WO2020111891A1 - High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor - Google Patents

High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor Download PDF

Info

Publication number
WO2020111891A1
WO2020111891A1 PCT/KR2019/016785 KR2019016785W WO2020111891A1 WO 2020111891 A1 WO2020111891 A1 WO 2020111891A1 KR 2019016785 W KR2019016785 W KR 2019016785W WO 2020111891 A1 WO2020111891 A1 WO 2020111891A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
elongation
fracture toughness
less
strength steel
Prior art date
Application number
PCT/KR2019/016785
Other languages
French (fr)
Korean (ko)
Inventor
유장용
배무종
박연정
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CA3120271A priority Critical patent/CA3120271C/en
Priority to CN201980078794.4A priority patent/CN113166904B/en
Priority to EP19889727.4A priority patent/EP3889305B1/en
Priority to RU2021118464A priority patent/RU2771151C1/en
Priority to JP2021530865A priority patent/JP7372325B2/en
Publication of WO2020111891A1 publication Critical patent/WO2020111891A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet and a method for manufacturing the same, and in detail, it has a high-strength property by optimizing the steel composition, microstructure, and manufacturing process, and has excellent low-temperature fracture toughness and elongation, so that it can be stably used in harsh environments. It relates to a high-strength steel sheet and a method for manufacturing the same.
  • DWTT ductile fracture rate is a kind of indicator for determining whether line pipe steel has brittle fracture stopping properties for safe use at low temperatures.
  • the line pipe provided in the cold region is required to be provided with a DWTT ductile wavefront ratio of -20°C or higher at a level of 85% or more in a pipe state.
  • the DWTT ductile wave front rate of a steel sheet provided for pipe manufacturing must satisfy a level of 85% or higher at -30°C.
  • DWTT ductility is known to have a deep correlation with the effective grain size of a steel sheet.
  • the effective grain size is defined as the size of grains having a high hard angle grain boundary, and as the effective grain size becomes finer, the propagation resistance of the crack increases. This is because the propagation path of the crack changes at the effective grain boundary when the crack starts and propagates.
  • a method of performing accelerated cooling immediately after rolling is widely used.
  • a mixed structure of acicular ferrite and bainite can be realized by accelerated cooling.
  • the microstructure formed through normal accelerated cooling has a high hardness since carbon (C) is supersaturated in the crystal grains, and thus exhibits ductility for heat to a level of less than 9% uniform elongation and less than 20% total elongation. .
  • C carbon
  • the moldability is lowered during pipe construction, and local stress concentration is easily generated when external deformation is applied, and thus there is a problem that the stability of the pipe is significantly reduced.
  • Patent Document 1 is a non-recrystallized rolling of a steel material containing nickel (Ni), niobium (Nb), and molybdenum (Mo) in a rolling reduction of 65% or more, and Bs temperature at a cooling rate of 15 to 30°C/ Cooling to the first, and second cooling to a temperature range of 350 to 500°C at a cooling rate of 30 to 60°C/, finely equiaxing 30 to 60% equiaxed ferrite and 40 to 70% of bainite mixed structure It proposes a method of manufacturing a steel material included as a tissue.
  • Patent Document 1 is to perform low-temperature rolling on a steel sheet having a thickness of 20 mm or more, and there is a technical difficulty in applying the corresponding process conditions to a steel sheet having a thickness of less than 20 mm. This is because, in the case of a steel sheet having a thickness of less than 20 mm, it is difficult to secure the desired low temperature fracture toughness, strength and elongation in the entire longitudinal direction of the steel sheet, particularly in the rear end of the steel sheet, since the steel sheet is rapidly cooled after cold rolling.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2013-0073472 (2013.07.03. public)
  • a high-strength steel sheet having excellent low-temperature toughness and a method of manufacturing the same can be provided.
  • High-strength steel sheet having excellent fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0% , Aluminum (Al): 0.01 to 0.05%, Titanium (Ti): 0.005 to 0.02%, Nitrogen (N): 0.002 to 0.01%, Niobium (Nb): 0.04 to 0.07%, Chromium (Cr): 0.05 to 0.3% , Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, containing the remaining iron (Fe) and unavoidable impurities , 20 ⁇ 60 area% of ferrite and bainite as a microstructure, the top 80% grain size of the high-angle crystal grain size of 15 degrees in the center of the
  • the steel sheet may further include molybdenum (Mo) of 0.3% by weight or less.
  • Mo molybdenum
  • the fraction of bainite may be 35 to 75 area%.
  • the microstructure of the steel sheet may further include an island martensite of 5 area% or less.
  • the yield strength of the steel sheet may be 485 MPa or more.
  • the total elongation of the steel sheet is 28% or more, and the uniform elongation of the steel sheet in a perpendicular direction to rolling may be 9% or more.
  • the DWTT ductile wavefront at -30°C with respect to the perpendicular direction of rolling of the steel sheet may be 85% or more.
  • the thickness of the steel sheet may be less than 20mm.
  • High-strength steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0 %, Aluminum (Al): 0.01 ⁇ 0.05%, Titanium (Ti): 0.005 ⁇ 0.02%, Nitrogen (N): 0.002 ⁇ 0.01%, Niobium (Nb): 0.04 ⁇ 0.07%, Chromium (Cr): 0.05 ⁇ 0.3 %, Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities Reheating the slab to be maintained, holding and extracting the slab, re-reverse rolling of the retained and extracted slab at a temperature range of Tnr or higher, and rolling of the recrystall
  • the non-recrystallized rolled steel sheet is manufactured by cooling to a temperature range of (Bs-80°C) to Bs, but the non-recrystallized rolling starts at a temperature range of Tnr or lower (Ar3+100°C) or higher. Can be terminated in.
  • the slab may further include molybdenum (Mo) of 0.3% by weight or less.
  • Mo molybdenum
  • the reheating temperature range of the slab may be 1140 to 1200°C.
  • the maintenance and extraction temperature range of the slab may be 1140 to 1200°C.
  • the recrystallization rolling is performed in a plurality of passes, and the average rolling reduction of each pass may be 10% or more.
  • the recrystallized rolled rolling material may be cooled to a temperature range below Tnr by air cooling.
  • the unrecrystallized rolled steel sheet may be cooled at a cooling rate of 10 to 50°C/s.
  • Cooling of the non-recrystallized rolled steel sheet may be started at a temperature range of (Ar3+30°C) or higher.
  • the thickness of the steel sheet may be less than 20mm.
  • a steel sheet and a method of manufacturing the same which are particularly suitable as a material for line pipes, having high strength characteristics and excellent low temperature fracture toughness and elongation.
  • the present invention relates to a high-strength steel sheet having excellent low-temperature fracture toughness and elongation, and a method for manufacturing the same, which will be described below with reference to preferred embodiments of the present invention.
  • the embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below.
  • the present embodiments are provided to those skilled in the art to further detail the present invention.
  • High-strength steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0 %, Aluminum (Al): 0.01 ⁇ 0.05%, Titanium (Ti): 0.005 ⁇ 0.02%, Nitrogen (N): 0.002 ⁇ 0.01%, Niobium (Nb): 0.04 ⁇ 0.07%, Chromium (Cr): 0.05 ⁇ 0.3 %, Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities do.
  • the steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention may further include molybdenum (Mo): 0.3% or less in weight%.
  • Carbon (C) is the most effective element for improving the strength of steel.
  • the amount of carbon (C) added is below a certain level, in order to secure the strength of steel, expensive alloying elements such as molybdenum (Mo) and nickel (Ni) must be added in large amounts, which is not preferable from an economical point of view.
  • the present invention can limit the lower limit of the carbon (C) content to 0.05% to achieve this effect.
  • the carbon (C) content of the present invention may be in the range of 0.05 to 0.1%, and the more preferable carbon (C) content may be in the range of 0.05 to 0.095%.
  • Silicon (Si) is an element useful for deoxidation of molten steel, and is also an element contributing to the improvement of strength of steel by solid solution strengthening.
  • the present invention can limit the lower limit of the silicon (Si) content to 0.05% to achieve this effect.
  • the lower limit of the more preferable silicon (Si) content may be 0.1%.
  • silicon (Si) is an element having strong oxidizing properties, it is preferable to limit the upper limit of the silicon (Si) content to a certain range. That is, when an excessive amount of silicon (Si) is added, it causes red scale formation during hot rolling, which is undesirable in terms of surface quality, and also has an undesirable effect on the toughness of the welded portion.
  • the upper limit can be limited to 0.5%.
  • the upper limit of the more preferable silicon (Si) content may be 0.4%.
  • the present invention can limit the lower limit of the manganese (Mn) content to 1.4% in order to secure high strength properties of the steel. However, when manganese (Mn) is added in excess, a segregation portion may be formed over a wide range in the center of the thickness at the time of slab addressing in the steelmaking process.
  • the upper limit of the content can be limited to 2.0%.
  • the upper limit of the more preferable manganese (Mn) content may be 1.8%.
  • Aluminum (Al) is a representative element added with silicon (Si) as a deoxidizer.
  • aluminum (Al) is also an element that contributes to the improvement of the strength of the steel by solid solution strengthening.
  • the present invention can limit the lower limit of the aluminum (Al) content to 0.01% to achieve this effect.
  • the lower limit of the more preferable aluminum (Al) content may be 0.015%.
  • the present invention may limit the upper limit of the aluminum content to 0.05%.
  • the upper limit of the more preferable aluminum (Al) content may be 0.04%.
  • Titanium (Ti) is an element that forms a TiN precipitate during the solidification process of steel, thereby suppressing austenite grain growth during slab heating and hot rolling, thereby minimizing the particle size of the final structure.
  • the present invention can limit the lower limit of the titanium (Ti) content to 0.005% to achieve the effect of improving the toughness of the steel according to the refinement of the final tissue.
  • the more preferable titanium (Ti) content may be 0.008%.
  • the present invention may limit the upper limit of the titanium (Ti) content to 0.02%. .
  • the upper limit of the more preferable titanium (Ti) content may be 0.018%.
  • Nitrogen (N) is dissolved in steel and then precipitates, which serves to increase the strength of the steel, and it is known that such an effect of improving strength is much greater than that of carbon (C).
  • the present invention is to form a TiN through the reaction of titanium (Ti) and nitrogen (N), and to suppress the grain growth during the reheating process, the lower limit of the nitrogen (N) content can be limited to 0.002% .
  • nitrogen (N) is excessively added, nitrogen (N) exists in the form of solid nitrogen (N) rather than TiN precipitate, and thus the toughness of the steel may be significantly reduced.
  • the upper limit of the content can be limited to 0.01%.
  • the upper limit of the preferred nitrogen (N) content may be 0.006%, and the upper limit of the more preferred nitrogen (N) content may be 0.005%.
  • Niobium (Nb) is a very useful element for refining crystal grains, and is also an element that greatly contributes to the improvement of strength of steel by promoting the formation of acicular ferrite or bainite, which is a high-strength structure.
  • hot rolling is unavoidable in the steel sheet having a thickness of less than 20 mm, which is the object of the present invention, so niobium (Nb), which has the greatest effect on increasing the recrystallization temperature, must be added in a certain amount or more. Therefore, the present invention can limit the lower limit of the niobium (Nb) content to 0.04%.
  • the present invention may limit the upper limit of the niobium (Nb) content to 0.07%.
  • the upper limit of the preferred niobium (Nb) content may be 0.06%.
  • Chromium (Cr) is an element that improves quenchability and is an effective element for increasing the strength of steel.
  • chromium (Cr) is an element that contributes to the improvement of uniform elongation by promoting the formation of island martensite/austenite (MA) during accelerated cooling.
  • the present invention can limit the lower limit of the chromium (Cr) content to 0.05% to achieve this effect.
  • the lower limit of the more preferable chromium (Cr) content may be 0.08%.
  • the present invention may limit the upper limit of the chromium (Cr) content to 0.3%.
  • the upper limit of the preferred chromium (Cr) content may be 0.25%, and the upper limit of the more preferred chromium (Cr) content may be 0.2%.
  • Nickel (Ni) is an element that effectively contributes to improving the toughness and strength of steel.
  • the present invention can limit the lower limit of the nickel (Ni) content to 0.05% to achieve this effect.
  • nickel (Ni) is an expensive element, and excessive addition of nickel (Ni) is not desirable from the economical point of view, and the present invention may limit the upper limit of the nickel (Ni) content to 0.4%.
  • the upper limit of the preferred nickel (Ni) content may be 0.3%, and the upper limit of the more preferred nickel (Ni) content may be 0.25%.
  • Phosphorus (P) 0.02% or less
  • Phosphorus (P) is a representative impurity element present in the steel, and is mainly segregated in the center of the steel sheet, causing deterioration of the toughness of the steel.
  • the removal of phosphorus (P) from the steel requires excessive cost and time in the steelmaking process, which is undesirable in terms of economy, and thus the present invention can limit the content of phosphorus (P) to 0.02% or less.
  • the more preferable content of phosphorus (P) may be 0.015% or less.
  • Sulfur (S) is also a representative impurity element present in the steel, and is combined with manganese (Mn) in the steel to form non-metallic inclusions such as MnS, and thus is a element that significantly damages the toughness and strength of the steel. It is desirable to do.
  • Mn manganese
  • the removal of sulfur (S) from the steel is excessively expensive and time-consuming in the steelmaking process, which is undesirable in economic terms, so the present invention can limit the content of sulfur (S) to 0.005% or less.
  • the more preferable content of sulfur (S) may be 0.003% or less.
  • Calcium (Ca) is an element effective in suppressing the formation of cracks around nonmetallic inclusions by spheroidizing nonmetallic inclusions such as MnS.
  • the present invention can limit the lower limit of the calcium (Ca) content to 0.0005% to achieve this effect.
  • the present invention may limit the upper limit of the calcium (Ca) content to 0.004%.
  • the upper limit of the preferred calcium (Ca) content may be 0.002%.
  • Molybdenum (Mo) is an effective element to promote the formation of bainite, a low-temperature transformation structure, to simultaneously secure high strength and high toughness properties. Therefore, the present invention can selectively add molybdenum (Mo) to achieve this effect. However, since molybdenum (Mo) is an expensive element and is not desirable from an economic point of view when excessively added, the present invention may limit the upper limit of the molybdenum (Mo) content to 0.3%.
  • the rest may include Fe and unavoidable impurities.
  • the unavoidable impurities may be unintentionally incorporated in the ordinary steel manufacturing process, and cannot be completely excluded, and the meaning can be easily understood by those skilled in the ordinary steel manufacturing field.
  • this invention does not exclude the addition of the composition other than the steel composition mentioned above entirely.
  • the steel sheet according to an aspect of the present invention includes ferrite and bainite as a microstructure, and in addition, may further include an island martensite.
  • the fractions of ferrite and bainite may be 20-60 area% and 35-75 area%, respectively, and the fraction of island martensite may be 5 area% or less.
  • the present invention since ferrite having a fine high-angle grain boundary is included in 20% by area or more, it is possible to effectively secure low-temperature DWTT properties.
  • the present invention since the present invention includes ferrite in an area of 60 area% or less, and bainite in an area of 35 area% or more, a yield strength of 485 MPa or more can be secured.
  • the present invention limits the fraction of bainite to 75 area% or less in order to prevent the high-angle grain boundary from becoming too coarse, and thus can effectively secure low-temperature DWTT properties.
  • island martensite has an undesirable effect on low-temperature DWTT properties, it is desirable to suppress the fraction as much as possible. Therefore, the present invention can limit the fraction of island martensite to 5 area% or less.
  • the top 80% grain size of the high-angle crystal grain size of 15 degrees from the center of the steel sheet may be 70 ⁇ m or less. That is, the present invention can refine the effective grain size by minimizing the high-angle crystal grain size, thereby effectively securing low-temperature DWTT characteristics.
  • the center of the steel sheet may be interpreted as a region including the point t/2, or may be interpreted as a region of the point t/4 to 3*t/4. (t: thickness of steel sheet, mm)
  • the steel sheet according to an aspect of the present invention may have a thickness of less than 20 mm, and a more preferred steel sheet may have a thickness of 16 mm or less.
  • the steel sheet according to an aspect of the present invention may have a yield strength of 485 MPa or higher, a total elongation of 28% or higher, and a uniform elongation in a rolling perpendicular direction of 9% or higher, and DWTT of -30°C for a rolling perpendicular direction of the steel sheet.
  • the ductile wavefront ratio may be 85% or more. Therefore, the present invention, while having a thickness of less than 20mm, can effectively provide strength, low temperature fracture toughness, and elongation, thereby providing a steel sheet particularly suitable as a material for line pipes.
  • High-strength steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0 %, Aluminum (Al): 0.01 ⁇ 0.05%, Titanium (Ti): 0.005 ⁇ 0.02%, Nitrogen (N): 0.002 ⁇ 0.01%, Niobium (Nb): 0.04 ⁇ 0.07%, Chromium (Cr): 0.05 ⁇ 0.3 %, Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities Reheating the slab to be maintained, holding and extracting the slab, re-reverse rolling of the retained and extracted slab at a temperature range of Tnr or higher, and rolling of the recrystall
  • the description of the slab alloy composition of the present invention is replaced by the description of the steel sheet alloy composition described above.
  • Slab reheating is a process of smoothly performing the subsequent rolling process and heating the steel to secure the properties of the desired steel sheet, so the heating process must be performed within an appropriate temperature range suitable for the purpose.
  • the lower limit of the slab reheating temperature should take into account whether or not the precipitated elements are sufficiently soluble in steel.
  • the present invention essentially includes niobium (Nb) in order to secure high-strength properties, so that the lower limit of the slab reheating temperature can be limited to 1140° C. in consideration of the temperature for reusing niobium (Nb).
  • the present invention can limit the upper limit of the slab reheating temperature to 1200°C. have.
  • the reheated slab may be subjected to a maintenance and extraction step as necessary, and for similar reasons to the slab reheating temperature, the maintenance and extraction temperature of the slab may be limited to a temperature range of 1140 to 1200°C.
  • Recrystallization rolling can be carried out in a temperature range above Tnr.
  • Tnr means the lower limit of the temperature range in which austenite recrystallization occurs. That is, rolling in the recrystallization zone can be performed in the temperature range of the austenite recrystallization zone. Recrystallization rolling can be carried out in multiple passes, and rolling can be performed at an average rolling reduction of 10% or more per pass. This is because, if the average rolling reduction per pass is less than 10%, the grain size of the recrystallized austenite becomes coarse, which may lead to a decrease in toughness of the final steel sheet.
  • the recrystallized rolled rolled material can be cooled to a temperature range below Tnr under cooling conditions of air cooling. That is, without rolling the non-recrystallized station immediately on the rolled material having been recrystallized, it can be cooled to the temperature range of the non-recrystallized area by air cooling by waiting for a certain period of time. This is because partial recrystallization may occur when a pressing force is applied in a corresponding section, and brittle fracture due to coarse austenite particle size may occur.
  • Unrecrystallized reverse rolling is performed on the recrystallized rolled rolled material.
  • the initiation temperature of the non-recrystallized zone rolling is Tnr or less, and the end temperature of the non-recrystallized zone rolling may be (Ar3+100°C).
  • Non-recrystallization rolling is a process to obtain a fine ferrite and bainite by elongating austenite produced by re-crystallization rolling and forming a deformed structure in the mouth. The stopping characteristics can be effectively improved.
  • the unrecrystallized rolling end temperature is excessively low, ferrite with low strength is generated, which is disadvantageous in securing strength.
  • the present invention can limit the rolling end temperature of the non-recrystallized zone to (Ar3+50°C) or higher.
  • the rolling reduction amount of unrecrystallized reverse rolling is an important factor in securing low-temperature toughness of steel materials.
  • the present invention can limit the rolling reduction amount of the unrecrystallized reverse rolling to 30% or more in order to secure the low-temperature DWTT ductile wavefront property according to the particle size refinement of the final steel.
  • the present invention limits the rolling of unrecrystallized rolling to 90% or less. can do.
  • the non-recrystallized rolled steel sheet can be cooled from a cooling start temperature of (Ar3+30°C) or higher to a cooling stop temperature of (Bs-80°C) to Bs.
  • a cooling start temperature of (Ar3+30°C) or higher
  • a cooling stop temperature of (Bs-80°C) to Bs.
  • the final thickness of the steel sheet of the present invention is less than 20 mm, it is most preferable in terms of strength and elongation to stop cooling in the temperature range of (Bs-80°C) to Bs.
  • the cooling stop temperature is less than (Bs-80°C)
  • a high hard angle grain boundary is coarsely formed, and a large amount of acicular ferrite and bainite having a low hard grain boundary may be formed, so that the elongation may be lowered, and the cooling stop temperature exceeds Bs.
  • the amount of bainite generated is small and the strength of the steel sheet cannot be secured.
  • the cooling of the present invention can be carried out at a cooling rate of 10 ⁇ 100 °C / s. This is because when the cooling rate is less than 10°C/s, the fraction of equiaxed ferrite is greatly increased, so that high strength properties of the steel sheet cannot be effectively secured.
  • the upper limit of the cooling rate may be limited to 100°C/s, and the upper limit of the more preferable cooling rate may be 50°C/s.
  • the steel sheet manufactured through the above manufacturing method includes ferrite and bainite as a microstructure, and in addition, may further include a martensite phase.
  • the fractions of ferrite and bainite may be 20-60 area% and 35-75 area%, respectively, and the fraction of island martensite may be 5 area% or less.
  • the steel sheet manufactured through the above-described manufacturing method may have a size of the upper 80% grain size of 70 ⁇ m or less of a 15° reference high-angle crystal grain at the center of the steel sheet.
  • the steel sheet manufactured through the above-described manufacturing method is provided with a thickness of less than 20 mm, and can have a yield strength of 485 MPa or more, a total elongation of 28% or more, and a uniform elongation in a rolling perpendicular direction of 9% or more, and the rolling right angle of the steel sheet.
  • DWTT ductile wavefront of -30 °C to the direction may be 85% or more. Therefore, according to the manufacturing method according to an aspect of the present invention, while having a thickness of less than 20 mm, it is possible to provide a steel sheet particularly suitable as a material for line pipes by effectively securing strength, low temperature fracture toughness, and elongation.
  • a slab having a thickness of 250 mm provided with the alloy composition of Table 1 was produced, and steel plate specimens having a thickness of 11 mm, 11.5 mm, and 22 mm, respectively, were manufactured by applying the process conditions of Table 3.
  • the slab fabrication was applied to the process conditions used in the conventional slab fabrication, and recrystallization rolling was performed for all specimens by applying a condition of an average rolling reduction of 10% or more per pass over a temperature range of Tnr or higher.
  • air cooling was applied to the temperature range of the non-recrystallized zone after rolling the recrystallized zone for all specimens.
  • Tnr temperature, Ar3 temperature, and Bs temperature are calculated and calculated based on each alloy composition in Table 1, and calculation formulas used for calculating Tnr temperature, Ar3 temperature, and Bs temperature in Table 2 are separately described below Table 2. .
  • the microstructure, yield strength and tensile strength, elongation and DWTT ductility at -30°C were measured and are shown in Table 4 below.
  • the microstructure of each specimen was evaluated using optical microscopy and EBSD particle size distribution. Yield strength, tensile strength and elongation were evaluated by performing a room temperature tensile test on each specimen.
  • the yield strength and tensile strength described in Table 4 refer to the measured values for each direction perpendicular to the rolling.
  • the tensile properties and the ductility wavefront were evaluated by performing a DWTT test at -30°C for each specimen.
  • the microstructure includes 20 to 60 area% ferrite, 35 to 75 area% bainite, and 5 area% or less island martensite,
  • the crystal grain size of the top 80% of the high-angle crystal grains based on 15 degrees is 70 ⁇ m or less
  • the yield strength is 485 MPa or more
  • the total elongation is 28% or more
  • the uniform elongation in the rolling right angle direction is 9% or more
  • the rolling right angle direction- Since it satisfies the DWTT ductile wavefront ratio of 85% or higher at 30°C, it can be confirmed that it has physical properties particularly suitable as a material for line pipes provided in a cryogenic environment.
  • Specimens 13 to 15 and 17 satisfy the alloy composition of the present invention, but are specimens when cooling is performed at a temperature range lower than the cooling start temperature or the cooling end temperature of the present invention.
  • specimens 13 to 15 and 17 ferrite of less than 20 area% and bainite of more than 75 area% were formed, and since the grain size of the top 80% of the high-angle crystallinity based on 15 degrees in the center of the steel sheet exceeds 70 ⁇ m, It can be seen that the uniform elongation is less than 9%.
  • Specimen 16 satisfies the alloy composition of the present invention, but unrecrystallized reverse rolling is performed at a temperature range lower than the end temperature of the unrecrystallized reverse rolling of the present invention, and cooling is started at a temperature range lower than the cooling start temperature of the present invention. It is a specimen when cooling is finished in a temperature range higher than the cooling stop temperature of. In the case of the specimen 16, it can be confirmed that a ferrite of more than 60 area% was formed and the yield strength was less than 485 MPa.
  • Specimens 18 to 21 are specimens that do not satisfy the alloy composition and process conditions of the present invention, it can be confirmed that the present invention does not secure the desired microstructure and properties.
  • Specimens 22 and 23 satisfies the alloy composition of the present invention, but it can be confirmed that the thickness of the steel sheet exceeds 20 mm, so that ferrite is excessively formed.
  • FIG. 1 is a photograph obtained by observing specimen 2 with an optical microscope
  • FIG. 2 is a result of measuring the grain size of a 15 degree reference high-angle grain boundary of specimen 2 using EBSD. As shown in the graph of FIG. 2, it can be seen that the average size of the high-angle grain boundaries of the specimen 2 is 22,3 ⁇ m, and the grain size of the top 80% is 40.5 ⁇ m.
  • FIG. 3 is a photograph obtained by observing the specimen 18 with an optical microscope
  • FIG. 4 is a result of measuring the grain size of the standard 18 high-angle grain boundary of the specimen 18 using EBSD. As shown in the graph of FIG. 4, it can be seen that the average size of the high-angle grain boundaries of the specimen 18 is 38 ⁇ m, and the crystal size of the top 80% is 93 ⁇ m.
  • the present invention while having a thickness of less than 20 mm, a yield strength of 485 MPa or more, a total elongation of 28% or more, and a uniform elongation for a rolling perpendicular direction of 9% or more and a rolling perpendicular direction of a steel plate of 85% or more It has a DWTT ductile wavefront of -30°C, and it can provide a steel sheet and a manufacturing method particularly suitable for a line pipe material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high-strength steel plate having excellent fracture toughness and elongation ratio according an aspect of the present invention comprises, by weight%, 0.05-0.1% of carbon (C), 0.05-0.5% of silicon (Si), 1.4-2.0% of manganese (Mn), 0.01-0.05% of aluminum (Al), 0.005-0.02% of titanium (Ti), 0.002-0.01% of nitrogen (N), 0.04-0.07% of niobium (Nb), 0.05-0.3% of chromium (Cr), 0.05-0.4% of nickel (Ni), 0.02% or less of phosphorus (P), 0.005% or less of sulfur (S), 0.0005-0.004% of calcium (Ca), and the remainder of iron (Fe) and unavoidable impurities, wherein a microstructure includes 20-60 area% of ferrite and bainite, and the grain size of the upper 80% of the high-angle grain sizes based on 15 degrees in the centre of the steel plate may be 70 ㎛ or less.

Description

저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법High-strength steel sheet with excellent low-temperature fracture toughness and elongation and its manufacturing method
본 발명은 고강도 강판 및 그 제조방법에 관한 것이며, 상세하게는 강 조성, 미세조직 및 제조공정을 최적화하여 고강도 특성을 가지면서도 저온파괴인성 및 연신율이 우수하여 혹독한 환경에서도 안정적으로 사용 가능한 라인파이프용 고강도 강판 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength steel sheet and a method for manufacturing the same, and in detail, it has a high-strength property by optimizing the steel composition, microstructure, and manufacturing process, and has excellent low-temperature fracture toughness and elongation, so that it can be stably used in harsh environments. It relates to a high-strength steel sheet and a method for manufacturing the same.
최근 기후조건이 열악한 시베리아, 알라스카 등의 한랭지역을 중심으로 유전 개발이 이루어지면서 라인파이프를 통해 유전 지역의 풍부한 가스 자원을 소비지역으로 수송하고자 하는 프로젝트들이 활발히 진행 중에 있다. 이러한 라인파이프 프로젝트에 투입되는 강재는 수송가스의 압력뿐만 아니라 극저온과 Frost Heave(환절기에 땅이 얼면서 지면을 밀어올리는 현상)에 의한 파이프의 변형에 대한 내구성을 필수적으로 구비해야 하는바, 고강도 특성을 구비하면서도 우수한 DWTT(Drop Weight Tearing Test) 연성파면율 및 고연신율 특성을 구비할 것이 요구된다.Recently, as oil fields have been developed mainly in cold regions such as Siberia and Alaska, where the climatic conditions are poor, projects to transport rich gas resources in oil fields to consumer regions through line pipes are actively underway. The steel materials to be used in these line pipe projects must not only have the pressure of transport gas, but also have to have durability against the deformation of pipes due to cryogenic temperatures and frost heave (a phenomenon in which the ground freezes during the change of season). It is required to have excellent DWTT (Drop Weight Tearing Test) ductility wavefront and high elongation characteristics while having a.
DWTT 연성파면율은 라인파이프용 강재가 저온에서 안전하게 사용되기 위한 취성파괴 정지 특성을 구비하는지 여부를 판단하기 위한 일종의 지표이다. 일반적으로 한랭지역에 제공되는 라인파이프는 파이프 상태에서 -20℃ 기준의 DWTT 연성파면율이 85% 이상의 수준으로 구비될 것이 요구된다. 파이프 상태에서 -20℃ 기준 85% 이상의 DWTT 연성파면율을 확보하기 위해서는, 파이프 제작에 제공되는 강판의 DWTT 연성파면율이 -30℃ 기준에서 85% 이상의 수준을 만족해야 한다.DWTT ductile fracture rate is a kind of indicator for determining whether line pipe steel has brittle fracture stopping properties for safe use at low temperatures. In general, the line pipe provided in the cold region is required to be provided with a DWTT ductile wavefront ratio of -20°C or higher at a level of 85% or more in a pipe state. In order to secure a DWTT ductile wave front index of at least 85% based on -20°C in a pipe state, the DWTT ductile wave front rate of a steel sheet provided for pipe manufacturing must satisfy a level of 85% or higher at -30°C.
일반적으로 DWTT 연성파면율은 강판의 유효 결정립도와 깊은 연관성을 가지는 것으로 알려져 있다. 유효 결정립도는 고경각입계를 가지는 결정립의 크기로 정의되며, 유효 결정립도가 미세화될수록 균열의 전파저항성이 증가하게 된다. 균열이 개시되어 전파될 때 유효 결정립계에서 균열의 진전 경로가 변경되기 때문이다.In general, DWTT ductility is known to have a deep correlation with the effective grain size of a steel sheet. The effective grain size is defined as the size of grains having a high hard angle grain boundary, and as the effective grain size becomes finer, the propagation resistance of the crack increases. This is because the propagation path of the crack changes at the effective grain boundary when the crack starts and propagates.
유효 결정립도를 미세화하기 위해 압연 직후 가속냉각을 실시하는 방법이 널리 이용된다. 압연 직후 가속냉각에 의해 침상페라이트와 베이나이트의 혼합 조직을 구현할 수 있다. 다만, 통상의 가속냉각을 통해 형성된 미세조직은, 결정립 내에 탄소(C)가 과포화되어 있으므로 높은 경도를 가지게 되며, 그에 따라 균일연신율 9% 미만 및 총연신율 20% 미만의 수준으로 열위한 연성을 나타낸다. 이로 이해 조관 시 성형성이 낮아지고, 외부 변형 인가 시 국부적인 응력 집중이 용이하게 발생하므로, 파이프의 안정성을 크게 저하시키는 문제점이 존재한다.In order to refine the effective grain size, a method of performing accelerated cooling immediately after rolling is widely used. Immediately after rolling, a mixed structure of acicular ferrite and bainite can be realized by accelerated cooling. However, the microstructure formed through normal accelerated cooling has a high hardness since carbon (C) is supersaturated in the crystal grains, and thus exhibits ductility for heat to a level of less than 9% uniform elongation and less than 20% total elongation. . As a result, the moldability is lowered during pipe construction, and local stress concentration is easily generated when external deformation is applied, and thus there is a problem that the stability of the pipe is significantly reduced.
따라서, 라인파이프용 강판의 제조에 있어서, 가속냉각에 의해 제조된 강판의 연신율 열화를 개선하여, 저온파괴인성이 우수하면서도, 9% 이상의 균일연신율 및 28% 이상의 총연신율을 구비하여 우수한 연성을 가지는 라인파이프용 강판의 제조방법이 요구되는 실정이다.Accordingly, in the production of the steel sheet for line pipe, the elongation deterioration of the steel sheet produced by accelerated cooling is improved, and the low temperature fracture toughness is excellent, but the uniform elongation of 9% or more and the total elongation of 28% or more have excellent ductility. There is a need for a method for manufacturing a line pipe steel sheet.
종래에도 연신율과 저온파괴인성이 우수한 강판에 대한 연구는 존재하였다. 이와 관련하여, 특허문헌 1은 니켈(Ni), 니오븀(Nb) 및 몰리브덴(Mo)을 함유한 강재를 65% 이상의 압하량으로 미재결정역 압연하고, 15~30℃/의 냉각속도로 Bs 온도까지 제1 냉각하고, 30~60℃/의 냉각속도로 350~500℃의 온도범위로 제2 냉각하여, 면적분율로 30~60%의 등축 페라이트 및 40~70%의 베이나이트 혼합 조직을 미세조직으로 포함하는 강재를 제조하는 방법을 제안한다.In the past, there have been studies on steel sheets having excellent elongation and low temperature fracture toughness. In this regard, Patent Document 1 is a non-recrystallized rolling of a steel material containing nickel (Ni), niobium (Nb), and molybdenum (Mo) in a rolling reduction of 65% or more, and Bs temperature at a cooling rate of 15 to 30°C/ Cooling to the first, and second cooling to a temperature range of 350 to 500°C at a cooling rate of 30 to 60°C/, finely equiaxing 30 to 60% equiaxed ferrite and 40 to 70% of bainite mixed structure It proposes a method of manufacturing a steel material included as a tissue.
다만, 특허문헌 1은 두께 20mm 이상의 강판에 대해 저온압연을 실시하는 것으로, 두께 20mm 미만의 강판에 대해 해당 공정 조건을 적용하기에는 기술적 난점이 존재한다. 두께 20mm 미만의 강판의 경우, 저온압연을 실시한 후 강판이 급격히 냉각되는 관계로, 강판의 전체 길이 방향, 특히 강판의 후단부에서 목적하는 저온파괴인성, 강도 및 연신율 확보하기 어렵기 때문이다. However, Patent Document 1 is to perform low-temperature rolling on a steel sheet having a thickness of 20 mm or more, and there is a technical difficulty in applying the corresponding process conditions to a steel sheet having a thickness of less than 20 mm. This is because, in the case of a steel sheet having a thickness of less than 20 mm, it is difficult to secure the desired low temperature fracture toughness, strength and elongation in the entire longitudinal direction of the steel sheet, particularly in the rear end of the steel sheet, since the steel sheet is rapidly cooled after cold rolling.
(선행기술문헌)(Advanced technical literature)
(특허문헌 1) 대한민국 공개특허공보 제10-2013-0073472호(2013.07.03. 공개)(Patent Document 1) Republic of Korea Patent Publication No. 10-2013-0073472 (2013.07.03. public)
본 발명의 한 가지 측면에 따르면 저온인성이 우수한 고강도 강판 및 그 제조방법이 제공될 수 있다According to one aspect of the present invention, a high-strength steel sheet having excellent low-temperature toughness and a method of manufacturing the same can be provided.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The subject of this invention is not limited to the above-mentioned content. Those skilled in the art will have no difficulty in understanding the additional subject matter of the present invention from the general contents of this specification.
본 발명의 일 측면에 따른 파괴인성 및 연신율이 우수한 고강도 강판은, 중량%로, 탄소(C): 0.05~0.1%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 1.4~2.0%, 알루미늄(Al): 0.01~0.05%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.01%, 니오븀(Nb): 0.04~0.07%, 크롬(Cr): 0.05~0.3%, 니켈(Ni): 0.05~0.4%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 칼슘(Ca): 0.0005~0.004%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, 20~60면적%의 페라이트 및 베이나이트를 미세조직으로 포함하며, 강판 중심부에서 15도 기준 고경각결정립도의 상위 80% 결정립 크기가 70㎛ 이하일 수 있다.High-strength steel sheet having excellent fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0% , Aluminum (Al): 0.01 to 0.05%, Titanium (Ti): 0.005 to 0.02%, Nitrogen (N): 0.002 to 0.01%, Niobium (Nb): 0.04 to 0.07%, Chromium (Cr): 0.05 to 0.3% , Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, containing the remaining iron (Fe) and unavoidable impurities , 20 ~ 60 area% of ferrite and bainite as a microstructure, the top 80% grain size of the high-angle crystal grain size of 15 degrees in the center of the steel sheet may be 70㎛ or less.
상기 강판은 0.3중량% 이하의 몰리브덴(Mo)을 더 포함할 수 있다.The steel sheet may further include molybdenum (Mo) of 0.3% by weight or less.
상기 베이나이트의 분율은 35~75면적%일 수 있다.The fraction of bainite may be 35 to 75 area%.
상기 강판의 미세조직은 5면적% 이하의 도상 마르텐사이트를 더 포함할 수 있다.The microstructure of the steel sheet may further include an island martensite of 5 area% or less.
상기 강판의 항복강도는 485MPa 이상일 수 있다.The yield strength of the steel sheet may be 485 MPa or more.
상기 강판의 총 연신율은 28% 이상이며, 상기 강판의 압연 직각 방향에 대한 균일 연신율은 9% 이상일 수 있다.The total elongation of the steel sheet is 28% or more, and the uniform elongation of the steel sheet in a perpendicular direction to rolling may be 9% or more.
상기 강판의 압연 직각 방향에 대한 -30℃의 DWTT 연성파면율이 85% 이상일 수 있다.The DWTT ductile wavefront at -30°C with respect to the perpendicular direction of rolling of the steel sheet may be 85% or more.
상기 강판의 두께는 20mm 미만일 수 있다.The thickness of the steel sheet may be less than 20mm.
본 발명의 일 측면에 따른 저온파괴인성 및 연신율이 우수한 고강도 강판은, 중량%로, 탄소(C): 0.05~0.1%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 1.4~2.0%, 알루미늄(Al): 0.01~0.05%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.01%, 니오븀(Nb): 0.04~0.07%, 크롬(Cr): 0.05~0.3%, 니켈(Ni): 0.05~0.4%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 칼슘(Ca): 0.0005~0.004%, 나머지 철(Fe) 및 불가피한 불순물을 포함하는 슬라브를 재가열하고, 상기 슬라브를 유지 및 추출하고, 상기 유지 및 추출된 슬라브를 Tnr 이상의 온도범위에서 재결정역 압연하고, 상기 재결정역 압연된 압연재를 30% 이상의 총 압하율로 미재결정역 압연하고, 상기 미재결정역 압연된 강판을 (Bs-80℃)~Bs의 온도범위까지 냉각하여 제조하되, 상기 미재결정역 압연은 Tnr 이하의 온도범위에서 개시되어 (Ar3+100℃) 이상의 온도범위에서 종료될 수 있다.High-strength steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0 %, Aluminum (Al): 0.01~0.05%, Titanium (Ti): 0.005~0.02%, Nitrogen (N): 0.002~0.01%, Niobium (Nb): 0.04~0.07%, Chromium (Cr): 0.05~0.3 %, Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities Reheating the slab to be maintained, holding and extracting the slab, re-reverse rolling of the retained and extracted slab at a temperature range of Tnr or higher, and rolling of the recrystallized rolled non-recrystallized station at a total rolling reduction of 30% or more. And, the non-recrystallized rolled steel sheet is manufactured by cooling to a temperature range of (Bs-80°C) to Bs, but the non-recrystallized rolling starts at a temperature range of Tnr or lower (Ar3+100°C) or higher. Can be terminated in.
상기 슬라브는 0.3중량% 이하의 몰리브덴(Mo)을 더 포함할 수 있다.The slab may further include molybdenum (Mo) of 0.3% by weight or less.
상기 슬라브의 재가열 온도범위는 1140~1200℃일 수 있다.The reheating temperature range of the slab may be 1140 to 1200°C.
상기 슬라브의 유지 및 추출 온도범위는 1140~1200℃일 수 있다.The maintenance and extraction temperature range of the slab may be 1140 to 1200°C.
상기 재결정역 압연은 복수의 패스로 실시되며, 상기 각 패스의 평균 압하율은 10% 이상일 수 있다.The recrystallization rolling is performed in a plurality of passes, and the average rolling reduction of each pass may be 10% or more.
상기 재결정역 압연된 압연재는 공냉에 의해 Tnr 이하의 온도범위까지 냉각될 수 있다.The recrystallized rolled rolling material may be cooled to a temperature range below Tnr by air cooling.
상기 미재결정역 압연된 강판은 10~50℃/s의 냉각속도로 냉각될 수 있다.The unrecrystallized rolled steel sheet may be cooled at a cooling rate of 10 to 50°C/s.
상기 미재결정역 압연된 강판의 냉각은 (Ar3+30℃) 이상의 온도범위에서 개시될 수 있다.Cooling of the non-recrystallized rolled steel sheet may be started at a temperature range of (Ar3+30°C) or higher.
상기 강판의 두께는 20mm 미만일 수 있다.The thickness of the steel sheet may be less than 20mm.
상기 과제의 해결 수단은 본 발명의 특징을 모두 열거한 것은 아니며, 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시예를 참조하여 보다 상세하게 이해될 수 있을 것이다.The solving means of the above problems does not list all the features of the present invention, and various features of the present invention and the advantages and effects thereof may be understood in more detail with reference to specific embodiments below.
본 발명의 일 측면에 따르면, 고강도 특성을 가지면서도 저온파괴인성 및 연신율이 우수하여 라인파이프용 소재로 특히 적합한 강판 및 그 제조방법이 제공될 수 있다.According to one aspect of the present invention, it is possible to provide a steel sheet and a method of manufacturing the same, which are particularly suitable as a material for line pipes, having high strength characteristics and excellent low temperature fracture toughness and elongation.
도 1은 실시예의 시편 2를 광학현미경으로 관찰한 사진이다.1 is a photograph of the specimen 2 of the Example observed with an optical microscope.
도 2는 EBSD를 이용하여 시편 2의 15도 기준 고경각입계 결정립 크기를 측정한 결과이다.2 is a result of measuring the grain size of the high-angle grain boundary based on 15 degrees of specimen 2 using EBSD.
도 3은 실시예의 시편 18을 광학현미경으로 관찰한 사진이다.3 is a photograph of the specimen 18 of the Example observed with an optical microscope.
도 4는 EBSD를 이용하여 시편 18의 15도 기준 고경각입계 결정립 크기를 측정한 결과이다.4 is a result of measuring the grain size of the high-angle grain boundary based on 15 degrees of the specimen 18 using EBSD.
본 발명은 저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 실시예들을 설명하고자 한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.The present invention relates to a high-strength steel sheet having excellent low-temperature fracture toughness and elongation, and a method for manufacturing the same, which will be described below with reference to preferred embodiments of the present invention. The embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The present embodiments are provided to those skilled in the art to further detail the present invention.
이하, 본 발명의 강 조성에 대하여 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.Hereinafter, the steel composition of the present invention will be described in more detail. Hereinafter, unless otherwise indicated,% representing the content of each element is based on weight.
본 발명의 일 측면에 따른 저온파괴인성 및 연신율이 우수한 고강도 강판은, 중량%로, 탄소(C): 0.05~0.1%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 1.4~2.0%, 알루미늄(Al): 0.01~0.05%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.01%, 니오븀(Nb): 0.04~0.07%, 크롬(Cr): 0.05~0.3%, 니켈(Ni): 0.05~0.4%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 칼슘(Ca): 0.0005~0.004%, 나머지 철(Fe) 및 불가피한 불순물을 포함한다.High-strength steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0 %, Aluminum (Al): 0.01~0.05%, Titanium (Ti): 0.005~0.02%, Nitrogen (N): 0.002~0.01%, Niobium (Nb): 0.04~0.07%, Chromium (Cr): 0.05~0.3 %, Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities do.
또한, 본 발명의 일 측면에 따른 저온파괴인성 및 연신율이 우수한 강판은, 중량%로, 몰리브덴(Mo): 0.3% 이하를 추가적으로 더 포함할 수 있다.In addition, the steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention may further include molybdenum (Mo): 0.3% or less in weight%.
탄소(C): 0.05~0.1%Carbon (C): 0.05~0.1%
탄소(C)는 강의 강도 향상에 가장 효과적인 원소이다. 또한, 탄소(C)의 첨가량이 일정 수준 이하인 경우, 강의 강도 확보를 위해 몰리브덴(Mo) 및 니켈(Ni) 등과 같은 고가의 합금 원소가 다량 첨가되어야 하므로 경제적 측면에서 바람직하지 않다. 본 발명은 이와 같은 효과의 달성을 위해 탄소(C) 함량의 하한을 0.05%로 제한할 수 있다. 다만, 탄소(C)가 과량 첨가되는 경우, 강의 용접성, 성형성 및 인성 등의 측면에서 바람직하지 않으므로, 본 발명은 탄소(C) 함량의 상한을 0.1%로 제한할 수 있다. 따라서, 본 발명의 탄소(C) 함량은 0.05~0.1%의 범위일 수 있으며, 보다 바람직한 탄소(C) 함량의 범위는 0.05~0.095%의 범위일 수 있다.Carbon (C) is the most effective element for improving the strength of steel. In addition, when the amount of carbon (C) added is below a certain level, in order to secure the strength of steel, expensive alloying elements such as molybdenum (Mo) and nickel (Ni) must be added in large amounts, which is not preferable from an economical point of view. The present invention can limit the lower limit of the carbon (C) content to 0.05% to achieve this effect. However, when the carbon (C) is added in excess, the present invention can limit the upper limit of the carbon (C) content to 0.1% because it is not preferable in terms of weldability, formability, and toughness of the steel. Therefore, the carbon (C) content of the present invention may be in the range of 0.05 to 0.1%, and the more preferable carbon (C) content may be in the range of 0.05 to 0.095%.
실리콘(Si): 0.05~0.5%Silicon (Si): 0.05~0.5%
실리콘(Si)은 용강의 탈산에 유용한 원소이며, 고용강화에 의해 강의 강도 향상에 기여하는 원소이기도 하다. 본 발명은 이와 같은 효과의 달성을 위해 실리콘(Si) 함량의 하한을 0.05%로 제한할 수 있다. 보다 바람직한 실리콘(Si) 함량의 하한은 0.1%일 수 있다. 다만, 실리콘(Si)은 산화성이 강한 원소이므로 실리콘(Si) 함량의 상한을 일정 범위로 제한하는 것이 바람직하다. 즉, 실리콘(Si)이 과량 첨가되는 경우, 열간압연 시 적스케일 형성을 유발하여 표면품질 측면에서 바람직하지 않으며, 용접부의 인성에도 바람직하지 않은 영향을 미치게 되므로, 본 발명은 실리콘(Si) 함량의 상한을 0.5%로 제한할 수 있다. 보다 바람직한 실리콘(Si) 함량의 상한은 0.4%일 수 있다.Silicon (Si) is an element useful for deoxidation of molten steel, and is also an element contributing to the improvement of strength of steel by solid solution strengthening. The present invention can limit the lower limit of the silicon (Si) content to 0.05% to achieve this effect. The lower limit of the more preferable silicon (Si) content may be 0.1%. However, since silicon (Si) is an element having strong oxidizing properties, it is preferable to limit the upper limit of the silicon (Si) content to a certain range. That is, when an excessive amount of silicon (Si) is added, it causes red scale formation during hot rolling, which is undesirable in terms of surface quality, and also has an undesirable effect on the toughness of the welded portion. The upper limit can be limited to 0.5%. The upper limit of the more preferable silicon (Si) content may be 0.4%.
망간(Mn): 1.4~2.0%Manganese (Mn): 1.4-2.0%
망간(Mn) 강의 고용강화에 효과적인 원소이다. 본 발명은 강의 고강도 특성을 확보하기 위하여 망간(Mn) 함량의 하한을 1.4%로 제한할 수 있다. 다만, 망간(Mn)이 과량 첨가되는 경우, 제강 공정에서 슬라브 주소 시 두께 중심부에 편석부가 넓은 범위에 걸쳐 형성될 수 있으며, 최종 제품의 용접성 측면에서 바람직하지 않으므로, 본 발명은 망간(Mn) 함량의 상한을 2.0%로 제한할 수 있다. 보다 바람직한 망간(Mn) 함량의 상한은 1.8%일 수 있다. It is an effective element for solid solution strengthening of manganese (Mn) steel. The present invention can limit the lower limit of the manganese (Mn) content to 1.4% in order to secure high strength properties of the steel. However, when manganese (Mn) is added in excess, a segregation portion may be formed over a wide range in the center of the thickness at the time of slab addressing in the steelmaking process. The upper limit of the content can be limited to 2.0%. The upper limit of the more preferable manganese (Mn) content may be 1.8%.
알루미늄(Al): 0.01~0.05%Aluminum (Al): 0.01~0.05%
알루미늄(Al)은 실리콘(Si)과 함께 탈산제로 첨가되는 대표적인 원소이다. 또한 알루미늄(Al)은 고용강화에 의해 강의 강도 향상에 기여하는 원소이기도 하다. 본 발명은 이와 같은 효과의 달성을 위해 알루미늄(Al) 함량의 하한을 0.01%로 제한할 수 있다. 보다 바람직한 알루미늄(Al) 함량의 하한은 0.015%일 수 있다. 다만, 알루미늄(Al)이 과다하게 첨가되는 경우, 충격 인성 측면에서 바람직하지 않으므로, 본 발명은 알루미늄 함량의 상한을 0.05%로 제한할 수 있다. 보다 바람직한 알루미늄(Al) 함량의 상한은 0.04%일 수 있다.Aluminum (Al) is a representative element added with silicon (Si) as a deoxidizer. In addition, aluminum (Al) is also an element that contributes to the improvement of the strength of the steel by solid solution strengthening. The present invention can limit the lower limit of the aluminum (Al) content to 0.01% to achieve this effect. The lower limit of the more preferable aluminum (Al) content may be 0.015%. However, when aluminum (Al) is excessively added, since it is not preferable in terms of impact toughness, the present invention may limit the upper limit of the aluminum content to 0.05%. The upper limit of the more preferable aluminum (Al) content may be 0.04%.
티타늄(Ti): 0.005~0.02%Titanium (Ti): 0.005~0.02%
티타늄(Ti)은 강의 응고 과정에서 TiN 석출물을 형성하여, 슬라브 가열 및 열간 압연 과정에서 오스테나이트 결정립 성장을 억제하며, 그에 따라 최종 조직의 입도를 미세화시키는 원소이다. 본 발명은 최종 조직의 미세화에 따른 강의 인성 향상 효과를 달성하기 위해 티타늄(Ti) 함량의 하한을 0.005%로 제한할 수 있다. 보다 바람직한 티타늄(Ti) 함량은 0.008%일 수 있다. 다만, 티타늄(Ti)이 과다하게 첨가되는 경우, 슬라브 가열시 TiN이 조대하게 석출되어 오히려 최종 조직의 미세화에 적절하지 않으므로, 본 발명은 티타늄(Ti) 함량의 상한을 0.02%로 제한할 수 있다. 보다 바람직한 티타늄(Ti) 함량의 상한은 0.018%일 수 있다.Titanium (Ti) is an element that forms a TiN precipitate during the solidification process of steel, thereby suppressing austenite grain growth during slab heating and hot rolling, thereby minimizing the particle size of the final structure. The present invention can limit the lower limit of the titanium (Ti) content to 0.005% to achieve the effect of improving the toughness of the steel according to the refinement of the final tissue. The more preferable titanium (Ti) content may be 0.008%. However, when titanium (Ti) is excessively added, TiN is precipitated coarsely when the slab is heated, but rather is not suitable for refinement of the final structure. Therefore, the present invention may limit the upper limit of the titanium (Ti) content to 0.02%. . The upper limit of the more preferable titanium (Ti) content may be 0.018%.
질소(N): 0.002~0.01%Nitrogen (N): 0.002~0.01%
질소(N)는 강 중에 고용되었다가 석출되어 강의 강도를 증가시키는 역할을 하며, 이와 같은 강도 향상 효과는 탄소(C) 보다도 훨씬 큰 것으로 알려져 있다. 또한, 본 발명은 티타늄(Ti)과 질소(N)의 반응을 통해 TiN을 형성하고, 재가열 과정에서의 결정립 성장을 억제시키고자 하므로, 질소(N) 함량의 하한을 0.002%로 제한할 수 있다. 다만, 질소(N)가 과다하게 첨가되는 경우, 질소(N)가 TiN 석출물의 형태가 아닌 고용 질소(N)의 형태로 존재하여 강의 인성이 크게 저하될 수 있는바, 본 발명은 질소(N) 함량의 상한을 0.01%로 제한할 수 있다. 바람직한 질소(N) 함량의 상한은 0.006%일 수 있으며, 보다 바람직한 질소(N) 함량의 상한은 0.005%일 수 있다. Nitrogen (N) is dissolved in steel and then precipitates, which serves to increase the strength of the steel, and it is known that such an effect of improving strength is much greater than that of carbon (C). In addition, the present invention is to form a TiN through the reaction of titanium (Ti) and nitrogen (N), and to suppress the grain growth during the reheating process, the lower limit of the nitrogen (N) content can be limited to 0.002% . However, when nitrogen (N) is excessively added, nitrogen (N) exists in the form of solid nitrogen (N) rather than TiN precipitate, and thus the toughness of the steel may be significantly reduced. ) The upper limit of the content can be limited to 0.01%. The upper limit of the preferred nitrogen (N) content may be 0.006%, and the upper limit of the more preferred nitrogen (N) content may be 0.005%.
니오븀(Nb): 0.04~0.07%Niobium (Nb): 0.04 to 0.07%
니오븀(Nb)은 결정립을 미세화시키는데 아주 유용한 원소이며, 동시에 고강도 조직인 침상 페라이트 또는 베이나이트의 형성을 촉진하여 강의 강도 향상에 크게 기여하는 원소이기도 한다. 또한, 본 발명에서 대상으로 하는 두께 20mm 미만의 강판에서는 고온 압연이 불가피하므로, 미재결정온도 상승에 효과가 가장 큰 니오븀(Nb)이 일정 함량 이상으로 첨가되어야만 한다. 따라서, 본 발명은 니오븀(Nb) 함량의 하한을 0.04%로 제한할 수 있다. 다만, 니오븀(Nb)이 과다하게 첨가되는 경우, 강의 용접성이 저하될 수 있는바, 본 발명은 니오븀(Nb) 함량의 상한을 0.07%로 제한할 수 있다. 바람직한 니오븀(Nb) 함량의 상한은 0.06%일 수 있다.Niobium (Nb) is a very useful element for refining crystal grains, and is also an element that greatly contributes to the improvement of strength of steel by promoting the formation of acicular ferrite or bainite, which is a high-strength structure. In addition, hot rolling is unavoidable in the steel sheet having a thickness of less than 20 mm, which is the object of the present invention, so niobium (Nb), which has the greatest effect on increasing the recrystallization temperature, must be added in a certain amount or more. Therefore, the present invention can limit the lower limit of the niobium (Nb) content to 0.04%. However, when the niobium (Nb) is excessively added, the weldability of the steel may be deteriorated, and the present invention may limit the upper limit of the niobium (Nb) content to 0.07%. The upper limit of the preferred niobium (Nb) content may be 0.06%.
크롬(Cr): 0.05~0.3%Chromium (Cr): 0.05~0.3%
크롬(Cr)은 소입성을 향상시키는 원소로 강의 강도 상승에 유효한 원소이다. 또한, 크롬(Cr)은 가속냉각 시 도상 마르텐사이트/오스테나이트(MA)의 형성을 조장하여 균일연신율 향상에 기여하는 원소이기도 하다. 본 발명은 이와 같은 효과의 달성을 위해 크롬(Cr) 함량의 하한을 0.05%로 제한할 수 있다. 보다 바람직한 크롬(Cr) 함량의 하한은 0.08%일 수 있다. 다만, 크롬(Cr)이 과다하게 첨가되는 경우, 용접성의 저하를 유발할 수 있으므로, 본 발명은 크롬(Cr) 함량의 상한을 0.3%로 제한할 수 있다. 바람직한 크롬(Cr) 함량의 상한은 0.25%일 수 있으며, 보다 바람직한 크롬(Cr) 함량의 상한은 0.2%일 수 있다.Chromium (Cr) is an element that improves quenchability and is an effective element for increasing the strength of steel. In addition, chromium (Cr) is an element that contributes to the improvement of uniform elongation by promoting the formation of island martensite/austenite (MA) during accelerated cooling. The present invention can limit the lower limit of the chromium (Cr) content to 0.05% to achieve this effect. The lower limit of the more preferable chromium (Cr) content may be 0.08%. However, if chromium (Cr) is added excessively, it may cause a decrease in weldability, and thus the present invention may limit the upper limit of the chromium (Cr) content to 0.3%. The upper limit of the preferred chromium (Cr) content may be 0.25%, and the upper limit of the more preferred chromium (Cr) content may be 0.2%.
니켈(Ni): 0.05~0.4%Nickel (Ni): 0.05 to 0.4%
니켈(Ni)은 강의 인성 및 강도 향상에 효과적으로 기여하는 원소이다. 본 발명은 이와 같은 효과를 달성하기 위하여 니켈(Ni) 함량의 하한을 0.05%로 제한할 수 있다. 다만, 니켈(Ni)은 고가의 원소로서, 니켈(Ni)의 과다 첨가는 경제성 측면에서 바람직하지 않은바, 본 발명은 니켈(Ni) 함량의 상한을 0.4%로 제한할 수 있다. 바람직한 니켈(Ni) 함량의 상한은 0.3%일 수 있으며, 보다 바람직한 니켈(Ni) 함량의 상한은 0.25%일 수 있다.Nickel (Ni) is an element that effectively contributes to improving the toughness and strength of steel. The present invention can limit the lower limit of the nickel (Ni) content to 0.05% to achieve this effect. However, nickel (Ni) is an expensive element, and excessive addition of nickel (Ni) is not desirable from the economical point of view, and the present invention may limit the upper limit of the nickel (Ni) content to 0.4%. The upper limit of the preferred nickel (Ni) content may be 0.3%, and the upper limit of the more preferred nickel (Ni) content may be 0.25%.
인(P): 0.02% 이하Phosphorus (P): 0.02% or less
인(P)은 강 중에 존재하는 대표적인 불순물 원소로서, 주로 강판의 중심부에 편석되어 강의 인성 저하를 유발하는바, 가급적 낮은 수준으로 관리하는 것이 바람직하다. 다만, 강 중에서 인(P)을 완전히 제거하는 데에는 제강 공정상 과다한 비용 및 시간이 소요되어 경제적 측면에서 바람직하지 않으므로, 본 발명은 인(P)의 함량을 0.02% 이하로 제한할 수 있다. 보다 바람직한 인(P)의 함량은 0.015% 이하일 수 있다.Phosphorus (P) is a representative impurity element present in the steel, and is mainly segregated in the center of the steel sheet, causing deterioration of the toughness of the steel. However, the removal of phosphorus (P) from the steel requires excessive cost and time in the steelmaking process, which is undesirable in terms of economy, and thus the present invention can limit the content of phosphorus (P) to 0.02% or less. The more preferable content of phosphorus (P) may be 0.015% or less.
황(S): 0.005% 이하Sulfur (S): 0.005% or less
황(S) 역시 강 중에 존재하는 대표적인 불순물 원소로서, 강 중의 망간(Mn) 등과 결합하여 MnS 등의 비금속 개재물을 형성하며, 그에 따라 강의 인성 및 강도를 크게 손상시키는 원소이므로, 가급적 낮은 수준으로 관리하는 것이 바람직하다. 다만, 강 중에서 황(S)을 완전히 제거하는 데에는 제강 공정상 과다한 비용 및 시간이 소요되어 경제적 측면에서 바람직하지 않으므로, 본 발명은 황(S)의 함량을 0.005% 이하로 제한할 수 있다. 보다 바람직한 황(S)의 함량은 0.003% 이하일 수 있다. Sulfur (S) is also a representative impurity element present in the steel, and is combined with manganese (Mn) in the steel to form non-metallic inclusions such as MnS, and thus is a element that significantly damages the toughness and strength of the steel. It is desirable to do. However, the removal of sulfur (S) from the steel is excessively expensive and time-consuming in the steelmaking process, which is undesirable in economic terms, so the present invention can limit the content of sulfur (S) to 0.005% or less. The more preferable content of sulfur (S) may be 0.003% or less.
칼슘(Ca): 0.0005~0.004%, Calcium (Ca): 0.0005~0.004%,
칼슘(Ca)은 MnS 등의 비금속 개재물을 구상화시켜 비금속 개재물 주변에서의 균열 생성 억제에 효과적인 원소이다. 본 발명은 이와 같은 효과의 달성을 위해 칼슘(Ca) 함량의 하한을 0.0005%로 제한할 수 있다. 다만, 칼슘(Ca)이 과다하게 첨가되는 경우, CaO계 개재물이 다량 형성되어 충격인성의 저하를 유발하는바, 본 발명은 칼슘(Ca) 함량의 상한을 0.004%로 제한할 수 있다. 바람직한 칼슘(Ca) 함량의 상한은 0.002%일 수 있다. Calcium (Ca) is an element effective in suppressing the formation of cracks around nonmetallic inclusions by spheroidizing nonmetallic inclusions such as MnS. The present invention can limit the lower limit of the calcium (Ca) content to 0.0005% to achieve this effect. However, when calcium (Ca) is excessively added, a large amount of CaO-based inclusions is formed, causing a decrease in impact toughness, and the present invention may limit the upper limit of the calcium (Ca) content to 0.004%. The upper limit of the preferred calcium (Ca) content may be 0.002%.
몰리브덴(Mo): 0.3% 이하Molybdenum (Mo): 0.3% or less
몰리브덴(Mo)은 저온 변태 조직인 베이나이트의 생성을 조장하여 고강도와 고인성 특성을 동시에 확보하는 데 효과적인 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해, 몰리브덴(Mo)을 선택적으로 첨가할 수 있다. 다만, 몰리브덴(Mo)은 고가의 원소로서 과량 첨가시 경제적 측면에서 바람직하지 않으므로, 본 발명은 몰리브덴(Mo) 함량의 상한을 0.3%로 제한할 수 있다. Molybdenum (Mo) is an effective element to promote the formation of bainite, a low-temperature transformation structure, to simultaneously secure high strength and high toughness properties. Therefore, the present invention can selectively add molybdenum (Mo) to achieve this effect. However, since molybdenum (Mo) is an expensive element and is not desirable from an economic point of view when excessively added, the present invention may limit the upper limit of the molybdenum (Mo) content to 0.3%.
본 발명은, 상술한 강 조성 이외에 나머지는 Fe 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 철강 제조공정에서 의도되지 않게 혼입될 수 있는 것으로, 이를 전면 배제할 수는 없으며, 통상의 철강제조 분야의 기술자라면 그 의미를 쉽게 이해할 수 있다. 또한, 본 발명은, 앞서 언급한 강 조성 이외의 다른 조성의 첨가를 전면적으로 배제하는 것은 아니다.The present invention, in addition to the above-mentioned steel composition, the rest may include Fe and unavoidable impurities. The unavoidable impurities may be unintentionally incorporated in the ordinary steel manufacturing process, and cannot be completely excluded, and the meaning can be easily understood by those skilled in the ordinary steel manufacturing field. In addition, this invention does not exclude the addition of the composition other than the steel composition mentioned above entirely.
이하, 본 발명의 미세조직에 대해 보다 상세히 설명한다.Hereinafter, the microstructure of the present invention will be described in more detail.
본 발명의 일 측면에 따른 강판은 페라이트 및 베이나이트를 미세조직으로 포함하며, 이에 더하여 도상 마르텐사이트를 더 포함할 수 있다. 페라이트 및 베이나이트의 분율은 각각 20~60면적% 및 35~75면적%일 수 있으며, 도상 마르텐사이트의 분율은 5면적% 이하일 수 있다. The steel sheet according to an aspect of the present invention includes ferrite and bainite as a microstructure, and in addition, may further include an island martensite. The fractions of ferrite and bainite may be 20-60 area% and 35-75 area%, respectively, and the fraction of island martensite may be 5 area% or less.
본 발명에는 미세한 고경각 입계를 가지는 페라이트가 20면적% 이상으로 포함되므로, 저온 DWTT 특성을 효과적으로 확보할 수 있다. 또한, 본 발명은 페라이트를 60면적% 이하로 포함하고, 베이나이트를 35면적% 이상으로 포함하므로, 485MPa 이상의 항복강도를 확보할 수 있다. 다만, 본 발명은 고경각 입계가 지나치게 조대해지는 것을 방지하기 위하여 베이나이트의 분율을 75면적% 이하로 제한하며, 그에 따라 저온 DWTT 특성을 효과적으로 확보할 수 있다. 더불어, 도상 마르텐사이트는 저온 DWTT 특성에 바람직하지 않은 영향을 미치므로, 가급적 그 분율을 억제하는 것이 바람직하다. 따라서, 본 발명은 도상 마르텐사이트의 분율을 5면적% 이하로 제한할 수 있다.In the present invention, since ferrite having a fine high-angle grain boundary is included in 20% by area or more, it is possible to effectively secure low-temperature DWTT properties. In addition, since the present invention includes ferrite in an area of 60 area% or less, and bainite in an area of 35 area% or more, a yield strength of 485 MPa or more can be secured. However, the present invention limits the fraction of bainite to 75 area% or less in order to prevent the high-angle grain boundary from becoming too coarse, and thus can effectively secure low-temperature DWTT properties. In addition, since island martensite has an undesirable effect on low-temperature DWTT properties, it is desirable to suppress the fraction as much as possible. Therefore, the present invention can limit the fraction of island martensite to 5 area% or less.
또한, 본 발명의 일 측면에 따른 강판은, 강판 중심부에서 15도 기준 고경각결정립도의 상위 80% 결정립 크기가 70㎛ 이하일 수 있다. 즉, 본 발명은 고경각결정립도를 미세화하여 유효 결정립도를 미세화할 수 있으며, 그에 따라 저온 DWTT 특성을 효과적을 확보할 수 있다. 여기서, 강판 중심부는 t/2 지점을 포함하는 영역으로 해석될 수 있으며, t/4~3*t/4 지점의 영역으로 해석될 수도 있다. (t: 강판의 두께, mm)In addition, the steel sheet according to an aspect of the present invention, the top 80% grain size of the high-angle crystal grain size of 15 degrees from the center of the steel sheet may be 70㎛ or less. That is, the present invention can refine the effective grain size by minimizing the high-angle crystal grain size, thereby effectively securing low-temperature DWTT characteristics. Here, the center of the steel sheet may be interpreted as a region including the point t/2, or may be interpreted as a region of the point t/4 to 3*t/4. (t: thickness of steel sheet, mm)
본 발명의 일 측면에 따른 강판은 20mm 미만의 두께를 가질 수 있으며, 보다 바람직한 강판의 두께는 16mm 이하일 수 있다. 또한, 본 발명의 일 측면에 따른 강판은, 485MPa 이상의 항복강도, 28% 이상의 총 연신율 및 9% 이상의 압연 직각 방향에 대한 균일 연신율을 가질 수 있으며, 강판의 압연 직각 방향에 대한 -30℃의 DWTT 연성파면율이 85% 이상일 수 있다. 따라서, 본 발명은 20mm 미만의 두께를 가지면서도, 강도, 저온파괴인성 및 연신율을 효과적으로 확보하여 라인파이프용 소재로 특히 적합한 강판을 제공할 수 있다. The steel sheet according to an aspect of the present invention may have a thickness of less than 20 mm, and a more preferred steel sheet may have a thickness of 16 mm or less. In addition, the steel sheet according to an aspect of the present invention may have a yield strength of 485 MPa or higher, a total elongation of 28% or higher, and a uniform elongation in a rolling perpendicular direction of 9% or higher, and DWTT of -30°C for a rolling perpendicular direction of the steel sheet. The ductile wavefront ratio may be 85% or more. Therefore, the present invention, while having a thickness of less than 20mm, can effectively provide strength, low temperature fracture toughness, and elongation, thereby providing a steel sheet particularly suitable as a material for line pipes.
이하, 본 발명의 제조방법에 대해 보다 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in more detail.
본 발명의 일 측면에 따른 저온파괴인성 및 연신율이 우수한 고강도 강판은, 중량%로, 탄소(C): 0.05~0.1%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 1.4~2.0%, 알루미늄(Al): 0.01~0.05%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.01%, 니오븀(Nb): 0.04~0.07%, 크롬(Cr): 0.05~0.3%, 니켈(Ni): 0.05~0.4%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 칼슘(Ca): 0.0005~0.004%, 나머지 철(Fe) 및 불가피한 불순물을 포함하는 슬라브를 재가열하고, 상기 슬라브를 유지 및 추출하고, 상기 유지 및 추출된 슬라브를 Tnr 이상의 온도범위에서 재결정역 압연하고, 상기 재결정역 압연된 압연재를 30% 이상의 총 압하율로 미재결정역 압연하고, 상기 미재결정역 압연된 강판을 (Bs-80℃)~Bs의 온도범위까지 냉각하여 제조될 수 있다.High-strength steel sheet excellent in low temperature fracture toughness and elongation according to an aspect of the present invention, by weight, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0 %, Aluminum (Al): 0.01~0.05%, Titanium (Ti): 0.005~0.02%, Nitrogen (N): 0.002~0.01%, Niobium (Nb): 0.04~0.07%, Chromium (Cr): 0.05~0.3 %, Nickel (Ni): 0.05 to 0.4%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities Reheating the slab to be maintained, holding and extracting the slab, re-reverse rolling of the retained and extracted slab at a temperature range of Tnr or higher, and rolling of the recrystallized rolled non-recrystallized station at a total rolling reduction of 30% or more. And, the non-recrystallized rolled steel sheet can be produced by cooling to a temperature range of (Bs-80°C) to Bs.
슬라브 재가열, 유지 및 추출Slab reheating, holding and extraction
본 발명의 슬라브는 전술한 강판의 합금조성과 동일한 합금조성으로 구비되는바, 본 발명의 슬라브 합금조성에 대한 설명은 전술한 강판 합금조성에 대한 설명으로 대신한다.Since the slab of the present invention is provided with the same alloy composition as the alloy composition of the steel sheet described above, the description of the slab alloy composition of the present invention is replaced by the description of the steel sheet alloy composition described above.
슬라브 재가열은 후속되는 압연공정을 원활히 수행하고 목적하는 강판의 물성을 확보하기 위하여 강을 가열하는 공정이므로, 목적에 맞는 적절한 온도범위 내에서 가열공정이 수행되어야 한다. 슬라브 재가열 온도의 하한은 석출형 원소들이 강 중에 충분히 고용될 수 있는 온도인지 여부를 고려해야 한다. 특히, 본 발명은 고강도 특성을 확보하기 위하여 니오븀(Nb)을 필수적으로 포함하는바, 니오븀(Nb)의 재고용 온도를 고려하여 슬라브 재가열 온도의 하한을 1140℃로 제한할 수 있다. 반면, 슬라브 재가열 온도가 과도하게 높은 경우, 오스테나이트 결정립이 지나치게 조대화되어 최종 강판의 결정립이 과도하게 증가하는 문제가 발생할 수 있는바, 본 발명은 슬라브 재가열 온도의 상한을 1200℃로 제한할 수 있다.Slab reheating is a process of smoothly performing the subsequent rolling process and heating the steel to secure the properties of the desired steel sheet, so the heating process must be performed within an appropriate temperature range suitable for the purpose. The lower limit of the slab reheating temperature should take into account whether or not the precipitated elements are sufficiently soluble in steel. Particularly, the present invention essentially includes niobium (Nb) in order to secure high-strength properties, so that the lower limit of the slab reheating temperature can be limited to 1140° C. in consideration of the temperature for reusing niobium (Nb). On the other hand, if the slab reheating temperature is excessively high, austenite grains may become too coarse to cause a problem that the grains of the final steel sheet are excessively increased, and the present invention can limit the upper limit of the slab reheating temperature to 1200°C. have.
재가열된 슬라브는 필요에 따라 유지 및 추출 단계를 거칠 수 있으며, 슬라브 재가열 온도와 유사한 이유로 슬라브의 유지 및 추출 온도는 1140~1200℃의 온도범위로 제한될 수 있다.The reheated slab may be subjected to a maintenance and extraction step as necessary, and for similar reasons to the slab reheating temperature, the maintenance and extraction temperature of the slab may be limited to a temperature range of 1140 to 1200°C.
재결정역 압연Recrystallization rolling
재결정역 압연은 Tnr 이상의 온도범위에서 실시될 수 있다. 본 발명에서 Tnr은 오스테나이트의 재결정이 일어나는 온도범위의 하한을 의미한다. 즉, 재결정역 압연은 오스테나이트 재결정역 영역의 온도범위에서 실시될 수 있다. 재결정역 압연은 다 패스로 실시될 수 있으며, 각 패스 당 10% 이상의 평균 압하율로 압연을 실시할 수 있다. 각 패스 당 평균 압하율이 10% 미만인 경우, 재결정된 오스테나이트의 입도가 조대해져서 최종 강판의 인성 저하를 유발할 수 있기 때문이다.Recrystallization rolling can be carried out in a temperature range above Tnr. In the present invention, Tnr means the lower limit of the temperature range in which austenite recrystallization occurs. That is, rolling in the recrystallization zone can be performed in the temperature range of the austenite recrystallization zone. Recrystallization rolling can be carried out in multiple passes, and rolling can be performed at an average rolling reduction of 10% or more per pass. This is because, if the average rolling reduction per pass is less than 10%, the grain size of the recrystallized austenite becomes coarse, which may lead to a decrease in toughness of the final steel sheet.
재결정역 압연된 압연재는 공냉의 냉각조건으로 Tnr 이하의 온도범위까지 냉각될 수 있다. 즉, 재결정역 압연된 압연재에 대해 바로 미재결정역 압연을 실시하지 않고, 일정 시간 대기하여 공냉에 의해 미재결정역 영역의 온도범위까지 냉각될 수 있다. 해당 구간에서 압하력을 가하면 부분 재결정이 일어날 수 있어, 조대한 오스테나이트 입도에 기인한 취성 파괴가 일어날 수 있기 때문이다.The recrystallized rolled rolled material can be cooled to a temperature range below Tnr under cooling conditions of air cooling. That is, without rolling the non-recrystallized station immediately on the rolled material having been recrystallized, it can be cooled to the temperature range of the non-recrystallized area by air cooling by waiting for a certain period of time. This is because partial recrystallization may occur when a pressing force is applied in a corresponding section, and brittle fracture due to coarse austenite particle size may occur.
미재결정역 압연 Unrecrystallized station rolling
재결정역 압연된 압연재에 대해 미재결정역 압연을 실시한다. 미재결정역 압연의 개시온도는 Tnr 이하이며, 미재결정역 압연의 종료온도는 (Ar3+100℃)일 수 있다. 미재결정역 압연은 재결정역 압연에 의해 생성된 오스테나이트를 길게 연신시키고 입내에 변형 조직을 형성하여 미세한 페라이트와 베이나이트를 얻기 위한 공정으로, 미재결정역 압연에 의해 강판의 강도, 연신율 및 취성파괴 정지 특성을 효과적으로 향상시킬 수 있다. Unrecrystallized reverse rolling is performed on the recrystallized rolled rolled material. The initiation temperature of the non-recrystallized zone rolling is Tnr or less, and the end temperature of the non-recrystallized zone rolling may be (Ar3+100°C). Non-recrystallization rolling is a process to obtain a fine ferrite and bainite by elongating austenite produced by re-crystallization rolling and forming a deformed structure in the mouth. The stopping characteristics can be effectively improved.
미재결정역 압연 종료온도가 낮을수록 오스테나이트의 변형도가 증가하여 저온파괴인성 향상에 유효하지만, 미재결정역 압연 종료온도가 과도하게 낮은 경우 저강도의 페라이트가 생성되어 강도 확보에 불리하므로, 본 발명은 미재결정역 압연 종료온도를 (Ar3+50℃) 이상으로 제한할 수 있다. The lower the end temperature of the non-recrystallized rolling, the higher the degree of deformation of austenite, which is effective in improving low-temperature fracture toughness. However, if the unrecrystallized rolling end temperature is excessively low, ferrite with low strength is generated, which is disadvantageous in securing strength. The present invention can limit the rolling end temperature of the non-recrystallized zone to (Ar3+50°C) or higher.
또한, 미재결정역 압연의 압하량은 강재의 저온 인성 확보에 중요한 영향을 미치는 요소다. 본 발명은 최종 강재의 입도 미세화에 따른 저온 DWTT 연성파면율 특성 확보를 위해 미재결정역 압연의 압하량을 30% 이상으로 제한할 수 있다. 미재결정역 압연의 압하랑이 클수록 저온 인성 향상에 유효하므로, 미재결정역 압연의 압하량 상한을 제한하지 않을 수 있다. 다만, 미재결정역 압연의 압하량이 일정 수준을 초과하는 경우, 입도미세화의 효과는 포화되는 반면 상대적으로 재결정역 압하량이 줄어들기 때문에, 본 발명은 미재결정역 압연의 압하량을 90% 이하로 제한할 수 있다.In addition, the rolling reduction amount of unrecrystallized reverse rolling is an important factor in securing low-temperature toughness of steel materials. The present invention can limit the rolling reduction amount of the unrecrystallized reverse rolling to 30% or more in order to secure the low-temperature DWTT ductile wavefront property according to the particle size refinement of the final steel. The larger the rolling height of the non-recrystallized zone rolling is, the more effective it is to improve low-temperature toughness, so the upper limit of the rolling amount of the non-recrystallized zone rolling may not be limited. However, when the rolling amount of non-recrystallized rolling exceeds a certain level, the effect of particle size refinement is saturated while the amount of rolling of recrystallized rolling decreases, so the present invention limits the rolling of unrecrystallized rolling to 90% or less. can do.
냉각Cooling
미재결정역 압연된 강판을 (Ar3+30℃) 이상의 냉각 개시온도로부터 (Bs-80℃)~Bs의 냉각 정지온도까지 냉각할 수 있다. 냉각 개시온도가 과도하게 낮은 경우 강도가 낮은 페라이트가 다량 생산되며, 그에 따라 강판의 강도가 크게 저하될 수 있는바, 본 발명은 (Ar3+30℃) 이상의 온도범위에서 냉각을 개시할 수 있다. The non-recrystallized rolled steel sheet can be cooled from a cooling start temperature of (Ar3+30°C) or higher to a cooling stop temperature of (Bs-80°C) to Bs. When the cooling start temperature is excessively low, a large amount of ferrite with low strength is produced, and accordingly, the strength of the steel sheet may be greatly reduced, so the present invention can start cooling in a temperature range of (Ar3+30°C) or higher.
또한, 본 발명의 강판은 최종 두께가 20mm 미만의 수준이므로, (Bs-80℃)~Bs의 온도범위에서 냉각을 정지하는 것이 강도 및 연신율 측면에서 가장 바람직하다. 냉각 정지온도가 (Bs-80℃) 미만인 경우, 고경각입계가 조대하게 형성되고, 저경각입계를 가지는 침상 페라이트 및 베이나이트가 다량 형성되어 연신율이 저하될 수 있으며, 냉각 정지온도가 Bs를 초과하는 경우, 베이나이트의 생성량이 적어 강판의 강도를 확보할 수 없기 때문이다. (Bs-80℃)~Bs의 냉각 정지온도까지 강판을 급냉시킨 후 공냉 또는 방냉에 의해 상온까지 강판을 냉각시킬 수 있다.In addition, since the final thickness of the steel sheet of the present invention is less than 20 mm, it is most preferable in terms of strength and elongation to stop cooling in the temperature range of (Bs-80°C) to Bs. When the cooling stop temperature is less than (Bs-80°C), a high hard angle grain boundary is coarsely formed, and a large amount of acicular ferrite and bainite having a low hard grain boundary may be formed, so that the elongation may be lowered, and the cooling stop temperature exceeds Bs. In this case, it is because the amount of bainite generated is small and the strength of the steel sheet cannot be secured. After cooling the steel sheet to a cooling stop temperature of (Bs-80°C) to Bs, the steel sheet can be cooled to room temperature by air cooling or cooling.
또한, 본 발명의 냉각은 10~100℃/s의 냉각속도로 실시될 수 있다. 냉각속도가 10℃/s 미만인 경우 등축 페라이트의 분율이 크게 증가하여 강판의 고강도 특성을 효과적으로 확보할 수 없기 때문이다. 설비 조건 및 경제적 측면에서 냉각속도의 상한을 100℃/s로 제한할 수 있으며, 보다 바람직한 냉각속도의 상한은 50℃/s 일 수 있다.In addition, the cooling of the present invention can be carried out at a cooling rate of 10 ~ 100 ℃ / s. This is because when the cooling rate is less than 10°C/s, the fraction of equiaxed ferrite is greatly increased, so that high strength properties of the steel sheet cannot be effectively secured. In terms of equipment conditions and economics, the upper limit of the cooling rate may be limited to 100°C/s, and the upper limit of the more preferable cooling rate may be 50°C/s.
이상의 제조방법을 통해 제조된 강판은 페라이트 및 베이나이트를 미세조직으로 포함하며, 이에 더하여 도상 마르텐사이트를 더 포함할 수 있다. 페라이트 및 베이나이트의 분율은 각각 20~60면적% 및 35~75면적%일 수 있으며, 도상 마르텐사이트의 분율은 5면적% 이하일 수 있다. 또한, 이상의 제조방법을 통하여 제조된 강판은, 강판 중심부에서 15도 기준 고경각결정립도의 상위 80% 결정립 크기가 70㎛ 이하일 수 있다. The steel sheet manufactured through the above manufacturing method includes ferrite and bainite as a microstructure, and in addition, may further include a martensite phase. The fractions of ferrite and bainite may be 20-60 area% and 35-75 area%, respectively, and the fraction of island martensite may be 5 area% or less. In addition, the steel sheet manufactured through the above-described manufacturing method may have a size of the upper 80% grain size of 70 µm or less of a 15° reference high-angle crystal grain at the center of the steel sheet.
따라서, 이상의 제조방법을 통하여 제조된 강판은, 20mm 미만의 두께로 구비되되, 485MPa 이상의 항복강도, 28% 이상의 총 연신율 및 9% 이상의 압연 직각 방향에 대한 균일 연신율을 가질 수 있으며, 강판의 압연 직각 방향에 대한 -30℃의 DWTT 연성파면율이 85% 이상일 수 있다. 따라서, 본 발명의 일 측면에 따른 제조방법에 의하면, 20mm 미만의 두께를 가지면서도, 강도, 저온파괴인성 및 연신율을 효과적으로 확보하여 라인파이프용 소재로 특히 적합한 강판을 제공할 수 있다. Therefore, the steel sheet manufactured through the above-described manufacturing method is provided with a thickness of less than 20 mm, and can have a yield strength of 485 MPa or more, a total elongation of 28% or more, and a uniform elongation in a rolling perpendicular direction of 9% or more, and the rolling right angle of the steel sheet. DWTT ductile wavefront of -30 ℃ to the direction may be 85% or more. Therefore, according to the manufacturing method according to an aspect of the present invention, while having a thickness of less than 20 mm, it is possible to provide a steel sheet particularly suitable as a material for line pipes by effectively securing strength, low temperature fracture toughness, and elongation.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 보다 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. Hereinafter, the present invention will be described in more detail through examples. However, it is necessary to note that the embodiments described below are only intended to further illustrate the present invention and are not intended to limit the scope of the present invention.
(실시예)(Example)
하기 표 1의 합금조성으로 구비되는 두께 250mm의 슬라브를 제작하였으며, 표 3의 공정 조건을 적용하여 각각 두께 11mm, 11.5mm 및 22mm의 강판 시편을 제작하였다. 이 때, 슬라브 제작은 통상의 슬라브 제작에 이용되는 공정 조건을 적용하였으며, 모든 시편에 대해 Tnr 이상의 온도범위에서 패스당 평균 압하량 10% 이상의 조건을 적용하여 재결정역 압연을 실시하였다. 또한, 모든 시편에 대해 재결정역 압연 후 미재결정역 온도범위까지 공냉을 적용하였다. 표 2에는 표 1의 각 합금조성을 기초로 Tnr 온도, Ar3 온도 및 Bs 온도를 산출하여 기재하였으며, 표 2의 Tnr 온도, Ar3 온도 및 Bs 온도의 산출에 이용된 계산식은 표 2 아래에 별도로 기재하였다.A slab having a thickness of 250 mm provided with the alloy composition of Table 1 was produced, and steel plate specimens having a thickness of 11 mm, 11.5 mm, and 22 mm, respectively, were manufactured by applying the process conditions of Table 3. At this time, the slab fabrication was applied to the process conditions used in the conventional slab fabrication, and recrystallization rolling was performed for all specimens by applying a condition of an average rolling reduction of 10% or more per pass over a temperature range of Tnr or higher. In addition, air cooling was applied to the temperature range of the non-recrystallized zone after rolling the recrystallized zone for all specimens. In Table 2, Tnr temperature, Ar3 temperature, and Bs temperature are calculated and calculated based on each alloy composition in Table 1, and calculation formulas used for calculating Tnr temperature, Ar3 temperature, and Bs temperature in Table 2 are separately described below Table 2. .
강종Steel 합금조성 (중량%)Alloy composition (% by weight) 구분division
CC SiSi MnMn PP SS NiNi CrCr MoMo NbNb AlAl CaCa TiTi NN
AA 0.0700.070 0.270.27 1.571.57 0.010.01 0.00200.0020 0.100.10 0.100.10 -- 0.0490.049 0.0230.023 0.00100.0010 0.0110.011 0.00320.0032 발명강Invention steel
BB 0.0740.074 0.250.25 1.661.66 0.0130.013 0.00200.0020 0.100.10 0.100.10 -- 0.0550.055 0.0340.034 0.00110.0011 0.0140.014 0.00440.0044
CC 0.0500.050 0.250.25 1.581.58 0.0120.012 0.00190.0019 0.100.10 0.110.11 0.080.08 0.0480.048 0.0230.023 0.00100.0010 0.0130.013 0.00430.0043
DD 0.0600.060 0.240.24 1.551.55 0.0110.011 0.00190.0019 0.100.10 0.100.10 0.080.08 0.0410.041 0.0260.026 0.00130.0013 0.0140.014 0.00410.0041
EE 0.0500.050 0.250.25 1.521.52 0.0120.012 0.00180.0018 0.100.10 0.100.10 0.080.08 0.0410.041 0.0240.024 0.00100.0010 0.0140.014 0.00440.0044
FF 0.090.09 0.340.34 1.451.45 0.0100.010 0.00110.0011 0.170.17 0.10.1 -- 0.0450.045 0.0270.027 0.00100.0010 0.0160.016 0.00410.0041
GG 0.0500.050 0.260.26 1.571.57 0.0100.010 0.00200.0020 0.100.10 0.110.11 0.080.08 0.0280.028 0.0280.028 0.00100.0010 0.0120.012 0.00460.0046 비교강Comparative steel
HH 0.0400.040 0.260.26 1.241.24 0.0080.008 0.00100.0010 0.140.14 0.20.2 0.070.07 0.040.04 0.0300.030 0.00070.0007 0.0120.012 0.00460.0046
II 0.0600.060 0.250.25 2.102.10 0.00750.0075 0.00150.0015 0.30.3 0.150.15 0.100.10 0.0500.050 0.0300.030 0.00160.0016 0.0150.015 0.00500.0050
강종Steel Tnr (℃)Tnr (℃) Ar3 (℃)Ar3 (℃) Ar3+30 (℃)Ar3+30 (℃) Ar3+100 (℃)Ar3+100 (℃) Bs (℃)Bs (℃) Bs-80 (℃)Bs-80 (℃)
AA 10141014 767767 797797 867867 659659 579579
BB 10601060 760760 790790 860860 650650 570570
CC 10091009 771771 801801 871871 656656 576576
DD 985985 771771 801801 871871 657657 577577
EE 976976 776776 806806 876876 662662 582582
FF 985985 767767 797797 867867 662662 582582
GG 911911 772772 802802 872872 657657 577577
HH 963963 796796 826826 896896 683683 603603
II 10281028 718718 748748 818818 595595 515515
식 1: Tnr(℃) = 887 + 464*[C] + 6445*[Nb] - 644*[Nb] (1/2) + 732*[V] - 230*[V] (1/2) + 890*[Ti] + 363*[Al] - 357*[Si]Equation 1: Tnr(℃) = 887 + 464*[C] + 6445*[Nb]-644*[Nb] (1/2) + 732*[V]-230*[V] (1/2) + 890*[Ti] + 363*[Al]-357*[Si]
식 2: Ar3(℃) = 910 - 273*[C] - 74*[Mn] - 57*[Ni] - 16*[Cr] - 9*[Mo] - 5[Cu]Equation 2: Ar3(℃) = 910-273*[C]-74*[Mn]-57*[Ni]-16*[Cr]-9*[Mo]-5[Cu]
식 3: Bs(℃) = 830 - 270*[C] - 90*[Mn] - 37*[Ni] - 70*[Cr] - 83*[Mo]Equation 3: Bs(℃) = 830-270*[C]-90*[Mn]-37*[Ni]-70*[Cr]-83*[Mo]
(상기 식 1 내지 식 3에서, [C], [Si], [Mn], [Al], [Ti], [Nb], [V], [Cr], [Mo] 및 [Cu]는 각 합금조성의 중량%를 의미하며, 해당 합금조성이 포함되지 않는 경우 그 값을 0으로 대입하여 계산한다.)(In the above formulas 1 to 3, [C], [Si], [Mn], [Al], [Ti], [Nb], [V], [Cr], [Mo] and [Cu] are each It means the weight percent of alloy composition, and if the alloy composition is not included, it is calculated by substituting the value as 0.)
시편Psalter 강종Steel 강판두께(mm)Steel plate thickness (mm) 슬라브가열온도(℃)Slab heating temperature (℃) 미재결정역압연개시 온도(℃)Unrecrystallized reverse rolling start temperature (℃) 미재결정역압연누적 압하율(%)Cumulative rolling reduction (%) 미재결정역압연종료 온도(℃)Unrecrystallized reverse rolling end temperature (℃) 냉각개시온도(℃)Cooling start temperature (℃) 냉각정지온도(℃)Cooling stop temperature (℃) 냉각속도(℃/s)Cooling rate (℃/s) 비고Remark
1One AA 11.511.5 11501150 10001000 42.542.5 915915 810810 590590 3636 발명예Inventive Example
22 AA 11.511.5 11701170 10001000 42.542.5 915915 820820 640640 3636
33 AA 11.511.5 11601160 10001000 5050 875875 800800 580580 4343
44 BB 11.511.5 11601160 10351035 5656 915915 805805 615615 3232
55 BB 11.511.5 11651165 10351035 5656 915915 820820 610610 3535
66 BB 11.511.5 11501150 10251025 5656 875875 800800 625625 3535
77 CC 1111 11601160 990990 3939 925925 830830 580580 3030
88 CC 1111 11501150 995995 3939 920920 825825 635635 3030
99 DD 1111 11601160 985985 3131 920920 830830 620620 3030
1010 EE 1111 11501150 975975 3131 920920 825825 590590 3030
1111 EE 1111 11601160 975975 3131 920920 830830 620620 3030
1212 FF 1111 11501150 981981 3939 875875 805805 620620 3535
1313 CC 1111 11601160 10001000 5050 875875 795795 460460 4242 비교예Comparative example
1414 DD 1111 11501150 975975 3131 920920 825825 550550 3030
1515 DD 1111 11501150 970970 3131 920920 825825 510510 3030
1616 DD 1111 11601160 983983 5050 863863 771771 685685 3030
1717 EE 1111 11501150 975975 3131 920920 820820 530530 3030
1818 GG 1111 11701170 910910 1212 910910 830830 470470 3030
1919 GG 1111 11501150 910910 1212 910910 830830 580580 3030
2020 HH 1111 11591159 954954 00 954954 819819 491491 4747
2121 II 1111 11601160 10201020 4545 920920 830830 570570 3030
2222 AA 2222 11501150 945945 9898 835835 775775 610610 2323
2323 DD 2222 11441144 935935 7878 827827 767767 617617 2121
표 3의 각 시편에 대해 미세조직, 항복강도 및 인장강도, 연신율 및 -30℃에서의 DWTT 연성파면율을 측정하여 아래의 표 4에 나타내었다. 각 시편의 미세조직은 광학현미경 조직사진 및 EBSD 입도분포도를 이용하여 평가하였다. 항복강도, 인장강도 및 연신율은 각 시편에 대해 상온 인장시험을 실시하여 평가하였다. 표 4에 기재된 항복강도 및 인장강도는 각각 압연 직각 방향에 대한 측정값을 의미한다. 또한, 각 시편에 대해 -30℃의 DWTT 시험을 실시하여 인장특성 및 연성파면율을 평가하였다. For each specimen in Table 3, the microstructure, yield strength and tensile strength, elongation and DWTT ductility at -30°C were measured and are shown in Table 4 below. The microstructure of each specimen was evaluated using optical microscopy and EBSD particle size distribution. Yield strength, tensile strength and elongation were evaluated by performing a room temperature tensile test on each specimen. The yield strength and tensile strength described in Table 4 refer to the measured values for each direction perpendicular to the rolling. In addition, the tensile properties and the ductility wavefront were evaluated by performing a DWTT test at -30°C for each specimen.
시편Psalter 강종Steel 페라이트(면적%)Ferrite (area %) 베이나이트(면적%)Bainite (area %) M/A (면적%)M/A (area %) 고경각결정립상위80%입도(㎛)High hard angle grain size 80% particle size (㎛) 항복강도 (MPa)Yield strength (MPa) 인장강도(MPa)Tensile strength (MPa) 항복비(%)Yield ratio (%) 연신율(%)Elongation (%) 균일연신율(%)Uniform elongation (%) -30℃ DWTT(%)-30℃ DWTT(%) 비고Remark
1One AA 2525 71.071.0 4.04.0 52.052.0 524524 667667 7979 3333 9.09.0 100100 발명예Inventive Example
22 AA 4242 54.554.5 3.53.5 40.540.5 508508 635635 8080 3636 10.510.5 100100
33 AA 2828 67.567.5 4.54.5 46.546.5 541541 671671 8181 3535 9.69.6 100100
44 BB 3232 63.663.6 4.44.4 62.162.1 525525 671671 7878 3333 9.09.0 100100
55 BB 4343 52.852.8 4.24.2 57.957.9 529529 667667 7979 3434 9.59.5 100100
66 BB 5252 43.543.5 4.54.5 56.656.6 528528 653653 8181 3636 9.99.9 9999
77 CC 2323 72.872.8 4.24.2 67.167.1 487487 643643 7676 3333 9.29.2 9898
88 CC 3030 65.765.7 4.34.3 48.548.5 489489 620620 7979 3434 9.79.7 9999
99 DD 2323 72.772.7 4.34.3 60.160.1 505505 638638 7979 3333 9.19.1 100100
1010 EE 2424 71.571.5 4.54.5 48.548.5 485485 614614 7979 3131 9.79.7 100100
1111 EE 2828 67.767.7 4.34.3 42.042.0 495495 613613 8181 3636 10.910.9 100100
1212 FF 3131 64.864.8 4.24.2 45.145.1 536536 625625 8686 3636 10.510.5 9595
1313 CC 1717 78.378.3 4.74.7 86.186.1 620620 730730 8585 2828 7.77.7 100100 비교예Comparative example
1414 DD 1515 80.580.5 4.54.5 89.589.5 501501 651651 7777 2828 7.67.6 100100
1515 DD 1818 77.777.7 4.34.3 75.275.2 500500 628628 8080 3232 8.38.3 100100
1616 DD 7575 22.922.9 2.12.1 90.590.5 455455 570570 8080 4242 13.013.0 9292
1717 EE 2222 74.074.0 4.04.0 76.576.5 492492 632632 7878 2828 8.28.2 100100
1818 GG 2424 7272 4.04.0 9393 524524 656656 8080 2828 6.36.3 7575
1919 GG 2626 69.869.8 4.24.2 82.582.5 502502 620620 8181 3232 7.97.9 8080
2020 HH 2828 67.967.9 4.14.1 78.078.0 528528 606606 8787 3030 8.08.0 5050
2121 II 1212 81.881.8 6.26.2 89.189.1 624624 796796 7878 2828 6.86.8 9191
2222 AA 6565 31.231.2 3.83.8 58.658.6 475475 568568 8484 4747 13.013.0 100100
2323 DD 6666 30.530.5 3.53.5 65.165.1 470470 565565 8383 4848 13.513.5 100100
본 발명의 합금조성 및 공정 조건을 만족하는 시편 1 내지 12의 경우, 미세조직으로 20~60면적%의 페라이트, 35~75면적%의 베이나이트 및 5면적% 이하의 도상 마르텐사이트를 포함하고, 강판 중심부에서 15도 기준 고경각결정립도의 상위 80%의 결정립 크기가 70㎛ 이하이며, 항복강도 485MPa 이상, 총 연신율 28% 이상, 압연 직각 방향에 대한 균일 연신율 9% 이상 및 압연 직각 방향에 대한 -30℃의 DWTT 연성파면율 85% 이상을 만족하므로, 극저온 환경에 제공되는 라인파이프용 소재로 특히 적합한 물성을 구비함을 확인할 수 있다.In the case of specimens 1 to 12 satisfying the alloy composition and process conditions of the present invention, the microstructure includes 20 to 60 area% ferrite, 35 to 75 area% bainite, and 5 area% or less island martensite, In the center of the steel sheet, the crystal grain size of the top 80% of the high-angle crystal grains based on 15 degrees is 70 µm or less, the yield strength is 485 MPa or more, the total elongation is 28% or more, the uniform elongation in the rolling right angle direction is 9% or more, and for the rolling right angle direction- Since it satisfies the DWTT ductile wavefront ratio of 85% or higher at 30°C, it can be confirmed that it has physical properties particularly suitable as a material for line pipes provided in a cryogenic environment.
시편 13 내지 15, 17은 본원발명의 합금조성을 만족하나, 본원발명의 냉각 개시온도 또는 냉각 종료온도보다 낮은 온도범위에서 냉각을 실시한 경우의 시편이다. 시편 13 내지 15, 17의 경우, 20면적% 미만의 페라이트 및 75면적% 초과의 베이나이트가 형성되었으며, 강판 중심부에서 15도 기준 고경각결정립도의 상위 80%의 결정립 크기가 70㎛를 초과하므로, 균일 연신율이 9% 미만의 수준인 것을 확인할 수 있다.Specimens 13 to 15 and 17 satisfy the alloy composition of the present invention, but are specimens when cooling is performed at a temperature range lower than the cooling start temperature or the cooling end temperature of the present invention. In the case of specimens 13 to 15 and 17, ferrite of less than 20 area% and bainite of more than 75 area% were formed, and since the grain size of the top 80% of the high-angle crystallinity based on 15 degrees in the center of the steel sheet exceeds 70 μm, It can be seen that the uniform elongation is less than 9%.
시편 16은 본원발명의 합금조성을 만족하나, 본원발명의 미재결정역 압연 종료온도보다 낮은 온도범위에서 미재결정역 압연을 실시하고, 본원발명의 냉각 개시온도보다 낮은 온도범위에서 냉각을 개시하여 본원발명의 냉각 정지온도보다 높은 온도범위에서 냉각을 종료한 경우의 시편이다. 시편 16의 경우, 60면적% 초과의 페라이트가 형성되어 항복강도가 485MPa 미만임을 확인할 수 있다.Specimen 16 satisfies the alloy composition of the present invention, but unrecrystallized reverse rolling is performed at a temperature range lower than the end temperature of the unrecrystallized reverse rolling of the present invention, and cooling is started at a temperature range lower than the cooling start temperature of the present invention. It is a specimen when cooling is finished in a temperature range higher than the cooling stop temperature of. In the case of the specimen 16, it can be confirmed that a ferrite of more than 60 area% was formed and the yield strength was less than 485 MPa.
시편 18 내지 21은 본원발명의 합금조성 및 공정조건을 만족하지 않는 시편으로, 본원발명이 목적하는 미세조직 및 물성을 확보하지 못함을 확인할 수 있다.Specimens 18 to 21 are specimens that do not satisfy the alloy composition and process conditions of the present invention, it can be confirmed that the present invention does not secure the desired microstructure and properties.
시편 22 및 23은 본원발명의 합금조성을 만족하지만, 강판의 두께가 20mm를 초과하여 페라이트가 과도하게 형성된 것을 확인할 수 있다. Specimens 22 and 23 satisfies the alloy composition of the present invention, but it can be confirmed that the thickness of the steel sheet exceeds 20 mm, so that ferrite is excessively formed.
도 1은 시편 2를 광학현미경으로 관찰한 사진이며, 도 2는 EBSD를 이용하여 시편 2의 15도 기준 고경각입계 결정립 크기를 측정한 결과이다. 도 2의 그래프에 나타난 바와 같이, 시편 2의 고경각입계 결정립 평균 크기는 22,3㎛이며, 이 중 상위 80%의 결정립 크기는 40.5㎛인 것을 확인할 수 있다.1 is a photograph obtained by observing specimen 2 with an optical microscope, and FIG. 2 is a result of measuring the grain size of a 15 degree reference high-angle grain boundary of specimen 2 using EBSD. As shown in the graph of FIG. 2, it can be seen that the average size of the high-angle grain boundaries of the specimen 2 is 22,3 μm, and the grain size of the top 80% is 40.5 μm.
도 3은 시편 18을 광학현미경으로 관찰한 사진이며, 도 4는 EBSD를 이용하여 시편 18의 15도 기준 고경각입계 결정립 크기를 측정한 결과이다. 도 4의 그래프에 나타난 바와 같이, 시편 18의 고경각입계 결정립 평균 크기는 38㎛이며, 이 중 상위 80%의 결정립 크기는 93㎛인 것을 확인할 수 있다.3 is a photograph obtained by observing the specimen 18 with an optical microscope, and FIG. 4 is a result of measuring the grain size of the standard 18 high-angle grain boundary of the specimen 18 using EBSD. As shown in the graph of FIG. 4, it can be seen that the average size of the high-angle grain boundaries of the specimen 18 is 38 µm, and the crystal size of the top 80% is 93 µm.
따라서, 본 발명의 일 측면에 따르면, 20mm 미만의 두께를 가지면서도, 485MPa 이상의 항복강도, 28% 이상의 총 연신율 및 9% 이상의 압연 직각 방향에 대한 균일 연신율 및 85% 이상의 강판의 압연 직각 방향에 대한 -30℃의 DWTT 연성파면율을 구비하여 라인파이프용 소재로 특히 적합한 강판 및 그 제조방법을 제공할 수 있다. Accordingly, according to an aspect of the present invention, while having a thickness of less than 20 mm, a yield strength of 485 MPa or more, a total elongation of 28% or more, and a uniform elongation for a rolling perpendicular direction of 9% or more and a rolling perpendicular direction of a steel plate of 85% or more It has a DWTT ductile wavefront of -30℃, and it can provide a steel sheet and a manufacturing method particularly suitable for a line pipe material.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail through the above embodiments, other types of embodiments are possible. Therefore, the technical spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (17)

  1. 중량%로, 탄소(C): 0.05~0.1%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 1.4~2.0%, 알루미늄(Al): 0.01~0.05%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.01%, 니오븀(Nb): 0.04~0.07%, 크롬(Cr): 0.05~0.3%, 니켈(Ni): 0.05~0.4%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 칼슘(Ca): 0.0005~0.004%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고,In weight percent, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0%, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.005 ~0.02%, Nitrogen (N): 0.002~0.01%, Niobium (Nb): 0.04~0.07%, Chromium (Cr): 0.05~0.3%, Nickel (Ni): 0.05~0.4%, Phosphorus (P): 0.02 % Or less, sulfur (S): 0.005% or less, calcium (Ca): 0.0005 to 0.004%, including the remaining iron (Fe) and unavoidable impurities,
    20~60면적%의 페라이트 및 베이나이트를 미세조직으로 포함하며,20~60 area% of ferrite and bainite as microstructure,
    강판 중심부에서 15도 기준 고경각결정립도의 상위 80% 결정립 크기가 70㎛ 이하인 저온파괴인성 및 연신율이 우수한 고강도 강판.High-strength steel sheet with excellent low-temperature fracture toughness and elongation at the top 80% of the grain size of the high-angle crystal grain at the center of the steel plate at 70 degrees or less.
  2. 제1항에 있어서,According to claim 1,
    상기 강판은 0.3중량% 이하의 몰리브덴(Mo)을 더 포함하는, 저온파괴인성 및 연신율이 우수한 고강도 강판. The steel sheet further comprises molybdenum (Mo) of 0.3% by weight or less, high strength steel sheet excellent in low temperature fracture toughness and elongation.
  3. 제1항에 있어서,According to claim 1,
    상기 베이나이트의 분율은 35~75면적%인, 저온파괴인성 및 연신율이 우수한 고강도 강판.The fraction of bainite is 35 to 75 area%, high-strength steel sheet excellent in low temperature fracture toughness and elongation.
  4. 제1항에 있어서,According to claim 1,
    상기 강판의 미세조직은 5면적% 이하의 도상 마르텐사이트를 더 포함하는, 저온파괴인성 및 연신율이 우수한 고강도 강판. The microstructure of the steel sheet further comprises an island martensite of 5 area% or less, a high-strength steel sheet having excellent low-temperature fracture toughness and elongation.
  5. 제1항에 있어서,According to claim 1,
    상기 강판의 항복강도는 485MPa 이상인, 저온파괴인성 및 연신율이 우수한 고강도 강판.The steel sheet has a yield strength of 485 MPa or higher, a high-strength steel sheet having excellent low-temperature fracture toughness and elongation.
  6. 제1항에 있어서,According to claim 1,
    상기 강판의 총 연신율은 28% 이상이며, The total elongation of the steel sheet is 28% or more,
    상기 강판의 압연 직각 방향에 대한 균일 연신율은 9% 이상인, 저온파괴인성 및 연신율이 우수한 고강도 강판. The steel sheet has a uniform elongation with respect to the perpendicular direction of rolling of at least 9%, a high-strength steel sheet having excellent low-temperature fracture toughness and elongation.
  7. 제1항에 있어서,According to claim 1,
    상기 강판의 압연 직각 방향에 대한 -30℃의 DWTT 연성파면율이 85% 이상인, 저온파괴인성 및 연신율이 우수한 고강도 강판.A high-strength steel sheet having excellent low-temperature fracture toughness and elongation at a DWTT ductility of 85% or more at -30°C relative to the perpendicular direction of rolling of the steel sheet.
  8. 제1항에 있어서,According to claim 1,
    상기 강판의 두께는 20mm 미만인, 저온파괴인성 및 연신율이 우수한 고강도 강판. The thickness of the steel sheet is less than 20mm, high strength steel sheet excellent in low temperature fracture toughness and elongation.
  9. 중량%로, 탄소(C): 0.05~0.1%, 실리콘(Si): 0.05~0.5%, 망간(Mn): 1.4~2.0%, 알루미늄(Al): 0.01~0.05%, 티타늄(Ti): 0.005~0.02%, 질소(N): 0.002~0.01%, 니오븀(Nb): 0.04~0.07%, 크롬(Cr): 0.05~0.3%, 니켈(Ni): 0.05~0.4%, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 칼슘(Ca): 0.0005~0.004%, 나머지 철(Fe) 및 불가피한 불순물을 포함하는 슬라브를 재가열하고,In weight percent, carbon (C): 0.05 to 0.1%, silicon (Si): 0.05 to 0.5%, manganese (Mn): 1.4 to 2.0%, aluminum (Al): 0.01 to 0.05%, titanium (Ti): 0.005 ~0.02%, Nitrogen (N): 0.002~0.01%, Niobium (Nb): 0.04~0.07%, Chromium (Cr): 0.05~0.3%, Nickel (Ni): 0.05~0.4%, Phosphorus (P): 0.02 % Or less, sulfur (S): 0.005% or less, calcium (Ca): 0.0005 to 0.004%, reheat the slab containing the remaining iron (Fe) and unavoidable impurities,
    상기 슬라브를 유지 및 추출하고,Maintaining and extracting the slab,
    상기 유지 및 추출된 슬라브를 Tnr 이상의 온도범위에서 재결정역 압연하고,The retained and extracted slabs are recrystallized in a temperature range above Tnr and rolled,
    상기 재결정역 압연된 압연재를 30% 이상의 총 압하율로 미재결정역 압연하고,The recrystallized rolled rolled material is unrecrystallized rolled at a total rolling reduction of 30% or more,
    상기 미재결정역 압연된 강판을 (Bs-80℃)~Bs의 온도범위까지 냉각하되,The unrecrystallized reverse rolled steel sheet is cooled to a temperature range of (Bs-80°C) to Bs,
    상기 미재결정역 압연은 Tnr 이하의 온도범위에서 개시되어 (Ar3+100℃) 이상의 온도범위에서 종료되는, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The non-recrystallization rolling is initiated in a temperature range of Tnr or less (Ar3+100°C) and finished in a temperature range of (or higher), a method for manufacturing a high strength steel sheet having excellent low temperature fracture toughness and elongation.
  10. 제9항에 있어서,The method of claim 9,
    상기 슬라브는 0.3중량% 이하의 몰리브덴(Mo)을 더 포함하는, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The slab further comprises a molybdenum (Mo) of 0.3% by weight or less, low-temperature fracture toughness and a method for producing a high-strength steel sheet excellent in elongation.
  11. 제9항에 있어서,The method of claim 9,
    상기 슬라브의 재가열 온도범위는 1140~1200℃인, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The slab reheating temperature range of 1140 ~ 1200 ℃, low-temperature fracture toughness and elongation method of manufacturing a high-strength steel sheet excellent.
  12. 제9항에 있어서,The method of claim 9,
    상기 슬라브의 유지 및 추출 온도범위는 1140~1200℃인, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The slab maintenance and extraction temperature range is 1140 ~ 1200 ℃, low-temperature fracture toughness and elongation excellent method of manufacturing a high-strength steel sheet.
  13. 제9항에 있어서,The method of claim 9,
    상기 재결정역 압연은 복수의 패스로 실시되며,The recrystallization rolling is carried out in a plurality of passes,
    상기 각 패스의 평균 압하율은 10% 이상인, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법. The average rolling reduction of each pass is 10% or more, low-temperature fracture toughness and elongation method of high-strength steel sheet excellent.
  14. 제9항에 있어서,The method of claim 9,
    상기 재결정역 압연된 압연재는 공냉에 의해 Tnr 이하의 온도범위까지 냉각되는, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The recrystallized rolled rolling material is cooled to a temperature range below Tnr by air cooling, a method for manufacturing a high strength steel sheet having excellent low temperature fracture toughness and elongation.
  15. 제9항에 있어서,The method of claim 9,
    상기 미재결정역 압연된 강판은 10~50℃/s의 냉각속도로 냉각되는, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The non-recrystallized rolled steel sheet is cooled at a cooling rate of 10 to 50°C/s, a method of manufacturing a high strength steel sheet having excellent low temperature fracture toughness and elongation.
  16. 제9항에 있어서,The method of claim 9,
    상기 미재결정역 압연된 강판의 냉각은 (Ar3+30℃) 이상의 온도범위에서 개시되는, 저온파괴 인성 및 연신율이 우수한 고강도 강판의 제조방법. The method of manufacturing a high-strength steel sheet having excellent low-temperature fracture toughness and elongation, which is initiated in a temperature range of (Ar3+30°C) or more, wherein cooling of the unrecrystallized rolled steel sheet.
  17. 제9항에 있어서,The method of claim 9,
    상기 강판의 두께는 20mm 미만인, 저온파괴인성 및 연신율이 우수한 고강도 강판의 제조방법.The thickness of the steel sheet is less than 20mm, low-temperature fracture toughness and elongation method of high-strength steel sheet excellent.
PCT/KR2019/016785 2018-11-30 2019-11-29 High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor WO2020111891A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3120271A CA3120271C (en) 2018-11-30 2019-11-29 High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
CN201980078794.4A CN113166904B (en) 2018-11-30 2019-11-29 High-strength steel sheet having excellent low-temperature fracture toughness and elongation, and method for producing same
EP19889727.4A EP3889305B1 (en) 2018-11-30 2019-11-29 High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
RU2021118464A RU2771151C1 (en) 2018-11-30 2019-11-29 Sheet of high-strength steel having excellent low-temperature fracture toughness and elongation coefficient, and the method for its manufacture
JP2021530865A JP7372325B2 (en) 2018-11-30 2019-11-29 High-strength steel plate with excellent low-temperature fracture toughness and elongation, and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0151565 2018-11-30
KR1020180151565A KR102164107B1 (en) 2018-11-30 2018-11-30 High strength steel plate having superior elongation percentage and excellent low-temperature toughness, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2020111891A1 true WO2020111891A1 (en) 2020-06-04

Family

ID=70854099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016785 WO2020111891A1 (en) 2018-11-30 2019-11-29 High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor

Country Status (7)

Country Link
EP (1) EP3889305B1 (en)
JP (1) JP7372325B2 (en)
KR (1) KR102164107B1 (en)
CN (1) CN113166904B (en)
CA (1) CA3120271C (en)
RU (1) RU2771151C1 (en)
WO (1) WO2020111891A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611656B (en) * 2020-12-14 2024-03-08 中南大学 Accurate measurement method for low-temperature elongation of aluminum alloy for aerospace
KR102393906B1 (en) * 2020-12-18 2022-05-03 주식회사 포스코 Method of predicting to dwtt transition temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090058058A (en) * 2007-12-04 2009-06-09 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR20130073472A (en) 2011-12-23 2013-07-03 주식회사 포스코 Linepipe steel plate with excellent low temperature fracture toughness and high uniform elongation method for producing same
KR20140083540A (en) * 2012-12-26 2014-07-04 주식회사 포스코 Steel plate for line pipe having superior uniform elongation ratio and low-temperature toughness
JP2015199987A (en) * 2014-04-08 2015-11-12 新日鐵住金株式会社 HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND UNIFORM ELONGATION AND HOLE EXPANSIBILITY AND HAVING TENSILE STRENGTH OF 780 MPa OR MORE AND PRODUCTION METHOD THEREFOR
KR101889182B1 (en) * 2016-12-20 2018-08-16 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction and toughness at low-temperature, method for manufacturing thereof and welded steel pipe using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU736035B2 (en) * 1997-07-28 2001-07-26 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP3968011B2 (en) * 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP4823841B2 (en) * 2006-10-12 2011-11-24 新日本製鐵株式会社 High tensile strength steel sheet for super high heat input welding with low acoustic anisotropy and excellent weldability and tensile strength of 570 MPa class or more and method for producing the same
US8647564B2 (en) * 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
RU2518830C1 (en) * 2010-06-30 2014-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-rolled steel sheet and method of its production
KR101253958B1 (en) * 2010-12-27 2013-04-16 주식회사 포스코 Steel plate for pipeline with excellent fracture arrestability and low yield ratio, and manufacturing method of the same
CN105143487B (en) * 2013-08-30 2017-03-08 新日铁住金株式会社 The thick section and high strength spool steel plate of acid resistance, resistance to crushing characteristic and excellent in low temperature toughness and spool
CN104789863B (en) * 2015-03-20 2017-01-18 宝山钢铁股份有限公司 X80 pipeline steel with good anti-strain aging property, pipeline pipe and manufacturing method of pipeline pipe
CN108467993B (en) * 2018-06-11 2020-02-18 鞍钢股份有限公司 Ultra-wide high-toughness hot-rolled thick plate for low-temperature pipeline and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090058058A (en) * 2007-12-04 2009-06-09 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR20130073472A (en) 2011-12-23 2013-07-03 주식회사 포스코 Linepipe steel plate with excellent low temperature fracture toughness and high uniform elongation method for producing same
KR20140083540A (en) * 2012-12-26 2014-07-04 주식회사 포스코 Steel plate for line pipe having superior uniform elongation ratio and low-temperature toughness
JP2015199987A (en) * 2014-04-08 2015-11-12 新日鐵住金株式会社 HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND UNIFORM ELONGATION AND HOLE EXPANSIBILITY AND HAVING TENSILE STRENGTH OF 780 MPa OR MORE AND PRODUCTION METHOD THEREFOR
KR101889182B1 (en) * 2016-12-20 2018-08-16 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction and toughness at low-temperature, method for manufacturing thereof and welded steel pipe using same

Also Published As

Publication number Publication date
JP7372325B2 (en) 2023-10-31
EP3889305B1 (en) 2024-04-10
RU2771151C1 (en) 2022-04-27
CA3120271C (en) 2023-09-12
EP3889305C0 (en) 2024-04-10
EP3889305A4 (en) 2021-10-06
JP2022510935A (en) 2022-01-28
CN113166904A (en) 2021-07-23
KR102164107B1 (en) 2020-10-13
CN113166904B (en) 2023-10-27
EP3889305A1 (en) 2021-10-06
CA3120271A1 (en) 2020-06-04
KR20200066394A (en) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2017111526A1 (en) Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
WO2019132478A1 (en) Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2019088762A1 (en) Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone post weld heat treatment, and method for manufacturing same
WO2018117767A1 (en) High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
WO2018004297A1 (en) High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
WO2019124945A1 (en) High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same
WO2018117497A1 (en) Steel material for welded steel pipe, having excellent longitudinal uniform elongation, manufacturing method therefor, and steel pipe using same
WO2018117766A1 (en) High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
WO2017105025A1 (en) Ultra-high strength steel sheet having excellent chemical conversion treatability and bending processability and method for manufacturing same
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2018088761A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2018080108A1 (en) High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor
WO2020111874A2 (en) Steel plate having excellent heat affected zone toughness and method for manufacturing thereof
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2020111732A1 (en) High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
WO2020111891A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
WO2020111628A1 (en) Steel material having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2017111398A1 (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same
WO2019124809A1 (en) Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
WO2019132262A1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3120271

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021530865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019889727

Country of ref document: EP

Effective date: 20210630