot after casting to room temperature. Even in this case, when the temperature of the steel ingot after casting is less than 1050 ° C., the precipitate is dissolved, and it is necessary to maintain the temperature at 1050 ° C. or more and less than 1350 ° C. for 20 minutes or more. In the above case, since the amount of the solid solution is large even at that time, the rolling can be started as it is.
[0045]
Regarding the finishing temperature of rolling, when this is over 900 ° C., the processed substructure in austenite is reduced by recovery and recrystallization, and the effect of refining bainite and martensite is reduced. On the other hand, when the finishing temperature of rolling is less than the Ar3 point, ferrite is processed and the toughness is greatly reduced. Therefore, the rolling finishing temperature is 900 ° C. or lower and Ar 3 point or higher.
The finishing temperature of rolling refers to the temperature immediately before the final pass of rolling, for example, the temperature of the steel sheet surface measured with a thermometer attached immediately before the rolling mill, and an average value of three or more points is required to increase measurement accuracy. It is desirable to adopt. The Ar3 point can be estimated as the temperature at which transformation starts, for example, by giving a thermal processing history assuming rolling and observing the structure that has been quenched from various temperatures.
[0046]
The conditions for implementing accelerated cooling after finishing the rolling are the most important manufacturing requirements in the present invention. Specifically, cooling is performed at an average cooling rate of the steel sheet surface of 0.5 ° C./s or more within 20 seconds after finishing the rolling. There are two important reasons for this.
One is that accelerated cooling is performed in a state where the recovery of the processed substructure introduced during rolling is suppressed as much as possible, and the substructure is the maximum resistance to bainite transformation nuclei, bainite growth, and fine ferrite nuclei. This is to make the most effective use and to make the structure of bainite and martensite significantly finer.
[0047]
The other is to ensure sufficient hardenability by starting accelerated cooling before B nitride and carbonitride are precipitated in the working substructure introduced during rolling.
When accelerated cooling is started over 20 seconds after the end of rolling, the effect of refining the structure is reduced by the recovery process that has already progressed, and the hardenability is reduced by the formation of B carbide and carbonitride. Was within 20 seconds. In addition, since the effect of refinement | miniaturization becomes more remarkable when the time from the completion of rolling to the start of accelerated cooling is within 10 seconds, this is preferably within 10 seconds.
[0048]
  The cooling rate performed within 20 seconds after rolling is 0.5 ° C./s or more. This cooling rate is indispensable for obtaining a bainite or martensite main structure, and if it is less than 0.5 ° C./s, it becomes a ferrite-based structure and the strength is insufficient. The higher the cooling rate, the better. However, it is preferable that the upper limit is 100 ° C./s from the viewpoint of equipment cost. In addition, within 20 seconds after finishing the rolling, one part of the steel plate subjected to the final pass pressure of the rolling is cooled at an average cooling rate of 0.5 ° C./s or more.StartsIt means time to be done. The average cooling rate of the steel sheet surface means the amount of change per unit time of the steel sheet surface temperature measured by, for example, a radiation thermometer, and measures three points or more to increase the measurement accuracy and adopt the average value. Is desirable.
[0049]
By the above method, it is possible to produce a fine bainite-based structure while suppressing the amount of alloy components as much as possible, ensuring high strength, greatly increasing the toughness of the base material, and achieving the same strength Therefore, the amount of alloying elements necessary for this is greatly reduced, so that the weld heat affected zone toughness can also be improved.
[0050]
In the present invention, Ti, Nb, and V are added as necessary, but austenite is obtained by cooling the steel sheet surface at a cooling rate of 0.5 ° C./s or more within 20 seconds after rolling finish. The formation of coarse precipitates therein is suppressed, and fine precipitates are produced during or after transformation, so that the strength can be increased significantly compared to the prior art. Although this effect is not a main constituent requirement of the present invention, it is desirable to use it as a secondary weldability improvement requirement if necessary.
[0051]
  After starting the cooling at a cooling rate of 0.5 ° C./s or more within 20 seconds after the end of rolling, tempering can be performed as necessary. Cooling end temperature is 350 ° CMore thanIn this case or when the tempering temperature exceeds 900 ° C., the strength decreases, so after starting the cooling at a cooling rate of 0.5 ° C./s or more within 20 seconds after the end of rolling, the cooling is finished. The temperature is less than 350 ° C., and the tempering temperature is 900 ° C. or less. In the case where tempering is not performed, the base metal toughness is significantly reduced when the cooling end temperature is less than 350 ° C., so the cooling end temperature is defined as 350 ° C. or higher.
[0052]
  As a production method for obtaining the steel material defined in the present invention, it is desirable to satisfy the following requirements in addition to the above conditions.
  For rough rolling, it is important to apply a predetermined reduction under conditions that do not reduce the base material toughness and productivity. When the starting temperature of the rough rolling is less than 950 ° C., the time until the rolling starts after heating becomes longer and the productivity is greatly reduced. On the other hand, the starting temperature is 1100 ° C.SuperSince the austenite coarsens and the base material toughness decreases through coarsening of the final structure, the rough rolling start temperature is set to 1100 ° C. or lower and 950 ° C. or higher.
  When the finish temperature of the rough rolling is less than 900 ° C., the rolling temperature at the finish rolling is lowered and the rolling efficiency is lowered to lower the productivity. On the other hand, when the finish temperature exceeds 1100 ° C., the austenite becomes coarse. Since the base material toughness decreases through the coarsening of the final structure, the end temperature of the rough rolling is set to 1100 ° C. or lower and 900 ° C. or higher.
[0053]
If the rolling reduction in rough rolling exceeds 90%, the amount of precipitation of coarse carbide, coarse nitride, coarse carbonitride containing B increases even when the rolling temperature is in the above range. The rolling reduction in rolling is 90% or less.
Further, when the rolling reduction in rough rolling is less than 20%, austenite is not sufficiently refined and the base metal toughness is lowered, so the rolling reduction in rough rolling is set to 20% or more.
[0054]
In addition, rough rolling here refers to rolling on the high temperature side among high-temperature side and low-temperature side two-stage rolling performed in order to express various effects by controlled rolling, and rolling on the low-frequency side is finish rolling. be called. At the start of rolling on the low temperature side, it is common to wait for a time until a predetermined starting temperature, and rough rolling and finish rolling are distinguished by the presence of a management index called the starting temperature of the low temperature side rolling. . However, if there is no management index for the rolling start temperature during the entire rolling process, rough rolling is performed at 900 ° C. or higher. Further, it is desirable that the rough rolling start temperature and end temperature be the temperature of the steel sheet surface measured by a thermometer attached immediately before and after the rolling mill, and an average value of three or more points be adopted in order to improve measurement accuracy. The rolling reduction is a percentage display of a value obtained by dividing a value obtained by subtracting a thickness after rolling from a thickness before rolling by a thickness before rolling.
[0055]
Finish rolling starts at 1000 ° C. or less in order to sufficiently obtain the effect of refining the structure, and this is set to the Ar3 point or more in order to prevent the base metal toughness from being lowered due to the processing of ferrite. Further, the rolling reduction of finish rolling is desirably 40% or more in order to obtain a sufficient structure refinement effect. In addition, the rolling reduction prescribed | regulated above is a percentage display of the value which pulled the thickness after rolling from the thickness of the steel plate before rolling, and remove | divided by the steel plate thickness before rolling.
[0056]
In the present invention, the characteristics of the steel sheet can be further improved by combining the production methods described below as necessary.
First, control of cooling before the start of rolling is effective. Specifically, the steel slab and slab after heating are cooled to a temperature at which the average cooling rate on the steel sheet surface is 2 ° C./s or higher and Ar 3 point or higher and 1050 ° C. or lower before rolling, and rolling is started after reheating. To do. The reason why this cooling is performed before the start of rolling is to reduce the temperature in advance so that the temperature waiting time until the final rolling pass can be reduced after rolling is started. As a result, the introduction of the processed structure in the non-recrystallization temperature range becomes possible without being affected by recovery and recrystallization as much as possible, which is effective for refinement of the structure.
[0057]
This method is particularly effective for thick materials where it has been difficult to increase the amount of rolling reduction conventionally, and it is possible to secure a rolling reduction rate in an unrecrystallized temperature region more than before by lowering the rolling start temperature. Due to the water cooling and recuperation process prior to rolling, a temperature difference occurs between the inside and the surface of the steel sheet. In addition to the whole, the toughness at the center of the plate thickness is greatly improved. Since this effect is small at less than 2 ° C./s, this is set to 2 ° C./s or more. The higher the cooling rate, the better. However, it is preferable that the upper limit is 100 ° C./s from the viewpoint of equipment cost.
[0058]
The reason why the cooling temperature before rolling was set to the Ar3 point or higher and 1050 ° C or lower is that if it exceeds 1050 ° C, the amount of reduction in the non-recrystallized region is reduced and a sufficient structure refinement effect cannot be obtained. The reason for this is that when cooled to a temperature lower than Ar3, two-phase rolling of austenite and ferrite occurs in the vicinity of the surface layer portion of the steel sheet, and the work ferrite due to rolling remains in the steel, leading to a decrease in toughness.
The recuperation here is a phenomenon in which the surface temperature rises as a result of the temperature gradient between the cooled surface and the uncooled interior being relaxed over time. In the present invention, the temperature at the center of the steel sheet And when the difference between the surface temperature is less than 50 ° C. or when 20 seconds or more have passed after cooling.
[0059]
  Second, the recrystallization temperatureLess thanIt is effective to set the rolling reduction at 700 ° C. or more to 70% or more. This is because the processing structure is introduced into the grains by rolling in the non-recrystallized region, and in particular in the case of low-temperature transformation, a remarkable microstructure refining effect can be obtained, and the base metal toughness and weldability can be further improved. It becomes. The upper limit is desirably 150% from the viewpoint of rolling load.
  The rolling reduction here is the recrystallization temperature.Less thanThe recrystallization temperature is the difference between the plate thickness just before rolling and the final plate thickness.Less thanIs a percentage display of the value divided by the plate thickness just before rolling.
[0060]
Third, it is effective to set the average rolling reduction per rolling pass to 25% or more. By setting the average reduction ratio to 25% or more, the local concentration of the processed substructure introduced by rolling is strengthened, the effect of refining the structure becomes more remarkable, and the base material toughness is improved. In addition, when the strength is constant, the additive amount of the alloy element can be reduced, so that the toughness of the weld heat affected zone is also improved. If the average rolling reduction is less than 25%, a significant effect cannot be obtained, so this was set to 25% or more. The upper limit is preferably 50% from the viewpoint of rolling load. The average rolling reduction is the rolling reduction of each rolling pass, that is, an average value expressed as a percentage of a value obtained by dividing the difference between the plate thickness before the rolling pass and the plate thickness after the rolling pass by the plate thickness before the rolling pass.
[0061]
Fourth, it is effective to set the rolling reduction of the final rolling pass to 25% or more. By increasing the rolling reduction of the final rolling pass, a large precipitation strengthening effect and a fine structure effect can be obtained particularly in the case of low temperature transformation. Since the effect is small if this value is less than 25%, the rolling reduction of the final rolling pass is set to 25% or more. The upper limit is preferably 95% from the viewpoint of rolling load.
[0062]
Fifth, it is effective to perform cooling at an average cooling rate of the steel sheet surface of 2 ° C./s or more in part or all between rolling passes, and to carry out the next rolling pass after reheating. Implementing the cooling during the rolling pass can suppress the recovery of the working substructure between the rolling passes and increase the controlled rolling effect by lowering the temperature. Furthermore, the internal deformation resistance is made relatively small by making a temperature difference between the steel sheet surface layer and the central part, and the introduction of the processed substructure to the central part of the plate thickness is promoted, thereby making the structure finer and There is also an effect of increasing the toughness of the thickness center portion. By performing the inter-pass cooling, the time from the start to the end of rolling is shortened, which greatly contributes to the improvement of productivity. The above effect due to the cooling between passes needs to be 2 ° C./s or higher because the effect is small when the average cooling rate on the steel sheet surface between rolling passes is less than 2 ° C./s. The higher the cooling rate, the better, but it is preferable to set the upper limit at 100 ° C./s from the viewpoint of equipment costs. The cooling between rolling passes does not necessarily need to be performed between all rolling passes, and can be selected according to the required toughness.
[0063]
The upper limit of the cooling start temperature and the stop temperature between rolling passes is preferably set to the rolling start temperature because the cooling between the rolling passes has an effect in both the austenite recrystallization temperature region and the non-recrystallization temperature region. On the other hand, when cooled to the Ar3 point or lower, ferrite is processed by subsequent rolling and the toughness is lowered. Therefore, the lower limit of the cooling temperature between rolling passes is preferably set to the Ar3 point or higher at the steel sheet surface temperature.
The recuperation here is a phenomenon in which the surface temperature rises as a result of the temperature gradient between the cooled surface and the uncooled interior being relaxed over time. In the present invention, the temperature at the center of the steel sheet When the difference between the surface temperature and the surface temperature is less than 100 ° C., or when 5 seconds or more have elapsed after cooling.
[0064]
【Example】
The tensile strength, toughness, and weld heat affected zone toughness of the base material were evaluated for steel plates having a thickness of 20 to 80 mm manufactured under various manufacturing conditions using test steel materials having various chemical components. Chemical composition of steel sheet and Ceq. , Pcm, B-containing carbides, carbonitrides, nitrides having a number density of 50 nm or more and 10000 nm or less, a value obtained by dividing the number density by the amount of addition of B, a volume ratio of bainite and martensite, a difference in crystal orientation Table 1 (Table 1-1, Table 1-2) shows the average dimensions of the regions where the angle is 15 degrees or more, Table 2 (Table 2-1, Table 2-2) shows the manufacturing conditions, and the tensile strength of the base material. Table 3 shows the toughness and weld heat-affected zone toughness.
[0065]
Tensile strength was measured by a normal temperature test using a JIS No. 4 subsize tensile specimen taken perpendicularly to the rolling direction from a 1/4 t portion (intermediate between the center of the plate thickness and the surface) of the steel plate. The base material toughness was measured using a JIS No. 4 Charpy test piece sampled so that the rolling direction and the longitudinal direction of the test piece were perpendicular to each other from the 1/4 t part of the steel plate, and the notch was in the plate thickness penetration direction. The test was conducted at 0 ° C. and the impact absorption energy was measured.
In addition, about the tensile strength, the average value of the two test results implemented on the same conditions was employ | adopted, and about the base material toughness, three tests were implemented at the same temperature, and the average value was employ | adopted. The weld heat-affected zone toughness was determined by impact absorption energy at -20 ° C by Charpy test specimens that were subjected to submerged arc welding with a heat input of 10 kJ / mm on the steel sheet and the notch bottom part was 1/4 t, corresponding to the bond. As measured. Three tests were performed at the same temperature, and the average value was adopted.
[0066]
Invention Example 1 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is large, the strength exceeds 600 MPa, and further, low Ceq. Moreover, since the structure is refined, the base material toughness and the weld heat affected zone toughness are excellent, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 1, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the transformation strengthening amount is small, and the strength is low. In comparison, the balance between the strength of the base metal and the toughness of the base metal and the weld heat affected zone is greatly inferior. Further, in Comparative Example 2, although the time until the start of accelerated cooling after finish rolling is within 20 seconds, the C amount is outside the component range of the present invention, so that the base material toughness and the weld heat affected zone toughness are greatly increased. Compared with Invention Example 1, the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior.
[0067]
Invention Example 2 has a very low Ceq. In order to achieve a tensile strength of about 700 MPa, B is added, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is large, the strength exceeds 700 MPa, and further, low Ceq. Moreover, since the structure is refined, the base material toughness and the weld heat affected zone toughness are excellent, and the weldability is also excellent because of the low Pcm.
On the other hand, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds in Comparative Example 3, coarse precipitates are generated in large quantities, the transformation strengthening amount is small, and the strength is low. Therefore, the balance between the base metal strength and the toughness of the base metal and the weld heat affected zone is greatly inferior. Further, in Comparative Example 4, although the time until the start of accelerated cooling after finish rolling is within 20 seconds, the N amount is outside the component range of the present invention, so that the base material toughness and the weld heat affected zone toughness are greatly increased. Compared with Invention Example 2, the balance between the base material strength, the base material toughness, and the weld heat affected zone toughness is greatly inferior.
[0068]
Invention Example 3 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is large, the strength exceeds 800 MPa, and further, low Ceq. Moreover, since the structure is refined, the base material toughness and the weld heat affected zone toughness are excellent, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 5, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the transformation strengthening amount is small, and the strength is low. Therefore, the balance between the base metal strength and the toughness of the base metal and the weld heat affected zone is greatly inferior. Further, in Comparative Example 6, although the time until the start of accelerated cooling after finish rolling is within 20 seconds, the B amount is out of the component range, so that the base material toughness and the weld heat affected zone toughness are greatly reduced. Compared with Invention Example 3, the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior.
[0069]
Invention Example 4 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is large, the strength exceeds 600 MPa, and further, low Ceq. Further, because of the refinement of the structure and the addition of Ca and Mg, the base material toughness and the weld heat affected zone toughness are excellent, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 7, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the transformation strengthening amount is small, and the strength is low. In comparison, the balance between the strength of the base metal and the toughness of the base metal and the weld heat affected zone is greatly inferior.
[0070]
Invention Example 5 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is large, the strength exceeds 800 MPa, and further, low Ceq. Further, because of the refinement of the structure and the addition of REM, the base material toughness and the weld heat affected zone toughness are excellent, and the weldability is also excellent because of the low Pcm. On the other hand, in Comparative Example 8, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the transformation strengthening amount is small, and the strength is low. In comparison, the balance between the strength of the base metal and the toughness of the base metal and the weld heat affected zone is greatly inferior.
[0071]
Invention Example 6 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added and accelerated cooling is performed within 10 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and further, low Ceq. In addition, because of the refinement of the structure, the base material toughness and the weld heat affected zone toughness are excellent, and because of the low Pcm, the weldability is also excellent.
On the other hand, in Comparative Example 9, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the transformation strengthening amount is small, the strength is low, and the heating temperature is further increased. Since it is higher than the range of the present invention, the toughness of the base material is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 6.
[0072]
Invention Example 7 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added and accelerated cooling is performed within 10 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and further, a low Ceq. In addition, because of the refinement of the structure, the base material toughness and the weld heat affected zone toughness are excellent, and because of the low Pcm, the weldability is also excellent.
On the other hand, in Comparative Example 10, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the strength is low, and the finishing temperature of rolling is within the range of the present invention. Therefore, the toughness of the base material is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 7.
[0073]
Invention Example 8 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, cooling at 2 ° C./s or more is performed before rolling, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and further, low Ceq. In addition, because of the refinement of the structure, the base material toughness and the weld heat affected zone toughness are excellent, and because of the low Pcm, the weldability is also excellent.
On the other hand, in Comparative Example 11, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated and the strength is low. The balance of the toughness of the base metal and the weld heat affected zone is greatly inferior.
[0074]
Invention Example 9 has a very low Ceq. In order to achieve a tensile strength of about 700 MPa, B is added, cooling between passes of 2 ° C./s or more is performed during finish rolling, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 700 MPa, and further, low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 12, although the inter-pass cooling of 2 ° C./s or more is performed during finish rolling, the time until start of accelerated cooling after finish rolling exceeds 20 seconds. Is produced in a large amount, the strength is low, and the addition amount of B exceeds the range of the present invention, so that a large amount of coarse precipitates are produced, and the toughness of the base material and the weld heat affected zone is lowered. Compared with, the balance between the base metal strength and the toughness of the base metal and the weld heat affected zone is greatly inferior.
[0075]
Invention Example 10 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, and further, cooling between passes of 2 ° C./s or more is performed during rough rolling and finish rolling, and the reduction rate in the non-recrystallization temperature range is 70% or more. And accelerated cooling within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 13, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated and the strength is low. The balance of the toughness of the base metal and the weld heat affected zone is greatly inferior.
[0076]
Invention Example 11 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, the rolling reduction of the final rolling pass is set to 25% or more, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 14, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are formed, the strength is low, and the finish rolling finish temperature is higher than the Ar3 point. Therefore, the toughness of the base metal is greatly reduced, and the balance between the base material strength, the base material toughness, and the weld heat affected zone contact property is greatly inferior to that of Invention Example 11.
[0077]
Invention Example 12 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, the rolling average rolling reduction is 25% or more, and accelerated cooling is performed within 10 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 15, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated and the strength is low. The balance of the toughness of the base metal and the weld heat affected zone is greatly inferior.
[0078]
Invention Example 13 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, cooling at 2 ° C./s or more is performed before rolling, the reduction rate in the non-recrystallization temperature region is set to 70% or more, and after finish rolling, 20%. Accelerated cooling is performed within seconds. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 16, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the amount of C exceeds the range of the present invention. The toughness of the base material and the weld heat affected zone is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 13.
[0079]
Inventive Example 14 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, cooling at 2 ° C./s or higher is performed before rolling, the rolling reduction in the non-recrystallization temperature region is set to 70% or higher, and rolling is reduced in the final pass of rolling. The rate is 25% or more, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 17, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the strength is low, and the N amount exceeds the range of the present invention. For this reason, the toughness of the base material and the weld heat affected zone is significantly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 14.
[0080]
Invention Example 15 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, the rolling average and the rolling reduction of the final pass are set to 25% or more, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 18, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the strength is low, and the B amount exceeds the range of the present invention. Therefore, the toughness of the base material and the weld heat affected zone is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 15.
[0081]
Invention Example 16 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, the rolling average rolling reduction is 25% or more, cooling between passes of 2 ° C./s or more is performed during rolling, and within 20 seconds after finish rolling. Accelerated cooling was performed. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 19, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are formed, the strength is low, and the heating temperature exceeds the range of the present invention. Therefore, the base material toughness is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 16.
[0082]
Invention Example 17 has a very low Ceq. In order to achieve a tensile strength of about 600 MPa, B is added, the rolling reduction in the non-recrystallization temperature range is 70% or more, the rolling average and the final rolling reduction are 25% or more, and 2 ° C. / The cooling between passes more than s was implemented, and also the accelerated cooling within 10 second after finish rolling was implemented. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 600 MPa, and the low Ceq. Further, due to the refinement of the structure and the addition of Mg, the base material toughness and the weld heat affected zone toughness are excellent, and further, the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 20, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are formed, the strength is low, and the finish rolling finish temperature is the present invention. Since it is lower than the range, the toughness of the base material is greatly lowered, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 17.
[0083]
Invention Example 18 has a very low Ceq. In order to achieve a tensile strength of about 700 MPa, B is added, the rolling reduction in the non-recrystallization temperature region is 70% or more, the rolling reduction at the final rolling is 25% or more, and within 20 seconds after finish rolling. Accelerated cooling is performed. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 700 MPa and low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 21, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the amount of Mn exceeds the range of the present invention. The base material toughness is significantly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 18.
[0084]
Inventive Example 19 has a very low Ceq. In order to achieve a tensile strength of about 700 MPa, B is added, cooling is performed at a cooling rate of 2 ° C./s or more before rolling, the rolling reduction in the non-recrystallization temperature region is set to 70% or more, the rolling average and The final rolling reduction is 25% or more, accelerated cooling of 2 ° C./s or more is performed during rolling, and accelerated cooling is performed within 10 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 700 MPa and low Ceq. Further, due to the refinement of the structure and the addition of Ca, the base material toughness and the weld heat affected zone toughness are excellent, and further, the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 22, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, the strength is low, and the heating temperature exceeds the range of the present invention. Therefore, the base material toughness is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 19.
[0085]
Inventive Example 20 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, cooling is performed at a cooling rate of 2 ° C./s or more before rolling, the rolling reduction in the non-recrystallization temperature region is set to 70% or more, and rolling is performed. Accelerated cooling of 2 ° C./s or more is performed, and further accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 23, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the amount of C exceeds the range of the present invention. The base material toughness and the weld heat affected zone toughness are greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 20.
[0086]
Invention Example 21 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, cooling is performed at a cooling rate of 2 ° C./s or more before rolling, the rolling reduction in the non-recrystallization temperature region is set to 70% or more, and the rolling average The rolling reduction is 25% or more, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 24, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the N amount exceeds the range of the present invention. The base material toughness and the weld heat affected zone toughness are significantly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 21.
[0087]
Inventive Example 22 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, the rolling reduction of the final rolling pass is set to 25% or more, accelerated cooling at a cooling rate of 2 ° C./s or more is performed during rolling, and after finishing rolling, 20 Accelerated cooling is performed within seconds. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. The base material toughness and the weld heat-affected zone toughness are extremely excellent due to the refinement of the structure, and the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 25, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the amount of B exceeds the range of the present invention. The base material toughness and the weld heat affected zone toughness are greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 22.
[0088]
Invention Example 23 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, accelerated cooling at a cooling rate of 2 ° C./s or higher is performed before rolling, the rolling reduction in the non-recrystallization temperature region is set to 70% or higher, the rolling average and The rolling reduction of the final pass is 25% or more, accelerated cooling at a cooling rate of 2 ° C./s or more is performed during rolling, and accelerated cooling is performed within 20 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. Further, due to the refinement of the structure and the addition of Ca and REM, the base material toughness and the weld heat affected zone toughness are extremely excellent, and further, the weldability is also excellent due to the low Pcm.
On the other hand, in Comparative Example 26, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the heating temperature exceeds the range of the present invention. The base material toughness is significantly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 23.
[0089]
Invention Example 24 has a very low Ceq. In order to achieve a tensile strength of about 800 MPa, B is added, accelerated cooling at a cooling rate of 2 ° C./s or higher is performed before rolling, the rolling reduction in the non-recrystallization temperature region is set to 70% or higher, the rolling average and The rolling reduction in the final pass is 25% or more, accelerated cooling at a cooling rate of 2 ° C./s or more is performed during rolling, and accelerated cooling is performed within 10 seconds after finish rolling. Since the generation amount of coarse precipitates is small and the transformation strengthening amount is extremely large, the strength exceeds 800 MPa, and the low Ceq. Further, due to the refinement of the structure and the addition of Mg, the base material toughness and the weld heat affected zone toughness are excellent, and further, the weldability is also excellent because of the low Pcm.
On the other hand, in Comparative Example 27, since the time until the start of accelerated cooling after finish rolling exceeds 20 seconds, a large amount of coarse precipitates are generated, and the rolling finish temperature is below the range of the present invention. The base material toughness is greatly reduced, and the balance between the base material strength and the toughness of the base material and the weld heat affected zone is greatly inferior to that of Invention Example 24.
[0090]
From the above examples, the steel sheets of Invention Examples 1 to 24, which are steel materials manufactured according to the present invention, are steel materials that are extremely excellent in base material toughness and weld heat affected zone toughness when compared with the same strength. It is obvious.
[0091]
[Table 1]
Figure 0003899014
[0092]
[Table 2]
Figure 0003899014
[0093]
[Table 3]
Figure 0003899014
[0094]
[Table 4]
Figure 0003899014
[0095]
[Table 5]
Figure 0003899014
[0096]
【The invention's effect】
  According to the present invention, the toughness of the base metal and the weld heat affected zone is excellent in a wide strength range.Tensile strength 570 to 800MPA class high strengthIt is possible to provide a steel plate and a manufacturing method thereof, and it can be said that the invention has high industrial value.

Claims (14)

鋼が、質量%で、
C :0.005〜0.2%、
Si:0.01〜1%、
Mn:0.1〜2%、
P :0.02%以下、
S :0.02%以下、
N :0.0001〜0.01%、
B :0.0005〜0.005%、
Al:0.001〜0.1%
を含有し、残部がFe及び不可避的不純物からなる鋼組成とし、Bを含有する炭化物、窒化物、炭窒化物のなかで円相当直径の寸法が50nm以上10000nm以下のものの個数密度が5.0×107 個/mm2 未満であり、該個数密度をBの添加量で除した値が2.0×1010個/(mm2 ・質量%)未満であり、ベイナイトとマルテンサイトの体積率の和が60%以上のベイナイト主体組織であり、さらにベイナイト中で隣接組織との結晶方位差が15度以上となる領域の平均寸法が20μm以下であることを特徴とする、母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
Steel is mass%
C: 0.005-0.2%,
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
P: 0.02% or less,
S: 0.02% or less,
N: 0.0001 to 0.01%
B: 0.0005 to 0.005%,
Al: 0.001 to 0.1%
And the balance is Fe and inevitable impurities, and the number density of B-containing carbides, nitrides and carbonitrides having a circle equivalent diameter of 50 nm to 10,000 nm is 5.0. a × 10 below 7 / mm 2, the value obtained by dividing the number of the coefficients density amount of B is 2.0 × 10 10 pieces / less than (mm 2 · wt%), the volume ratio of bainite and martensite Is a bainite-based structure having a sum of 60% or more, and an average dimension of a region in which a crystal orientation difference with an adjacent structure is 15 degrees or more in bainite is 20 μm or less, and a base material and welding heat Tensile strength 570 to 800 MPa class high strength steel plate with excellent toughness of the affected area.
質量%で、さらに、
Nb:0.001〜0.1%、
Ti:0.001〜0.2%、
V :0.001〜0.2%
の1種または2種以上を含有することを特徴とする、請求項1に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
In mass%,
Nb: 0.001 to 0.1%,
Ti: 0.001 to 0.2%,
V: 0.001 to 0.2%
The tensile strength 570 thru | or 800 MPa class high strength steel plate excellent in the toughness of the base material and a welding heat affected zone of Claim 1 characterized by including 1 type, or 2 or more types of these.
質量%で、さらに、
Cu:0.005〜1%、
Ni:0.01〜2%、
Cr:0.01〜1%、
Mo:0.01〜1%
の1種または2種以上を含有することを特徴とする、請求項1または2に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
In mass%,
Cu: 0.005 to 1%
Ni: 0.01-2%,
Cr: 0.01-1%,
Mo: 0.01 to 1%
A high strength steel sheet having a tensile strength of 570 to 800 MPa class excellent in toughness of the base material and the weld heat-affected zone according to claim 1 or 2, characterized by containing one or more of the following .
質量%で、さらに、
Ca:0.0005〜0.02%、
Mg:0.0005〜0.02%、
REM:0.001〜0.1%
の1種または2種以上を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板。
In mass%,
Ca: 0.0005 to 0.02%,
Mg: 0.0005 to 0.02%,
REM: 0.001 to 0.1%
The tensile strength 570 to 800 MPa class high strength excellent in the toughness of the base material and welding heat-affected zone according to any one of claims 1 to 3, characterized by containing one or more of steel sheet.
質量%で、
C :0.005〜0.2%、
Si:0.01〜1%、
Mn:0.1〜2%、
P :0.02%以下、
S :0.02%以下、
N :0.0001〜0.01%、
B :0.0005〜0.005%、
Al:0.001〜0.1%
を含有し、残部がFe及び不可避的不純物からなる鋼組成を有する鋼片または鋳片を、1050℃以上1350℃以下の温度域に加熱し、該温度域に20分以上保持をした後に圧延を開始し、圧延をAr3 点以上900℃以下で終了した後、20秒以内に鋼板表面の平均冷却速度が0.5℃/s以上の冷却を行い、350℃以上で冷却を終了した後空冷することを特徴とする、Bを含有する炭化物、窒化物、炭窒化物のなかで円相当直径の寸法が50nm以上10000nm以下のものの個数密度が5.0×10 7 個/mm 2 未満であり、該個数密度をBの添加量で除した値が2.0×10 10 個/(mm 2 ・質量%)未満であり、ベイナイトとマルテンサイトの体積率の和が60%以上のベイナイト主体組織であり、さらにベイナイト中で隣接組織との結晶方位差が15度以上となる領域の平均寸法が20μm以下である母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
% By mass
C: 0.005-0.2%,
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
P: 0.02% or less,
S: 0.02% or less,
N: 0.0001 to 0.01%
B: 0.0005 to 0.005%,
Al: 0.001 to 0.1%
A steel slab or slab having a steel composition consisting of Fe and inevitable impurities in the balance is heated to a temperature range of 1050 ° C. or higher and 1350 ° C. or lower, and after being held in the temperature range for 20 minutes or longer, rolling is performed. After starting and rolling at an Ar3 point or higher and 900 ° C or lower, the steel sheet is cooled at an average cooling rate of 0.5 ° C / s or higher within 20 seconds, and after cooling at 350 ° C or higher, air cooling is performed. Among the carbides, nitrides, and carbonitrides containing B, the number density of the equivalent circle diameter of 50 nm to 10,000 nm is less than 5.0 × 10 7 pieces / mm 2 , A value obtained by dividing the number density by the amount of addition of B is less than 2.0 × 10 10 pieces / (mm 2 ·% by mass), and the bainite main structure has a volume ratio of bainite and martensite of 60% or more. Yes, and adjacent pairs in bainite Method for producing a crystal misorientation of 15 ° or more to become the average size of the area to 570 no excellent tensile strength in toughness of the base metal and weld heat affected zone is 20μm or less 800MPa grade high strength steel with.
質量%で、
C :0.005〜0.2%、
Si:0.01〜1%、
Mn:0.1〜2%、
P :0.02%以下、
S :0.02%以下、
N :0.0001〜0.01%、
B :0.0005〜0.005%、
Al:0.001〜0.1%
を含有し、残部がFe及び不可避的不純物からなる鋼組成を有する鋼片または鋳片を、1050℃以上1350℃以下の温度域に加熱し、該温度域に20分以上保持をした後に圧延を開始し、圧延をAr3 点以上900℃以下で終了した後、20秒以内に鋼板表面の平均冷却速度が0.5℃/s以上の冷却を行い、350℃未満で冷却を終了した後空冷し、さらにその後に900℃以下の温度で焼き戻しを行うことを特徴とする、Bを含有する炭化物、窒化物、炭窒化物のなかで円相当直径の寸法が50nm以上10000nm以下のものの個数密度が5.0×10 7 個/mm 2 未満であり、該個数密度をBの添加量で除した値が2.0×10 10 個/(mm 2 ・質量%)未満であり、ベイナイトとマルテンサイトの体積率の和が60%以上のベイナイト主体組織であり、さらにベイナイト中で隣接組織との結晶方位差が15度以上となる領域の平均寸法が20μm以下である母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
% By mass
C: 0.005-0.2%,
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
P: 0.02% or less,
S: 0.02% or less,
N: 0.0001 to 0.01%
B: 0.0005 to 0.005%,
Al: 0.001 to 0.1%
A steel slab or slab having a steel composition consisting of Fe and inevitable impurities in the balance is heated to a temperature range of 1050 ° C. or higher and 1350 ° C. or lower, and after being held in the temperature range for 20 minutes or longer, rolling is performed. After starting and rolling at an Ar3 point or more and 900 ° C or less, the steel sheet is cooled at an average cooling rate of 0.5 ° C / s or more within 20 seconds, and after cooling at less than 350 ° C, air cooling is performed. Further, tempering is performed at a temperature of 900 ° C. or lower, and among the carbides, nitrides, and carbonitrides containing B, the number density of the circle-equivalent diameter is 50 nm to 10,000 nm. It is less than 5.0 × 10 7 pieces / mm 2 , and the value obtained by dividing the number density by the amount of addition of B is less than 2.0 × 10 10 pieces / (mm 2 ·% by mass), and bainite and martensite Bays with a volume ratio of 60% or more Ito is mainly tissue, to further crystal orientation differences average size of the regions to be more than 15 degrees strength 570 no tensile excellent toughness of the base metal and weld heat affected zone is 20μm or less and adjacent tissue in bainite 800MPa Of manufacturing high-grade steel sheets.
質量%で、さらに、
Nb:0.001〜0.1%、
Ti:0.001〜0.2%、
V :0.001〜0.2%
の1種または2種以上を含有することを特徴とする、請求項5または6に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
In mass%,
Nb: 0.001 to 0.1%,
Ti: 0.001 to 0.2%,
V: 0.001 to 0.2%
The method for producing a high strength steel sheet having a tensile strength of 570 to 800 MPa class excellent in toughness of the base material and the weld heat-affected zone according to claim 5 or 6, characterized by containing one or more of the following.
質量%で、さらに、
Cu:0.005〜1%、
Ni:0.01〜2%、
Cr:0.01〜1%、
Mo:0.01〜1%
の1種または2種以上を含有することを特徴とする、請求項5ないし7のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
In mass%,
Cu: 0.005 to 1%
Ni: 0.01-2%,
Cr: 0.01-1%,
Mo: 0.01 to 1%
The tensile strength 570 to 800 MPa class high strength excellent in the toughness of the base material and welding heat-affected zone according to any one of claims 5 to 7, characterized by containing one or more of A method of manufacturing a steel sheet.
質量%で、さらに、
Ca:0.0005〜0.02%、
Mg:0.0005〜0.02%、
REM:0.001〜0.1%
の1種または2種以上を含有することを特徴とする、請求項5ないし8のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。
In mass%,
Ca: 0.0005 to 0.02%,
Mg: 0.0005 to 0.02%,
REM: 0.001 to 0.1%
The tensile strength 570 to 800 MPa class high strength excellent in the toughness of the base material and welding heat-affected zone according to any one of claims 5 to 8, characterized by containing one or more of A method of manufacturing a steel sheet.
加熱後の鋼片または鋳片を、鋼塊表面の平均冷却速度が2℃/s以上で1050℃以下Ar3 点以上の温度まで冷却し、復熱後に圧延を開始することを特徴とする、請求項5ないし9のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。The steel slab or slab after heating is cooled to a temperature at which the average cooling rate on the surface of the steel ingot is 2 ° C./s or more and 1050 ° C. or less and Ar 3 point or more, and rolling is started after reheating. Item 10. A method for producing a high strength steel sheet having a tensile strength of 570 to 800 MPa class excellent in toughness of the base material and the weld heat affected zone according to any one of Items 5 to 9. 再結晶温度未満700℃以上で実施する圧延の圧下率を70%以上とすることを特徴とする、請求項5ないし10のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。It is excellent in the toughness of the base material and welding heat-affected zone according to any one of claims 5 to 10, characterized in that the rolling reduction of rolling performed at a temperature lower than the recrystallization temperature of 700 ° C or higher is 70% or higher. A method for producing a high strength steel sheet having a tensile strength of 570 to 800 MPa . 全ての圧延パスにおける圧下率を平均した値が25%以上であることを特徴とする、請求項5ないし11のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。The tensile strength excellent in the toughness of the base material and the weld heat affected zone according to any one of claims 5 to 11, wherein an average value of rolling reduction in all rolling passes is 25% or more. 570 to 800 MPa class high strength steel plate manufacturing method. 圧延最終パスの圧下率が25%以上であることを特徴とする、請求項5ないし12に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。13. The production of a high strength steel sheet having a tensile strength of 570 to 800 MPa class excellent in toughness of the base material and the weld heat affected zone according to claim 5, wherein the rolling reduction of the final rolling pass is 25% or more. Method. 圧延パス間の一部あるいは全てにおいて、鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、復熱後に次の圧延パスを実施することを特徴とする、請求項5ないし13のいずれか1項に記載の母材および溶接熱影響部の靱性に優れた引張強さ570ないし800MPa級高強度鋼板の製造方法。14. The cooling method according to claim 5, wherein an average cooling rate of the steel sheet surface is cooled to 2 ° C./s or more in a part or all of the rolling passes, and the next rolling pass is performed after reheating. A method for producing a high-strength steel sheet having a tensile strength of 570 to 800 MPa, which is excellent in toughness of the base material and the weld heat-affected zone according to claim 1.
JP2002322443A 2002-11-06 2002-11-06 Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same Expired - Fee Related JP3899014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322443A JP3899014B2 (en) 2002-11-06 2002-11-06 Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322443A JP3899014B2 (en) 2002-11-06 2002-11-06 Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004156095A JP2004156095A (en) 2004-06-03
JP3899014B2 true JP3899014B2 (en) 2007-03-28

Family

ID=32802631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322443A Expired - Fee Related JP3899014B2 (en) 2002-11-06 2002-11-06 Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same

Country Status (1)

Country Link
JP (1) JP3899014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494581A (en) * 2017-03-27 2019-11-22 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825025B2 (en) * 2006-03-09 2011-11-30 株式会社神戸製鋼所 High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness
JP4825024B2 (en) * 2006-03-09 2011-11-30 株式会社神戸製鋼所 High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness
JP5034290B2 (en) * 2006-03-28 2012-09-26 Jfeスチール株式会社 Low yield ratio high strength thick steel plate and method for producing the same
JP2010031309A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Thick steel plate and method for producing the same
KR101271888B1 (en) 2010-12-23 2013-06-05 주식회사 포스코 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
KR101357543B1 (en) 2012-01-31 2014-02-05 현대제철 주식회사 Method for producing hot rolled steel sheet having high formability
JP5874664B2 (en) * 2013-03-15 2016-03-02 Jfeスチール株式会社 High strength steel plate with excellent drop weight characteristics and method for producing the same
JP6135595B2 (en) * 2014-05-09 2017-05-31 Jfeスチール株式会社 High-efficiency manufacturing method for steel plates with excellent impact resistance
JP6536331B2 (en) * 2015-10-05 2019-07-03 日本製鉄株式会社 High strength steel plate and method of manufacturing the same
EP3749790B1 (en) * 2018-02-07 2024-06-26 Tata Steel Nederland Technology B.V. High strength hot rolled or cold rolled and annealed steel and method of producing it
KR102209581B1 (en) * 2018-11-29 2021-01-28 주식회사 포스코 The steel plate having excellent heat affected zone toughness and method for manufacturing thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494581A (en) * 2017-03-27 2019-11-22 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacturing method
CN110494581B (en) * 2017-03-27 2021-07-09 杰富意钢铁株式会社 Two-piece steel sheet for can and method for producing same
US11486018B2 (en) 2017-03-27 2022-11-01 Jfe Steel Corporation Steel sheet for two-piece can and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004156095A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP6418358B1 (en) High Mn steel sheet and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP4547044B2 (en) High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-shaped steel, and methods for producing them
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP2000513050A (en) High tensile steel and method for producing the same
JP6015602B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
JP5481976B2 (en) High strength hot rolled steel sheet for high strength welded steel pipe and method for producing the same
JP6572963B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP6149776B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP5825224B2 (en) High tensile steel sheet with excellent surface arrestability and method for producing the same
JP3899014B2 (en) Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP4507747B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JPH11229077A (en) Steel plate excellent in ctod characteristic in multi layer weld zone and its production
WO2019180957A1 (en) Rolled h-shaped steel and method for manufacturing same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2004323917A (en) High strength high toughness steel sheet
JP5453865B2 (en) High strength thick steel plate with excellent balance between strength and ductility and method for producing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R151 Written notification of patent or utility model registration

Ref document number: 3899014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees