WO2019132310A1 - Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor - Google Patents

Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor Download PDF

Info

Publication number
WO2019132310A1
WO2019132310A1 PCT/KR2018/015581 KR2018015581W WO2019132310A1 WO 2019132310 A1 WO2019132310 A1 WO 2019132310A1 KR 2018015581 W KR2018015581 W KR 2018015581W WO 2019132310 A1 WO2019132310 A1 WO 2019132310A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
excluding
less
uniformity
hardness
Prior art date
Application number
PCT/KR2018/015581
Other languages
French (fr)
Korean (ko)
Inventor
김용우
정영진
유승호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019132310A1 publication Critical patent/WO2019132310A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a wear-resistant steel sheet having excellent material uniformity and a method of manufacturing the steel sheet.
  • the abrasion resistance of a steel is related to the hardness, and in order to improve abrasion resistance, it is necessary to increase the hardness of the steel. In order to ensure more stable abrasion resistance, it is required that the steel plate has a uniform hardness from the surface of the steel plate to the center of the plate thickness (t / 2, t: thickness), that is, there is no difference in hardness in the thickness direction of the steel plate.
  • Patent Documents 1 and 2 disclose a method of increasing the surface hardness and the hardness in the plate thickness by increasing the content of carbon (C) or adding a large amount of elements for improving hardenability such as chromium (Cr) and molybdenum (Mo) .
  • Patent Documents 1 and 2 focus only on securing a uniform hardness in the thickness direction from the surface of the steel sheet having a certain thickness or more.
  • the hardness deviation at the center of the plate thickness at the surface is not significant, and the deviation of the hardness in the longitudinal direction or the width direction of the steel sheet is a problem.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 1986-166954
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 1996-041535
  • One aspect of the present invention is to provide a steel sheet having excellent wear resistance and excellent material uniformity in the longitudinal direction and the width direction of the steel sheet and a method of manufacturing the steel sheet.
  • One aspect of the present invention is a method of manufacturing a semiconductor device, comprising: 0.2 to 0.3% of C, 0.5 to 2.0% of Si (excluding 0), 0.5 to 2.0% of Mn, 0.03% (Excluding 0 is excluded), Al: not more than 0.05% (excluding 0), Cr: 0.1 to 1.0%, Mo: 0.01 to 0.3% ), Nb: not more than 0.05% (excluding 0), the remainder contains Fe and unavoidable impurities,
  • the present invention relates to an abrasion-resistant steel sheet having excellent uniformity of material having a main structure of martensite and an effective grain size (EGS) of 30 ⁇ m or less.
  • EGS effective grain size
  • Another aspect of the present invention provides a method of manufacturing a semiconductor device, comprising: 0.2 to 0.3% of C, 0.5% or less of Si (excluding 0), 0.5 to 2.0% of Mn, Cr: 0.1 to 1.0%, Mo: 0.01 to 0.3%, B: not more than 50 ppm (excluding 0), Ti: not more than 0.02% (excluding 0) 0), Nb: not more than 0.05% (excluding 0), the remainder being Fe and unavoidable impurities, at 1100 to 1300 ⁇ ;
  • CT coiling temperature
  • the present invention it is possible to provide a steel sheet having an excellent hardness and excellent material uniformity with a small deviation in the longitudinal and width directions of the steel sheet with respect to the steel sheet having a thickness of 15 mm or less.
  • FIG. 1 is a graph showing the results of measurement of hardness and deviation of inventive examples and comparative examples in an embodiment of the present invention.
  • the inventors of the present invention have studied to produce a steel sheet having a thickness of 15 mm or less (preferably 3 to 15 mm) which is excellent in material uniformity by reducing the hardness deviation in the longitudinal direction and the width direction of the steel sheet, It is possible to produce a steel sheet excellent in material uniformity by managing the microstructure after hot rolling in the course of manufacturing, and came to the present invention.
  • the alloy composition of the steel sheet of the present invention will be described in detail. Unless otherwise stated, the content of each component is expressed on a weight basis in advance.
  • the steel sheet according to the present invention contains 0.2 to 0.3% of C, 0.5 to 2.0% of Si (excluding 0), 0.5 to 2.0% of Mn, 0.03% or less of P (excluding 0) (Excluding 0), Al: not more than 0.05% (excluding 0), Cr: 0.1 to 1.0%, Mo: 0.01 to 0.3%, B: 50ppm or less ) And Nb: not more than 0.05% (excluding 0).
  • C is the most economical and effective element in securing hardness. If the C content is excessively low, it may be difficult to secure the desired hardness. If the C content is excessively excessive, the toughness and weldability may be deteriorated due to excessive hardness increase. .
  • Si usually contributes to increase in strength by deoxidation and solid solution strengthening of molten steel, it is not intentionally added in the present invention, and Si can not be prevented from the viewpoint of securing physical properties without addition of Si. If the content is excessively excessive, on the hot-rolled steel sheet surface, a proper scale due to Si may be formed to deteriorate the surface quality, and the quality of the plating may be deteriorated during plating. Therefore, the Si content is preferably 0.5% or less.
  • the Mn is an element which suppresses ferrite formation and raises the hardness and toughness of the steel by effectively raising the incombustibility by lowering the Ar3 temperature, and is preferably contained in an amount of not less than 0.5% in order to secure an appropriate hardness. However, if the content thereof is excessively excessive, a center segregation part may occur in the performance process, so it is preferable that the content does not exceed 2.0%.
  • P is an impurity inevitably contained in the steel, and it is preferable to control the content as low as possible. In particular, when the content is excessive, the risk of deterioration of weldability and brittleness of steel increases, so that the content of P is preferably 0.03% or less.
  • the above S is an impurity inevitably contained in the steel, and it is preferable to manage the content as much as possible.
  • a non-metallic inclusion can be formed by bonding with Mn or the like, and the risk of brittleness of steel is increased, so that the content of S is preferably controlled to be 0.02% or less.
  • Al contributes to the deoxidation of molten steel, it is not intentionally included in the present invention, and even if the AL is not added, there is no problem in securing the physical properties. However, if the content thereof is excessive, clogging of nozzles may occur during performance, so that the content of Al in the present invention is preferably not more than 0.05%.
  • the Cr is advantageous in securing hardness by increasing the incombustibility, and therefore, it is preferable that Cr is contained in an amount of 0.1% or more in order to secure an appropriate hardness.
  • the content is excessively excessive, the weldability is poor and the manufacturing cost is increased, so it is preferable that the content is not more than 1.0%.
  • the Mo is an element which is advantageous in securing hardness and improving toughness by increasing the incombustibility, and is preferably added in an amount of 0.01% or more for securing an appropriate hardness and toughness.
  • the content exceeds the above range and exceeds 0.3%, the weldability is poor and it may cause a rise in manufacturing cost, and therefore it is preferable that the content is not more than 0.3%.
  • the B may be contained as an element capable of substituting for Si, and an extremely small amount can improve hardenability by enhancing hardenability and strengthening grain boundaries.
  • the content exceeds 50 ppm, excessive surface degradation due to BN precipitation and deterioration in toughness may be a problem, so that the content thereof is preferably not more than 50 ppm.
  • the Ti is present in the steel as TiN and has the effect of inhibiting the growth of the crystal grains during the heating process for hot rolling. In addition, it plays a role of removing N so that B does not react with N in boron added steel. If the Ti content is excessive, excessive TiN precipitation may cause nozzle clogging during performance.
  • the Nb is dissolved in austenite to increase the hardenability of austenite and form carbonitride such as Nb (C, N), thereby being effective in increasing the strength of steel and suppressing the growth of austenite grains.
  • Nb content exceeds 0.05%, a coarse precipitate is formed, which is a starting point of brittle fracture, which may be a problem of inhibiting toughness.
  • the steel sheet of the present invention may further contain, in addition to the above-described alloy composition, elements capable of ensuring favorable physical properties in the present invention.
  • elements capable of ensuring favorable physical properties in the present invention may include not more than 0.04% of cobalt (Co), not more than 0.1% of copper (Cu), not more than 0.02% of vanadium (V), and 2 to 100 ppm of calcium (Ca)
  • Co Co + 0.04%
  • the Co is an element favorable for securing the hardness together with the strength of the steel by increasing the ingotability of the steel.
  • the content exceeds 0.04%, there is a fear that the ingot of the steel may be lowered due to segregation or the like, and the cost of manufacturing the steel is increased due to high-strength elements.
  • the Cu improves the incombustibility of the steel and is an element which improves the strength and hardness of the steel by solid solution strengthening.
  • the content of Cu exceeds 0.1%, surface defects are generated and hot workability is deteriorated. Therefore, it is preferable that the content of Cu is not more than 0.1% when Cu is added.
  • V is an element which is advantageous in suppressing the growth of austenite grains and enhancing the ingotability of steel by securing VC carbide upon reheating after hot rolling to secure strength and toughness.
  • V is an expensive element, and if the content exceeds 0.02%, it increases the manufacturing cost, and therefore it is preferable that the V does not exceed 0.02%.
  • Ca has an effect of inhibiting the formation of MnS segregated in the central portion of the steel material by producing CaS because of its strong binding force with S.
  • the CaS generated by the addition of Ca has an effect of increasing the corrosion resistance under a humid environment.
  • Ca is preferably added in an amount of 2 ppm or more, but if the content exceeds 100 ppm, it may cause clogging of the nozzle during steelmaking. Accordingly, in the present invention, the Ca content is preferably 2 to 100 ppm when Ca is added.
  • the steel sheet of the present invention is an iron (Fe) component in addition to the above-mentioned alloying elements.
  • Fe iron
  • the impurities which are not intended from the raw material or the environment of caution can be inevitably incorporated in a normal manufacturing process, and therefore this can not be excluded. Since these impurities can be known to any ordinary technician, they do not fully exploit all of them.
  • the final microstructure of the inventive steel sheet preferably has an area fraction of 95% or more of martensite and 5% or less of the second phase. More preferably 97% or more of martensite and 3% or less of the second phase.
  • the second phase is not particularly limited, but may be ferrite, perlite, bainite or the like. In order to secure an excellent hardness, it is preferable that the martensite is uniformly formed. If the fraction of the second phase is high or if the second phase is formed in a large amount at a specific site, the homogeneous strength can not be secured. Therefore, it is preferable that the second phase is obtained at a minimum
  • the effective grain size (EGS) of the martensite is preferably 30 ⁇ or less. More preferably not more than 20 mu m. As the effective grain size becomes finer, it is advantageous to obtain a homogeneous hardness, so that the effective grain size is 30 ⁇ or less, more preferably 20 ⁇ or less.
  • the microstructure of the steel sheet after hot rolling and winding in the manufacturing process includes bainite as the main structure. It is preferable that the rolled steel sheet has an area fraction of bainite of 95% or more and a second phase of 5% or less. More preferably 97% or more of bainite, and 3% or less of the second phase.
  • the second phase includes ferrite, pearlite, and the like. Most preferably a bainite single phase.
  • the present invention allows the microstructure before reheating and quenching to be formed into bainite fully bainite so that martensite can be uniformly produced after quenching.
  • the wear-resistant steel sheet of the present invention has a hardness of Hb 450 to 550, and a hardness deviation? HB across the longitudinal direction and the width direction of the steel sheet is 30 or less.
  • the steel sheet of the present invention is preferably prepared by preparing a steel slab satisfying the above-described alloy composition, and then subjecting the steel slab to heating, hot rolling, cooling, winding, reheating heat treatment and cooling. Each process will be described in detail below.
  • a steel slab having the above-described alloy composition is prepared and heated to 1100 to 1300 ⁇ . If the heating temperature is lower than 1100 ° C, the rolling load in the subsequent hot rolling step may become excessively large. On the other hand, if the heating temperature exceeds 1300 ° C, partial microstructure due to abnormal growth of some austenite grains The grain size may not be homogeneous.
  • the slab heating time is not particularly limited, and it may be a normal condition. As a non-limiting example, the slab heating time may be 100 to 400 minutes.
  • the heated slab is hot-rolled.
  • the hot-rolling process is a hot-rolled steel obtained by rough rolling a heated slab, followed by finish rolling at a reverse temperature of austenite. Means a series of rolling processes carried out prior to the rough rolling.
  • the conditions of the rough rolling in the present invention are not particularly limited and may be any ordinary conditions.
  • the thickness of the rough-rolled slab relative to the slab thickness may be between 10 and 25%, and the rough-rolling temperature may be set at a sufficiently high temperature at which the finish rolling temperature can be ensured.
  • finish rolling is carried out at austenite single phase reverse temperature, in order to increase the uniformity of the texture.
  • the finish rolling temperature may be 800 to 1000 ⁇ ⁇ .
  • the austenite structure of the hot rolled steel material having the finish rolling has an average grain size of 10 to 40 ⁇ . If the finish rolling temperature is lower than 800 ⁇ ⁇ , coarse-grained structure due to subcooling of the edge of the steel sheet may occur and a uniform material can not be obtained.
  • a sand scale or the like which is a high-temperature scale, may be formed on the surface of the steel sheet during hot rolling, and the surface quality of the final product may be poor.
  • the steel sheet After the hot rolling, the steel sheet is cooled from the finish hot rolling temperature to the coiling temperature (CT) at a cooling rate (CR) satisfying the following relational expression (1) It is preferable to take
  • the coiling temperature (CT) is less than (Ms + 30) C, there is a risk of equipment accidents in subsequent processes due to poor shape after coiling.
  • CT coiling temperature
  • Bs - 30) ⁇ ⁇ the microstructure of the steel sheet produced after coiling may be affected by the ferrite and the pearlite or coarse effective grain size (EGS) The hardness deviation in the direction can not be reduced.
  • the cooling rate does not satisfy the condition of the above-mentioned relational expression (1), ferrite or pearlite transformation occurs in the cooling process and ferrite or pearlite is formed in the microstructure after winding, It is difficult to secure characteristics.
  • the microstructure of the rolled steel sheet preferably has an area fraction of 95% or more of bainite and 5% or less of the second phase, more preferably 97% or more of bainite and 3% or less of the second phase. And most preferably formed of a bainite single phase.
  • the rolled hot-rolled steel sheet can be cut out.
  • the steel plate may be cut out at a length of 3 to 20 m at the time of cutting. If the cut-off length is less than 3 m, the manufacturing cost may increase, and a facility accident may occur in the subsequent heat treatment process. On the other hand, when the cut-off length exceeds 20 m, it becomes difficult to secure a uniform cooling rate in the longitudinal direction in the subsequent cooling step after the heat treatment, resulting in an excessive hardness deviation.
  • the cut hot rolled steel sheet is subjected to reheating heat treatment at a temperature ranging from 850 to 950 DEG C for 20 to 60 minutes ashes.
  • the reheating heat treatment is for reversely transforming the hot-rolled steel sheet composed of bainite into an austenite single phase. If the heat treatment temperature during reheating is less than 850 ° C, austenitization is not sufficiently performed and bainite remains, There is a problem that the hardness is lowered. On the other hand, when the temperature exceeds 950 DEG C, the austenite grains become coarse and the entanglement becomes large, but there is a problem that the toughness of the steel sheet is inferior.
  • the austenitization does not sufficiently take place in the above-mentioned temperature range, so that the phase transformation due to the subsequent rapid cooling, that is, the martensite structure, can not be obtained sufficiently.
  • the time exceeds 60 minutes the effective grain size (EGS) of the final microstructure may be out of the range of the invention due to the coarsening caused by the abnormal growth of the austenite grains, and the material deviation may be weakened.
  • the ferrite phase is formed during cooling or the bainite phase is excessively formed to obtain a desired hardness.
  • the hardness deviation? HB in the width direction exceeds 30.
  • a steel slab satisfying the alloy composition shown in the following Table 1 was prepared and then the steel slab was heated at 1200 ° C for 1 hour and then subjected to hot rolling at the hot rolling temperature (FDT) shown in Table 2 to obtain a steel slab having a thickness of 5 mm Hot-rolled steel sheets were produced. After the finish rolling, the steel sheet was cooled at the cooling rate of CR1 from the water cooled stand (ROT) to the coiling temperature (CT) shown in Table 2. Next, the hot-rolled steel sheet was subjected to reheating heat treatment and then cooled to a temperature of 100 DEG C or lower at a cooling rate of CR2.
  • FDT is the finish rolling temperature
  • CT is the coiling temperature
  • CR1 is the cooling rate after hot rolling
  • CR2 is the cooling rate after reheating heat treatment
  • the brinell hardness (HB) was measured in the longitudinal direction and the width direction after milling 2 mm in the thickness direction from the surface, and when the maximum value was 100 and the minimum value was 0% % And 5% level of hardness were defined as hardness differences.
  • the effective grain size was obtained by EBSD (Electron Back Scatter Diffraction) measurement at 1/4 the thickness of the steel sheet.
  • the EBSD measurement conditions were 2000 times as large as the area to be studied, 100 ⁇ x 100 ⁇ , and step size of 0.05.
  • Data analysis was performed using commercial version of TSL OIM Analysis 7.0. Therefore, raw data was first cleaned up, and KAM computed for CI> 0.1 data was selected.
  • the second phase of the steel sheet after being wound is ferrite, pearlite, etc., and the second phase of the final steel sheet is ferrite, pearlite, bainite, etc.
  • Comparative Example 1 the amount of carbon added was less than the range provided by the present invention, and the final hardness was also less than the present invention. But the area fraction of bainite and final martensite after winding was less than the range of the invention and the hardness deviation exceeded 30.
  • Comparative Example 2 the amount of carbon added exceeded the range provided by the present invention, and the final hardness exceeded the intended range of the present invention. But the area fraction of bainite and final martensite after winding was less than the range of the invention and the hardness deviation exceeded 30.
  • the coiling temperature of the relational expression 2 exceeds the range of the present invention, resulting in a fraction of bainite of only 20% after winding, and the final martensite fraction is also less than 93% Hardness variation was severe.
  • Comparative Example 4 The composition range of Comparative Example 4 is satisfactory, but the cooling rate to the coiling temperature after the finish rolling is insufficient, so that the fraction of bainite after winding is only 30%, and the martensite fraction of the final steel sheet is also 92% And the hardness deviation was severe.
  • Comparative Example 5 satisfied the conditions of the present invention at a content of 97% of bainite after the coiling, but the cooling rate during quenching after reheating was insufficient and the final martensitic structure fraction was 89% And has a low hardness.

Abstract

The present invention relates to a steel plate having a high degree of hardness, which is used in industry, construction machines, and the like and, more specifically, to a wear-resistant steel plate having excellent material uniformity and a manufacturing method therefor.

Description

재질 균일성이 우수한 내마모 강판 및 그 제조방법Abrasion-resistant steel sheet excellent in uniformity of material and method of manufacturing the same
본 발명은 산업, 건설기계 등에 사용되는 사용되는 높은 경도를 갖는 강판에 관한 것으로서, 보다 상세하게는 재질 균일성이 우수한 내마모 강판과 이를 제조하는 방법에 관한 것이다.More particularly, the present invention relates to a wear-resistant steel sheet having excellent material uniformity and a method of manufacturing the steel sheet.
건설, 토목, 광산업, 시멘트 산업 등 많은 산업분야에서 사용되는 기계, 기구 등의 경우 작업시 마찰에 의한 마모가 심하게 발생되므로 우수한 내마모 특성을 갖는 소재의 적용이 필요하다.In the case of machines, apparatuses, etc. used in many industrial fields such as construction, civil engineering, mining industry, and cement industry, abrasion due to abrasion occurs severely during operation, and therefore it is necessary to apply materials having excellent abrasion resistance properties.
일반적으로 강의 내마모성은 경도(Hardness)와 관련이 있어, 내마모성을 향상시키기 위해서는 강의 경도를 높일 필요가 있다. 또한, 보다 안정적인 내마모성을 확보하기 위해서는 강판의 표면으로부터 판 두께 중심부(t/2 근방, t: 두께)에 걸쳐 균일한 경도를 갖는 것 즉, 강판의 두께방향으로 경도 차이가 없는 것이 요구된다. In general, the abrasion resistance of a steel is related to the hardness, and in order to improve abrasion resistance, it is necessary to increase the hardness of the steel. In order to ensure more stable abrasion resistance, it is required that the steel plate has a uniform hardness from the surface of the steel plate to the center of the plate thickness (t / 2, t: thickness), that is, there is no difference in hardness in the thickness direction of the steel plate.
관련된 선행기술로는 특허문헌 1 및 2가 있다. 상기 특허문헌 1 및 2에서는 탄소(C)의 함량을 높이거나, 크롬(Cr)과 몰리브덴(Mo) 등의 경화능 향상 원소를 다량 첨가함으로써 표면 경도와 판 두께 내부의 경도를 증가시키는 방법을 개시하고 있다. Related prior arts are Patent Documents 1 and 2. The above Patent Documents 1 and 2 disclose a method of increasing the surface hardness and the hardness in the plate thickness by increasing the content of carbon (C) or adding a large amount of elements for improving hardenability such as chromium (Cr) and molybdenum (Mo) .
그러나 상기 특허문헌 1 및 2를 포함한 지금까지의 기술은 일정 두께 이상의 강판의 표면으로부터 판 두께 방향으로 균일한 경도를 확보하는데 초점을 맞추고 있을 뿐이다. 두께가 비교적 얇은 15㎜t 이하의 강판에서는 표면에서 판두께 중심의 경도 편차는 심하지 않고, 강판의 길이 방향 또는 폭 방향에서의 경도 편차가 문제되고 있으나, 이에 관한 연구는 활발히 진행되고 있지 않는 실정이다.However, the conventional techniques including the above Patent Documents 1 and 2 focus only on securing a uniform hardness in the thickness direction from the surface of the steel sheet having a certain thickness or more. In the case of a steel sheet having a relatively small thickness of 15 mm or less, the hardness deviation at the center of the plate thickness at the surface is not significant, and the deviation of the hardness in the longitudinal direction or the width direction of the steel sheet is a problem. However, .
따라서, 상기 강판의 두께 방향뿐만 아니라, 길이 방향 또는 폭 방향에 걸쳐 우수한 균일한 경도를 확보할 수 있는 기술이 절실히 요구되고 있는 실정이다.Therefore, there is an urgent need for a technique capable of ensuring a uniform hardness not only in the thickness direction of the steel sheet, but also in the longitudinal direction or the width direction.
(특허문헌 1) 일본 공개특허공보 제1986-166954호(Patent Document 1) Japanese Laid-Open Patent Publication No. 1986-166954
(특허문헌 2) 일본 공개특허공보 제1996-041535호(Patent Document 2) Japanese Laid-Open Patent Publication No. 1996-041535
본 발명의 일측면은 우수한 내마모성을 갖는 동시에, 강판의 길이 방향 및 폭 방향에서의 재질 균일성이 우수한 강판 및 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel sheet having excellent wear resistance and excellent material uniformity in the longitudinal direction and the width direction of the steel sheet and a method of manufacturing the steel sheet.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않는 또 다른 과제들은 아래의 기재로부터 당업자가 명확하게 이해될 수 있을 것이다. The problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.
본 발명의 일태양은 중량%로, C: 0.2~0.3%, Si: 0.5% 이하(0은 제외), Mn: 0.5~2.0%, P: 0.03% 이하(0은 제외), S: 0.02% 이하(0은 제외), Al: 0.05% 이하(0은 제외), Cr: 0.1~1.0%, Mo: 0.01~0.3%, B: 50ppm 이하(0은 제외), Ti: 0.02% 이하(0은 제외), Nb: 0.05% 이하(0은 제외) 나머지는 Fe 및 불가피한 불순물을 포함하고, One aspect of the present invention is a method of manufacturing a semiconductor device, comprising: 0.2 to 0.3% of C, 0.5 to 2.0% of Si (excluding 0), 0.5 to 2.0% of Mn, 0.03% (Excluding 0 is excluded), Al: not more than 0.05% (excluding 0), Cr: 0.1 to 1.0%, Mo: 0.01 to 0.3% ), Nb: not more than 0.05% (excluding 0), the remainder contains Fe and unavoidable impurities,
주조직이 마르텐사이트이고, 유효 결정립 크기(Effective Grain Size, EGS)는 30㎛ 이하인 재질 균일성이 우수한 내마모 강판에 관한 것이다.The present invention relates to an abrasion-resistant steel sheet having excellent uniformity of material having a main structure of martensite and an effective grain size (EGS) of 30 μm or less.
본 발명의 또다른 일태양은 중량%로, C: 0.2~0.3%, Si: 0.5% 이하(0은 제외), Mn: 0.5~2.0%, P: 0.03% 이하(0은 제외), S: 0.02% 이하(0은 제외), Al: 0.05% 이하(0은 제외), Cr: 0.1~1.0%, Mo: 0.01~0.3%, B: 50ppm 이하(0은 제외), Ti: 0.02% 이하(0은 제외), Nb: 0.05% 이하(0은 제외) 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1100~1300℃에서 가열하는 단계;Another aspect of the present invention provides a method of manufacturing a semiconductor device, comprising: 0.2 to 0.3% of C, 0.5% or less of Si (excluding 0), 0.5 to 2.0% of Mn, Cr: 0.1 to 1.0%, Mo: 0.01 to 0.3%, B: not more than 50 ppm (excluding 0), Ti: not more than 0.02% (excluding 0) 0), Nb: not more than 0.05% (excluding 0), the remainder being Fe and unavoidable impurities, at 1100 to 1300 캜;
상기 가열된 강 슬라브를 마무리 열간 압연 온도 830~1000℃에서 열간 압연을 행하는 단계;Subjecting the heated steel slab to hot rolling at a finish hot rolling temperature of 830 to 1000 占 폚;
상기 마무리 열간 압연 온도에서 권취 온도(CT)까지 하기 [관계식 1]을 만족하는 냉각속도(CR)로 냉각하는 단계;Cooling at a cooling rate (CR) satisfying the following formula (1) from the finish hot rolling temperature to the coiling temperature (CT);
상기 냉각 후, 하기 [관계식 2]을 만족하는 권취 온도(CT)에서 권취하는 단계;After cooling, winding at a coiling temperature (CT) satisfying the following formula (2);
상기 권취된 강판을 850~950℃의 온도로 20~60분 동안 재가열하는 단계; 및Reheating the wound steel sheet at a temperature of 850 to 950 캜 for 20 to 60 minutes; And
상기 가열된 강판을 상기 [관계식 1]을 만족하는 냉각속도(CR)로 100℃ 이하까지 냉각하는 단계를 포함하는 재질 균일성이 우수한 내마모 강판의 제조방법에 관한 것이다.And cooling the heated steel sheet to 100 DEG C or less at a cooling rate (CR) satisfying the relational expression (1) above.
[관계식 1][Relation 1]
CR(℃/s) ≥ 69.6-56[C]+2.1[Si]-19.2[Mn]-8.9[Cr]+8.0[Al]-26.9[Mo]Cr (° C./s) ≥ 69.6-56 [C] +2.1 [Si] -19.2 [Mn] -8.9 [Cr] +8.0 [Al] -26.9 [Mo]
[관계식 2][Relation 2]
(Ms + 30)℃ ≤ CT ≤ (Bs - 30)℃(Ms + 30) 占 폚 CT? (Bs - 30) 占 폚
Ms = 539-423[C]-30.4[Mn]-17.7[Ni]-12.1[Cr]-7.5[Mo]Ms = 539-423 [C] -30.4 [Mn] -17.7 [Ni] -12.1 [Cr]
Bs = 830-270[C]-90[Mn]-37[Ni]-70[Cr]-83[Mo]Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr]
(단, 상기 [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], 및 [Mo]은 각각의 성분 함량의 중량%를 의미함)(Wherein each of [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], and [Mo]
본 발명에 의하면, 두께 15㎜t 이하의 강판에 대해서, 우수한 경도를 갖는 동시에, 강판의 길이 방향과 폭 방향에서도 경도 편차가 적은 재질 균일성이 우수한 강판을 제공할 수 있다.According to the present invention, it is possible to provide a steel sheet having an excellent hardness and excellent material uniformity with a small deviation in the longitudinal and width directions of the steel sheet with respect to the steel sheet having a thickness of 15 mm or less.
도 1은 본 발명의 실시예에서 발명예들과 비교예들의 경도와 편차를 측정한 결과를 나타낸 그래프이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the results of measurement of hardness and deviation of inventive examples and comparative examples in an embodiment of the present invention. FIG.
본 발명의 발명자들은 강판의 길이 방향과 폭 방향에서의 경도 편차를 줄여, 재질 균일성이 우수한 두께 15㎜t 이하(바람직하게는 3~15mmt)의 강판을 제조하기 위해 연구한 결과, 열연강판을 제조하는 과정에서, 열간 압연 후의 미세조직을 관리함으로써, 재질 균일성이 우수한 강판을 제조할 수 있다는 점을 인지하고 본 발명에 이르게 되었다.The inventors of the present invention have studied to produce a steel sheet having a thickness of 15 mm or less (preferably 3 to 15 mm) which is excellent in material uniformity by reducing the hardness deviation in the longitudinal direction and the width direction of the steel sheet, It is possible to produce a steel sheet excellent in material uniformity by managing the microstructure after hot rolling in the course of manufacturing, and came to the present invention.
이하, 본 발명의 일태양인 강판에 대해서 설명한다. Hereinafter, a steel sheet as an embodiment of the present invention will be described.
먼저, 본 발명의 강판이 포함하는 합금 조성에 대해서 상세히 설명한다. 각 성분의 함량에 대해서, 특별히 언급하지 않는 한 모두 중량 기준임을 미리 밝힌다.First, the alloy composition of the steel sheet of the present invention will be described in detail. Unless otherwise stated, the content of each component is expressed on a weight basis in advance.
본 발명의 강판은 중량%로, C: 0.2~0.3%, Si: 0.5% 이하(0은 제외), Mn: 0.5~2.0%, P: 0.03% 이하(0은 제외), S: 0.02% 이하(0은 제외), Al: 0.05% 이하(0은 제외), Cr: 0.1~1.0%, Mo: 0.01~0.3%, B: 50ppm 이하(0은 제외), Ti: 0.02% 이하(0은 제외), Nb: 0.05% 이하(0은 제외)를 포함한다.The steel sheet according to the present invention contains 0.2 to 0.3% of C, 0.5 to 2.0% of Si (excluding 0), 0.5 to 2.0% of Mn, 0.03% or less of P (excluding 0) (Excluding 0), Al: not more than 0.05% (excluding 0), Cr: 0.1 to 1.0%, Mo: 0.01 to 0.3%, B: 50ppm or less ) And Nb: not more than 0.05% (excluding 0).
탄소(C): 0.2~0.3%Carbon (C): 0.2 to 0.3%
C는 경도를 확보하는데 가장 경제적이며 효과적인 원소이다. 만약 C 함량이 지나치게 낮을 경우에는 목표로 하는 경도를 확보하기 어려울 수 있고, 그 함량이 지나치게 과도할 경우에는 과도한 경도 상승으로 인성 및 용접성이 열화될 수 있으므로, 본 발명에서 C는 0.2~0.3%를 포함하는 것이 바람직하다.C is the most economical and effective element in securing hardness. If the C content is excessively low, it may be difficult to secure the desired hardness. If the C content is excessively excessive, the toughness and weldability may be deteriorated due to excessive hardness increase. .
실리콘(Si): 0.5% 이하(0은 제외)Silicon (Si): 0.5% or less (excluding 0)
Si는 통상적으로 용강의 탈산 및 고용 강화에 의한 강도 상승에 기여하나, 본 발명에서는 의도적으로 첨가하지 않으며, Si를 첨가하지 않더라도 물성 확보 측면에서 지장능 없다. 다만 그 함량이 지나치게 과도할 경우에는 열연강판 표면에 Si에 의한 적스케일이 형성되어 표면 품질이 저하되고, 도금시 도금 품질이 저하될 수 있다. 따라서, 상기 Si 함량은 0.5% 이하인 것이 바람직하다.Although Si usually contributes to increase in strength by deoxidation and solid solution strengthening of molten steel, it is not intentionally added in the present invention, and Si can not be prevented from the viewpoint of securing physical properties without addition of Si. If the content is excessively excessive, on the hot-rolled steel sheet surface, a proper scale due to Si may be formed to deteriorate the surface quality, and the quality of the plating may be deteriorated during plating. Therefore, the Si content is preferably 0.5% or less.
망간(Mn): 0.5~2.0%Manganese (Mn): 0.5 to 2.0%
상기 Mn은 페라이트 생성을 억제하고, Ar3 온도를 낮춤으로써 소입성을 효과적으로 상승시켜 강의 경도 및 인성을 향상시키는 원소로서, 적정 경도를 확보하기 위해서는 0.5% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 지나치게 과도할 경우에는 연주 공정에서 중심 편석부가 발생할 수 있으므로, 2.0%를 초과하지 않는 것이 바람직하다.The Mn is an element which suppresses ferrite formation and raises the hardness and toughness of the steel by effectively raising the incombustibility by lowering the Ar3 temperature, and is preferably contained in an amount of not less than 0.5% in order to secure an appropriate hardness. However, if the content thereof is excessively excessive, a center segregation part may occur in the performance process, so it is preferable that the content does not exceed 2.0%.
인(P): 0.03% 이하(0은 제외)Phosphorus (P): 0.03% or less (excluding 0)
상기 P는 강 중 불가피하게 포함되는 불순물로써, 가능한 한 그 함량을 낮게 관리하는 것이 바람직하다. 특히, 그 함량이 과도할 경우에는 용접성 열화 및 강의 취성이 발생할 위험이 커지므로, 상기 P의 함량은 0.03% 이하인 것이 바람직하다.P is an impurity inevitably contained in the steel, and it is preferable to control the content as low as possible. In particular, when the content is excessive, the risk of deterioration of weldability and brittleness of steel increases, so that the content of P is preferably 0.03% or less.
황(S): 0.02% 이하(0은 제외)Sulfur (S): 0.02% or less (excluding 0)
상기 S는 강 중 불가피하게 포함되는 불순물로써, 가능한 한 그 함량을 나제 관리하는 것이 바람직하다. 특히, 그 함량이 과도할 경우에는 Mn 등과 결합하여 비금속 개재물을 형성할 수 있고, 강의 취성이 발생할 위험이 커지는 바, 상기 S의 함량은 0.02% 이하로 관리하는 것이 바람직하다.The above S is an impurity inevitably contained in the steel, and it is preferable to manage the content as much as possible. In particular, when the content thereof is excessive, a non-metallic inclusion can be formed by bonding with Mn or the like, and the risk of brittleness of steel is increased, so that the content of S is preferably controlled to be 0.02% or less.
알루미늄(Al): 0.05% 이하(0은 제외)Aluminum (Al): not more than 0.05% (excluding 0)
상기 Al은 용강의 탈산에 기여하나, 본 발명에서는 의도적으로 포함하지 않으며, 상기 AL을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 다만, 그 함량이 과도할 경우에는 연주시 노즐 막힘 현상 등이 발생할 수 있으므로, 본 발명에서 상기 Al의 함량은 0.05%를 초과하지 않는 것이 바람직하다.Although Al contributes to the deoxidation of molten steel, it is not intentionally included in the present invention, and even if the AL is not added, there is no problem in securing the physical properties. However, if the content thereof is excessive, clogging of nozzles may occur during performance, so that the content of Al in the present invention is preferably not more than 0.05%.
크롬(Cr): 0.1~1.0%Cr (Cr): 0.1 to 1.0%
상기 Cr은 소입성을 증가시켜 경도확보에 유리하므로, 적정 경도를 확보하기 위해서는 0.1% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 지나치게 과도할 경우에는 용접성이 열위하며 제조원가를 상승시키는 문제가 있으므로, 1.0%를 넘지 않는 것이 바람직하다.The Cr is advantageous in securing hardness by increasing the incombustibility, and therefore, it is preferable that Cr is contained in an amount of 0.1% or more in order to secure an appropriate hardness. However, when the content is excessively excessive, the weldability is poor and the manufacturing cost is increased, so it is preferable that the content is not more than 1.0%.
몰리브덴(Mo): 0.01~0.3%Molybdenum (Mo): 0.01 to 0.3%
상기 Mo는 소입성을 증가시켜 경도 확보에 유리하고 인성을 향상시키는 원소로서, 적정 경도 및 인성 확보를 위해서는 0.01% 이상 첨가되는 것이 바람직하다. 다만, 그 함량이 지나체게 과도하여, 0.3%를 초과할 경우에는 용접성이 열위하며, 제조원가를 상승시키는 원인이 될 수 있으므로, 0.3%를 넘지 않는 것이 바람직하다.The Mo is an element which is advantageous in securing hardness and improving toughness by increasing the incombustibility, and is preferably added in an amount of 0.01% or more for securing an appropriate hardness and toughness. However, if the content exceeds the above range and exceeds 0.3%, the weldability is poor and it may cause a rise in manufacturing cost, and therefore it is preferable that the content is not more than 0.3%.
보론(B): 50ppm 이하(0은 제외)Boron (B): 50ppm or less (excluding 0)
상기 B는 Si을 대체할 수 있는 원소로 함유되기도 하며, 극히 미량을 담금질성을 향상시키고 결정립계를 강화시켜 경도를 향상시킨다. 그러나, 그 함량이 50ppm을 초과하여 과도할 경우에는 과도한 BN 석출에 의한 표면 품질 열위 및 인성 열화가 문제될 수 있으므로, 그 함량은 50ppm을 넘지 않는 것이 바람직하다.The B may be contained as an element capable of substituting for Si, and an extremely small amount can improve hardenability by enhancing hardenability and strengthening grain boundaries. However, when the content exceeds 50 ppm, excessive surface degradation due to BN precipitation and deterioration in toughness may be a problem, so that the content thereof is preferably not more than 50 ppm.
티타늄(Ti): 0.02% 이하(0은 제외)Titanium (Ti): 0.02% or less (excluding 0)
상기 Ti는 강중에 TiN으로 존재하여 열간압연을 위한 가열과정에서 결정립이 성장되는 것을 억제하는 효과가 있다. 또한 보론 첨가강에서 B이 N과 반응하지 않도록 N을 없애주는 역할을 한다. 상기 Ti 함량이 과도할 경우에는 과도한 TiN 석출에 의해 연주 시 노즐 막힘의 원인이 된다.The Ti is present in the steel as TiN and has the effect of inhibiting the growth of the crystal grains during the heating process for hot rolling. In addition, it plays a role of removing N so that B does not react with N in boron added steel. If the Ti content is excessive, excessive TiN precipitation may cause nozzle clogging during performance.
니오븀(Nb): 0.05% 이하(0은 제외)Niobium (Nb): not more than 0.05% (excluding 0)
상기 Nb는 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, Nb(C, N) 등의 탄질화물을 형성하여 강의 강도 증가 및 오스테나이트 결정립 성장을 억제하는데 유효하다. 그러나 상기 Nb 함량이 0.05%를 초과하게 되면 조대한 석출물이 형성되며, 이는 취성파괴의 기점이 되어 인성을 저해시키는 문제가 될 수 있다. The Nb is dissolved in austenite to increase the hardenability of austenite and form carbonitride such as Nb (C, N), thereby being effective in increasing the strength of steel and suppressing the growth of austenite grains. However, when the Nb content exceeds 0.05%, a coarse precipitate is formed, which is a starting point of brittle fracture, which may be a problem of inhibiting toughness.
본 발명의 강판은 전술한 합금조성이외에도, 본 발명에서 유리한 물성을 확보할 수 있는 원소들을 더 포함할 수 있다. 바람직한 일예로서, 코발트(Co): 0.04% 이하, 구리(Cu): 0.1% 이하, 바나듐(V): 0.02% 이하, 칼슘(Ca): 2~100ppm 등을 포함할 수 있다. The steel sheet of the present invention may further contain, in addition to the above-described alloy composition, elements capable of ensuring favorable physical properties in the present invention. As a preferable example, it may include not more than 0.04% of cobalt (Co), not more than 0.1% of copper (Cu), not more than 0.02% of vanadium (V), and 2 to 100 ppm of calcium (Ca)
코발트(Co): 0.04% 이하Cobalt (Co): not more than 0.04%
상기 Co는 강의 소입성을 증가시킴으로써, 강의 강도와 더불어 경도 확보에 유리한 원소이다. 다만, 그 함량이 0.04%를 초과하게 되면 편석 등으로 오히려 강의 소입성이 저하될 우려가 있으며, 고강의 원소로 제조원가를 상승시키는 요인이 된다. The Co is an element favorable for securing the hardness together with the strength of the steel by increasing the ingotability of the steel. However, if the content exceeds 0.04%, there is a fear that the ingot of the steel may be lowered due to segregation or the like, and the cost of manufacturing the steel is increased due to high-strength elements.
구리(Cu): 0.1% 이하Copper (Cu): not more than 0.1%
상기 Cu는 강의 소입성을 향상시키며, 고용강화로 강의 강도 및 경도를 향상시키는 원소이다. 이러한 Cu의 함량이 0.1%를 초과하게 되면 표면 결함을 발생시키며, 열간 가공성을 저해하는 문제가 있으므로, 상기 Cu를 첨가는 경우 0.1%를 넘지 않는 것이 바람직하다.The Cu improves the incombustibility of the steel and is an element which improves the strength and hardness of the steel by solid solution strengthening. When the content of Cu exceeds 0.1%, surface defects are generated and hot workability is deteriorated. Therefore, it is preferable that the content of Cu is not more than 0.1% when Cu is added.
바나듐(V): 0.02% 이하Vanadium (V): not more than 0.02%
상기 V는 열간압연 후 재가열시 VC 탄화물을 형성함으로써, 오스테나이트 결정립의 성장을 억제하고, 강의 소입성을 향상시켜 강도 및 인성을 확보하데 유리한 원소이다. 다만, 상기 V는 고가의 원소로 그 함량이 0.02%를 초과하게 되면 제조원가를 상승시키는 요인이 되므로, 0.02%를 넘지 않는 것이 바람직하다.V is an element which is advantageous in suppressing the growth of austenite grains and enhancing the ingotability of steel by securing VC carbide upon reheating after hot rolling to secure strength and toughness. However, V is an expensive element, and if the content exceeds 0.02%, it increases the manufacturing cost, and therefore it is preferable that the V does not exceed 0.02%.
칼슘(Ca): 2~100ppmCalcium (Ca): 2 to 100 ppm
상기 Ca는 S과의 결합력이 좋아 CaS를 생성함으로써 강재 두께 중심부에 편석되는 MnS의 생성을 억제하는 효과가 있다. 또한, 상기 Ca의 첨가로 생성된 CaS는 다습한 외부 환경 하에서 부식 저항을 높이는 효과가 있다. 상술한 효과를 위해선는 2ppm 이상으로 상기 Ca을 첨가하는 것이 바람직하나, 그 함량이 100ppm을 초과하게 되면 제강조업시 노즐 막힘 등을 유발하는 문제가 있으므로 바람직하지 못한다. 따라서, 본 발명에서 상기 Ca의 첨가시 그 함량은 2~100ppm인 것이 바람직하다.Ca has an effect of inhibiting the formation of MnS segregated in the central portion of the steel material by producing CaS because of its strong binding force with S. In addition, the CaS generated by the addition of Ca has an effect of increasing the corrosion resistance under a humid environment. For the above-mentioned effect, Ca is preferably added in an amount of 2 ppm or more, but if the content exceeds 100 ppm, it may cause clogging of the nozzle during steelmaking. Accordingly, in the present invention, the Ca content is preferably 2 to 100 ppm when Ca is added.
본 발명의 강판은 상기 언급된 합금원소 이외에 나머지는 철(Fe) 성분이다. 다만, 통상의 제조과정에서는 원료 또는 주의 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수 없다. 이들 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이기 때문에, 그 모든 내용을 상세히 업근하지 않는다.The steel sheet of the present invention is an iron (Fe) component in addition to the above-mentioned alloying elements. However, the impurities which are not intended from the raw material or the environment of caution can be inevitably incorporated in a normal manufacturing process, and therefore this can not be excluded. Since these impurities can be known to any ordinary technician, they do not fully exploit all of them.
본 발명 강판의 최종 미세조직은 면적분율로, 마르텐사이트 95% 이상이고, 제2상이 5% 이하로 이루어지는 것이 바람직하다. 보다 바람직하게는 마르텐사이트 97% 이상, 제2상이 3% 이하로 이루어지는 것이다. 여기서 제2상은 특별히 한정되지 않으나, 페라이트, 펄라이트, 베이나이트 등이 될 수 있다. 우수한 경도를 확보하기 위해서는 마르텐사이트가 균일하게 형성되는 것이 바람직하며, 상기 제2상의 분율이 높아지거나, 상게 제2상이 특정부위에서 다량 형성된다면 균질한 강도를 확보할 수 없다. 따라서, 상기 제2상은 최소한으로 얻어지는 바람직하다The final microstructure of the inventive steel sheet preferably has an area fraction of 95% or more of martensite and 5% or less of the second phase. More preferably 97% or more of martensite and 3% or less of the second phase. Here, the second phase is not particularly limited, but may be ferrite, perlite, bainite or the like. In order to secure an excellent hardness, it is preferable that the martensite is uniformly formed. If the fraction of the second phase is high or if the second phase is formed in a large amount at a specific site, the homogeneous strength can not be secured. Therefore, it is preferable that the second phase is obtained at a minimum
한편, 상기 마르텐사이트의 유효 결정립 크기(Effective Grain Size, EGS)는 30㎛ 이하인 것이 바람직하다. 보다 바람직하게는 20㎛ 이하이다. 상기 유효 결정립 크기가 미세할수록 균질한 경도 확보에 유리하므로, 상기 유효 결정립 크기는 30㎛ 이하, 보다 바람직하게는 20㎛ 이하이다. Meanwhile, the effective grain size (EGS) of the martensite is preferably 30 탆 or less. More preferably not more than 20 mu m. As the effective grain size becomes finer, it is advantageous to obtain a homogeneous hardness, so that the effective grain size is 30 탆 or less, more preferably 20 탆 or less.
본 발명의 강판은 제조과정 중 열간 압연 및 권취 후 강판의 미세조직이 주조직으로 베이나이트를 포함하는 것이 바람직하다. 상기 권취 후 강판은 면적분율로 베이나이트 95% 이상이고, 제2상이 5% 이하인 것이 바람직하다. 보다 바람직하게는 베이나이트 97% 이상, 제2상은 3% 이하로 이루어진 것이다. 여기서 제2상은 페라이트, 펄라이트 등이 있다. 가장 바람직하게는 베이나이트 단상으로 이루어진다.In the steel sheet of the present invention, it is preferable that the microstructure of the steel sheet after hot rolling and winding in the manufacturing process includes bainite as the main structure. It is preferable that the rolled steel sheet has an area fraction of bainite of 95% or more and a second phase of 5% or less. More preferably 97% or more of bainite, and 3% or less of the second phase. Here, the second phase includes ferrite, pearlite, and the like. Most preferably a bainite single phase.
통상적으로, 원하는 경도를 얻기 위해서는 재가열 후 급냉(quenching)하여 마르텐사이트 조직을 얻게 된다. 그런데 재가열하기 전의 조직이 페라이트나 펄라이트로 이루어지거나, 이들이 다량 포함된 경우에는 상기 급냉 후 얻어지는 마르텐사이트의 경도가 페라이트나 펄라이트 별로 달라지게 되는 문제가 있고, 균질한 경도를 확보하는 것이 곤란하다. 이에 본 발명은 재가열 및 급냉 전의 미세조직을 베이나이트 단상(fully bainite)으로 형성하여, 급냉 후 마르텐사이트 균일하게 생성될 수 있게 한다. Normally, in order to obtain desired hardness, reheating is followed by quenching to obtain a martensite structure. However, when the structure before reheating is made of ferrite or pearlite, or when these are contained in large amounts, there is a problem that the hardness of martensite obtained after quenching varies depending on ferrite or pearlite, and it is difficult to secure a homogeneous hardness. Accordingly, the present invention allows the microstructure before reheating and quenching to be formed into bainite fully bainite so that martensite can be uniformly produced after quenching.
본 발명의 내마모 강판은 경도가 Hb 450~550을 가지며, 강판의 길이 방향 및 폭 방향에 걸친 경도 편차(△HB)가 30 이하이다.The wear-resistant steel sheet of the present invention has a hardness of Hb 450 to 550, and a hardness deviation? HB across the longitudinal direction and the width direction of the steel sheet is 30 or less.
이하, 본 발명의 다른 일태양인 내마모 강판의 제조방법에 대해서 상세히 설명한다. Hereinafter, a method for manufacturing a wear-resistant steel sheet, which is another aspect of the present invention, will be described in detail.
본 발명의 강판은 전술한 합금조성을 만족하는 강 슬라브를 준비한 다음, 가열, 열간압연, 냉각, 권취, 재가열 열처리, 냉각하는 공정을 거쳐 제조하는 것이 바람직하며, 이하에서는 각 공정에 대해서 상세히 설명한다.The steel sheet of the present invention is preferably prepared by preparing a steel slab satisfying the above-described alloy composition, and then subjecting the steel slab to heating, hot rolling, cooling, winding, reheating heat treatment and cooling. Each process will be described in detail below.
먼저, 전술한 합금조성을 갖는 강 슬라브를 준비하여, 1100~1300℃로 가열한다. 상기 가열 온도가 1100℃ 미만인 경우에는 후속 공정인 열간 압연 공정에서 압연 부하가 지나치게 커질 수 있으며, 반면 1300℃를 초과하는 경우에는 일부 오스테나이트 결정립의 비정상 성장에 의한 부분적 조대화로 인해 최종 미세조직의 결정립 크기가 균질하지 못할 우려가 있다. 한편, 본 발명에서는 슬라브 가열 시간에 대해서는 특별히 한정하지 않으며 통상의 조건이면 무방하다. 제한되지 않는 일예로써, 슬라브 가열 시간은 100~400분일 수 있다.First, a steel slab having the above-described alloy composition is prepared and heated to 1100 to 1300 캜. If the heating temperature is lower than 1100 ° C, the rolling load in the subsequent hot rolling step may become excessively large. On the other hand, if the heating temperature exceeds 1300 ° C, partial microstructure due to abnormal growth of some austenite grains The grain size may not be homogeneous. On the other hand, in the present invention, the slab heating time is not particularly limited, and it may be a normal condition. As a non-limiting example, the slab heating time may be 100 to 400 minutes.
상기 가열된 슬라브를 열간 압연한다. 상기 열간 압연 공정은 구체적으로, 가열된 슬라브를 조압연한 후, 오스테나이트 단상역 온도에서 마무리 압연하여 열연 강재를 얻는다. 상기 조압연 마무리 압연 전에 행해지는 일련의 압연 과정을 의미하는 것으로, 본 발명에서 조압연의 구체적인 조건은 특별히 한정하지 않으며, 통상의 조건이면 무방하다. 일예로써, 슬라브 두께 대비, 조압연된 슬라브의 두께는 10~25%일 수 있으며, 조압연 온도는 마무리 압연 온도가 확보될 수 있는 충분히 높은 온도로 설정될 수 있다. The heated slab is hot-rolled. Specifically, the hot-rolling process is a hot-rolled steel obtained by rough rolling a heated slab, followed by finish rolling at a reverse temperature of austenite. Means a series of rolling processes carried out prior to the rough rolling. The conditions of the rough rolling in the present invention are not particularly limited and may be any ordinary conditions. By way of example, the thickness of the rough-rolled slab relative to the slab thickness may be between 10 and 25%, and the rough-rolling temperature may be set at a sufficiently high temperature at which the finish rolling temperature can be ensured.
한편, 마무리 압연은 오스테나이트 단상역 온도에서 실시되며, 이는 조직의 균일성을 증가시키기 위함이다. 일예로써, 마무리 압연 온도는 800~1000℃일 수 있다. 상기 온도 범위에서 마무리 열간 압연시, 마무리 압연된 열연 강재의 오스테나이트 조직은 10~40㎛의 평균 결정립 크기를 갖게 된다. 상기 마무리 압연 온도가 800℃ 미만인 경우에는 강판 에지부의 과냉에 의한 혼립 조직이 발생하여 균일한 재질을 얻을 수 없게 된다. 반면, 1000℃를 초과하는 경우에는 열간 압연 도중 강판 표면에 고온형 스케일인 모래형 스케일 등이 발생하여 최종 제품의 표면 품질이 열위할 수 있다.On the other hand, finish rolling is carried out at austenite single phase reverse temperature, in order to increase the uniformity of the texture. As an example, the finish rolling temperature may be 800 to 1000 占 폚. During the final hot rolling in the temperature range, the austenite structure of the hot rolled steel material having the finish rolling has an average grain size of 10 to 40 탆. If the finish rolling temperature is lower than 800 占 폚, coarse-grained structure due to subcooling of the edge of the steel sheet may occur and a uniform material can not be obtained. On the other hand, if it exceeds 1000 캜, a sand scale or the like, which is a high-temperature scale, may be formed on the surface of the steel sheet during hot rolling, and the surface quality of the final product may be poor.
상기 열간 압연 후, 마무리 열간 압연 온도에서 권취 온도(CT)까지 하기 [관계식 1]을 만족하는 냉각속도(CR)로 냉각하고, 하기 [관계식 2]의 범위를 만족하는 권취 온도(CT)에서 권취하는 것이 바람직하다After the hot rolling, the steel sheet is cooled from the finish hot rolling temperature to the coiling temperature (CT) at a cooling rate (CR) satisfying the following relational expression (1) It is preferable to take
[관계식 1][Relation 1]
CR(℃/s) ≥ 69.6-56[C]+2.1[Si]-19.2[Mn]-8.9[Cr]+8.0[Al]-26.9[Mo]Cr (° C./s) ≥ 69.6-56 [C] +2.1 [Si] -19.2 [Mn] -8.9 [Cr] +8.0 [Al] -26.9 [Mo]
[관계식 2][Relation 2]
(Ms + 30)℃ ≤ CT ≤ (Bs - 30)℃(Ms + 30) 占 폚 CT? (Bs - 30) 占 폚
Ms = 539-423[C]-30.4[Mn]-17.7[Ni]-12.1[Cr]-7.5[Mo]Ms = 539-423 [C] -30.4 [Mn] -17.7 [Ni] -12.1 [Cr]
Bs = 830-270[C]-90[Mn]-37[Ni]-70[Cr]-83[Mo]Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr]
(단, 상기 [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], 및 [Mo]은 각각의 성분 함량의 중량%를 의미함)(Wherein each of [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], and [Mo]
상기 권취 온도(CT)가 (Ms + 30)℃ 미만인 경우에는 권취 후 형상이 불량하여 후속 공정에서 설비 사고의 위험이 있다. 반면, 권취 온도(CT)가 (Bs - 30)℃를 초과하는 경우에는 권취 후 제조된 강판의 미세조직이 페라이트 및 펄라이트가 혼입되거나 조대한 유효 결정립 크기(EGS)로 인하여, 강판 길이 방향 및 폭 방향의 경도 편차를 저감할 수 없다. 또한, 상기 냉각속도가 상기 [관계식 1]의 조건을 충족하지 못하는 경우에, 냉각 과정에서 페라이트 또는 펄라이트 변태가 발생하여, 권취 후 미세조직 중 페라이트나 펄라이트가 형성되거나 조대한 결정립으로 인해, 균일한 특성을 확보하기 어렵다. If the coiling temperature (CT) is less than (Ms + 30) C, there is a risk of equipment accidents in subsequent processes due to poor shape after coiling. On the other hand, when the coiling temperature CT is higher than (Bs - 30) 占 폚, the microstructure of the steel sheet produced after coiling may be affected by the ferrite and the pearlite or coarse effective grain size (EGS) The hardness deviation in the direction can not be reduced. In addition, when the cooling rate does not satisfy the condition of the above-mentioned relational expression (1), ferrite or pearlite transformation occurs in the cooling process and ferrite or pearlite is formed in the microstructure after winding, It is difficult to secure characteristics.
상기 권취 후 강판의 미세조직은 면적분율로 베이나이트 95% 이상, 제2상이 5% 이하인 것이 바람직하고, 보다 바람직하게는 베이나이트 97% 이상, 제2상이 3% 이하이다. 베이나이트 단상으로 형성되는 것이 가장 바람직하다.The microstructure of the rolled steel sheet preferably has an area fraction of 95% or more of bainite and 5% or less of the second phase, more preferably 97% or more of bainite and 3% or less of the second phase. And most preferably formed of a bainite single phase.
상기 권취된 열연강판을 절판할 수 있다. 상기 절판시 강판 길이 3~20m씩 절판할 수 있다. 상기 절판 길이가 3m 미만인 경우에는 제조원가가 상승할 수 있고 후속 단계인 열처리 공정에서 설비 사고가 발생할 수 있다. 반면에 절판 길이가 20m 초과할 경우에는 후속 단계인 열처리 후 냉각 단계에서 길이방향으로 균일한 냉각속도를 확보하기 어려워져, 과도한 경도 편차를 초래할 수 있다. The rolled hot-rolled steel sheet can be cut out. The steel plate may be cut out at a length of 3 to 20 m at the time of cutting. If the cut-off length is less than 3 m, the manufacturing cost may increase, and a facility accident may occur in the subsequent heat treatment process. On the other hand, when the cut-off length exceeds 20 m, it becomes difficult to secure a uniform cooling rate in the longitudinal direction in the subsequent cooling step after the heat treatment, resulting in an excessive hardness deviation.
상기 절판된 열연강판을 850~950℃의 온도범위에서 재로시간 20~60분간 재가열 열처리를 행한다. 상기 재가열 열처리는 베이나이트로 구성된 상기 열연강판을 오스테나이트 단상으로 역변태시키기 위한 것으로, 상기 재가열시 열처리 온도가 850℃ 미만이면 오스테나이트화가 충분히 이루어지지 못하고, 베이나이트가 잔류하게 됨으로써, 최종 제품의 경도가 저하되는 문제가 있다. 반면, 그 온도가 950℃를 초과하게 되면 오스테나이트 결정립이 조대해져 소입성이 커지는 효과가 있으나, 강판의 인성이 열위해지는 문제가 있다. 더불어, 상술한 온도 범위에서 재로시간이 20분 미만이면 오스테나이트화가 충분히 일어나지 못하여 후속하는 급속 냉각에 의한 상변태 즉, 마르텐사이트 조직을 충분히 얻을 수 없게 된다. 반면, 60분을 초과하게 되면 오스테나이트 결정립의 비정상 성장에 의한 조대화로 인해 최종 미세조직의 유효 결정립 크기(EGS)가 발명의 범위를 벗어나 재질 편차가 열위해질 수 있다.The cut hot rolled steel sheet is subjected to reheating heat treatment at a temperature ranging from 850 to 950 DEG C for 20 to 60 minutes ashes. The reheating heat treatment is for reversely transforming the hot-rolled steel sheet composed of bainite into an austenite single phase. If the heat treatment temperature during reheating is less than 850 ° C, austenitization is not sufficiently performed and bainite remains, There is a problem that the hardness is lowered. On the other hand, when the temperature exceeds 950 DEG C, the austenite grains become coarse and the entanglement becomes large, but there is a problem that the toughness of the steel sheet is inferior. In addition, if the time is less than 20 minutes, the austenitization does not sufficiently take place in the above-mentioned temperature range, so that the phase transformation due to the subsequent rapid cooling, that is, the martensite structure, can not be obtained sufficiently. On the other hand, when the time exceeds 60 minutes, the effective grain size (EGS) of the final microstructure may be out of the range of the invention due to the coarsening caused by the abnormal growth of the austenite grains, and the material deviation may be weakened.
상기 재가열 열처리 후, 전술한 [관계식 1]의 냉각속도(CR)로 100℃ 이하까지 냉각하는 것이 바람직하다.After the reheating heat treatment, it is preferable to cool to 100 DEG C or less at the cooling rate (CR) of the above-mentioned [Relation 1].
상기 냉각시 냉각속도가 관계식 1의 범위 미만이거나, 냉각 종료온도가 100℃를 초과하는 경우네는 냉각 중 페라이트 상이 형성되거나 베이나이트 상이 과다하게 형성되어 원하는 경도를 얻을 수 없으며, 강판의 길이 방향 또는 폭 방향이 경도 편차(△HB)가 30을 초과하게 된다.When the cooling rate during the cooling is less than the range of the formula 1, or when the cooling end temperature exceeds 100 ° C, the ferrite phase is formed during cooling or the bainite phase is excessively formed to obtain a desired hardness. And the hardness deviation? HB in the width direction exceeds 30.
이하, 실시예를 통해서 본 발명을 보다 상세하게 설명한다. 그러나, 실시예는 본 발명의 이해를 위한 예시일 뿐, 실시예의 기재에 의해서 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해서 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the examples are only for the understanding of the present invention, and the present invention is not limited by the descriptions of the examples. And the scope of the present invention is determined by the matters described in the claims and the matters reasonably deduced therefrom.
(실시예)(Example)
하기 표 1의 합금 조성을 만족하는 강 슬라브를 준비한 후, 강 슬라브를 1200℃에서 1시간 동안 가열하고, 이후 하기 표 2의 열간 마무리 압연온도(FDT)로 열간 마무리 압연을 하여, 5㎜ 두께를 갖는 열연강판을 제조하였다. 상기 마무리 압연 후 수냉각대(ROT)에서 표 2의 권취온도(CT)까지 CR1의 냉각속도로 냉각하였다. 그 다음으로, 열연 강판을 재가열 열처리한 후, 100℃ 이하까지 CR2의 냉각속도로 냉각하였다.A steel slab satisfying the alloy composition shown in the following Table 1 was prepared and then the steel slab was heated at 1200 ° C for 1 hour and then subjected to hot rolling at the hot rolling temperature (FDT) shown in Table 2 to obtain a steel slab having a thickness of 5 mm Hot-rolled steel sheets were produced. After the finish rolling, the steel sheet was cooled at the cooling rate of CR1 from the water cooled stand (ROT) to the coiling temperature (CT) shown in Table 2. Next, the hot-rolled steel sheet was subjected to reheating heat treatment and then cooled to a temperature of 100 DEG C or lower at a cooling rate of CR2.
구분division CC SiSi MnMn PP SS AlAl NbNb BB CrCr MoMo TiTi VV
비교예 1Comparative Example 1 0.070.07 0.20.2 1.81.8 0.0080.008 0.00150.0015 0.0250.025 00 0.00170.0017 0.40.4 0.150.15 0.020.02 0.0050.005
비교예 2Comparative Example 2 0.410.41 0.20.2 1.51.5 0.0080.008 0.00150.0015 0.010.01 00 00 0.10.1 00 00 00
비교예 3Comparative Example 3 0.220.22 0.30.3 1.21.2 0.0080.008 0.00150.0015 0.030.03 0.0150.015 0.0020.002 0.20.2 0.20.2 0.020.02 0.0050.005
비교예 4Comparative Example 4 0.250.25 0.150.15 0.80.8 0.0080.008 0.00150.0015 0.030.03 0.0150.015 0.00150.0015 0.20.2 0.10.1 0.0150.015 00
비교예 5Comparative Example 5 0.250.25 0.150.15 0.80.8 0.0080.008 0.00150.0015 0.030.03 0.0150.015 0.00150.0015 0.20.2 0.10.1 0.0150.015 00
발명예 1Inventory 1 0.220.22 0.30.3 1.21.2 0.0080.008 0.00150.0015 0.030.03 0.0150.015 0.0020.002 0.20.2 0.20.2 0.020.02 0.0050.005
발명예 1Inventory 1 0.260.26 0.30.3 1.21.2 0.0080.008 0.00150.0015 0.030.03 0.0150.015 0.0020.002 0.30.3 0.250.25 0.0150.015 0.0050.005
발명예 3Inventory 3 0.250.25 0.150.15 0.80.8 0.0080.008 0.00150.0015 0.030.03 0.0150.015 0.00150.0015 0.20.2 0.10.1 0.0150.015 00
(단위는 중량%이고, 나머지는 Fe 및 불가피한 불순문임)(Unit: wt%, balance Fe and inevitable impurities)
구분division Ms + 30(℃)Ms + 30 (占 폚) Bs - 30(℃)Bs - 30 (캜) 식(1) 값The value of equation (1) FDT(℃)FDT (占 폚) CT(℃)CT (° C) CR1(℃/s)CR1 (占 폚 / s) 관계식 1 만족여부Relation 1 Satisfaction 관계식 2 만족 여부Relation 2 Satisfaction CR2(℃/s)CR2 (° C / s) 관계식 1 만족 여부Relation 1 Satisfaction
비교예 1Comparative Example 1 479479 579579 2424 880880 550550 3535 4545
비교예 2Comparative Example 2 349349 547547 1717 880880 520520 2525 4040
비교예 3Comparative Example 3 436436 602602 2828 880880 620620 3535 X X 5050
비교예 4Comparative Example 4 436436 638638 3636 880880 600600 3030 XX 4545
비교예 5Comparative Example 5 436436 638638 3636 880880 610610 4040 3030 XX
발명예 1Inventory 1 436436 602602 2828 880880 580580 3535 5050
발명예 2Inventory 2 417417 580580 2323 880880 560560 3030 4545
발명예 3Inventory 3 436436 638638 3636 880880 600600 4545 6060
(상기 표 2에서, FDT는 마무리 압연 온도, CT는 권취온도이고, CR1은 열간 압연 후 냉각속도, CR2는 재가열 열처리 후 냉각속도이고,(In Table 2, FDT is the finish rolling temperature, CT is the coiling temperature, CR1 is the cooling rate after hot rolling, CR2 is the cooling rate after reheating heat treatment,
Ms = 539-423[C]-30.4[Mn]-17.7[Ni]-12.1[Cr]-7.5[Mo],Ms = 539-423 [C] -30.4 [Mn] -17.7 [Ni] -12.1 [Cr]
Bs = 830-270[C]-90[Mn]-37[Ni]-70[Cr]-83[Mo],Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr] -83 [Mo]
식 (1)은 69.6-56[C]+2.1[Si]-19.2[Mn]-8.9[Cr]+8.0[Al]-26.9[Mo] 이며,[Formula 1] is 69.6-56 [C] +2.1 [Si] -19.2 [Mn] -8.9 [Cr] +8.0 [Al] -26.9 [Mo]
상기 [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], 및 [Mo]은 각각의 성분 함량의 중량%를 의미함)[C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], and [Mo]
상기 제조된 강판에 대해서, 미세조직과 기계적 물성을 측정하고 그 결과를 하기 표 3에 나타내었다The steel sheet thus prepared was measured for microstructure and mechanical properties, and the results are shown in Table 3 below
브리넬 경도(HB)는 표면에서 두께방향으로 2㎜를 밀링 가공한 후, 길이 방향과 폭방향에 대해 측정하였으며, 30회 이상 측정한 결과에서 최대값을 100, 최소값을 0%로 설정할 때, 95% 수준 및 5% 수준 경도의 차이를 경도차로 정의하였다. The brinell hardness (HB) was measured in the longitudinal direction and the width direction after milling 2 mm in the thickness direction from the surface, and when the maximum value was 100 and the minimum value was 0% % And 5% level of hardness were defined as hardness differences.
한편, 유효 결정립 크기는 강판의 두께 1/4 지점에의 EBSD(Electron Back Scatter Diffraction) 측정으로 구하였따. 상기 EBSD 측정 조건은 배울 2000배, 면적 100㎛×100㎛, step-size 0.05로 동일하게 측정하였다. 데이터 분석은 상용 소프트웨어 TSL OIM Analysis 7.0 버전을 이용하였으므로, raw data를 1차 clean-up 하고, CI > 0.1인 data를 대상으로 계산된 KAM을 택하였다.On the other hand, the effective grain size was obtained by EBSD (Electron Back Scatter Diffraction) measurement at 1/4 the thickness of the steel sheet. The EBSD measurement conditions were 2000 times as large as the area to be studied, 100 탆 x 100 탆, and step size of 0.05. Data analysis was performed using commercial version of TSL OIM Analysis 7.0. Therefore, raw data was first cleaned up, and KAM computed for CI> 0.1 data was selected.
구분division 권취 후 강판의 베이나이트 분율(면적%)Bainite fraction (area%) of steel sheet after winding 최종 강판의 마르텐사이트 분율(면적 %)The martensite fraction of the final steel sheet (area%) 유효 결정립 크기(㎛)Effective Grain Size (탆) 경도(HB)Hardness (HB) 경도편차(△HB)Hardness deviation (? HB)
비교예 1Comparative Example 1 8080 8888 2727 356356 3535
비교예 2Comparative Example 2 8585 8989 2525 638638 6363
비교예 3Comparative Example 3 2020 9393 4040 486486 4646
비교예 4Comparative Example 4 3030 9292 4545 511511 5151
비교예 5Comparative Example 5 9797 8989 3535 426426 3939
발명예 1Inventory 1 9797 9898 1414 486486 2222
발명예 2Inventory 2 9696 9999 1111 519519 2323
발명예 3Inventory 3 9898 9797 1212 511511 2424
(한편, 상기 권취 후 강판의 제2상은 페라이트, 펄라이트 등이며, 최종 강판의 제2상은 페라이트, 펄라이트, 베이나이트 등임)(The second phase of the steel sheet after being wound is ferrite, pearlite, etc., and the second phase of the final steel sheet is ferrite, pearlite, bainite, etc.)
상기 표 3의 결과에서, 본 발명의 조건을 만족하는 발명예는 최종 강판의 마르텐사이트가 면적분율로 95% 이상이고, 높은 경도를 갖는 동시에 경도 편차(△HB)가 30 이하인 것을 확인할 수 있었다. 한편, 상기 표 3에서 비교예와 발명예의 경도 및 경도편차를 도 1에 그래프에 나타내었습니다. From the results of Table 3, it was confirmed that martensite of the final steel sheet had an area fraction of 95% or more, a high hardness, and a hardness deviation (? HB) of 30 or less in the inventive example satisfying the conditions of the present invention. On the other hand, the hardness and hardness deviations of Comparative Examples and Inventive Examples in Table 3 are shown in the graph in Fig.
한편, 비교예 1은 탄소 첨가량이 본 발명에서 제공하는 범위에 미달하여 최종 경도 또한 본 발명에 미달하였다. 성분계가 벗어난 관계로 제조조건을 모두 만족하였지만 권취 후 베이나이트 및 최종 마르텐사이트의 면적 분율이 발명의 범위에 미달하여 경도 편차도 30을 초과하였다. 비교예 2는 탄소 첨가량이 본 발명에서 제공하는 범위를 초과하여 최종 경도 또한 본 발명의 목적하는 범위를 초과하였다. 성분계가 벗어난 관계로 제조조건을 모두 만족하였지만 권취 후 베이나이트 및 최종 마르텐사이트의 면적 분율이 발명의 범위에 미달하여 경도 편차도 30을 초과하였다.On the other hand, in Comparative Example 1, the amount of carbon added was less than the range provided by the present invention, and the final hardness was also less than the present invention. But the area fraction of bainite and final martensite after winding was less than the range of the invention and the hardness deviation exceeded 30. In Comparative Example 2, the amount of carbon added exceeded the range provided by the present invention, and the final hardness exceeded the intended range of the present invention. But the area fraction of bainite and final martensite after winding was less than the range of the invention and the hardness deviation exceeded 30.
비교예 3은 성분 범위는 만족하지만, 관계식 2의 권취온도가 본 발명의 범위를 초과하였고, 이로 인해 권취 후 베이나이트의 분율이 20% 수준에 불과하여 최종 마르텐사이트 분율 또한 93%로 미달되고, 경도 편차가 심하였다.In the comparative example 3, although the component range is satisfied, the coiling temperature of the relational expression 2 exceeds the range of the present invention, resulting in a fraction of bainite of only 20% after winding, and the final martensite fraction is also less than 93% Hardness variation was severe.
비교예 4는 성분 범위는 만족하지만, 식(1) 마무리 압연 후 권취온도까지의 냉각속도가 부족하여 권취 후 베이나이트의 분율이 30% 수준에 불과하고, 최종강판의 마르텐사이트 분율 또한 92%로 미달되어 경도 편차가 심하였다.The composition range of Comparative Example 4 is satisfactory, but the cooling rate to the coiling temperature after the finish rolling is insufficient, so that the fraction of bainite after winding is only 30%, and the martensite fraction of the final steel sheet is also 92% And the hardness deviation was severe.
비교예 5는 성분 및 열연 권취, 냉각속도를 만족하여 권취 후 미세조직은 베이나이트 97%로 본 발명의 조건을 만족하지만 재가열 후 퀜칭 시 냉각속도가 부족하여 최종 마르텐사이트의 조직 분율이 89%로 낮은 경도를 갖는다.Comparative Example 5 satisfied the conditions of the present invention at a content of 97% of bainite after the coiling, but the cooling rate during quenching after reheating was insufficient and the final martensitic structure fraction was 89% And has a low hardness.

Claims (12)

  1. 중량%로, C: 0.2~0.3%, Si: 0.5% 이하(0은 제외), Mn: 0.5~2.0%, P: 0.03% 이하(0은 제외), S: 0.02% 이하(0은 제외), Al: 0.05% 이하(0은 제외), Cr: 0.1~1.0%, Mo: 0.01~0.3%, B: 50ppm 이하(0은 제외), Ti: 0.02% 이하(0은 제외), Nb: 0.05% 이하(0은 제외) 나머지는 Fe 및 불가피한 불순물을 포함하고, (Excluding 0), Mn: 0.5 to 2.0%, P: not more than 0.03% (excluding 0), S: not more than 0.02% (excluding 0) , Al: not more than 0.05% (excluding 0), Cr: 0.1-1.0%, Mo: 0.01-0.3%, B: 50ppm or less (excluding 0), Ti: 0.02% % Or less (excluding 0), the remainder contains Fe and unavoidable impurities,
    주조직이 마르텐사이트이고, 유효 결정립 크기(Effective Grain Size, EGS)는 30㎛ 이하인 재질 균일성이 우수한 내마모 강판.A wear-resistant steel sheet having excellent uniformity of material having a main structure of martensite and effective grain size (EGS) of 30 μm or less.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 강판은 추가적으로, Co: 0.04% 이하, Cu: 0.1% 이하 및 V: 0.02% 이하 중 1종 이상을 더 포함하는 재질 균일성이 우수한 내마모 강판.Wherein the steel sheet further comprises at least one of Co: not more than 0.04%, Cu: not more than 0.1%, and V: not more than 0.02%.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 강판은 추가적으로, Ca: 2~100ppm을 더 포함하는 재질 균일성이 우수한 내마모 강판.Wherein the steel sheet further comprises 2 to 100 ppm of Ca, and further has excellent material uniformity.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 권취 공정 후의 미세조직은 면적분율로 베이나이트 95% 이상인 재질 균일성이 우수한 내마모 강판.Wherein the microstructure after the winding process is excellent in uniformity of material having an area fraction of 95% or more of bainite.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 강판의 미세조직은 면적분율로, 95% 이상의 마르텐사이트와 5% 이하의 제2상을 포함하는 재질 균일성이 우수한 내마모 강판.Wherein the microstructure of the steel sheet has an area fraction of not less than 95% martensite and not more than 5% second phase and is excellent in material uniformity.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 강판은, 권취 공정 후 미세조직이 베이나이트 주조직인 재질 균일성이 우수한 내마모 강판.The steel plate is excellent in uniformity of material in which the microstructure is the bainite main structure after the winding process.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 강판의 브리넬 경도(HB)가 450~550이고, 강판의 경도 편차(△HB)가 30 이하인 재질 균일성이 우수한 내마모 강판.The abrasion-resistant steel sheet according to any one of claims 1 to 3, wherein the steel has a Brinell hardness (HB) of 450 to 550 and a hardness deviation (DELTA HB) of 30 or less.
  8. 중량%로, C: 0.2~0.3%, Si: 0.5% 이하(0은 제외), Mn: 0.5~2.0%, P: 0.03% 이하(0은 제외), S: 0.02% 이하(0은 제외), Al: 0.05% 이하(0은 제외), Cr: 0.1~1.0%, Mo: 0.01~0.3%, B: 50ppm 이하(0은 제외), Ti: 0.02% 이하(0은 제외), Nb: 0.05% 이하(0은 제외) 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1100~1300℃에서 가열하는 단계;(Excluding 0), Mn: 0.5 to 2.0%, P: not more than 0.03% (excluding 0), S: not more than 0.02% (excluding 0) , Al: not more than 0.05% (excluding 0), Cr: 0.1-1.0%, Mo: 0.01-0.3%, B: 50ppm or less (excluding 0), Ti: 0.02% Heating the steel slab containing Fe and unavoidable impurities at a temperature of 1100 to 1300 캜;
    상기 가열된 강 슬라브를 마무리 열간 압연 온도 800~1000℃에서 열간 압연을 행하는 단계;Subjecting the heated steel slab to hot rolling at a final hot rolling temperature of 800 to 1000 占 폚;
    상기 마무리 열간 압연 온도에서 권취 온도(CT)까지 하기 [관계식 1]을 만족하는 냉각속도(CR)로 냉각하는 단계;Cooling at a cooling rate (CR) satisfying the following formula (1) from the finish hot rolling temperature to the coiling temperature (CT);
    상기 냉각 후, 하기 [관계식 2]을 만족하는 권취 온도(CT)에서 권취하는 단계;After cooling, winding at a coiling temperature (CT) satisfying the following formula (2);
    상기 권취된 강판을 850~950℃의 온도로 20~60분 동안 재가열하는 단계; 및Reheating the wound steel sheet at a temperature of 850 to 950 캜 for 20 to 60 minutes; And
    상기 재가열된 강판을 상기 [관계식 1]을 만족하는 냉각속도(CR)로 100℃ 이하까지 냉각하는 단계Cooling the reheated steel sheet to a temperature of 100 DEG C or less at a cooling rate (CR) satisfying the relational expression 1
    를 포함하는 재질 균일성이 우수한 내마모 강판의 제조방법.Wherein the material is uniformly uniform.
    [관계식 1][Relation 1]
    CR(℃/s) ≥ 69.6-56[C]+2.1[Si]-19.2[Mn]-8.9[Cr]+8.0[Al]-26.9[Mo]Cr (° C./s) ≥ 69.6-56 [C] +2.1 [Si] -19.2 [Mn] -8.9 [Cr] +8.0 [Al] -26.9 [Mo]
    [관계식 2][Relation 2]
    (Ms + 30)℃ ≤ CT ≤ (Bs - 30)℃(Ms + 30) 占 폚 CT? (Bs - 30) 占 폚
    Ms = 539-423[C]-30.4[Mn]-17.7[Ni]-12.1[Cr]-7.5[Mo]Ms = 539-423 [C] -30.4 [Mn] -17.7 [Ni] -12.1 [Cr]
    Bs = 830-270[C]-90[Mn]-37[Ni]-70[Cr]-83[Mo]Bs = 830-270 [C] -90 [Mn] -37 [Ni] -70 [Cr]
    (단, 상기 [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], 및 [Mo]은 각각의 성분 함량의 중량%를 의미함)(Wherein each of [C], [Mn], [Ni], [Cr], [Mo], [Si], [Al], and [Mo]
  9. 청구항 8에 있어서,The method of claim 8,
    상기 열간 마무리 압연 후, 평균 결정립 크기가 10~40㎛인 재질 균일성이 우수한 내마모 강판의 제조방법.The method of manufacturing a wear-resistant steel sheet having excellent uniformity of material having an average grain size of 10 to 40 mu m after the hot-rolling.
  10. 청구항 8에 있어서,The method of claim 8,
    상기 슬라브 가열은 100~400분간 행하는 재질 균일성이 우수한 내마모 강판의 제조방법.Wherein the slab heating is excellent in material uniformity for 100 to 400 minutes.
  11. 청구항 8에 있어서,The method of claim 8,
    상기 권취 후 재가열처리 전에, 강판을 3~20m 길이로 절판하는 단계를 포함하는 재질 균일성이 우수한 내마모 강판의 제조방법.And a step of cutting the steel sheet to a length of 3 to 20 m before the reheating treatment after the winding.
  12. 청구항 8에 있어서,The method of claim 8,
    상기 권취 후 미세조직은 베이나이트 주조직인 재질 균일성이 우수한 내마모 강판의 제조방법.Wherein the microstructure after winding is excellent in material uniformity as a bainite main structure.
PCT/KR2018/015581 2017-12-26 2018-12-10 Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor WO2019132310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0179490 2017-12-26
KR1020170179490A KR102045646B1 (en) 2017-12-26 2017-12-26 Abrasion resistance steel having excellent homogeneous material properties and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019132310A1 true WO2019132310A1 (en) 2019-07-04

Family

ID=67067807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015581 WO2019132310A1 (en) 2017-12-26 2018-12-10 Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102045646B1 (en)
WO (1) WO2019132310A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115667562A (en) * 2020-05-28 2023-01-31 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet
CN115667561A (en) * 2020-05-28 2023-01-31 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241605A1 (en) * 2020-05-28 2021-12-02 Jfeスチール株式会社 Wear resistant steel sheet and method for producing wear resistant steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020837A (en) * 2000-07-06 2002-01-23 Nkk Corp Wear resistant steel excellent in toughness and its production method
KR20120071614A (en) * 2010-12-23 2012-07-03 주식회사 포스코 Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same
KR20150036798A (en) * 2012-09-19 2015-04-07 제이에프이 스틸 가부시키가이샤 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
US20160002759A1 (en) * 2013-03-28 2016-01-07 Baoshan Iron & Steel Co., Ltd. High-toughness low-alloy wear-resistant steel sheet and method of manufacturing the same
KR20160072099A (en) * 2013-08-30 2016-06-22 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR101696094B1 (en) * 2015-08-21 2017-01-13 주식회사 포스코 Steel sheet having superior hardness and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166954A (en) 1985-01-18 1986-07-28 Sumitomo Metal Ind Ltd High-toughness wear-resistant steel
JPH0841535A (en) 1994-07-29 1996-02-13 Nippon Steel Corp Production of high hardness wear resistant steel excellent in low temperature toughness
JP4650013B2 (en) * 2004-02-12 2011-03-16 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
MX348365B (en) * 2011-03-29 2017-06-08 Jfe Steel Corp Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020837A (en) * 2000-07-06 2002-01-23 Nkk Corp Wear resistant steel excellent in toughness and its production method
KR20120071614A (en) * 2010-12-23 2012-07-03 주식회사 포스코 Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same
KR20150036798A (en) * 2012-09-19 2015-04-07 제이에프이 스틸 가부시키가이샤 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
US20160002759A1 (en) * 2013-03-28 2016-01-07 Baoshan Iron & Steel Co., Ltd. High-toughness low-alloy wear-resistant steel sheet and method of manufacturing the same
KR20160072099A (en) * 2013-08-30 2016-06-22 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR101696094B1 (en) * 2015-08-21 2017-01-13 주식회사 포스코 Steel sheet having superior hardness and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115667562A (en) * 2020-05-28 2023-01-31 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet
CN115667561A (en) * 2020-05-28 2023-01-31 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet

Also Published As

Publication number Publication date
KR102045646B1 (en) 2019-11-15
KR20190077916A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018117481A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2019125083A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2018117482A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2020067685A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2021125621A1 (en) High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2018117497A1 (en) Steel material for welded steel pipe, having excellent longitudinal uniform elongation, manufacturing method therefor, and steel pipe using same
WO2019132310A1 (en) Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor
WO2017034216A1 (en) High-hardness steel sheet, and manufacturing method therefor
WO2018117676A1 (en) Austenite steel material having superb abrasion resistance and toughness, and method for producing same
WO2020067686A1 (en) Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
WO2018088761A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2018117470A1 (en) High-strength steel plate having excellent burring workability in low temperature range and manufacturing method therefor
WO2018117496A1 (en) Steel for pressure vessels with excellent resistance to high-temperature tempering heat treatment and post-weld heat treatment and manufacturing method therefor
WO2017111345A1 (en) Low-yield-ratio type high-strength steel, and manufacturing method therefor
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2019124765A1 (en) High-strength steel sheet having excellent impact resistance, and method for manufacturing same
WO2020226301A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
WO2018117606A1 (en) Hot dip coated steel having excellent processability, and manufacturing method therefor
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894002

Country of ref document: EP

Kind code of ref document: A1