JP6536331B2 - High strength steel plate and method of manufacturing the same - Google Patents

High strength steel plate and method of manufacturing the same Download PDF

Info

Publication number
JP6536331B2
JP6536331B2 JP2015197636A JP2015197636A JP6536331B2 JP 6536331 B2 JP6536331 B2 JP 6536331B2 JP 2015197636 A JP2015197636 A JP 2015197636A JP 2015197636 A JP2015197636 A JP 2015197636A JP 6536331 B2 JP6536331 B2 JP 6536331B2
Authority
JP
Japan
Prior art keywords
less
strength
steel plate
high strength
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015197636A
Other languages
Japanese (ja)
Other versions
JP2017071805A (en
Inventor
皆川 昌紀
昌紀 皆川
仁秀 吉村
仁秀 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015197636A priority Critical patent/JP6536331B2/en
Publication of JP2017071805A publication Critical patent/JP2017071805A/en
Application granted granted Critical
Publication of JP6536331B2 publication Critical patent/JP6536331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高強度鋼板及びその製造方法に関するものである。   The present invention relates to a high strength steel plate and a method of manufacturing the same.

建造物の高層化などに伴って、クレーン車等の建設機械や産業機械の大型化が進められている。建設機械や産業機械に使用される鋼板は、構造部材を軽量化するために、高強度化が要求されており、引張強さが780MPa以上、更には950MPaの高強度鋼板の製造方法が提案されている(例えば、特許文献1、参照)。   With the increase in height of buildings, etc., the enlargement of construction machines such as cranes and industrial machines is being promoted. In order to reduce the weight of structural members, steel plates used in construction machines and industrial machines are required to have high strength, and a method of manufacturing high strength steel plates with a tensile strength of 780 MPa or more, and further 950 MPa is proposed. (See, for example, Patent Document 1).

また、高強度鋼板を建設機械や産業機械の部材に使用する際には、塑性変形しないように高い降伏強さが要求されるが、その一方で、曲げ加工の負荷の問題などから、引張強さの上限は制限される。そのため、建設機械や産業機械など(以下、総称して建産機という場合がある。)に使用される高強度鋼板には、高い降伏比が求められる。   In addition, when using high strength steel plate as a member of construction machine or industrial machine, high yield strength is required so that plastic deformation does not occur. The upper limit is limited. Therefore, a high yield ratio is required for high-strength steel plates used in construction machines, industrial machines, etc. (hereinafter sometimes referred to collectively as construction machines).

一般に、鋼材の降伏比を高めるには、析出強化が有利である。Tiは、従来から析出強化元素として利用されており、0.12%以上のTiを含有する高強度鋼板が提案されている(例えば、特許文献2、3、参照)。これらは、熱間圧延後、コイル状に巻き取って製造される熱延鋼板である。   In general, precipitation strengthening is advantageous to increase the yield ratio of steel. Ti is conventionally used as a precipitation strengthening element, and a high strength steel plate containing 0.12% or more of Ti has been proposed (see, for example, Patent Documents 2 and 3). These are hot-rolled steel sheets manufactured by winding up in a coil shape after hot rolling.

特開2009−287081号公報JP, 2009-287081, A 特開平5−230529号公報Unexamined-Japanese-Patent No. 5-230529 特開平8−73985号公報JP-A-8-73985

建産機に使用される高強度鋼板には高い降伏比が要求されるが、降伏比が高過ぎると加工性が低下するという問題がある。また、曲げなどの加工性を高めるには、延性も必要である。また、建産機の部材を製造する際には、高強度鋼板に溶接が施されるため、熱影響による軟化を抑制することが必要である。   High strength steel plates used in construction machines are required to have a high yield ratio, but when the yield ratio is too high, there is a problem that the formability is reduced. In addition, ductility is also required to enhance the workability such as bending. Moreover, when manufacturing a member of a construction machine, since welding is performed on a high strength steel plate, it is necessary to suppress softening due to the influence of heat.

本発明は、このような実情に鑑み、特に建産機に好適に使用できる、高強度鋼板及びその製造方法の提供を課題とするものである。   In view of such circumstances, the present invention has an object of providing a high-strength steel sheet which can be suitably used particularly for a construction machine, and a method of manufacturing the same.

本発明者らは、鋼中に固溶した状態の炭素の量を極力少なくすることにより、降伏比を高めることができるという知見を得た。一方、Tiの添加は、析出強化及び固溶炭素量の低減に有利であるが、強度を高めるためにCを過剰に添加すると、降伏比が高くなり過ぎ、また、延性が低下する。更に、鋼板の引張特性の方向による差異を考慮して、最適な熱間圧延の条件を見出した。   The present inventors have found that the yield ratio can be increased by minimizing the amount of carbon in solid solution in steel. On the other hand, the addition of Ti is advantageous for the precipitation strengthening and the reduction of the amount of solid solution carbon, but when C is added excessively to enhance the strength, the yield ratio becomes too high and the ductility decreases. Furthermore, in consideration of the difference in the direction of the tensile properties of the steel sheet, the optimum hot rolling conditions were found.

更に、焼入れ、焼戻しなどの調質熱処理を施さず、水冷ままで製造された高強度鋼板は、溶接時に熱の影響を受けた部分の強度が、調質処理を施した場合に比べて低下しやすい。溶接継手では、最も硬さの低い箇所が溶接継手全体の強度を支配することから、溶接継手の最軟化部の硬さと合金成分との関係を調査し、溶接継手の強度とJS値との間に良い相関関係があることがわかった。   Furthermore, in high-strength steel plates manufactured without cooling by tempering such as quenching and tempering, as they are water-cooled, the strength of the part affected by heat during welding is lower than when tempering is applied. Cheap. In the welded joint, since the lowest point of the hardness controls the strength of the entire welded joint, the relationship between the hardness of the softest part of the welded joint and the alloy component is investigated, and the strength and JS value of the welded joint It turned out that there is a good correlation.

本発明は、以上のような知見に基づいてなされたものであって、その要旨は以下のとおりである。
[1]質量%で、
C :0.03〜0.09%、
Mn:1.30〜2.50%、
Nb:0.005〜0.03%、
Mo:0.05〜0.3%、
Al:0.01〜0.05%、
Ti:0.10〜0.20%
を含有し、
Si:0.50%以下、
P :0.02%以下、
S :0.006%以下、
N :0.005%以下、
B :0.003%以下
に制限し、残部Fe及び不可避的不純物からなり、下記式(1)で求められるJS値が1.8以上であり、板厚が4.5〜25mmであることを特徴とする高強度鋼板。
JS=5.5[C]+1.2[Si]+0.5[Mn]+0.8[Ni]+0.2[Cr]+1.8[Mo]+0.6[Nb]+[B] ・・・ (1)
ここで、[X]は、各元素Xの質量%であり、上記(1)式において、その元素を含有しない場合は0とする。
[2]更に、質量%で、
Cu:0.5%以下、
Ni:0.5%以下、
Cr:1.0%以下
の1種又は2種以上を含有することを特徴とする上記[1]に記載の高強度鋼板。
[3]更に、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、
REM:0.01%以下
の1種又は2種以上を含有することを特徴とする上記[1]又は[2]に記載の高強度鋼板。
[4]ラス状組織からなる金属組織を有することを特徴とする上記[1]〜[3]のいずれかに記載の高強度鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] mass%,
C: 0.03 to 0.09%,
Mn: 1.30 to 2.50%,
Nb: 0.005 to 0.03%,
Mo: 0.05 to 0.3%,
Al: 0.01 to 0.05%,
Ti: 0.10 to 0.20%
Contains
Si: 0.50% or less,
P: 0.02% or less,
S: 0.006% or less,
N: 0.005% or less,
B: limited to 0.003% or less, consisting of balance Fe and unavoidable impurities, JS value determined by the following formula (1) is 1.8 or more, plate thickness is 4.5 to 25 mm Features high strength steel plate.
JS = 5.5 [C] +1.2 [Si] +0.5 [Mn] +0.8 [Ni] +0.2 [Cr] +1.8 [Mo] +0.6 [Nb] + [B] 1)
Here, [X] is the mass% of each element X, and in the above formula (1), it is 0 if the element is not contained.
[2] Furthermore, in mass%,
Cu: 0.5% or less,
Ni: 0.5% or less,
Cr: One or two or more of 1.0% or less of Cr is contained, The high strength steel plate according to the above [1].
[3] Furthermore, in mass%,
Ca: 0.01% or less,
Mg: 0.01% or less,
REM: One or two or more of 0.01% or less of the high strength steel plate described in the above [1] or [2].
[4] The high strength steel plate according to any one of the above [1] to [3], which has a metal structure composed of a lath-like structure.

[5]質量%で、
C :0.03〜0.09%、
Mn:1.30〜2.50%、
Nb:0.005〜0.03%、
Mo:0.05〜0.3%、
Al:0.01〜0.05%、
Ti:0.10〜0.20%
を含有し、
Si:0.50%以下、
P :0.02%以下、
S :0.006%以下、
N :0.005%以下、
B :0.003%以下
に制限し、残部Fe及び不可避的不純物からなり、下記式(1)で求められるJS値が1.8以上である成分組成を有する鋼片を、1000℃以上に加熱し、900℃以上で粗圧延を施した後、下記式(2)、(3)及び(4)を同時に満足する温度TCRの範囲内での累積圧下率を40〜60%とする仕上圧延を行って板厚を4.5〜25mmとし、そのまま、700℃以上の温度から100℃以下の温度まで水冷することを特徴とする高強度鋼板の製造方法。
JS=5.5[C]+1.2[Si]+0.5[Mn]+0.8[Ni]+0.2[Cr]+1.8[Mo]+0.6[Nb]+[B] ・・・ (1)
CR≦900℃ ・・・ (2)
CR≧800×[Ti]+720 ・・・ (3)
CR≦2250×[Ti]+590 ・・・ (4)
ここで[X]は各元素Xの含有量[質量%]であり、上記(1)式において、その元素を含有しない場合は0として求める。
[6]更に、質量%で、
Cu:0.5%以下、
Ni:0.5%以下、
Cr:1.0%以下、
の1種又は2種以上を含有することを特徴とする上記[5]に記載の高強度鋼板の製造方法。
[7]更に、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、
REM:0.01%以下、
の1種又は2種以上を含有することを特徴とする上記[5]又は[6]のいずれかに記載の高強度鋼板の製造方法。
[5] mass%,
C: 0.03 to 0.09%,
Mn: 1.30 to 2.50%,
Nb: 0.005 to 0.03%,
Mo: 0.05 to 0.3%,
Al: 0.01 to 0.05%,
Ti: 0.10 to 0.20%
Contains
Si: 0.50% or less,
P: 0.02% or less,
S: 0.006% or less,
N: 0.005% or less,
B: A billet limited to 0.003% or less, consisting of the balance Fe and unavoidable impurities, and heating a steel piece having a component composition having a JS value of 1.8 or more determined by the following formula (1) to 1000 ° C. or more And rough rolling at 900 ° C. or higher, and then finish rolling with a cumulative rolling reduction of 40 to 60% within the range of the temperature T CR that simultaneously satisfies the following formulas (2), (3) and (4) A plate thickness of 4.5 to 25 mm and water-cooling as it is from a temperature of 700 ° C. or more to a temperature of 100 ° C. or less.
JS = 5.5 [C] +1.2 [Si] +0.5 [Mn] +0.8 [Ni] +0.2 [Cr] +1.8 [Mo] +0.6 [Nb] + [B] 1)
T CR ≦ 900 ° C. (2)
T CR 800800 × [Ti] +720 (3)
T CR ≦ 2250 × [Ti] + 590 (4)
Here, [X] is the content [mass%] of each element X, and in the above formula (1), when the element is not contained, it is determined as 0.
[6] Furthermore, in mass%,
Cu: 0.5% or less,
Ni: 0.5% or less,
Cr: 1.0% or less,
A method for producing a high strength steel sheet according to the above [5], characterized in that it contains one or two or more of them.
[7] Furthermore, in mass%,
Ca: 0.01% or less,
Mg: 0.01% or less,
REM: 0.01% or less,
The manufacturing method of the high strength steel plate according to any one of the above [5] or [6], characterized in that it contains one or two or more of them.

本発明によれば、高強度化ニーズの強い建設機械、産業機械などの溶接構造物の構造部材に好適な高強度鋼板を、調質処理を必要としない非調質プロセスで提供することができる。特に、本発明によれば、好ましくは引張強さが765MPa以上、降伏比が0.75〜0.90、伸びが16%以上で、溶接継手の強度が母材の強度の85%以上、より好ましくは降伏強さが685MPa以上、引張強さが780〜930MPaである、板厚4.5〜25mmの高強度鋼板を低コストで提供することが可能になる。したがって、本発明は産業上の貢献が極めて顕著である。   According to the present invention, it is possible to provide a high-strength steel plate suitable for structural members of welded structures such as construction machines, industrial machines and the like which have strong needs for strengthening, by a non-refining process which does not require tempering treatment. . In particular, according to the present invention, preferably the tensile strength is 765 MPa or more, the yield ratio is 0.75 to 0.90, the elongation is 16% or more, and the strength of the welded joint is 85% or more of the strength of the base material, It is possible to provide a high strength steel plate having a thickness of 4.5 to 25 mm, preferably having a yield strength of 685 MPa or more and a tensile strength of 780 to 930 MPa, at low cost. Therefore, the present invention is extremely significant for industrial contribution.

鋼の固溶炭素量と降伏比との関係を示すグラフである。It is a graph which shows the relationship between the amount of solid solution carbons of steel, and a yield ratio. 圧延方向の降伏強さ(YS−L)、及び、幅方向の引張強さ(TS−C)と、Ti添加量との関係を示すグラフである。It is a graph which shows the relationship between the yield strength in the rolling direction (YS-L), the tensile strength in the width direction (TS-C), and the amount of added Ti.

建産機には、板厚が4.5〜25mmの高強度鋼板が使用される。製造コストの観点から、調質熱処理などの製造工程を省略することが望ましく、本発明者らは、引張強さが765MPa以上の鋼板を、熱間圧延後にそのまま水冷して製造し、降伏比、伸びを向上させる方法について検討を行った。その結果、まず、鋼中のC量を少なくすることにより、降伏比が大きくなることを見出した。更に検討を進めた結果、図1に示すように、降伏比に影響を及ぼす本質的な要因が、固溶炭素量であることをつきとめた。   A high strength steel plate having a thickness of 4.5 to 25 mm is used for a construction machine. From the viewpoint of the manufacturing cost, it is desirable to omit the manufacturing process such as the refining heat treatment, and the inventors of the present invention manufacture a steel plate having a tensile strength of 765 MPa or more as it is by water cooling after hot rolling. We examined ways to improve growth. As a result, it was first found that the yield ratio is increased by reducing the amount of C in the steel. As a result of further investigations, as shown in FIG. 1, it was found that the essential factor affecting the yield ratio is the amount of solid solution carbon.

図1の縦軸は、Cの含有量を0.05%とし、Tiの添加量を変化させた種々の組成の鋼に熱間圧延及び水冷を施し、引張試験を行って測定した降伏強さ及び引張強さから求めた降伏比である。図1の横軸は、降伏比の測定に使用した鋼の組成から、熱科学計算によって求めた920℃での平衡状態での固溶炭素量である。固溶炭素量が減少すると、降伏強さの上昇が引張強さの上昇に対して相対的に大きくなり、降伏比が高くなる。   The vertical axis in FIG. 1 shows the yield strength measured by subjecting steels of various compositions in which the content of C is 0.05% and the addition amount of Ti is changed and which is subjected to hot rolling and water cooling and subjected to a tensile test. And the yield ratio determined from the tensile strength. The horizontal axis of FIG. 1 is the amount of solid solution carbon in an equilibrium state at 920 ° C. determined by thermal scientific calculation from the composition of the steel used to measure the yield ratio. As the amount of solid solution carbon decreases, the increase in yield strength becomes larger relative to the increase in tensile strength, and the yield ratio becomes higher.

このように、Tiを添加してTiCを析出させ、炭素を炭化物として固定すると、固溶炭素量が少なくなり、降伏比を高めることが可能になる。更に、鋼板の強度は圧延方向(L方向)と圧延方向に垂直な幅方向(C方向)とで変化し、特に、圧延方向の降伏強さ(YS−L)を高めた場合、幅方向の引張強さ(TS−C)の制御が困難であるという知見を得た。   As described above, when Ti is added to precipitate TiC and carbon is fixed as a carbide, the amount of solid solution carbon is reduced, and the yield ratio can be increased. Furthermore, the strength of the steel plate changes in the rolling direction (L direction) and in the width direction (C direction) perpendicular to the rolling direction, and in particular, when the yield strength (YS-L) in the rolling direction is increased, the width direction The knowledge that control of tensile strength (TS-C) was difficult was acquired.

そして、本発明者らは、圧延方向の降伏強さ(YS−L)を685MPa以上、幅方向の引張強さ(TS−C)を930MPa以下にするための条件を検討し、以下の式(2)〜(4)を満足することが好ましいという知見を得た。式(2)〜(4)は、図2に示すように、実験によって求めた、(YS−L)≧685MPa、(TS−C)≦930MPaを満足する、Tiの含有量[%Ti]と熱間圧延の仕上温度TCRとの関係を表す式である。図2に示す線分のうち、YS−Lは圧延方向の降伏強さが685MPaとなる条件、TS−Cは幅方向の引張強さ930MPaとなる条件で、線分よりも上部では低強度、線分よりも下部では高強度になる。 Then, the inventors examined the conditions for setting the yield strength in the rolling direction (YS-L) in the rolling direction to 685 MPa or more and the tensile strength in the width direction (TS-C) to 930 MPa or less. It has been found that it is preferable to satisfy 2) to (4). Formulas (2) to (4), as shown in FIG. 2, the content of Ti [% Ti] satisfying (YS−L) ≧ 685 MPa and (TS−C) ≦ 930 MPa obtained by experiment is an expression that represents the relationship between the finishing temperature T CR hot rolling. Among the line segments shown in FIG. 2, YS-L is a condition that the yield strength in the rolling direction is 685 MPa, and TS-C is a condition that the tensile strength in the width direction is 930 MPa. It has high strength below the line segment.

CR≦900℃ ・・・(2)
CR≧800×[%Ti]+720 ・・・(3)
CR≦2250×[%Ti]+590 ・・・(4)
更に、これらの関係式から求められるTCRの範囲内での累積圧下率が40〜60%になるように仕上圧延を行うことによって、降伏強さが685MPa以上、引張強さが930MPa以下という、好ましい引張特性が得られることがわかった。
T CR ≦ 900 ° C. (2)
T CR 800800 × [% Ti] +720 (3)
T CR ≦ 2250 × [% Ti] + 590 (4)
Further, by performing cumulative rolling reduction finish such that 40% to 60% rolling within these relations from sought T CR, yield strength above 685MPa, a tensile strength of hereinafter referred to 930 MPa, It has been found that favorable tensile properties are obtained.

ところで、焼入れ、焼戻しなどの調質熱処理を施さず、水冷ままで製造された高強度鋼板は、溶接時に熱の影響を受けた部分の強度が、調質処理を施した場合に比べて、低下しやすい。溶接継手では、最も硬さの低い箇所が溶接継手全体の強度を支配することから、溶接継手の最軟化部の硬さと合金成分との関係を調査した。   By the way, the high strength steel plate manufactured without cooling and heat treatment such as quenching and tempering, as it is with water cooling, is lower in strength of the part affected by heat at the time of welding compared with the case where the refining treatment is performed It's easy to do. In the welded joint, since the place with the lowest hardness controls the strength of the entire welded joint, the relationship between the hardness of the softest part of the welded joint and the alloy composition was investigated.

その結果、最軟化部の硬さは合金成分の影響を大きく受け、下記式(1)で算出されるJS値とよい相関関係があることを見出した。なお、溶接熱影響部の合金組成は、溶接金属による希釈等の影響を受けておらず、母材である高強度厚鋼板の合金組成と同じである。   As a result, it was found that the hardness of the most softened portion is greatly affected by the alloy components and has a good correlation with the JS value calculated by the following formula (1). The alloy composition of the weld heat affected zone is not affected by dilution by the weld metal and the like, and is the same as the alloy composition of the high strength thick steel plate as the base material.

JS=5.5[C]+1.2[Si]+0.5[Mn]+0.8[Ni]+0.2[Cr]+1.8[Mo]+0.6[Nb]+[B] ・・・(1)
ここで、[X]はそれぞれ、各元素Xの質量%である。
JS = 5.5 [C] + 1.2 [Si] + 0.5 [Mn] + 0.8 [Ni] + 0.2 [Cr] + 1.8 [Mo] + 0.6 [Nb] + [B] ... ( 1)
Here, [X] is the mass% of each element X, respectively.

更に、JS値と溶接継手の強度(継手強度)との関係を統計的に検討したところ、下記式(5)で近似できることを見出した。
継手強度=705×JS−491 (MPa) ・・・(5)
Furthermore, when the relationship between the JS value and the strength (joint strength) of a welded joint was statistically examined, it was found that it can be approximated by the following formula (5).
Joint strength = 705 × JS-491 (MPa) · · · (5)

即ち、JS値が適正になるように高強度厚鋼板の合金成分を設計すれば継手強度を調整することができ、溶接構造物として十分な継手強度を確保することができる。ただし、実際に溶接継手の引張試験を行った場合は、最も強度が弱い部分で破断が生じる。したがって、上記式(5)の推定値が母材の引張強さを超える場合は母材で破断が生じるため、継手強度は母材の引張強さと同等になる。   That is, if the alloy component of the high strength thick steel plate is designed such that the JS value becomes appropriate, the joint strength can be adjusted, and a sufficient joint strength as a welded structure can be secured. However, when a tensile test is actually performed on a welded joint, breakage occurs at the weakest portion. Accordingly, when the estimated value of the above equation (5) exceeds the tensile strength of the base material, fracture occurs in the base material, so the joint strength becomes equal to the tensile strength of the base material.

以下に、本発明における各成分及び製造方法の限定理由を説明する。まず、成分について説明するが、特に断りのない限り、「%」は「質量%」を意味する。   Below, the reason for limitation of each component and manufacturing method in this invention is demonstrated. First, components will be described, but unless otherwise noted, “%” means “mass%”.

[C:0.03〜0.09%]
Cは、強度、降伏比だけでなく、製鋼工程での製造性にも影響を及ぼす元素である。C量が0.03%を下回ると、製鋼での工程負荷が大きくなりすぎるので、0.03%以上とする。一方、C量が0.09%を超えると、降伏比が大きくなり、降伏強さに対して引張強さが高くなりすぎるので、0.09%以下とする。好ましくは0.06%以下とする。
[C: 0.03 to 0.09%]
C is an element that affects not only the strength and the yield ratio but also the manufacturability in the steel making process. If the C content is less than 0.03%, the process load in steelmaking becomes too large, so the content is made 0.03% or more. On the other hand, when the amount of C exceeds 0.09%, the yield ratio becomes large and the tensile strength becomes too high with respect to the yield strength, so the content is made 0.09% or less. Preferably, it is 0.06% or less.

[Si:0.50%以下]
Siは、脱酸元素であり、強度の上昇にも寄与する元素である。Si量は0%でもよいが、0.01%以上が好ましい。一方、Siを過剰に添加すると靭性が低下するため、Si量の上限を0.50%以下とする。好ましくは0.40%以下とする。
[Si: 0.50% or less]
Si is a deoxidizing element and is an element also contributing to the increase in strength. Although the amount of Si may be 0%, 0.01% or more is preferable. On the other hand, since toughness will fall if Si is added excessively, the upper limit of the amount of Si is made into 0.50% or less. Preferably, it is 0.40% or less.

[Mn:1.30〜2.50%]
Mnは、焼入れ性を高める元素であり、強度を確保のために、Mn量を1.30%以上とする。好ましくは1.50%以上とする。一方、Mnを過剰に添加すると靭性が低下するため、Mn量の上限を2.50%以下とする。好ましくは2.00%以下とする。
[Mn: 1.30 to 2.50%]
Mn is an element that enhances hardenability, and in order to secure strength, the amount of Mn is made 1.30% or more. Preferably, it is 1.50% or more. On the other hand, since toughness will fall when Mn is added excessively, the upper limit of the amount of Mn is made into 2.50% or less. Preferably, it is 2.00% or less.

[P:0.02%以下]
[S:0.006%以下]
P、Sは、不純物であり、母材及び継手の低温靭性を低下させるため、P量及びS量を、それぞれ、0.02%以下及び0.006%以下に制限する。好ましくは、それぞれ、0.01%以下及び0.004%以下である。P量及びS量の下限は0でもよいが、製造コストの観点から、P量を0.001%以上、S量を0.0001%以上とすることができる。
[P: 0.02% or less]
[S: 0.006% or less]
P and S are impurities, and the amounts of P and S are limited to 0.02% or less and 0.006% or less, respectively, to reduce the low temperature toughness of the base material and the joint. Preferably, it is 0.01% or less and 0.004% or less, respectively. Although the lower limit of the amount of P and the amount of S may be 0, the amount of P can be made 0.001% or more and the amount of S can be made 0.0001% or more from the viewpoint of manufacturing cost.

[Nb:0.005〜0.03%]
Nbは、焼入れ性の確保や、組織の微細化による強靭化に有効であり、Nb量を0.005%以上とする。好ましくは0.010%以上とする。一方、多量のNbを添加すると溶接部の靭性が低下するため、Nb量の上限を0.03%以下とする。好ましくは0.02%以下とする。
[Nb: 0.005 to 0.03%]
Nb is effective for securing hardenability and toughening by refining the structure, and the Nb content is made 0.005% or more. Preferably, it is 0.010% or more. On the other hand, when a large amount of Nb is added, the toughness of the welded portion decreases, so the upper limit of the Nb amount is made 0.03% or less. Preferably, it is 0.02% or less.

[Mo:0.05〜0.3%]
Moは、焼入れ性確保のために有効な元素であり、Mo量を0.05%以上とし、好ましくは0.10%以上とする。一方、Moを過剰に添加すると靭性の低下が懸念されるため、Mo量の上限を0.3%以下とする。好ましくはMo量を0.25%以下とする。
[Mo: 0.05 to 0.3%]
Mo is an element effective for securing the hardenability, and the Mo amount is 0.05% or more, preferably 0.10% or more. On the other hand, when adding Mo excessively, there is a concern that the toughness will be reduced, so the upper limit of the Mo amount is made 0.3% or less. Preferably, the amount of Mo is 0.25% or less.

[Al:0.01〜0.05%]
Alは、脱酸元素であり、Tiの酸化物の形成を抑制して、TiCを析出させるために、Al量を0.01%以上とする。一方、Al量が0.05%を超えると、粗大なアルミナ介在物が生成し、靭性を低下させるので、Al量の上限を0.05%以下とする。
[Al: 0.01 to 0.05%]
Al is a deoxidizing element, and the amount of Al is made 0.01% or more in order to precipitate TiC by suppressing the formation of an oxide of Ti. On the other hand, if the amount of Al exceeds 0.05%, coarse alumina inclusions are formed to lower the toughness, so the upper limit of the amount of Al is made 0.05% or less.

[Ti:0.10〜0.20%]
Tiは、本発明で最も重要な元素である。TiCを形成して炭素を固定し、降伏比を大きくするとともに引張強さの上昇を抑制するために、Ti量を0.10%以上とする。一方、Tiを過度に添加すると、固溶炭素量が過剰に減少して強度が低下するため、Ti量の上限を0.20%以下とする。
[Ti: 0.10 to 0.20%]
Ti is the most important element in the present invention. In order to form TiC to fix carbon, to increase the yield ratio and to suppress an increase in tensile strength, the amount of Ti is made 0.10% or more. On the other hand, when Ti is added excessively, the amount of solid solution carbon decreases excessively and the strength decreases, so the upper limit of the amount of Ti is made 0.20% or less.

[B:0.003%以下]
Bは、焼入れ性を向上させる元素であり、好ましくはB量を0.0003%以上とする。しかし、B量が0.003%を超えても焼入れ性は飽和するので、上限を0.003%以下に制限する。好ましくはB量を0.002%以下とする。
[B: 0.003% or less]
B is an element improving the hardenability, and preferably the B content is 0.0003% or more. However, since the hardenability is saturated even when the B content exceeds 0.003%, the upper limit is limited to 0.003% or less. Preferably, the B amount is 0.002% or less.

[N:0.005%以下]
Nは、TiNを形成して、TiCの生成を阻害するため、N量を0.005%以下に制限する。好ましくはN量を0.004%以下とする。N量は0%でもよいが、製造コストの観点から、0.001%以上であってもよい。
[N: 0.005% or less]
Since N forms TiN and inhibits the formation of TiC, the amount of N is limited to 0.005% or less. Preferably, the N amount is 0.004% or less. Although the amount of N may be 0%, it may be 0.001% or more from the viewpoint of manufacturing cost.

[Cu:0.5%以下]
[Ni:0.5%以下]
[Cr:1.0%以下]
Cu、Ni、Crは、焼入れ性を高めて強度の上昇に寄与する元素であり、1種又は2種以上を含有させることができる。効果を得るためには、それぞれの元素の含有量を0.10%以上にすることが好ましい。一方、Cu、Ni、Crは、何れも過度に添加すると母材及び継手の靭性が低下することがあり、含有量の上限を、それぞれ0.5%以下、0.5%以下、1.0%以下とすることが好ましい。
[Cu: 0.5% or less]
[Ni: 0.5% or less]
[Cr: 1.0% or less]
Cu, Ni, and Cr are elements that enhance the hardenability and contribute to the increase in strength, and can contain one or more kinds. In order to obtain an effect, the content of each element is preferably 0.10% or more. On the other hand, when any of Cu, Ni, and Cr is added excessively, the toughness of the base material and the joint may decrease, and the upper limit of the content is 0.5% or less, 0.5% or less, 1.0 or less, respectively. It is preferable to set it as% or less.

[Ca:0.01%以下]
[Mg:0.01%以下]
[REM:0.01%以下]
上記の元素の他、酸化物や硫化物の形態を制御するために、Ca、Mg、REMの1種又は2種以上を含有させてもよい。効果を得るためには、それぞれの元素の含有量を0.0005%以上にすることが好ましい。一方、Ca、Mg、REMは、何れも過度に添加すると粗大な介在物を生じて、母材及び継手の靭性が低下することがあり、含有量の上限を、それぞれ0.01%以下、0.01%以下、0.01%以下とすることが好ましい。
[Ca: 0.01% or less]
[Mg: 0.01% or less]
[REM: 0.01% or less]
In addition to the above elements, one or more of Ca, Mg and REM may be contained to control the form of the oxide or sulfide. In order to acquire an effect, it is preferable to make content of each element 0.0005% or more. On the other hand, when any of Ca, Mg and REM is added excessively, coarse inclusions may be generated to lower the toughness of the base material and the joint. The upper limit of the content is 0.01% or less, 0 It is preferable to set it as .01% or less and 0.01% or less.

[JS値:1.8以上]
更に、本発明に係る高強度鋼板を用いて製作した溶接継手の強度を母材の強度と同等以上にするため、溶接熱影響部の最軟化部の硬さと良い相関関係を示す(1)式で表わされるJS値を1.8以上とする。JS値の上限は高いほど好ましいため、特に制限せず、C、Si、Mn、Ni、Cr、Mo、Nb、Bの含有量の上限値で決定される3.1であってもよい。JS値を高めるには合金元素の含有量を増加させることが必要になるので、製造コストの観点から、JS値を好ましくは3.0以下、より好ましくは2.5以下、更に好ましくは2.0以下とすることができる。
[JS value: 1.8 or more]
Furthermore, in order to make the strength of the welded joint manufactured using the high strength steel plate according to the present invention equal to or higher than the strength of the base material, a good correlation with the hardness of the softest part in the welding heat affected zone is shown. Let JS value represented by be 1.8 or more. The upper limit of the JS value is preferably as high as possible, and is not particularly limited, and may be 3.1 determined by the upper limit of the content of C, Si, Mn, Ni, Cr, Mo, Nb, and B. In order to increase the JS value, it is necessary to increase the content of the alloying elements, so the JS value is preferably 3.0 or less, more preferably 2.5 or less, still more preferably 2. from the viewpoint of production cost. It can be set to 0 or less.

JS=5.5[C]+1.2[Si]+0.5[Mn]+0.8[Ni]+0.2[Cr]+1.8[Mo]+0.6[Nb]+[B] ・・・(1)
ここで、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]、[Nb]、[B]はそれぞれ、C、Si、Mn、Ni、Cr、Mo、Nb、Bの質量%である。
JS = 5.5 [C] + 1.2 [Si] + 0.5 [Mn] + 0.8 [Ni] + 0.2 [Cr] + 1.8 [Mo] + 0.6 [Nb] + [B] ... ( 1)
Here, [C], [Si], [Mn], [Ni], [Cr], [Mo], [Nb], [B] are C, Si, Mn, Ni, Cr, Mo, Nb, respectively. , B mass%.

本発明の高強度鋼板は、ラス状組織からなる金属組織を有することが好ましい。ラス状組織は、光学顕微鏡で観察した際に、針状の形態を呈する金属組織であり、粒状の形態を呈するポリゴナルフェライト、パーライト、島状マルテンサイトは含まれない。ラス状組織のうち、マルテンサイト、下部ベイナイトの一方又は両方からなる金属組織がより好ましい。   The high strength steel plate of the present invention preferably has a metal structure composed of a lath structure. The lath-like structure is a metal structure which exhibits a needle-like morphology when observed with an optical microscope, and does not include polygonal ferrite, pearlite or island martensite which exhibits a granular morphology. Among the lath-like structures, metal structures consisting of one or both of martensite and lower bainite are more preferable.

マルテンサイトはセンタイトを含まず、下部ベイナイトは微細なセメンタイトを含むという点で、両者は相違する金属組織である。光学顕微鏡ではマルテンサイトと下部ベイナイトとの判別は困難であるが、透過型電子顕微鏡(TEM)による観察で、セメンタイトの生成の有無によって判別することができる。   The two are different metallographic structures in that martensite contains no centite and lower bainite contains fine cementite. Although discrimination between martensite and lower bainite is difficult with an optical microscope, observation with a transmission electron microscope (TEM) can be conducted depending on the presence or absence of cementite formation.

ラス状組織は、熱間圧延後、水冷を行って生成する金属組織である。特に、マルテンサイト及び下部ベイナイトは、熱間圧延後、金属組織がオーステナイトである温度、即ち、フェライト変態が開始する温度であるAr3点以上から100℃以下まで水冷することによって生成することから、低温変態組織とも称される。   The lath-like structure is a metal structure formed by performing water cooling after hot rolling. In particular, martensite and lower bainite are formed by water cooling after hot rolling to a temperature at which the metal structure is austenite, that is, a temperature at which the ferrite transformation starts, Ar 3 point or more to 100 ° C. or less Also referred to as metamorphosis.

次に、本発明の高強度鋼板の製造方法について述べる。本発明の高強度鋼板は、常法で鋼を溶製し、鋳造して得られた鋼片に、板厚が4.5〜25mmになるように熱間圧延を施して製造することができる。以下に、好ましい製造方法について説明する。   Next, the method for producing the high strength steel sheet of the present invention will be described. The high strength steel plate of the present invention can be manufactured by hot rolling a steel piece obtained by melting and casting steel by a conventional method so that the thickness becomes 4.5 to 25 mm. . Below, a preferable manufacturing method is demonstrated.

熱間圧延の加熱温度は、変形抵抗を低下させるために、1000℃以上とすることが好ましい。本発明ではC含有量が少ないため、NbCによるオーステナイト粒成長抑制効果が小さく加熱時の初期オーステナイト粒が粗大化しやすいので、あまり高温に加熱することは好ましくない。   The heating temperature for hot rolling is preferably 1000 ° C. or higher in order to reduce deformation resistance. In the present invention, since the C content is small, the austenite grain growth suppressing effect by NbC is small, and the initial austenite grains at the time of heating are likely to be coarsened, so it is not preferable to heat too high temperature.

熱間圧延は、オーステナイト再結晶温度域での粗圧延を行なった後、900℃以下のオーステナイト未再結晶温度域での仕上圧延を行なうことが好ましい。なお、900℃を超える温度での粗圧延については、特に制限する必要はない。未再結晶温度域での圧延は、Ti量[%Ti](質量%)に応じて(2)、(3)、(4)式を同時に満足する温度TCRでの累積圧下率を40〜60%とすることが好ましい。 In hot rolling, after rough rolling in the austenite recrystallization temperature range, finish rolling in the austenite non-recrystallization temperature range of 900 ° C. or less is preferably performed. In addition, it is not necessary to restrict | limit in particular about rough rolling in the temperature over 900 degreeC. The rolling in the unrecrystallized temperature range has a cumulative rolling reduction at a temperature TCR that satisfies the equations (2), (3) and (4) simultaneously depending on the amount of Ti [% Ti] (mass%) It is preferable to make it 60%.

CR≦900℃ ・・・(2)
CR≧800×[%Ti]+720 ・・・(3)
CR≦2250×[%Ti]+590 ・・・(4)
T CR ≦ 900 ° C. (2)
T CR 800800 × [% Ti] +720 (3)
T CR ≦ 2250 × [% Ti] + 590 (4)

上記(2)式は、未再結晶圧延を施すための上限温度を規定しており、上述の成分範囲では、未再結晶温度域が900℃以下であることを意味している。(3)式は引張強さの過度な上昇を抑制させるための条件であり、仕上圧延温度の下限値を規定している。圧延温度の低下により、強度は上昇し、仕上圧延の終了温度が(3)式の右辺の数値よりも低くなると引張強さが過度に上昇し、930MPaを超える場合がある。(4)式は、降伏強さの低下を抑制するための条件であり、仕上圧延の開始温度の上限値を規定している。(4)式の右辺の数値が900℃を超える場合は、(2)式による制限のため、仕上圧延の上限を900℃とする。仕上温度が高くなると強度は低下し、開始温度が(4)式の右辺の数値又は900℃の何れか低い方を超えた場合、降伏強さが低下し、685MPaに満たなくなることがある。   The above equation (2) defines the upper limit temperature for performing non-recrystallization rolling, and means that the non-recrystallization temperature range is 900 ° C. or less in the above-described component range. Equation (3) is a condition for suppressing an excessive increase in tensile strength, and defines the lower limit value of the finish rolling temperature. Due to the reduction of the rolling temperature, the strength rises, and when the finish rolling finish temperature becomes lower than the value on the right side of the equation (3), the tensile strength may excessively increase and may exceed 930 MPa. The equation (4) is a condition for suppressing the decrease in yield strength, and defines the upper limit of the start temperature of finish rolling. When the numerical value on the right side of the equation (4) exceeds 900 ° C., the upper limit of finish rolling is set to 900 ° C. due to the limitation by the equation (2). When the finishing temperature becomes high, the strength decreases, and when the starting temperature exceeds either the numerical value on the right side of Formula (4) or 900 ° C., whichever is lower, the yield strength may be reduced to less than 685 MPa.

圧延後の水冷の開始温度は、700℃未満の場合、局所的にポリゴナルフェライト、島状マルテンサイトやセメンタイトが生成し、母材の強度や靭性が低下することがあるため、700℃以上とすることが好ましい。   If the start temperature of water cooling after rolling is less than 700 ° C, polygonal ferrite, island martensite and cementite may be locally generated, and the strength and toughness of the base material may decrease. It is preferable to do.

水冷の停止温度は、安定してラス状組織、特に、マルテンサイト、下部ベイナイトの一方又は両方からなる金属組織を得るために100℃以下とすることが好ましく、室温まで水冷を行ってもよい。水冷後は、そのまま室温まで放冷し、その後は熱処理を施さず、優れた引張特性及び靭性を有する高強度鋼板を得ることができる。   The stopping temperature of water cooling is preferably 100 ° C. or less in order to stably obtain a lath-like structure, in particular, a metallographic structure consisting of one or both of martensite and lower bainite, and water cooling may be performed to room temperature. After water cooling, it is allowed to cool to room temperature as it is, and thereafter heat treatment is not performed, and a high strength steel plate having excellent tensile properties and toughness can be obtained.

表1に示す成分組成の鋼を溶製して得られた鋼片を、表2に示す製造条件で熱間圧延し、水冷して鋼板を製造した。鋼板の金属組織を光学顕微鏡で観察し、また、試験片を採取して、母材の引張特性(降伏強さ、引張強さ、伸び)、靭性、溶接継手の引張強さ(溶接継手強度)の評価を行った。母材の引張特性は、JIS Z 2241に準拠して、1A号試験片(板状)又は4号試験片(棒状)を採取し、降伏強さ、引張強さ、伸びを測定した。引張試験片は板厚20mm以下では1A号全厚引張試験片を採取し、板厚20mm超では4号丸棒引張試験片を板厚の1/4部(t/4部)と板厚中心部(t/2部)より採取した。   The steel piece obtained by melting the steel having the component composition shown in Table 1 was hot-rolled under the production conditions shown in Table 2 and water-cooled to produce a steel plate. The metallographic structure of the steel sheet is observed with an optical microscope, and the specimen is collected to obtain the tensile properties (yield strength, tensile strength, elongation) of the base material, toughness, and tensile strength of the welded joint (welded joint strength) The evaluation of The tensile properties of the base material were obtained by collecting test pieces No. 1A (plate-like) or No. 4 (rod-like) in accordance with JIS Z 2241 and measuring the yield strength, tensile strength, and elongation. As for the tensile test pieces, No. 1A full thickness tensile test pieces are collected if the thickness is 20 mm or less, and if the thickness is more than 20 mm, the No. 4 round bar tensile test pieces are 1/4 part (t / 4 parts) of the thickness and the thickness center It collected from part (t / 2 part).

母材の靭性は、板厚中心部から圧延方向に直角な方向にJISZ 2242に準拠して、Vノッチ試験片を採取し、−20℃でのシャルピー吸収エネルギー(vE−20)を求めて評価した。溶接継手強度は、突き合わせ溶接継手を作製し、JIS Z 3121に準拠し、1A号試験片(板状)又は5号試験片(棒状)を用いて測定した。引張試験片は板厚20mm以下では1A号全厚引張試験片を採取し、板厚20mm超では5号丸棒引張試験片を板厚の1/4部(t/4部)と板厚中心部(t/2部)より採取した。結果を表2に示す。   The toughness of the base material is evaluated by collecting V-notch test pieces in the direction perpendicular to the rolling direction from the center of thickness according to JIS Z 2242, and determining Charpy absorbed energy (vE-20) at -20 ° C. did. The welded joint strength was measured by using a butt welded joint and conforming to JIS Z 3121 using No. 1A test pieces (plate-like) or No. 5 test pieces (rod-like). As for tensile test pieces, No. 1A full thickness tensile test pieces are collected if the board thickness is 20 mm or less, and No. 5 round bar tensile test pieces if the board thickness is more than 20 mm, 1/4 part (t / 4 part) of the board thickness It collected from part (t / 2 part). The results are shown in Table 2.

Figure 0006536331
Figure 0006536331

Figure 0006536331
Figure 0006536331

母材の引張特性の目標値は、降伏強さが650MPa以上(好ましくは685MPa以上)、母材の引張強さが765〜930MPa(好ましくは780MPa以上)、降伏比が0.75〜0.90、伸びが16%以上である。母材の靭性(vE−20)の目標値は47J以上(好ましくは60J以上)、溶接継手強度が765MPa以上(好ましくは780MPa以上)である。   The target values for the tensile properties of the base material are: yield strength 650 MPa or more (preferably 685 MPa or more), tensile strength of the base material 765 to 930 MPa (preferably 780 MPa or more), yield ratio 0.75 to 0.90 , Growth is more than 16%. The target value of the toughness (vE-20) of the base material is 47 J or more (preferably 60 J or more), and the weld joint strength is 765 MPa or more (preferably 780 MPa or more).

本発明例1〜15は、いずれも、母材の引張特性、靱性、溶接継手強度が目標値を満足しており、ラス状組織からなる金属組織を有していた。特に、本発明例1〜10は、母材の降伏強さが685MPa以上、引張強さが780MPa以上、母材の靭性(vE−20)が60J以上、溶接継手強度が780MPa以上であり、好ましい目標値をも満足している。また、光学顕微鏡による観察で、これらはラス状組織からなる金属組織を有しており、更に、セメンタイトが見られないことから、マルテンサイト、下部ベイナイトの一方又は両方からなる金属組織を有していると判定した。   Invention Examples 1 to 15 all had tensile strength characteristics, toughness, and weld joint strength of the base material satisfying the target values, and had a metal structure consisting of a lath-like structure. Particularly, in the invention examples 1 to 10, the yield strength of the base material is 685 MPa or more, the tensile strength is 780 MPa or more, the toughness (vE-20) of the base material is 60 J or more, and the weld joint strength is 780 MPa or more. I am satisfied with the target value. In addition, they have a metal structure consisting of a lath-like structure in observation with a light microscope, and further, because cementite can not be seen, they have a metal structure consisting of one or both of martensite and lower bainite It was determined that

一方、比較例16はC量が、比較例21はNb量が、比較例22はMn量が、それぞれ、不足しており、母材の降伏強さや引張強さが低下している。比較例17はC量が多く、引張強さが過剰に高くなっている。比較例18はTi量が少なく、比較例19はTi量が多いため、降伏比が低下している。比較例20はMo量が多いため、母材の靭性が低下している。比較例23はJS値が低いため、母材の引張特性は良好であるが、溶接継手強度が低下している。なお、光学顕微鏡による観察で、これらもラス状組織からなる金属組織を有していると判定した。   On the other hand, Comparative Example 16 lacks the C content, Comparative Example 21 the Nb content, and Comparative Example 22 the Mn content, and the yield strength and the tensile strength of the base material are lowered. Comparative Example 17 has a large amount of C and an excessively high tensile strength. Comparative Example 18 has a small amount of Ti, and Comparative Example 19 has a large amount of Ti, so the yield ratio is lowered. Since the comparative example 20 has much Mo amount, the toughness of a base material is falling. Since the comparative example 23 has a low JS value, the tensile properties of the base material are good, but the weld joint strength is reduced. In addition, it was determined by observation with an optical microscope that these also have a metal structure consisting of a lath-like structure.

本発明に係る高強度鋼板は、高強度化ニーズの強い建設機械、産業機械などの溶接構造物の構造部材に好適であり、調質処理を必要としない非調質プロセスで製造することが可能である。したがって、本発明は、板厚4.5〜25mmの建産機用高強度鋼板を低コストで提供することができる。   The high-strength steel plate according to the present invention is suitable for structural members of welded structures such as construction machines, industrial machines and the like which have strong needs for high strength, and can be manufactured by a non-refining process which does not require tempering. It is. Therefore, the present invention can provide a high strength steel plate for construction machine with a thickness of 4.5 to 25 mm at low cost.

Claims (7)

質量%で、
C :0.03〜0.09%、
Mn:1.30〜2.50%、
Nb:0.005〜0.03%、
Mo:0.05〜0.3%、
Al:0.01〜0.05%、
Ti:0.10〜0.20%
を含有し、
Si:0.50%以下、
P :0.02%以下、
S :0.006%以下、
N :0.005%以下、
B :0.003%以下
に制限し、残部Fe及び不可避的不純物からなり、下記式(1)で求められるJS値が1.8以上であり、板厚が4.5〜25mmであることを特徴とする高強度鋼板。
JS=5.5[C]+1.2[Si]+0.5[Mn]+0.8[Ni]+0.2[Cr]+1.8[Mo]+0.6[Nb]+[B] ・・・(1)
ここで、[X]は、各元素Xの質量%であり、上記(1)式において、その元素を含有しない場合は0とする。
In mass%,
C: 0.03 to 0.09%,
Mn: 1.30 to 2.50%,
Nb: 0.005 to 0.03%,
Mo: 0.05 to 0.3%,
Al: 0.01 to 0.05%,
Ti: 0.10 to 0.20%
Contains
Si: 0.50% or less,
P: 0.02% or less,
S: 0.006% or less,
N: 0.005% or less,
B: limited to 0.003% or less, consisting of balance Fe and unavoidable impurities, JS value determined by the following formula (1) is 1.8 or more, plate thickness is 4.5 to 25 mm Features high strength steel plate.
JS = 5.5 [C] + 1.2 [Si] + 0.5 [Mn] + 0.8 [Ni] + 0.2 [Cr] + 1.8 [Mo] + 0.6 [Nb] + [B] ... ( 1)
Here, [X] is the mass% of each element X, and in the above formula (1), it is 0 if the element is not contained.
更に、質量%で、
Cu:0.5%以下、
Ni:0.5%以下、
Cr:1.0%以下
の1種又は2種以上を含有することを特徴とする請求項1に記載の高強度鋼板。
Furthermore, in mass%,
Cu: 0.5% or less,
Ni: 0.5% or less,
Cr: 1.0% or less of 1 type or 2 or more types is contained, The high strength steel plate according to claim 1 characterized by the above-mentioned.
更に、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、
REM:0.01%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の高強度鋼板。
Furthermore, in mass%,
Ca: 0.01% or less,
Mg: 0.01% or less,
REM: One or more of 0.01% or less is contained, The high strength steel plate according to claim 1 or 2, characterized in that
ラス状組織からなる金属組織を有することを特徴とする請求項1〜3のいずれか1項に記載の高強度鋼板。   The high strength steel plate according to any one of claims 1 to 3, characterized by having a metal structure consisting of a lath-like structure. 質量%で、
C :0.03〜0.09%、
Mn:1.30〜2.50%、
Nb:0.005〜0.03%、
Mo:0.05〜0.3%、
Al:0.01〜0.05%、
Ti:0.10〜0.20%
を含有し、
Si:0.50%以下、
P :0.02%以下、
S :0.006%以下、
N :0.005%以下、
B :0.003%以下
に制限し、残部Fe及び不可避的不純物からなり、下記式(1)で求められるJS値が1.8以上である成分組成を有する鋼片を、1000℃以上に加熱し、900℃以上で粗圧延を施した後、下記式(2)、(3)及び(4)を同時に満足する温度TCRの範囲内での累積圧下率を40〜60%とする仕上圧延を行って板厚を4.5〜25mmとし、そのまま、700℃以上の温度から100℃以下の温度まで水冷することを特徴とする高強度鋼板の製造方法。
JS=5.5[C]+1.2[Si]+0.5[Mn]+0.8[Ni]+0.2[Cr]+1.8[Mo]+0.6[Nb]+[B] ・・・(1)
CR≦900℃ ・・・(2)
CR≧800×[Ti]+720 ・・・(3)
CR≦2250×[Ti]+590 ・・・(4)
ここで[X]は各元素Xの含有量[質量%]であり、上記(1)式において、その元素を含有しない場合は0として求める。
In mass%,
C: 0.03 to 0.09%,
Mn: 1.30 to 2.50%,
Nb: 0.005 to 0.03%,
Mo: 0.05 to 0.3%,
Al: 0.01 to 0.05%,
Ti: 0.10 to 0.20%
Contains
Si: 0.50% or less,
P: 0.02% or less,
S: 0.006% or less,
N: 0.005% or less,
B: A billet limited to 0.003% or less, consisting of the balance Fe and unavoidable impurities, and heating a steel piece having a component composition having a JS value of 1.8 or more determined by the following formula (1) to 1000 ° C. or more And rough rolling at 900 ° C. or higher, and then finish rolling with a cumulative rolling reduction of 40 to 60% within the range of the temperature T CR that simultaneously satisfies the following formulas (2), (3) and (4) A plate thickness of 4.5 to 25 mm and water-cooling as it is from a temperature of 700 ° C. or more to a temperature of 100 ° C. or less.
JS = 5.5 [C] + 1.2 [Si] + 0.5 [Mn] + 0.8 [Ni] + 0.2 [Cr] + 1.8 [Mo] + 0.6 [Nb] + [B] ... ( 1)
T CR ≦ 900 ° C. (2)
T CR 800800 × [Ti] +720 (3)
T CR ≦ 2250 × [Ti] + 590 (4)
Here, [X] is the content [mass%] of each element X, and in the above formula (1), when the element is not contained, it is determined as 0.
更に、質量%で、
Cu:0.5%以下、
Ni:0.5%以下、
Cr:1.0%以下、
の1種又は2種以上を含有することを特徴とする請求項5に記載の高強度鋼板の製造方法。
Furthermore, in mass%,
Cu: 0.5% or less,
Ni: 0.5% or less,
Cr: 1.0% or less,
A method for producing a high strength steel sheet according to claim 5, characterized in that it contains one or more of the following.
更に、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、
REM:0.01%以下、
の1種又は2種以上を含有することを特徴とする請求項5又は6のいずれかに記載の高強度鋼板の製造方法。
Furthermore, in mass%,
Ca: 0.01% or less,
Mg: 0.01% or less,
REM: 0.01% or less,
The manufacturing method of the high strength steel plate according to any one of claims 5 or 6, characterized in that one or two or more of them are contained.
JP2015197636A 2015-10-05 2015-10-05 High strength steel plate and method of manufacturing the same Active JP6536331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197636A JP6536331B2 (en) 2015-10-05 2015-10-05 High strength steel plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197636A JP6536331B2 (en) 2015-10-05 2015-10-05 High strength steel plate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017071805A JP2017071805A (en) 2017-04-13
JP6536331B2 true JP6536331B2 (en) 2019-07-03

Family

ID=58538105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197636A Active JP6536331B2 (en) 2015-10-05 2015-10-05 High strength steel plate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6536331B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233743B2 (en) * 1993-06-28 2001-11-26 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent stretch flangeability
JP3378923B2 (en) * 1993-09-20 2003-02-17 新日本製鐵株式会社 Method for producing steel sheet with small welding distortion and good bending workability by linear heating
JP2003313631A (en) * 2002-04-25 2003-11-06 Jfe Steel Kk High-strength steel superior in formability and uniformity of quality, and manufacturing method therefor
JP3899014B2 (en) * 2002-11-06 2007-03-28 新日本製鐵株式会社 Tensile strength 570 to 800 MPa class high strength steel plate excellent in toughness of base metal and weld heat affected zone and method for producing the same
JP4770293B2 (en) * 2005-06-30 2011-09-14 Jfeスチール株式会社 Manufacturing method of high-tensile steel sheet
JP5867444B2 (en) * 2013-04-15 2016-02-24 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent toughness and method for producing the same
JP6191268B2 (en) * 2013-06-19 2017-09-06 新日鐵住金株式会社 High yield ratio high strength hot-rolled steel sheet with less variation in strength in the coil width direction and excellent toughness, and method for producing the same
KR101536471B1 (en) * 2013-12-24 2015-07-13 주식회사 포스코 Ultra-high strength steel sheet for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
EP2905348B1 (en) * 2014-02-07 2019-09-04 ThyssenKrupp Steel Europe AG High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product

Also Published As

Publication number Publication date
JP2017071805A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP6468408B2 (en) H-section steel and its manufacturing method
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP4590012B2 (en) Abrasion-resistant steel plate excellent in high-temperature wear resistance and bending workability and manufacturing method thereof
JP5037744B2 (en) High strength steel plate and manufacturing method thereof
JPWO2014141697A1 (en) Thick and high toughness high strength steel sheet and method for producing the same
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP2016211073A (en) High strength hot rolled steel sheet and production method therefor
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP6501042B2 (en) High strength steel plate
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP6578728B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JP6816355B2 (en) Hot-rolled steel sheet and its manufacturing method
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
CA3094517C (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP6418418B2 (en) Steel material for large heat input welding
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
KR102339890B1 (en) Steel plate and method of producing same
JP5037204B2 (en) Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone
WO2013084265A1 (en) Steel for mechanical structures and manufacturing method therefor
JP6459704B2 (en) Steel for cold forging parts
JP6536331B2 (en) High strength steel plate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151