WO2018117507A1 - Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same - Google Patents

Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same Download PDF

Info

Publication number
WO2018117507A1
WO2018117507A1 PCT/KR2017/014411 KR2017014411W WO2018117507A1 WO 2018117507 A1 WO2018117507 A1 WO 2018117507A1 KR 2017014411 W KR2017014411 W KR 2017014411W WO 2018117507 A1 WO2018117507 A1 WO 2018117507A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
low
less
temperature
toughness
Prior art date
Application number
PCT/KR2017/014411
Other languages
French (fr)
Korean (ko)
Inventor
김우겸
엄경근
방기현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2019532672A priority Critical patent/JP6847225B2/en
Priority to EP17882705.1A priority patent/EP3561107A4/en
Priority to CN201780079094.8A priority patent/CN110100027B/en
Publication of WO2018117507A1 publication Critical patent/WO2018117507A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel sheet having excellent low temperature toughness and a method of manufacturing the same.
  • Steels with resistance yield ratio not only have excellent formability by increasing the difference between yield strength and tensile strength, but also delay the plastic deformation time until fracture can occur and absorb energy in this process to prevent collapse by external force. can do. In addition, even if there is a deformation, it is possible to repair before collapse, thereby preventing damage to property and life due to damage to the structure.
  • the technology of two phase organization of steel was developed. Specifically, the first phase is soft ferrite, and the remaining second phase is martensite, pearlite, or bainite, thereby implementing a resistance ratio.
  • the impact toughness due to the hard two phase and the carbon content is increased for the second phase, so that the toughness of the weld is degraded, thereby causing brittle fracture of the structure at low temperature.
  • Patent Literature 1 has been developed as a technique for securing both resistance ratio and low temperature impact toughness.
  • the microstructure includes 2-10 vol% of MA (martensite / austenite mixed structure) and 90 vol% or more of cyclic ferrite, thereby ensuring resistance ratio and excellent low temperature toughness.
  • Patent Document 1 it is possible to implement a yield ratio of about 0.8 but there is an insufficient problem to secure the seismic characteristics can not implement a sufficient resistance yield ratio. Therefore, there is a demand for development of a resistive yield ratio steel sheet excellent in low temperature toughness and a method of manufacturing the same which can ensure a lower yield ratio.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2013-0076577
  • One aspect of the present invention is to provide a low-temperature toughness ratio steel sheet and a method of manufacturing the same.
  • One aspect of the present invention is by weight, C: 0.05 ⁇ 0.1%, Si: 0.3 ⁇ 0.7%, Mn: 1.0 ⁇ 2.0%, Al: 0.005 ⁇ 0.04%, Nb: 0.04 ⁇ 0.07%, Ti: 0.001 ⁇ 0.02 %, Cu: 0.05-0.4%, Ni: 0.1-0.6%, Mo: 0.01-0.08%, N: 0.001-0.008%, P: 0.015% or less, S: 0.003% or less, including remaining Fe and unavoidable impurities ,
  • the microstructure includes 80-92% ferrite and 8-20% MA (martensite / austenite mixed structure) as an area fraction, and the MA has excellent low-temperature toughness with an average size of 3 ⁇ m or less as measured by its equivalent diameter. It is related to bimetallic steel plate.
  • another aspect of the present invention is by weight%, C: 0.05 ⁇ 0.1%, Si: 0.3 ⁇ 0.7%, Mn: 1.0 ⁇ 2.0%, Al: 0.005 ⁇ 0.04%, Nb: 0.04 ⁇ 0.07%, Ti: 0.001 to 0.02%, Cu: 0.05 to 0.4%, Ni: 0.1 to 0.6%, Mo: 0.01 to 0.08%, N: 0.001 to 0.008%, P: 0.015% or less, S: 0.003% or less, remaining Fe and unavoidable impurities Heating the slab including 1050 to 1200 ° C;
  • T is a value measured in mm of the thickness of the hot rolled steel sheet.
  • the present invention it is possible to secure a resistance ratio and excellent low temperature toughness, and in particular, a low resistance ratio of 0.65 or less can be secured, thereby ensuring excellent seismic characteristics as well as formability. Accordingly, it can be applied to industrial fields such as construction, construction, and civil engineering requiring seismic characteristics, and also applicable to shipbuilding and marine structural steels.
  • Figure 2 is a photograph of the microstructure after the normalizing heat treatment of the test number 1 of the invention example.
  • Figure 3 is a photograph of the microstructure after the normalizing heat treatment of the test No. 9 of the comparative example.
  • Figure 4 is a photograph of the microstructure after the normalizing heat treatment of the test No. 10 of the comparative example.
  • the present inventors are able to secure a yield ratio of about 0.8 in the prior art, but the moldability can be secured to some extent, but it is not enough to realize a sufficient resistance ratio, and it is insufficient to secure seismic characteristics, and solved this problem. In order to study deeply.
  • the base material lacks the hardness difference from the MA as the ecuous ferrite, and the MA phase is grain boundary. It has been found that the formation of the structure at the core and the size of the MA are not sufficient to realize sufficient resistance ratio.
  • the microstructure of the base material as ferrite and uniformly distributing the fine MA phase in the ferrite grain boundary and the inside of the grain, a resistivity ratio of 0.65 or less can be ensured, and in order to secure such a structure, the structure before the normalizing heat treatment includes bainite. It was confirmed that control was required and the present invention was completed.
  • the resistive steel sheet having excellent low temperature toughness is wt%, C: 0.05 to 0.1%, Si: 0.3 to 0.7%, Mn: 1.0 to 2.0%, Al: 0.005 to 0.04%, and Nb: 0.04 ⁇ 0.07%, Ti: 0.001-0.02%, Cu: 0.05-0.4%, Ni: 0.1-0.6%, Mo: 0.01-0.08%, N: 0.001-0.008%, P: 0.015% or less, S: 0.003% or less , Remaining Fe and unavoidable impurities,
  • the microstructure includes 80-92% ferrite and 8-20% MA (martensite / austenite mixed structure) in an area fraction, and the MA has an average size of 3 ⁇ m or less measured in a circular equivalent diameter.
  • alloy composition of the present invention will be described in detail.
  • the unit of each element content below is weight% unless there is particular notice.
  • C is an element that causes solid solution strengthening and exists as carbonitride by Nb to secure tensile strength.
  • C content When the C content is less than 0.05%, the above effects are insufficient. On the other hand, if the C content is more than 0.1%, the MA is coarse and pearlite is formed, which may degrade the impact characteristics at low temperatures, and it is difficult to secure enough bainite. Therefore, it is preferable that C content is 0.05 to 0.1%.
  • the lower limit of the C content may be 0.055%, and the lower limit may be 0.06%.
  • the more preferable upper limit of C content may be 0.095%, and a more preferable upper limit may be 0.09%.
  • Si serves to deoxidize molten steel by assisting Al and is added to secure yield strength and tensile strength. Moreover, it is an element for controlling the fraction of MA desired by this invention.
  • Si content When the Si content is less than 0.3%, the above effects are insufficient. On the other hand, when the Si content is more than 0.7%, the impact characteristics may be degraded by coarsening of the MA, and the welding characteristics may be degraded. Therefore, it is preferable that Si content is 0.3 to 0.7%.
  • the lower limit of Si content may be 0.35%, and the lower limit may be 0.4%.
  • the more preferable upper limit of Si content may be 0.65%, and a more preferable upper limit may be 0.6%.
  • Mn contributes greatly to the strength increasing effect by solid solution strengthening and is an element that helps to form bainite.
  • Mn content is less than 1.0%, the above effects are insufficient. On the other hand, if excessively added, the toughness may be reduced due to formation of MnS inclusions and formation of the center portion, so the upper limit is 2.0%. Therefore, it is preferable that Mn content is 1.0 to 2.0%.
  • the lower limit of the Mn content may be 1.1%, and the lower limit may be 1.2%.
  • the more preferable upper limit of Si content may be 1.95%, and a more preferable upper limit may be 1.9%.
  • Al needs to be added 0.005% or more as a major deoxidizer of steel. However, when added in excess of 0.04%, the effect is saturated and may cause low temperature toughness by increasing the fraction and size of Al 2 O 3 inclusions.
  • Nb is an element that suppresses recrystallization during rolling or cooling by precipitation of solid solution or carbonitride, thereby making the structure fine and increasing the strength. Moreover, it is an element for controlling the fraction of MA desired by this invention.
  • Ti combines with oxygen or nitrogen to form precipitates, thereby inhibiting coarsening of tissues, contributing to miniaturization and improving toughness.
  • Cu is a component that does not significantly reduce the impact characteristics, and thus improves strength by solid solution and precipitation. In order to sufficiently improve the strength, it should be contained at 0.05% or more, but if the Cu content is more than 0.4%, surface cracks of the steel sheet due to Cu thermal shock may occur.
  • Ni is an element that can improve strength and toughness at the same time as the increase in content is not great, and is an element that helps to form bainite by decreasing the Ar3 temperature.
  • the Ni content is less than 0.1%, the above effects are insufficient. On the other hand, when the Ni content is more than 0.6%, the manufacturing cost may increase and the weldability may deteriorate.
  • Mo is an austenite stabilizing element that affects the amount of MA and plays a large role in improving the strength. It is also an element that prevents the drop in strength during heat treatment and helps to form bainite.
  • Mo is an expensive alloying element, there is a problem in that manufacturing cost increases when a large amount is added. Therefore, in the present invention, it is intended to secure MA by adding a large amount of Si, Nb and the like, and in the alloy composition of the present invention, Mo may be sufficiently secured by adding 0.01% or more. On the other hand, when the Mo content is more than 0.08%, there is a problem that the manufacturing cost increases and the base material toughness and post-weld toughness may be reduced.
  • N is an element that forms a precipitate with Ti, Nb, Al and the like to make the austenite structure fine when the slab is heated to help improve strength and toughness.
  • the N content is less than 0.001%, the above effects are insufficient.
  • the N content is more than 0.008%, it causes surface cracking at high temperatures, forms precipitates, and the remaining N remains in an atomic state, thereby reducing toughness.
  • P may cause grain boundary segregation as impurities and cause the steel to be withdrawn. Therefore, it is important to control the upper limit, and it is preferable to control it to 0.015% or less.
  • the lower limit of the P content is not particularly limited, but 0% may be excluded.
  • S as an impurity, mainly combines with Mn to form MnS inclusions, which are factors that inhibit low-temperature toughness. Therefore, it is important to control the upper limit, and in order to secure low temperature toughness, it is preferable to control S to 0.003% or less.
  • the lower limit of the S content is not particularly limited, but 0% may be excluded.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • the microstructure of the resistive steel sheet having excellent low temperature toughness includes 80 to 92% ferrite and 8 to 20% MA (martensite / austenite mixed structure) as an area fraction, and the MA is The average size measured by the circular equivalent diameter is 3 micrometers or less.
  • the fraction of microstructure means an area fraction unless otherwise specified.
  • Ferrite is to ensure basic toughness and strength, preferably 80% or more.
  • the upper limit is preferably 92%.
  • the ferrite does not contain the ecuous ferrite. This is because the Eccentric Ferrari cannot have sufficient resistance ratio because of its small hardness difference from MA.
  • the MA is less than 8%, it is difficult to secure a resistance ratio of 0.65 or less. If the MA is more than 20%, the impact toughness may be reduced, and the elongation may be reduced. In addition, when the average size measured by the equivalent circular diameter of the MA exceeds 3 ⁇ m, it is difficult to ensure the uniform distribution and resistance ratio of the MA is formed in the grain boundary grains.
  • the 100 ⁇ m straight line is drawn on the steel sheet of the present invention, as well as the MA fraction and size, it is preferable that 5 to 13 MAs are disposed on the straight line. That is, a plurality of straight lines are drawn up and down or left and right on a microstructure photograph having a size of 100 ⁇ m ⁇ 100 ⁇ m, and at this time, 5 to 13 MAs may be present on each line. This is because MA, which mainly causes breakage, is present in the grain boundary, and when the above conditions are satisfied, the MA is evenly distributed in the grain boundary and inside the grain, which is advantageous in securing a resistance ratio.
  • the ratio of the MA present in the ferrite grains and the MA present in the grain boundary may be 1: 3 to 1:10.
  • the ratio refers to the ratio of the number of MA, and by satisfying the ratio can be uniformly distributed so that the MA present in the ferrite grains becomes 0.5 to 5 area%.
  • the ferrite may have an average size of about 20 ⁇ m or less as measured by a circular equivalent diameter. This is because when the average size of the ferrite is greater than 20 ⁇ m, it may be difficult to secure sufficient toughness and strength.
  • the steel sheet according to the present invention is normalized (Normalizing) heat treatment and the microstructure of the steel sheet before the normalizing heat treatment may be 50 ⁇ 90 area% of bainite. Since the microstructure of the steel sheet before the heat treatment is bainite with carbides present therein, it is possible to distribute MA evenly in the grain boundary and the grain boundary after the heat treatment. Therefore, the microstructure of the steel sheet before the heat treatment is preferably 50 to 90 area%. Do.
  • the steel sheet according to the present invention has a yield ratio of 0.5 to 0.65, the low temperature impact characteristics at -40 °C may be 100J or more.
  • the yield ratio is 0.65 or less, which makes the difference between yield strength and tensile strength not only excellent in formability but also delays plastic deformation until breakage occurs and absorbs energy in this process to prevent collapse by external forces. Can be. Therefore, it can be preferably applied not only to the field of shipbuilding and marine structural steel but also to the industrial field requiring molding and seismic characteristics.
  • the yield strength of the steel sheet is 350 ⁇ 400MPa, tensile strength may be 600MPa or more.
  • t is a value measured in mm units of the hot rolled steel sheet.
  • the slab having the alloy composition described above is heated to 1050 ⁇ 1200 °C.
  • the heating temperature is more than 1200 °C austenite grains may be coarsened to lower the toughness, if less than 1050 °C Ti, Nb, etc. are not sufficiently dissolved, the strength may be reduced.
  • the heated slab is hot rolled to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet.
  • the rolling temperature of the heat-treated steel is about 850 ⁇ 1000 °C general rolling is applied.
  • Re-crystallization rolling during hot rolling is necessary to refine the austenite grain size, and it is advantageous in terms of physical properties as the reduction ratio per pass increases.
  • Unrecrystallized rolling must be completed at a temperature of at least Ar3 of the steel and is at least about 760 ° C. More specifically, the finish rolling end temperature may be defined at 760 to 850 ° C. If the finish rolling finish temperature is higher than 850 °C, it is difficult to suppress the ferrite-pearlite transformation, and if it is less than 760 °C may cause non-uniformity of the microstructure in the thickness direction and to achieve a reduction in the amount of reduction by the load load of the rolling roll May not form tissue.
  • bainite structure is realized through cooling.
  • the initial structure of bainite is for uniform MA distribution after heat treatment.
  • MAs are mainly formed at grain boundaries, while in bainite structures, MAs are formed at both grain boundaries and inside grains.
  • the hot rolled steel sheet is cooled to 450 ° C. or less at a cooling rate of 5 ° C./s or more.
  • Bainite should be implemented to form fine and uniform MA. Cooling finish temperature and cooling rate are important factors for bainite formation. If the cooling finish temperature is higher than 450 °C, the grain size may become coarse and coarse carbide may cause coarse MA to be formed after heat treatment, which may lead to deterioration of toughness and secure more than 50 area% of bainite. Difficult to do
  • the cooling rate is less than 5 °C / s, the fine structure of the needle-like ferrite or ferrite + pearlite is formed in a large amount may cause a decrease in strength. There is a problem that the yield can be reduced, and it is difficult to secure 50 area% or more of bainite.
  • the microstructure of the cooled hot-rolled steel sheet may be 50 ⁇ 90 area% bainite. Since the microstructure of the steel sheet before the heat treatment is bainite with carbides present therein, it is possible to distribute MA evenly in the grain boundary and the grain boundary after the heat treatment. Therefore, the microstructure of the steel sheet before the heat treatment is preferably 50 to 90 area%. Do.
  • T is a value measured in mm units of the hot rolled steel sheet.
  • the normalizing temperature is less than 850 ° C or the holding time is less than (1.3t + 10) minutes, the reusability of cementite and pearlite in pearlite and bainite is difficult to re-use, resulting in a decrease in the amount of C employed, resulting in less strength and ultimately remaining The hardened phase remains coarse.
  • Table 3 below describes the bainite fraction and mechanical properties of the steel sheet before the normalizing heat treatment.
  • Table 4 below describes the MA fraction of the steel sheet after the normalizing heat treatment, the average MA size, the number of MAs over 100 ⁇ m, and the mechanical properties thereof.
  • MA it was ferrite, and the average grain size of the ferrite was 20 ⁇ m or less and was not separately described.
  • the average MA size is the average size measured by the equivalent diameter, and the number of MAs on a 100 ⁇ m line is the number of MAs on each line by drawing 10 straight lines up and down or left and right on a 100 ⁇ m X 100 ⁇ m microstructure photograph. After measuring the average number was described.
  • the unit of each element content in Table 1 is weight%.
  • Invention steels A to D are steel sheets satisfying the component range defined by the present invention, and comparative steels E to G are steel sheets which do not satisfy the component range defined by the present invention.
  • Comparative steel E is less than C content
  • comparative steel F is less than Si
  • comparative steel G is less than Mn content.
  • the MA fraction is higher than the comparative example.
  • Table 3 by securing a high bainite fraction before the normalizing heat treatment, the grains of the initial bainite structure, carbides in the grains are transformed into fine MA. It can also be seen that the yield ratio is determined by the formation of such fine MAs.

Abstract

An aspect of the present invention relates to a low-yield ratio steel sheet having excellent low-temperature toughness, the steel sheet comprising, in terms of weight%, 0.05-0.1% of C, 0.3-0.7% of Si, 1.0-2.0% of Mn, 0.005-0.04% of Al, 0.04-0.07% of Nb, 0.001-0.02% of Ti, 0.05-0.4% of Cu, 0.1-0.6% of Ni, 0.01-0.08% of Mo, 0.001-0.008% of N, 0.015% or less of P, 0.003% or less of S, and the remainder Fe and unavoidable impurities, wherein a microstructure comprises, by area fraction, 80-92% of ferrite and 8-20% of MA (martensite/austenite mixed structure), the average size of the MA measured for a circle-equivalent diameter being 3㎛ or less.

Description

저온인성이 우수한 저항복비 강판 및 그 제조방법Low-temperature-resistant steel sheet with excellent low temperature toughness and manufacturing method
본 발명은 저온인성이 우수한 저항복비 강판 및 그 제조방법에 관한 것이다. The present invention relates to a steel sheet having excellent low temperature toughness and a method of manufacturing the same.
조선, 해양 구조용 강재 분야뿐만 아니라 성형 및 내진 특성을 요구하는 산업 분야에 적용이 가능하기 위해서는 저온 인성뿐만 아니라 저항복비 특성을 갖는 강재의 개발이 필요하다. In order to be applicable to shipbuilding and marine structural steels as well as industrial fields requiring molding and seismic characteristics, it is necessary to develop steels having not only low-temperature toughness but also resistance-complexing properties.
저항복비를 가지는 강재는 항복강도와 인장강도의 차이를 크게 함으로써 성형성이 우수할 뿐만 아니라, 파괴가 발생할 수 있을 때까지의 소성 변형 시점을 늦추고 이 과정에서 에너지를 흡수하여 외력에 의한 붕괴를 방지할 수 있다. 또한 변형이 존재하더라도 붕괴전 보수를 가능하게 함으로써 구조물의 파손에 의한 재산 및 인명 피해를 방지할 수 있다. Steels with resistance yield ratio not only have excellent formability by increasing the difference between yield strength and tensile strength, but also delay the plastic deformation time until fracture can occur and absorb energy in this process to prevent collapse by external force. can do. In addition, even if there is a deformation, it is possible to repair before collapse, thereby preventing damage to property and life due to damage to the structure.
저항복비를 확보하기 위하여 강재의 조직을 2상 조직화 하는 기술이 개발되었다. 구체적으로 제1상은 연질 페라이트, 나머지 제2상은 마르텐사이트, 펄라이트 또는 베이나이트로 함으로써 저항복비를 구현하였다. In order to secure the resistance ratio, the technology of two phase organization of steel was developed. Specifically, the first phase is soft ferrite, and the remaining second phase is martensite, pearlite, or bainite, thereby implementing a resistance ratio.
하지만 경한 2상에 의한 충격인성의 저하와 제2상을 위해 탄소함량이 증가하여 용접부 인성이 열화되어 저온에서 구조물의 취성파괴를 일으킬 수 있는 문제점이 있었다. However, the impact toughness due to the hard two phase and the carbon content is increased for the second phase, so that the toughness of the weld is degraded, thereby causing brittle fracture of the structure at low temperature.
이에 저항복비 및 저온 충격인성을 모두 확보하기 위한 기술로는 특허문헌 1이 개발되었다.Accordingly, Patent Literature 1 has been developed as a technique for securing both resistance ratio and low temperature impact toughness.
특허문헌 1에서는 미세조직을 2~10vol%의 MA(마르텐사이트/오스테나이트 혼합조직)와 90vol% 이상의 에시큘러 페라이트를 포함하도록 하여 저항복비 및 우수한 저온인성을 확보하고 있다.In Patent Document 1, the microstructure includes 2-10 vol% of MA (martensite / austenite mixed structure) and 90 vol% or more of cyclic ferrite, thereby ensuring resistance ratio and excellent low temperature toughness.
특허문헌 1에 따를 경우, 약 0.8정도의 항복비를 구현할 수 있으나 충분한 저항복비를 구현할 수 없어 내진 특성을 확보하기는 불충분한 문제점이 있다. 따라서, 항복비를 보다 낮게 확보할 수 있는 저온인성이 우수한 저항복비 강판 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다.According to Patent Document 1, it is possible to implement a yield ratio of about 0.8 but there is an insufficient problem to secure the seismic characteristics can not implement a sufficient resistance yield ratio. Therefore, there is a demand for development of a resistive yield ratio steel sheet excellent in low temperature toughness and a method of manufacturing the same which can ensure a lower yield ratio.
(선행기술문헌)(Prior art document)
(특허문헌 1) 한국 공개특허공보 제2013-0076577호(Patent Document 1) Korean Unexamined Patent Publication No. 2013-0076577
본 발명의 일 측면은 저온인성이 우수한 저항복비 강판 및 그 제조방법을 제공하기 위함이다.One aspect of the present invention is to provide a low-temperature toughness ratio steel sheet and a method of manufacturing the same.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.In addition, the subject of this invention is not limited to the content mentioned above. The problem of the present invention will be understood from the general contents of the present specification, those skilled in the art will have no difficulty understanding the additional problem of the present invention.
본 발명의 일 측면은 중량%로, C: 0.05~0.1%, Si: 0.3~0.7%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.04~0.07%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.1~0.6%, Mo: 0.01~0.08%, N: 0.001~0.008%, P: 0.015% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며, One aspect of the present invention is by weight, C: 0.05 ~ 0.1%, Si: 0.3 ~ 0.7%, Mn: 1.0 ~ 2.0%, Al: 0.005 ~ 0.04%, Nb: 0.04 ~ 0.07%, Ti: 0.001 ~ 0.02 %, Cu: 0.05-0.4%, Ni: 0.1-0.6%, Mo: 0.01-0.08%, N: 0.001-0.008%, P: 0.015% or less, S: 0.003% or less, including remaining Fe and unavoidable impurities ,
미세조직은 면적분율로 페라이트 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균 크기가 3㎛ 이하인 저온인성이 우수한 저항복비 강판에 관한 것이다.The microstructure includes 80-92% ferrite and 8-20% MA (martensite / austenite mixed structure) as an area fraction, and the MA has excellent low-temperature toughness with an average size of 3 μm or less as measured by its equivalent diameter. It is related to bimetallic steel plate.
또한, 본 발명의 다른 일 측면은 중량%로, C: 0.05~0.1%, Si: 0.3~0.7%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.04~0.07%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.1~0.6%, Mo: 0.01~0.08%, N: 0.001~0.008%, P: 0.015% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1050~1200℃로 가열하는 단계;In addition, another aspect of the present invention is by weight%, C: 0.05 ~ 0.1%, Si: 0.3 ~ 0.7%, Mn: 1.0 ~ 2.0%, Al: 0.005 ~ 0.04%, Nb: 0.04 ~ 0.07%, Ti: 0.001 to 0.02%, Cu: 0.05 to 0.4%, Ni: 0.1 to 0.6%, Mo: 0.01 to 0.08%, N: 0.001 to 0.008%, P: 0.015% or less, S: 0.003% or less, remaining Fe and unavoidable impurities Heating the slab including 1050 to 1200 ° C;
상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는 단계;Hot rolling the heated slab to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet;
상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각하는 단계; 및Cooling the hot rolled steel sheet to 450 ° C. or less at a cooling rate of 5 ° C./s or more; And
상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지하는 노멀라이징 열처리 단계;를 포함하는 저온인성이 우수한 저항복비 강판의 제조방법에 관한 것이다. After the cooled hot-rolled steel sheet is heated to a temperature range of 850 ~ 960 ℃, the normalizing heat treatment step of maintaining for [1.3t + (10 ~ 30)] minutes; will be.
(상기 t는 열연강판의 두께를 mm단위로 측정한 값이다.)(T is a value measured in mm of the thickness of the hot rolled steel sheet.)
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.In addition, the solution of the said subject does not enumerate all the characteristics of this invention. Various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.
본 발명에 의하면 저항복비 및 우수한 저온인성을 확보할 수 있으며, 특히 0.65 이하의 낮은 저항복비를 확보할 수 있어 성형성뿐만 아니라 우수한 내진 특성을 확보할 수 있다. 이에 따라 내진 특성을 요구하는 건설, 건축, 토목 등의 산업 분야에 적용이 가능하고 조선, 해양 구조용 강재 분야에도 적용이 가능하다. According to the present invention, it is possible to secure a resistance ratio and excellent low temperature toughness, and in particular, a low resistance ratio of 0.65 or less can be secured, thereby ensuring excellent seismic characteristics as well as formability. Accordingly, it can be applied to industrial fields such as construction, construction, and civil engineering requiring seismic characteristics, and also applicable to shipbuilding and marine structural steels.
도 1은 발명예인 시험번호 1의 노멀라이징 열처리 전 미세조직을 촬영한 사진이다. 1 is a photograph of the microstructure before the normalizing heat treatment of the test number 1 of the invention example.
도 2는 발명예인 시험번호 1의 노멀라이징 열처리 후 미세조직을 촬영한 사진이다. Figure 2 is a photograph of the microstructure after the normalizing heat treatment of the test number 1 of the invention example.
도 3은 비교예인 시험번호 9의 노멀라이징 열처리 후 미세조직을 촬영한 사진이다. Figure 3 is a photograph of the microstructure after the normalizing heat treatment of the test No. 9 of the comparative example.
도 4는 비교예인 시험번호 10의 노멀라이징 열처리 후 미세조직을 촬영한 사진이다.Figure 4 is a photograph of the microstructure after the normalizing heat treatment of the test No. 10 of the comparative example.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명자들은 종래 기술로는 0.8 정도의 항복비를 확보할 수 있어 성형성은 어느 정도 확보될 수 있으나, 충분한 저항복비를 구현할 수 없어 내진 특성을 확보하기는 불충분한 문제점이 있음을 인지하고, 이를 해결하기 위하여 깊이 연구하였다. The present inventors are able to secure a yield ratio of about 0.8 in the prior art, but the moldability can be secured to some extent, but it is not enough to realize a sufficient resistance ratio, and it is insufficient to secure seismic characteristics, and solved this problem. In order to study deeply.
그 결과 저항복비 구현을 위해서는 모재와 제2상의 경도 차이가 클수록 유리하며, MA의 분포가 균일할수록 유리하다는 것과 특허문헌 1의 경우 모재가 에시큘러 페라이트로 MA와의 경도 차이가 부족하며, MA상이 결정립계에 형성되고 MA 크기가 조대하여 충분한 저항복비를 구현할 수 없다는 것을 알아내었다. As a result, the larger the difference between the hardness of the base material and the second phase to realize the resistance ratio ratio, the more favorable the distribution of MA is more favorable, and in the case of Patent Literature 1, the base material lacks the hardness difference from the MA as the ecuous ferrite, and the MA phase is grain boundary. It has been found that the formation of the structure at the core and the size of the MA are not sufficient to realize sufficient resistance ratio.
이에 모재의 미세조직을 페라이트로 하고 미세한 MA 상이 페라이트 결정립계 및 결정립 내부에 균일하게 분포시킴으로써, 0.65 이하의 저항복비를 확보할 수 있으며, 이러한 조직을 확보하기 위해서는 노멀라이징 열처리 전 조직이 베이나이트를 포함하도록 제어하여야 함을 확인하고, 본 발명을 완성하기에 이르렀다. Therefore, by using the microstructure of the base material as ferrite and uniformly distributing the fine MA phase in the ferrite grain boundary and the inside of the grain, a resistivity ratio of 0.65 or less can be ensured, and in order to secure such a structure, the structure before the normalizing heat treatment includes bainite. It was confirmed that control was required and the present invention was completed.
저온인성이 우수한 저항복비 강판Low-temperature-resistant steel sheet with excellent low temperature toughness
이하, 본 발명의 일 측면에 따른 저온인성이 우수한 저항복비 강판에 대하여 상세히 설명한다.Hereinafter, a low-temperature toughness steel sheet excellent in low temperature toughness according to an aspect of the present invention will be described in detail.
본 발명의 일 측면에 따른 저온인성이 우수한 저항복비 강판은 중량%로, C: 0.05~0.1%, Si: 0.3~0.7%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.04~0.07%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.1~0.6%, Mo: 0.01~0.08%, N: 0.001~0.008%, P: 0.015% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며, In accordance with an aspect of the present invention, the resistive steel sheet having excellent low temperature toughness is wt%, C: 0.05 to 0.1%, Si: 0.3 to 0.7%, Mn: 1.0 to 2.0%, Al: 0.005 to 0.04%, and Nb: 0.04 ~ 0.07%, Ti: 0.001-0.02%, Cu: 0.05-0.4%, Ni: 0.1-0.6%, Mo: 0.01-0.08%, N: 0.001-0.008%, P: 0.015% or less, S: 0.003% or less , Remaining Fe and unavoidable impurities,
미세조직은 면적분율로 페라이트 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균 크기가 3㎛ 이하이다. The microstructure includes 80-92% ferrite and 8-20% MA (martensite / austenite mixed structure) in an area fraction, and the MA has an average size of 3 µm or less measured in a circular equivalent diameter.
먼저, 본 발명의 합금조성에 대하여 상세히 설명한다. 이하 각 원소 함량의 단위는 특별한 언급이 없는 한 중량%이다. First, the alloy composition of the present invention will be described in detail. The unit of each element content below is weight% unless there is particular notice.
C: 0.05~0.1%C: 0.05-0.1%
본 발명에서 C은 고용강화를 일으키고 Nb 등에 의한 탄질화물로 존재하여 인장강도를 확보하기 위한 원소이다. In the present invention, C is an element that causes solid solution strengthening and exists as carbonitride by Nb to secure tensile strength.
C 함량이 0.05% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 C 함량이 0.1% 초과인 경우에는 MA가 조대하고 펄라이트가 생성되어 저온에서의 충격 특성을 열화시킬 수 있고 베이나이트를 충분히 확보하기 어렵다. 따라서, C 함량은 0.05~0.1%인 것이 바람직하다. When the C content is less than 0.05%, the above effects are insufficient. On the other hand, if the C content is more than 0.1%, the MA is coarse and pearlite is formed, which may degrade the impact characteristics at low temperatures, and it is difficult to secure enough bainite. Therefore, it is preferable that C content is 0.05 to 0.1%.
또한, C 함량의 보다 바람직한 하한은 0.055%일 수 있으며, 보다 더 바람직한 하한은 0.06%일 수 있다. 또한, C 함량의 보다 바람직한 상한은 0.095%일 수 있으며, 보다 바람직한 상한은 0.09%일 수 있다. In addition, the lower limit of the C content may be 0.055%, and the lower limit may be 0.06%. In addition, the more preferable upper limit of C content may be 0.095%, and a more preferable upper limit may be 0.09%.
Si: 0.3~0.7%Si: 0.3 ~ 0.7%
Si은 Al을 보조하여 용강을 탈산하는 역할을 수행하고 항복강도 및 인장강도를 확보하기 위하여 첨가한다. 또한 본 발명에서 원하는 MA의 분율을 제어하기 위한 원소이다.Si serves to deoxidize molten steel by assisting Al and is added to secure yield strength and tensile strength. Moreover, it is an element for controlling the fraction of MA desired by this invention.
Si 함량이 0.3% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Si 함량이 0.7% 초과인 경우에는 MA의 조대화에 의해 충격 특성이 열화 될 수 있으며 용접특성을 저하시킬 수 있다. 따라서, Si 함량은 0.3~0.7%인 것이 바람직하다. When the Si content is less than 0.3%, the above effects are insufficient. On the other hand, when the Si content is more than 0.7%, the impact characteristics may be degraded by coarsening of the MA, and the welding characteristics may be degraded. Therefore, it is preferable that Si content is 0.3 to 0.7%.
또한, Si 함량의 보다 바람직한 하한은 0.35%일 수 있으며, 보다 더 바람직한 하한은 0.4%일 수 있다. 또한, Si 함량의 보다 바람직한 상한은 0.65%일 수 있으며, 보다 바람직한 상한은 0.6%일 수 있다. In addition, the lower limit of Si content may be 0.35%, and the lower limit may be 0.4%. In addition, the more preferable upper limit of Si content may be 0.65%, and a more preferable upper limit may be 0.6%.
Mn: 1.0~2.0%Mn: 1.0-2.0%
Mn은 고용강화에 의한 강도 증가 효과에 크게 기여하며, 베이나이트 형성에 도움을 주는 원소이다. Mn contributes greatly to the strength increasing effect by solid solution strengthening and is an element that helps to form bainite.
Mn 함량이 1.0% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 과도하게 첨가되면 MnS 개재물의 형성, 중심부 편성으로 인해 인성의 저하를 야기할 수 있으므로 상한은 2.0%로 한다. 따라서, Mn 함량은 1.0~2.0%인 것이 바람직하다. When the Mn content is less than 1.0%, the above effects are insufficient. On the other hand, if excessively added, the toughness may be reduced due to formation of MnS inclusions and formation of the center portion, so the upper limit is 2.0%. Therefore, it is preferable that Mn content is 1.0 to 2.0%.
또한, Mn 함량의 보다 바람직한 하한은 1.1%일 수 있으며, 보다 더 바람직한 하한은 1.2%일 수 있다. 또한, Si 함량의 보다 바람직한 상한은 1.95%일 수 있으며, 보다 바람직한 상한은 1.9%일 수 있다. In addition, the lower limit of the Mn content may be 1.1%, and the lower limit may be 1.2%. In addition, the more preferable upper limit of Si content may be 1.95%, and a more preferable upper limit may be 1.9%.
Al: 0.005~0.04%Al: 0.005-0.04%
Al은 강의 주요한 탈산제로서 0.005% 이상 첨가될 필요가 있다. 하지만 0.04%를 초과하여 첨가할 경우 그 효과는 포화되고 Al2O3 개재물의 분율, 크기의 증가로 저온인성을 저하시키는 원인이 될 수 있다.Al needs to be added 0.005% or more as a major deoxidizer of steel. However, when added in excess of 0.04%, the effect is saturated and may cause low temperature toughness by increasing the fraction and size of Al 2 O 3 inclusions.
Nb: 0.04~0.07%Nb: 0.04-0.07%
Nb는 고용 또는 탄질화물을 석출함으로써 압연 또는 냉각중 재결정을 억제하여 조직을 미세하게 만들고 강도를 증가시키는 원소이다. 또한 본 발명에서 원하는 MA의 분율을 제어하기 위한 원소이다. Nb is an element that suppresses recrystallization during rolling or cooling by precipitation of solid solution or carbonitride, thereby making the structure fine and increasing the strength. Moreover, it is an element for controlling the fraction of MA desired by this invention.
Nb 함량이 0.04% 미만인 경우에는 상술한 효과가 불충분하다. 반면 0.07% 초과인 경우에는 모재 인성 및 용접 후 인성을 저하시킬 수 있는 문제점이 있다.When the Nb content is less than 0.04%, the above effects are insufficient. On the other hand, if it is more than 0.07% there is a problem that can reduce the toughness of the base material and the toughness after welding.
Ti: 0.001~0.02%Ti: 0.001-0.02%
Ti는 산소 또는 질소와 결합하여 석출물을 형성함으로써 조직의 조대화를 억제하여 미세화에 기여함고 인성을 향상시키는 역할을 한다. Ti combines with oxygen or nitrogen to form precipitates, thereby inhibiting coarsening of tissues, contributing to miniaturization and improving toughness.
Ti 함량이 0.001% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Ti 함량이 0.02% 초과인 경우에는 석출물이 조대하게 형성되어 파괴의 원인이 될 수 있다.When the Ti content is less than 0.001%, the above effects are insufficient. On the other hand, when the Ti content is more than 0.02%, precipitates are formed coarsely and may cause destruction.
Cu: 0.05~0.4%Cu: 0.05 ~ 0.4%
Cu는 충격 특성을 크게 저하하지 않는 성분으로 고용 및 석출에 의해 강도를 향상시킨다. 충분한 강도 향상을 위해서는 0.05% 이상 함유되어야 하지만 Cu 함량이 0.4% 초과인 경우에는 Cu 열충격에 의한 강판의 표면크랙이 발생할 수 있다.Cu is a component that does not significantly reduce the impact characteristics, and thus improves strength by solid solution and precipitation. In order to sufficiently improve the strength, it should be contained at 0.05% or more, but if the Cu content is more than 0.4%, surface cracks of the steel sheet due to Cu thermal shock may occur.
Ni: 0.1~0.6%Ni: 0.1-0.6%
Ni은 함량의 증가에 따라 강도의 향상은 크지 않지만 강도와 인성을 동시에 향상시킬 수 있는 원소이며, Ar3 온도를 하락시켜 베이나이트 형성에 도움이 되는 원소이다. Ni is an element that can improve strength and toughness at the same time as the increase in content is not great, and is an element that helps to form bainite by decreasing the Ar3 temperature.
Ni 함량이 0.1% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Ni함량이 0.6% 초과인 경우에는 제조비용이 증가하고 용접성이 열화될 수 있다.When the Ni content is less than 0.1%, the above effects are insufficient. On the other hand, when the Ni content is more than 0.6%, the manufacturing cost may increase and the weldability may deteriorate.
Mo: 0.01~0.08%Mo: 0.01 ~ 0.08%
Mo는 오스테나이트 안정화 원소로서 MA의 양을 증대시키는데 영향을 미치고 강도의 향상에 큰 역할을 한다. 또한 열처리 동안 강도의 하락을 방지하며 베이나이트 형성에 도움을 주는 원소이다. Mo is an austenite stabilizing element that affects the amount of MA and plays a large role in improving the strength. It is also an element that prevents the drop in strength during heat treatment and helps to form bainite.
다만, Mo는 고가의 합금원소이므로 다량 첨가시 제조비용이 증가하는 문제점이 있다. 이에 본 발명에서는 Si, Nb 등을 다량 첨가함으로써 MA를 확보하고자 하였으며, 본 발명의 합금조성에서 Mo는 0.01% 이상만 첨가하면 상술한 효과를 충분히 확보할 수 있다. 반면에 Mo 함량이 0.08% 초과인 경우에는 제조비용이 증가하고 모재 인성 및 용접 후 인성을 저하시킬 수 있는 문제점이 있다. However, since Mo is an expensive alloying element, there is a problem in that manufacturing cost increases when a large amount is added. Therefore, in the present invention, it is intended to secure MA by adding a large amount of Si, Nb and the like, and in the alloy composition of the present invention, Mo may be sufficiently secured by adding 0.01% or more. On the other hand, when the Mo content is more than 0.08%, there is a problem that the manufacturing cost increases and the base material toughness and post-weld toughness may be reduced.
N: 0.001~0.008%N: 0.001-0.008%
N은 Ti, Nb, Al 등과 함께 석출물을 형성하여 슬라브 가열시 오스테나이트 조직을 미세하게 만들어 강도와 인성 향상에 도움이 되는 원소이다. N 함량이 0.001% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 N 함량이 0.008% 초과인 경우에는 고온에서 표면 크랙을 유발하고 석출물을 형성하고 잔류하는 N은 원자상태로 존재하여 인성을 감소시킬 수 있다.N is an element that forms a precipitate with Ti, Nb, Al and the like to make the austenite structure fine when the slab is heated to help improve strength and toughness. When the N content is less than 0.001%, the above effects are insufficient. On the other hand, when the N content is more than 0.008%, it causes surface cracking at high temperatures, forms precipitates, and the remaining N remains in an atomic state, thereby reducing toughness.
P: 0.015% 이하 P: 0.015% or less
P는 불순물로서 입계편석을 일으켜 강을 취하시키는 원인이 될 수 있다. 따라서 그 상한을 제어하는 것이 중요하며 0.015% 이하로 제어하는 것이 바람직하다. P may cause grain boundary segregation as impurities and cause the steel to be withdrawn. Therefore, it is important to control the upper limit, and it is preferable to control it to 0.015% or less.
한편, P 함량의 하한은 특별히 제한하지 않으나, 0%는 제외될 수 있다. On the other hand, the lower limit of the P content is not particularly limited, but 0% may be excluded.
S: 0.003% 이하 S: 0.003% or less
S는 불순물로서 주로 Mn과 결합하여 MnS 개재물을 형성하고 이들은 저온인성을 저해하는 요인이 된다. 따라서 그 상한을 제어하는 것이 중요하며 저온인성을 확보하기 위해서는 S를 0.003% 이하로 제어하는 것이 바람직하다.S, as an impurity, mainly combines with Mn to form MnS inclusions, which are factors that inhibit low-temperature toughness. Therefore, it is important to control the upper limit, and in order to secure low temperature toughness, it is preferable to control S to 0.003% or less.
한편, S 함량의 하한은 특별히 제한하지 않으나, 0%는 제외될 수 있다. On the other hand, the lower limit of the S content is not particularly limited, but 0% may be excluded.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. The remaining component of the present invention is iron (Fe). However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
이하 본 발명의 일 측면에 따른 저온인성이 우수한 저항복비 강판의 미세조직에 대하여 상세히 설명한다. Hereinafter, the microstructure of the resistive steel sheet having excellent low temperature toughness according to an aspect of the present invention will be described in detail.
본 발명의 일 측면에 따른 저온인성이 우수한 저항복비 강판의 미세조직은 면적분율로 80~92%의 페라이트 및 8~20%의 MA(마르텐사이트/오스테나이트 혼합조직)를 포함하고, 상기 MA는 원상당 직경으로 측정한 평균 크기가 3㎛ 이하이다. 이하, 미세조직의 분율은 특별한 언급이 없는 한 면적분율을 의미한다. The microstructure of the resistive steel sheet having excellent low temperature toughness according to an aspect of the present invention includes 80 to 92% ferrite and 8 to 20% MA (martensite / austenite mixed structure) as an area fraction, and the MA is The average size measured by the circular equivalent diameter is 3 micrometers or less. Hereinafter, the fraction of microstructure means an area fraction unless otherwise specified.
페라이트는 기본적인 인성 및 강도를 확보하기 위한 것으로 80% 이상인 것이 바람직하다. 또한 충분한 MA를 확보하기 위해서 그 상한은 92%인 것이 바람직하다. 나아가 상기 페라이트는 에시큘러 페라이트를 포함하지 않는 것이 바람직하다. 에시큘러 페라이는 MA와의 경도 차이가 작기 때문에 충분한 저항복비를 확보할 수 없기 때문이다. Ferrite is to ensure basic toughness and strength, preferably 80% or more. In addition, in order to ensure sufficient MA, the upper limit is preferably 92%. Furthermore, it is preferable that the ferrite does not contain the ecuous ferrite. This is because the Eccentric Ferrari cannot have sufficient resistance ratio because of its small hardness difference from MA.
MA가 8% 미만인 경우에는 0.65 이하의 저항복비를 확보하기 어려우며 20% 초과인 경우에는 충격인성의 저하가 될 수 있고, 연신율이 감소될 수 있다. 또한 MA의 원상당 직경으로 측정한 평균크기가 3㎛ 초과인 경우에는 MA가 조로 결정립계에 형성되어 MA의 균일한 분포 및 저항복비를 확보하기 어렵다.If the MA is less than 8%, it is difficult to secure a resistance ratio of 0.65 or less. If the MA is more than 20%, the impact toughness may be reduced, and the elongation may be reduced. In addition, when the average size measured by the equivalent circular diameter of the MA exceeds 3㎛, it is difficult to ensure the uniform distribution and resistance ratio of the MA is formed in the grain boundary grains.
상술한 페라이트 및 MA 이외의 기타 불가피한 상들이 포함될 수 있으며 이를 배제하는 것이 아니다. 예를 들어 1 면적% 이하의 펄라이트가 포함될 수 있다. Other inevitable phases other than the above-described ferrite and MA may be included and are not excluded. For example, pearlite of 1 area% or less may be included.
이때 우수한 저항복비 특성 및 저온인성을 확보하기 위해서는 MA 분율 및 크기뿐만 아니라 본 발명의 강판에 100㎛ 직선 라인을 그었을 때 상기 직선 라인에 걸쳐 있는 MA가 5~13개 존재하는 것이 바람직하다. 즉 100㎛ X 100㎛ 크기의 미세조직 사진에 상하 또는 좌우로 직선 라인을 수개 긋고 이때 각 라인에 걸리는 MA가 평균적으로 5~13개 존재할 수 있다. 주로 파괴의 개시를 일으키는 MA는 결정립계에 존재하는 MA이며, 상기 조건을 만족하는 경우 MA가 결정립계와 결정립 내부에 고르게 분포하는 것이므로 저항복비를 확보하기에 유리하기 때문이다.In this case, in order to secure excellent resistance ratio characteristics and low temperature toughness, when the 100 μm straight line is drawn on the steel sheet of the present invention, as well as the MA fraction and size, it is preferable that 5 to 13 MAs are disposed on the straight line. That is, a plurality of straight lines are drawn up and down or left and right on a microstructure photograph having a size of 100 μm × 100 μm, and at this time, 5 to 13 MAs may be present on each line. This is because MA, which mainly causes breakage, is present in the grain boundary, and when the above conditions are satisfied, the MA is evenly distributed in the grain boundary and inside the grain, which is advantageous in securing a resistance ratio.
또한 페라이트 결정립 내부에 존재하는 MA와 결정립계에 존재하는 MA의 비율이 1:3~1:10 일 수 있다. 상기 비율은 MA 수의 비율을 의미하며 상기 비율을 만족함으로써 페라이트 결정립 내부에 존재하는 MA가 0.5~5 면적%가 되도록 균일하게 분포시킬 수 있기 때문이다.In addition, the ratio of the MA present in the ferrite grains and the MA present in the grain boundary may be 1: 3 to 1:10. The ratio refers to the ratio of the number of MA, and by satisfying the ratio can be uniformly distributed so that the MA present in the ferrite grains becomes 0.5 to 5 area%.
또한 상기 페라이트는 원상당 직경으로 측정한 평균 크기가 20㎛ 이하일 수 있다. 페라이트 평균 크기가 20㎛ 초과일 경우에는 충분한 인성 및 강도를 확보하기 어려울 수 있기 때문이다. In addition, the ferrite may have an average size of about 20 μm or less as measured by a circular equivalent diameter. This is because when the average size of the ferrite is greater than 20 μm, it may be difficult to secure sufficient toughness and strength.
한편 본 발명에 따른 강판은 노멀라이징(Normalizing) 열처리된 것이며 상기 노멀라이징 열처리 전 강판의 미세조직은 베이나이트가 50~90면적%일 수 있다. 열처리 전 강판의 미세조직을 탄화물이 내부에 존재하는 베이나이트로 함으로써 열처리 후 결정립계와 결정립계 내부에 MA를 고르게 분포시킬 수 있기 때문에 열처리 전 강판의 미세조직은 베이나이트가 50~90 면적%인 것이 바람직하다. On the other hand, the steel sheet according to the present invention is normalized (Normalizing) heat treatment and the microstructure of the steel sheet before the normalizing heat treatment may be 50 ~ 90 area% of bainite. Since the microstructure of the steel sheet before the heat treatment is bainite with carbides present therein, it is possible to distribute MA evenly in the grain boundary and the grain boundary after the heat treatment. Therefore, the microstructure of the steel sheet before the heat treatment is preferably 50 to 90 area%. Do.
또한 본 발명에 따른 강판은 항복비가 0.5~0.65이며, -40℃에서의 저온충격특성이 100J 이상일 수 있다. 항복비를 0.65 이하로 항복강도와 인장강도의 차이를 크게 함으로써 성형성이 우수할 뿐만 아니라 파괴가 발생할 수 있을 때까지의 소성변형 시점을 늦추고 이 과정에서 에너지를 흡수하여 외력에 의한 붕괴를 방지할 수 있다. 따라서 조선, 해양 구조용 강재 분야뿐만 아니라 성형 및 내진 특성을 요구하는 산업 분야에도 바람직하게 적용할 수 있다.In addition, the steel sheet according to the present invention has a yield ratio of 0.5 to 0.65, the low temperature impact characteristics at -40 ℃ may be 100J or more. The yield ratio is 0.65 or less, which makes the difference between yield strength and tensile strength not only excellent in formability but also delays plastic deformation until breakage occurs and absorbs energy in this process to prevent collapse by external forces. Can be. Therefore, it can be preferably applied not only to the field of shipbuilding and marine structural steel but also to the industrial field requiring molding and seismic characteristics.
이때 상기 강판의 항복강도는 350~400MPa 이고, 인장강도는 600MPa 이상일 수 있다. At this time, the yield strength of the steel sheet is 350 ~ 400MPa, tensile strength may be 600MPa or more.
저온인성이 우수한 저항복비 강판의 제조방법Manufacturing method of resistance composite steel sheet with excellent low temperature toughness
이하 본 발명의 다른 일 측면인 저온인성이 우수한 저항복비 강판의 제조방법에 대하여 상세히 설명한다. Hereinafter, another aspect of the present invention will be described in detail a method for producing a low-temperature toughness steel sheet excellent in toughness.
본 발명의 다른 일 측면인 저온인성이 우수한 저항복비 강판의 제조방법은 상술한 합금조성을 갖는 슬라브를 1050~1200℃로 가열하는 단계; 상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는 단계; 상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각하는 단계; 및 상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지하는 노멀라이징 열처리 단계;를 포함한다. 단, 상기 t는 열연강판의 두께를 mm단위로 측정한 값이다. Another aspect of the present invention is a method for producing a low-temperature-resistant steel sheet having excellent low-temperature toughness comprises the steps of heating the slab having the above-described alloy composition to 1050 ~ 1200 ℃; Hot rolling the heated slab to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet; Cooling the hot rolled steel sheet to 450 ° C. or less at a cooling rate of 5 ° C./s or more; And a normalizing heat treatment step of heating the cooled hot-rolled steel sheet to a temperature range of 850 to 960 ° C., and then maintaining it for [1.3t + (10 to 30)] minutes. However, t is a value measured in mm units of the hot rolled steel sheet.
슬라브 가열 단계Slab heating stage
상술한 합금조성을 갖는 슬라브를 1050~1200℃로 가열한다The slab having the alloy composition described above is heated to 1050 ~ 1200 ℃.
가열 온도가 1200℃ 초과인 경우에는 오스테나이트 결정립이 조대화되어 인성이 낮아질 수 있고, 1050℃ 미만인 경우에는 Ti, Nb 등이 충분히 고용되지 않아 강도가 하락할 수 있다.If the heating temperature is more than 1200 ℃ austenite grains may be coarsened to lower the toughness, if less than 1050 ℃ Ti, Nb, etc. are not sufficiently dissolved, the strength may be reduced.
열연압연 단계Hot rolled stage
상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는다. 통상의 열처리 강재의 압연온도는 850~1000℃ 정도로 일반적인 압연이 적용된다. 하지만 본 발명에서는 초기의 조직을 베이나이트로 형성시키는 것이 중요하다. 따라서 페라이트-펄라이트 조직을 나타내는 일반압연 대신 저온에서 압연을 종료하기 위한 제어압연 프로세스가 필요하다.The heated slab is hot rolled to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet. In general, the rolling temperature of the heat-treated steel is about 850 ~ 1000 ℃ general rolling is applied. However, in the present invention, it is important to form the initial tissue as bainite. Therefore, a controlled rolling process for finishing rolling at low temperature is needed instead of general rolling showing ferrite-pearlite structure.
열간압연시 재결정역 압연은 오스테나이트 결정립 사이즈를 미세화하기 위해 필요하며 패스당 압하율은 증대될수록 물성 측면에서 유리하다. 미재결정역 압연은 강재의 Ar3 이상의 온도에서 완료하여야 하며 약 760℃ 이상을 의미한다. 보다 구체적으로 760~850℃로 마무리 압연 종료온도를 정의할 수 있다. 마무리 압연 종료 온도가 850℃ 초과인 경우에는 페라이트-펄라이트 변태를 억제하기 어려우며 760℃ 미만인 경우에는 두께 방향의 미세조직의 불균일을 초래할 수 있고 압연롤의 하중 부하에 의한 압하량 감소로 구현하고자 하는 미세조직을 형성시킬지 못할 수 있다. 760~850℃의 온도 범위에서 마무리 압연을 종료함으로써 페라이트-펄라이트 변태를 억제하고 냉각을 통해 베이나이트 조직을 구현한다. 초기 조직을 베이나이트로 하는 것은 열처리 후 균일한 MA분포를 위한 것으로 페라이트-펄라이트 조직에서는 결정립계에 주로 MA들이 형성되는 반면 베이나이트 조직인 경우에는 결정립계와 결정립 내부 모두에 MA들이 형성된다.Re-crystallization rolling during hot rolling is necessary to refine the austenite grain size, and it is advantageous in terms of physical properties as the reduction ratio per pass increases. Unrecrystallized rolling must be completed at a temperature of at least Ar3 of the steel and is at least about 760 ° C. More specifically, the finish rolling end temperature may be defined at 760 to 850 ° C. If the finish rolling finish temperature is higher than 850 ℃, it is difficult to suppress the ferrite-pearlite transformation, and if it is less than 760 ℃ may cause non-uniformity of the microstructure in the thickness direction and to achieve a reduction in the amount of reduction by the load load of the rolling roll May not form tissue. By finishing the finish rolling in the temperature range of 760 to 850 ° C, ferrite-pearlite transformation is suppressed and bainite structure is realized through cooling. The initial structure of bainite is for uniform MA distribution after heat treatment. In the ferrite-pearlite structure, MAs are mainly formed at grain boundaries, while in bainite structures, MAs are formed at both grain boundaries and inside grains.
냉각 단계Cooling stage
상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각한다.The hot rolled steel sheet is cooled to 450 ° C. or less at a cooling rate of 5 ° C./s or more.
열연 압연 후 가속냉각은 발명강의 목표 조직의 구현에 매우 중요하다. 미세하고 균일한 MA 형성을 위해 베이나이트를 구현하여야 하며 베이나이트 형성을 위해 냉각마침온도와 냉각속도가 중요한 요소이다. 냉각마침온도가 450℃ 초과인 경우에는 결정립의 크기가 조대해질 수 있으며 카바이드의 조대화로 인하여 열처리 후 조대한 MA의 형성이 야기되며 이는 인성의 저하를 가져올 수 있고 베이나이트를 50 면적% 이상 확보하기 어렵다.Accelerated cooling after hot rolling is very important for the implementation of the target structure of the inventive steel. Bainite should be implemented to form fine and uniform MA. Cooling finish temperature and cooling rate are important factors for bainite formation. If the cooling finish temperature is higher than 450 ℃, the grain size may become coarse and coarse carbide may cause coarse MA to be formed after heat treatment, which may lead to deterioration of toughness and secure more than 50 area% of bainite. Difficult to do
냉각속도가 5℃/s 미만인 경우에는 침상 페라이트 또는 페라이트+펄라이트의 미세조직이 다량 형성되어 강도의 저하가 발생할 수 있으며 열처리 후 페라이트+MA의 이상조직이 아닌 조대 페라이트+펄라이트 조직 또는 제2상의 급격한 수량 저하를 나타낼 수 있고, 베이나이트를 50 면적% 이상 확보하기 어려운 문제점이 있다. If the cooling rate is less than 5 ℃ / s, the fine structure of the needle-like ferrite or ferrite + pearlite is formed in a large amount may cause a decrease in strength. There is a problem that the yield can be reduced, and it is difficult to secure 50 area% or more of bainite.
이때, 상기 냉각된 열연강판의 미세조직은 베이나이트가 50~90면적%일 수 있다. 열처리 전 강판의 미세조직을 탄화물이 내부에 존재하는 베이나이트로 함으로써 열처리 후 결정립계와 결정립계 내부에 MA를 고르게 분포시킬 수 있기 때문에 열처리 전 강판의 미세조직은 베이나이트가 50~90 면적%인 것이 바람직하다.At this time, the microstructure of the cooled hot-rolled steel sheet may be 50 ~ 90 area% bainite. Since the microstructure of the steel sheet before the heat treatment is bainite with carbides present therein, it is possible to distribute MA evenly in the grain boundary and the grain boundary after the heat treatment. Therefore, the microstructure of the steel sheet before the heat treatment is preferably 50 to 90 area%. Do.
노멀라이징 열처리 단계Normalizing Heat Treatment Step
상기 냉각된 열연 강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지한다. 상기 t는 열연 강판의 두께를 mm 단위로 측정한 값이다. After the cooled hot rolled steel sheet is heated to a temperature range of 850 ~ 960 ℃, it is maintained for [1.3t + (10 ~ 30)] minutes. T is a value measured in mm units of the hot rolled steel sheet.
노멀라이징 온도가 850℃ 미만이거나 유지 시간이 (1.3t+10)분 미만인 경우에는 펄라이트, 베이나이트 내의 시멘타이트와 MA상의 재고용이 어려워 고용된 C가 감소하게 되어 강도의 확보가 어려워질 뿐 아니라 최종적으로 남은 경화상이 조대하게 잔류하게 된다. If the normalizing temperature is less than 850 ° C or the holding time is less than (1.3t + 10) minutes, the reusability of cementite and pearlite in pearlite and bainite is difficult to re-use, resulting in a decrease in the amount of C employed, resulting in less strength and ultimately remaining The hardened phase remains coarse.
반면에 노멀라이징 온도가 960℃ 초과이거나 유지시간이 (1.3t+30)분 초과인 경우에는 베이나이트 결정립내에 존재하던 탄화물들이 모두 결정립계로 이동하거나 탄화물의 조대화가 발생하여 최종 MA 크기 및 균일 분포를 형성시킬 수 없다. 또한 결정립 성장이 일어나 강도의 하락과 충격의 열화가 발생할 수 있다. On the other hand, when the normalizing temperature is higher than 960 ° C or the holding time is longer than (1.3t + 30) minutes, all carbides in the bainite grains are moved to the grain boundary or the coarsening of carbides occurs, resulting in the final MA size and uniform distribution. Cannot be formed. In addition, grain growth may occur, resulting in a decrease in strength and deterioration of impact.
이하 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다. Through the following examples will be described the present invention in more detail. However, it is necessary to note that the following examples are intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
하기 표 1에 나타낸 성분 조성을 갖는 용강을 마련한 후 연속주조를 이용하여 슬라브를 제조하였다. 상기 슬라브를 하기 표 2의 제조조건으로 압연, 냉각, 및 노멀라이징 열처리하여 80mm 두께의 강판을 제조하였다. To prepare a molten steel having a component composition shown in Table 1 below to prepare a slab using a continuous casting. The slabs were rolled, cooled, and normalized by heat treatment under the conditions shown in Table 2 to prepare 80 mm thick steel sheets.
하기 표 3에는 노멀라이징 열처리 전 강판의 베이나이트 분율 및 기계적 물성을 측정하여 기재하였다. Table 3 below describes the bainite fraction and mechanical properties of the steel sheet before the normalizing heat treatment.
하기 표 4에는 노멀라이징 열처리 후 강판의 MA 분율, 평균 MA 크기, 100㎛에 걸리는 MA의 개수 및 기계적 물성을 측정하여 기재하였다. 발명예의 경우 MA 외에는 페라이트이었으며, 페라이트의 평균결정립 크기는 20㎛ 이하를 만족하여 별도로 기재하지 않았다. Table 4 below describes the MA fraction of the steel sheet after the normalizing heat treatment, the average MA size, the number of MAs over 100 μm, and the mechanical properties thereof. In the case of the invention example, except for MA, it was ferrite, and the average grain size of the ferrite was 20 μm or less and was not separately described.
평균 MA 크기는 원상당 직경으로 측정한 평균 크기이며, 100㎛ 라인에 걸리는 MA 수는 100㎛ X 100㎛ 크기의 미세조직 사진에 상하 또는 좌우로 직선 라인을 10개 긋고 각 라인에 걸리는 MA의 개수를 측정한 후 평균 개수를 기재하였다. The average MA size is the average size measured by the equivalent diameter, and the number of MAs on a 100 μm line is the number of MAs on each line by drawing 10 straight lines up and down or left and right on a 100 μm X 100 μm microstructure photograph. After measuring the average number was described.
구분division 강종Steel grade CC SiSi MnMn PP SS AlAl NiNi MoMo TiTi NbNb CuCu NN
발명강Invention steel AA 0.0810.081 0.4950.495 1.611.61 0.010.01 0.0020.002 0.0310.031 0.150.15 0.0690.069 0.0120.012 0.0470.047 0.2450.245 0.00370.0037
발명강Invention steel BB 0.0780.078 0.5210.521 1.781.78 0.010.01 0.00180.0018 0.0260.026 0.260.26 0.0540.054 0.0130.013 0.0510.051 0.2390.239 0.00410.0041
발명강Invention steel CC 0.0840.084 0.4530.453 1.751.75 0.0090.009 0.00190.0019 0.0270.027 0.320.32 0.0480.048 0.0110.011 0.0550.055 0.2560.256 0.00380.0038
발명강Invention steel DD 0.0860.086 0.5350.535 1.641.64 0.0070.007 0.00180.0018 0.0300.030 0.250.25 0.0340.034 0.0130.013 0.0490.049 0.2610.261 0.00340.0034
비교강Comparative steel EE 0.0460.046 0.5030.503 1.691.69 0.0090.009 0.0020.002 0.0110.011 0.1470.147 0.0680.068 0.0130.013 0.0420.042 0.260.26 0.00390.0039
비교강Comparative steel FF 0.0850.085 0.110.11 1.651.65 0.0120.012 0.0020.002 0.0290.029 0.150.15 0.0680.068 0.0120.012 0.0450.045 0.2460.246 0.00420.0042
비교강Comparative steel GG 0.0840.084 0.4950.495 1.671.67 0.0090.009 0.0020.002 0.0320.032 0.1470.147 0.0590.059 0.010.01 0.0210.021 0.2640.264 0.00360.0036
상기 표 1에서 각 원소 함량의 단위는 중량%이다. 발명강 A~D는 본 발명에서 규정하는 성분범위를 만족하는 강판이며, 비교강 E~G는 본 발명에서 규정하는 성분범위를 만족하지 못하는 강판이다. 비교강 E는 C 함량 미달, 비교강 F는 Si 미달, 비교강 G는 Mn 함량 미달인 강이다. The unit of each element content in Table 1 is weight%. Invention steels A to D are steel sheets satisfying the component range defined by the present invention, and comparative steels E to G are steel sheets which do not satisfy the component range defined by the present invention. Comparative steel E is less than C content, comparative steel F is less than Si, and comparative steel G is less than Mn content.
구분division 시험번호Exam number 강종Steel grade 재가열온도(℃)Reheating Temperature (℃) 사상압연시작온도 (℃)Finish rolling temperature (℃) 사상압연종료온도 (℃)Finish rolling end temperature (℃) 냉각마침온도 (℃)Cooling finish temperature (℃) 냉각속도(℃/s)Cooling rate (℃ / s) 노멀라이징온도(℃)Normalizing Temperature (℃) 노멀라이징시간(분)Normalizing time (minutes)
발명예Inventive Example 1One AA 11471147 798798 781781 345345 10.210.2 910910 121121
발명예Inventive Example 22 BB 11511151 805805 798798 332332 10.310.3 910910 122122
발명예Inventive Example 33 CC 11421142 801801 797797 362362 10.510.5 910910 120120
발명예Inventive Example 44 DD 11381138 788788 775775 328328 10.910.9 910910 122122
비교예Comparative example 55 AA 11501150 965965 938938 367367 12.312.3 910910 121121
비교예Comparative example 66 BB 11341134 794794 779779 -- -- 910910 120120
비교예Comparative example 77 CC 11481148 803803 785785 385385 10.210.2 910910 395395
비교예Comparative example 88 DD 11291129 791791 780780 701701 8.38.3 910910 121121
비교예Comparative example 99 EE 11361136 809809 802802 365365 10.310.3 910910 119119
비교예Comparative example 1010 FF 11521152 810810 799799 335335 10.110.1 910910 124124
비교예Comparative example 1111 GG 11481148 803803 786786 387387 11.611.6 910910 119119
구분division 시험번호Exam number 강종Steel grade 노멀라이징 열처리 전Before normalizing heat treatment
베이나이트(면적%)Bainite (area%) 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 항복비Yield fee 연신율(%)Elongation (%)
발명예Inventive Example 1One AA 6666 538538 617617 0.870.87 25.425.4
발명예Inventive Example 22 BB 7171 524524 642642 0.820.82 22.522.5
발명예Inventive Example 33 CC 6464 498498 624624 0.800.80 23.423.4
발명예Inventive Example 44 DD 8080 503503 621621 0.810.81 21.521.5
비교예Comparative example 55 AA 88 492492 587587 0.840.84 22.522.5
비교예Comparative example 66 BB 00 452452 561561 0.810.81 24.224.2
비교예Comparative example 77 CC 6464 507507 644644 0.790.79 25.125.1
비교예Comparative example 88 DD 77 561561 657657 0.850.85 22.422.4
비교예Comparative example 99 EE 1One 497497 580580 0.860.86 24.324.3
비교예Comparative example 1010 FF 3131 487487 576576 0.850.85 25.725.7
비교예Comparative example 1111 GG 2727 477477 553553 0.860.86 21.721.7
구분division 시험번호Exam number 강종Steel grade 노멀라이징 열처리 후After normalizing heat treatment
MA분율(면적%)MA fraction (area%) 평균 MA크기(㎛)Average MA Size (㎛) 100㎛ 라인에 걸리는 MA 수Number of MAs across 100 μm line 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 항복비 Yield fee 연신율(%)Elongation (%) 충격인성(-40℃, J)Impact Toughness (-40 ℃, J)
발명예Inventive Example 1One AA 11.811.8 2.42.4 99 384384 653653 0.590.59 31.231.2 123123
발명예Inventive Example 22 BB 12.712.7 2.32.3 99 375375 642642 0.580.58 32.132.1 154154
발명예Inventive Example 33 CC 14.214.2 2.62.6 99 381381 643643 0.590.59 29.829.8 114114
발명예Inventive Example 44 DD 16.516.5 2.12.1 88 362362 639639 0.570.57 30.830.8 109109
비교예Comparative example 55 AA 3.43.4 6.16.1 22 371371 468468 0.790.79 25.625.6 5858
비교예Comparative example 66 BB 2.82.8 5.65.6 1One 352352 448448 0.790.79 25.425.4 6767
비교예Comparative example 77 CC 3.53.5 4.54.5 1One 341341 474474 0.720.72 24.924.9 5252
비교예Comparative example 88 DD 1.81.8 3.83.8 1One 365365 495495 0.740.74 26.826.8 3434
비교예Comparative example 99 EE 0.40.4 5.05.0 00 342342 438438 0.780.78 26.726.7 132132
비교예Comparative example 1010 FF 0.80.8 3.13.1 22 351351 458458 0.770.77 25.825.8 152152
비교예Comparative example 1111 GG 1.21.2 5.35.3 22 348348 445445 0.780.78 24.124.1 117117
본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 발명예들은 항복비를 0.65이하로 확보할 수 있으며, -40℃의 충격인성도 100J 이상으로 우수한 것을 확인할 수 있다.Inventive examples satisfying both the alloy composition and the manufacturing conditions presented in the present invention can ensure the yield ratio below 0.65, it can be confirmed that the impact toughness of -40 ℃ 100J or more excellent.
비교예인 시험번호 5, 6, 7 및 8의 경우, 본 발명에서 제시한 합금 조성은 만족하였으나, 제조조건을 만족하지 못하여 충분한 저항복비를 확보하지 못하였고, -40℃의 충격인성도 100J 미만으로 열위한 것을 확인할 수 있다. In the case of the test Nos. 5, 6, 7, and 8, which are comparative examples, the alloy composition proposed in the present invention was satisfied, but it did not satisfy the manufacturing conditions and did not secure sufficient yield ratio, and the impact toughness of -40 ° C was less than 100J. You can see that it's ten.
비교예인 시험번호 9 내지 11의 경우, 본 발명에서 제시한 제조조건은 만족하였으나, 합금조성을 만족하지 못하여 충분한 저항복비를 확보하지 못하였으며, -40℃ 충격인성도 100J 미만으로 열위한 것을 확인 할 수 있다. 뿐만 아니라 C, Si, Nb의 함량 미달로 강도도 열위함을 알 수 있다.In the case of the test Nos. 9 to 11, which are comparative examples, the manufacturing conditions presented in the present invention were satisfied, but the alloy composition did not satisfy the sufficient yield ratio, and the -40 ° C impact toughness was less than 100J. have. In addition, it can be seen that the strength is also inferior due to the insufficient content of C, Si, Nb.
상기 표 4의 발명예를 살펴보면 비교예에 비하여 MA 분율이 높음을 알 수 있다. 이는 상기 표 3에서 확인할 수 있듯이, 노멀라이징 열처리 전 베이나이트 분율을 높게 확보함으로써 초기의 베이나이트 조직의 결정립계, 결정립내에 있는 카바이드들이 미세한 MA로 변태된 것이다. 또한 이러한 미세한 MA들의 형성에 의해 항복비가 결정되는 것을 알 수 있다.Looking at the invention example of Table 4 it can be seen that the MA fraction is higher than the comparative example. As can be seen from Table 3, by securing a high bainite fraction before the normalizing heat treatment, the grains of the initial bainite structure, carbides in the grains are transformed into fine MA. It can also be seen that the yield ratio is determined by the formation of such fine MAs.
발명예인 시험번호 1의 노멀라이징 열처리 전 미세조직을 촬영한 도 1을 보면 베이나이트를 충분히 확보할 수 있음을 확인할 수 있으며, 열처리 후 미세조직을 촬영한 도 2를 보면 미세하고 균일한 MA가 형성된 것을 알 수 있다. Looking at Figure 1 taken of the microstructure before the normalizing heat treatment of the invention example test number 1 it can be seen that the bainite can be sufficiently secured, and when looking at Figure 2 taken the microstructure after the heat treatment that a fine and uniform MA is formed Able to know.
반면에 비교예인 시험번호 9의 미세조직을 촬영한 도 3을 보면, 탄소 함량이 미달하여 폴리고날 페라이트가 주요상으로 나타나며 MA의 분율이 확연히 낮아짐을 알 수 있다. On the other hand, when looking at the microstructure of the test No. 9 of Comparative Example 9, it can be seen that the polygonal ferrite appears as the main phase and the fraction of MA is significantly lowered because the carbon content is insufficient.
또한, 비교예인 시험번호 10의 미세조직을 촬영한 도 4를 보면, Si 함량이 미달하여 MA 분율이 감소한 것을 확인할 수 있다. In addition, looking at Figure 4 of the microstructure of the test No. 10 of the comparative example, it can be confirmed that the MA content is reduced because the Si content is less.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described with reference to the embodiments above, those skilled in the art will understand that the present invention can be variously modified and changed without departing from the spirit and scope of the invention as set forth in the claims below. Could be.

Claims (9)

  1. 중량%로, C: 0.05~0.1%, Si: 0.3~0.7%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.04~0.07%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.1~0.6%, Mo: 0.01~0.08%, N: 0.001~0.008%, P: 0.015% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며, By weight%, C: 0.05-0.1%, Si: 0.3-0.7%, Mn: 1.0-2.0%, Al: 0.005-0.04%, Nb: 0.04-0.07%, Ti: 0.001-0.02%, Cu: 0.05- 0.4%, Ni: 0.1-0.6%, Mo: 0.01-0.08%, N: 0.001-0.008%, P: 0.015% or less, S: 0.003% or less, including the remaining Fe and inevitable impurities,
    미세조직은 면적분율로 페라이트 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균 크기가 3㎛ 이하인 저온인성이 우수한 저항복비 강판. The microstructure includes 80-92% ferrite and 8-20% MA (martensite / austenite mixed structure) as an area fraction, and the MA has excellent low-temperature toughness with an average size of 3 μm or less as measured by its equivalent diameter. Bokbi grater.
  2. 제1항에 있어서, The method of claim 1,
    상기 강판에 100㎛ 직선 라인을 그었을때, 상기 MA 중에서 상기 직선 라인에 걸쳐 있는 MA가 5~13개 존재하는 것을 특징으로 하는 저온인성이 우수한 저항복비 강판.When a 100-micrometer straight line is drawn to the said steel plate, 5-13 MA which exists in the said linear line among the said MA exists, The low-temperature resistant steel sheet excellent in toughness characterized by the above-mentioned.
  3. 제1항에 있어서, The method of claim 1,
    상기 MA는 페라이트 결정립 내부에 존재하는 MA와 결정립계에 존재하는 MA의 비율이 1:3~1:10을 만족하는 저온인성이 우수한 저항복비 강판.The MA is a low-resistance steel sheet excellent in low temperature toughness of the ratio of the MA present in the ferrite grains and the MA present in the grain boundary satisfies 1: 3 ~ 1:10.
  4. 제1항에 있어서, The method of claim 1,
    상기 페라이트는 원상당 직경으로 측정한 평균크기가 20㎛이하인 것을 특징으로 하는 저온인성이 우수한 저항복비 강판. The ferrite has excellent low-temperature toughness steel sheet, characterized in that the average size measured by the diameter of the equivalent circle is 20㎛ or less.
  5. 제1항에 있어서, The method of claim 1,
    상기 강판은 노멀라이징 열처리된 것이며, The steel sheet is a normalized heat treatment,
    상기 노멀라이징 열처리 전 강판의 미세조직은 베이나이트가 50~90면적%인 것을 특징으로 하는 저온인성이 우수한 저항복비 강판.The microstructure of the steel sheet before the normalizing heat treatment is excellent low-temperature toughness steel sheet, characterized in that the bainite is 50 ~ 90 area%.
  6. 제1항에 있어서, The method of claim 1,
    상기 강판은 항복비가 0.5~0.65이며, -40℃에서의 저온충격특성이 100J이상인 것을 특징으로 하는 저온인성이 우수한 저항복비 강판.The steel sheet has a yield ratio of 0.5 to 0.65, the low-temperature toughness excellent steel sheet, characterized in that the low-temperature impact properties at -40 ℃ 100J or more.
  7. 제1항에 있어서, The method of claim 1,
    상기 강판의 항복강도는 350~400MPa 이고, 인장강도는 600MPa 이상인 것을 특징으로 하는 저온인성이 우수한 저항복비 강판. Yield strength of the steel sheet is 350 ~ 400MPa, tensile strength is excellent resistance to low-temperature steel sheet, characterized in that 600MPa or more.
  8. 중량%로, C: 0.05~0.1%, Si: 0.3~0.7%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.04~0.07%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.1~0.6%, Mo: 0.01~0.08%, N: 0.001~0.008%, P: 0.015% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1050~1200℃로 가열하는 단계;By weight%, C: 0.05-0.1%, Si: 0.3-0.7%, Mn: 1.0-2.0%, Al: 0.005-0.04%, Nb: 0.04-0.07%, Ti: 0.001-0.02%, Cu: 0.05- Slab containing 0.4%, Ni: 0.1 ~ 0.6%, Mo: 0.01 ~ 0.08%, N: 0.001 ~ 0.008%, P: 0.015% or less, S: 0.003% or less, remaining Fe and unavoidable impurities Heating to;
    상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는 단계;Hot rolling the heated slab to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet;
    상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각하는 단계; 및Cooling the hot rolled steel sheet to 450 ° C. or less at a cooling rate of 5 ° C./s or more; And
    상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지하는 노멀라이징 열처리 단계;를 포함하는 저온인성이 우수한 저항복비 강판의 제조방법. After heating the cooled hot-rolled steel sheet to a temperature range of 850 ~ 960 ° C, a normalizing heat treatment step of maintaining for [1.3t + (10 ~ 30)] minutes.
    (상기 t는 열연강판의 두께를 mm단위로 측정한 값이다.)(T is a value measured in mm of the thickness of the hot rolled steel sheet.)
  9. 제8항에 있어서, The method of claim 8,
    상기 냉각된 열연강판의 미세조직은 베이나이트가 50~90면적%인 것을 특징으로 하는 저온인성이 우수한 저항복비 강판의 제조방법.The microstructure of the cooled hot-rolled steel sheet is a method for producing a low-temperature toughness steel sheet excellent in toughness, characterized in that the bainite is 50 ~ 90 area%.
PCT/KR2017/014411 2016-12-21 2017-12-08 Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same WO2018117507A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019532672A JP6847225B2 (en) 2016-12-21 2017-12-08 Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method
EP17882705.1A EP3561107A4 (en) 2016-12-21 2017-12-08 Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
CN201780079094.8A CN110100027B (en) 2016-12-21 2017-12-08 Low yield ratio steel plate having excellent low temperature toughness and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0176126 2016-12-21
KR1020160176126A KR101917451B1 (en) 2016-12-21 2016-12-21 Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018117507A1 true WO2018117507A1 (en) 2018-06-28

Family

ID=62626734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014411 WO2018117507A1 (en) 2016-12-21 2017-12-08 Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same

Country Status (5)

Country Link
EP (1) EP3561107A4 (en)
JP (1) JP6847225B2 (en)
KR (1) KR101917451B1 (en)
CN (1) CN110100027B (en)
WO (1) WO2018117507A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200225B1 (en) * 2019-09-03 2021-01-07 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof
EP3964599A4 (en) * 2020-01-22 2022-08-31 Posco Wire rod for graphitization heat treatment, graphite steel, and manufacturing method therefor
KR102480707B1 (en) 2020-11-12 2022-12-23 현대제철 주식회사 High-toughness nickel steel and method of manufacturing the same
CN113061811A (en) * 2021-03-17 2021-07-02 攀钢集团江油长城特殊钢有限公司 LNG (liquefied Natural gas) marine structural steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (en) * 1994-04-04 1995-10-24 Nippon Steel Corp Production of low yield ratio high tensile strength steel
JP2002105589A (en) * 2000-09-26 2002-04-10 National Institute For Materials Science Low yield ratio high tensile strength steel and its production method
JP2003003229A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Thick steel plate having excellent fatigue strength and production method therefor
KR20130076577A (en) 2011-12-28 2013-07-08 주식회사 포스코 Thick steel plate having excellent low yield ratio property and low temperature toughness and method for manufacturing the steel plate
KR101412267B1 (en) * 2012-04-25 2014-07-02 현대제철 주식회사 Steel sheet and method of manufacturing the same
KR20150065275A (en) * 2013-12-05 2015-06-15 두산중공업 주식회사 Cast steel having impact resistance at low temperature and method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063946A (en) * 1998-08-21 2000-02-29 Kawasaki Steel Corp Manufacture of thick steel plate with low yield point for earthquake-proof member
EP2853615B1 (en) * 2003-06-12 2017-12-27 JFE Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
KR100833075B1 (en) * 2006-12-22 2008-05-27 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness and brittle crack arrest property and producing method of the same
CN101775536A (en) * 2009-01-13 2010-07-14 宝山钢铁股份有限公司 225MPa earthquake-proof low yield strength steel and manufacturing method thereof
JP5834534B2 (en) * 2010-06-29 2015-12-24 Jfeスチール株式会社 High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe
JP5768603B2 (en) * 2011-08-31 2015-08-26 Jfeスチール株式会社 High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
CN102586680A (en) * 2012-03-22 2012-07-18 内蒙古包钢钢联股份有限公司 Low-yield-ratio steel plate for high-rise building structure and normalization process for steel plate
KR101482359B1 (en) * 2012-12-27 2015-01-13 주식회사 포스코 Method for manufacturing high strength steel plate having excellent toughness and low-yield ratio property
CN103667909B (en) * 2013-12-13 2016-02-03 武汉钢铁(集团)公司 A kind of mobile ocean Platform Steel of yield tensile ratio≤0.65 and production method
KR101799202B1 (en) * 2016-07-01 2017-11-20 주식회사 포스코 High-strength steel sheet having excellent low yield ratio property and low temperature toughness and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (en) * 1994-04-04 1995-10-24 Nippon Steel Corp Production of low yield ratio high tensile strength steel
JP2002105589A (en) * 2000-09-26 2002-04-10 National Institute For Materials Science Low yield ratio high tensile strength steel and its production method
JP2003003229A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Thick steel plate having excellent fatigue strength and production method therefor
KR20130076577A (en) 2011-12-28 2013-07-08 주식회사 포스코 Thick steel plate having excellent low yield ratio property and low temperature toughness and method for manufacturing the steel plate
KR101412267B1 (en) * 2012-04-25 2014-07-02 현대제철 주식회사 Steel sheet and method of manufacturing the same
KR20150065275A (en) * 2013-12-05 2015-06-15 두산중공업 주식회사 Cast steel having impact resistance at low temperature and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561107A4

Also Published As

Publication number Publication date
CN110100027A (en) 2019-08-06
JP2020503435A (en) 2020-01-30
JP6847225B2 (en) 2021-03-24
KR20180072496A (en) 2018-06-29
EP3561107A4 (en) 2020-01-01
KR101917451B1 (en) 2018-11-09
CN110100027B (en) 2021-10-15
EP3561107A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2018117481A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2018004297A1 (en) High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2018117497A1 (en) Steel material for welded steel pipe, having excellent longitudinal uniform elongation, manufacturing method therefor, and steel pipe using same
WO2019088762A1 (en) Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone post weld heat treatment, and method for manufacturing same
WO2021125621A1 (en) High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
WO2019124945A1 (en) High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same
WO2019132465A1 (en) Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2018030737A1 (en) Ultra-thick steel material having excellent resistance to brittle crack propagation and preparing method therefor
WO2020111874A2 (en) Steel plate having excellent heat affected zone toughness and method for manufacturing thereof
WO2018117470A1 (en) High-strength steel plate having excellent burring workability in low temperature range and manufacturing method therefor
WO2018080108A1 (en) High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2017111398A1 (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same
WO2017111345A1 (en) Low-yield-ratio type high-strength steel, and manufacturing method therefor
WO2020111628A1 (en) Steel material having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2019124809A1 (en) Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
WO2019132262A1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
WO2020226301A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
WO2020111891A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017882705

Country of ref document: EP

Effective date: 20190722