WO2017111526A1 - Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness - Google Patents

Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness Download PDF

Info

Publication number
WO2017111526A1
WO2017111526A1 PCT/KR2016/015156 KR2016015156W WO2017111526A1 WO 2017111526 A1 WO2017111526 A1 WO 2017111526A1 KR 2016015156 W KR2016015156 W KR 2016015156W WO 2017111526 A1 WO2017111526 A1 WO 2017111526A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
resistance
strength
temperature toughness
steel
Prior art date
Application number
PCT/KR2016/015156
Other languages
French (fr)
Korean (ko)
Inventor
장성호
이학철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP16879393.3A priority Critical patent/EP3395987B1/en
Priority to JP2018532057A priority patent/JP6691217B2/en
Priority to US16/063,886 priority patent/US20180371588A1/en
Priority to CN201680075892.9A priority patent/CN108431274B/en
Priority to CA3009137A priority patent/CA3009137C/en
Publication of WO2017111526A1 publication Critical patent/WO2017111526A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-resistance steel composite with excellent resistance to stress corrosion cracking resistance and low temperature toughness.
  • the steel used for the liquefied gas storage tank varies depending on the type of liquefied gas, but the liquefaction temperature of the gas is generally low temperature (-52 ° C in the case of LPG) at normal pressure, so that the low temperature toughness of the base metal and the weld is excellent. Has been required.
  • liquid ammonia is known to cause stress corrosion cracking (SCC) of steel, and in the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC CODE), oxygen partial pressure, temperature, etc.
  • SCC stress corrosion cracking
  • IRC CODE International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk
  • the Ni content of the steel is limited to 5% or less and the actual yield strength is limited to 440 MPa or less.
  • the stress relief of the weld portion is an important part.
  • a method of removing the weld stress there is a PWHT (Post Welding Heat Treatment) method by heat treatment, and there is a mechanical stress relief (MSR) method for removing stress by adding hydrostatic pressure to the weld.
  • MSR mechanical stress relief
  • the weld stress is removed using the mechanical stress relief (MSR) method, since the deformation due to the hydraulic pressure is applied to the base metal part, the yield ratio of the base material is limited to 0.8 or less.
  • Patent Document 1 has been proposed a technique for adding 6.5 to 12.0% Ni in order to implement excellent low-temperature toughness.
  • Patent Literature 2 has proposed a technique of mixing tempered martensite and bainite by quenching a steel having a specific composition.
  • the present invention has a problem of inferior economic efficiency due to high expensive Ni content, and has a problem that may cause a decrease in stress corrosion cracking (SCC) resistance.
  • SCC stress corrosion cracking
  • Patent Document 3 has been proposed a technique for softening only the surface layer of the steel sheet in order to implement a resistance compounding.
  • this technique can achieve low-temperature toughness and resistance ratio, respectively, it is difficult to obtain the low-temperature toughness and resistance ratio at the same time.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 63-290246
  • Patent Document 2 Japanese Patent Application Laid-Open No. 58-153730
  • Patent Document 3 Japanese Patent Application Laid-Open No. 4-17613
  • One aspect of the present invention is to provide a high-resistance-ratio high-strength steel and its manufacturing method excellent in stress corrosion cracking resistance and low temperature toughness.
  • One aspect of the present invention by weight, carbon (C): 0.02 ⁇ 0.10%, manganese (Mn): 0.5 ⁇ 2.0%, silicon (Si): 0.05 ⁇ 0.5%, nickel (Ni): 0.05 ⁇ 1.0%, Titanium (Ti): 0.005 to 0.1%, Aluminum (Al): 0.005 to 0.5%, Niobium (Nb): 0.005% or less, Phosphorus (P): 0.015% or less, Sulfur (S): 0.015% or less Contains Fe and other unavoidable impurities, microstructure is area%, acicular ferrite is more than 60%, the remainder is bainite, polygonal ferrite, martensite-austenite constituent (MA)
  • the present invention relates to a high-resistance-resistant high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness including at least one phase.
  • another aspect of the present invention is by weight, carbon (C): 0.02 ⁇ 0.10%, manganese (Mn): 0.5 ⁇ 2.0%, silicon (Si): 0.05 ⁇ 0.5%, nickel (Ni): 0.05 ⁇ 1.0%, Titanium (Ti): 0.005 to 0.1%, Aluminum (Al): 0.005 to 0.5%, Niobium (Nb): 0.005% or less, Phosphorus (P): 0.015% or less, Sulfur (S): 0.015%
  • nickel (Ni): 0.05 ⁇ 1.0% nickel
  • Titanium (Ti): 0.005 to 0.1% 0.005 to 0.1%
  • It relates to a stress corrosion cracking resistance and low-temperature toughness high strength steels excellent manufacturing method comprising the step of cooling to a temperature below 300 °C after the finish rolling.
  • the present invention by controlling the alloy composition and the microstructure, there is an effect that can provide a high-resistance-ratio high-strength steel and excellent method for stress corrosion cracking resistance and low temperature toughness.
  • Figure 2 is a microstructure of 1 / 4t part of the steel sheet of A-5 of Comparative Example It is the photograph (1- (1) of FIG. 1) observed with the optical microscope.
  • Figure 3 is a microstructure of 1 / 4t part of the steel sheet of the invention A-1 It is the photograph (1- (2) of FIG. 1) observed with the optical microscope.
  • Figure 4 is a microstructure of 1 / 4t part of the steel sheet of A-6 of Comparative Example It is the photograph (1- (3) of FIG. 1) observed with the optical microscope.
  • the present inventors have recognized that it is difficult to improve both ammonia stress corrosion cracking resistance and low temperature toughness, and studied in depth to solve this problem.
  • the stress-ratio crack resistance and the low-temperature toughness high strength steel having excellent low temperature toughness are% by weight, carbon (C): 0.02 to 0.10%, manganese (Mn): 0.5 to 2.0%, and silicon (Si): 0.05 to 0.5%, nickel (Ni): 0.05 to 1.0%, titanium (Ti): 0.005 to 0.1%, aluminum (Al): 0.005 to 0.5%, niobium (Nb): 0.005% or less, phosphorus (P) : 0.015% or less, sulfur (S): 0.015% or less, containing the remaining Fe and other unavoidable impurities,
  • Microstructure is the area%, acicular ferrite (Acicular Ferrite) is more than 60%, the rest includes at least one phase of bainite (Bainite), Polygonal Ferrite (Martensite-Austenite constituent).
  • the content of each component means weight%.
  • C is the most important element for securing basic strength, it needs to be contained in steel within an appropriate range, and in order to obtain such an addition effect, it is preferable to add C 0.02% or more.
  • the C content is less than 0.02%, it is not preferable because it can lead to a decrease in yield ratio with a drop in strength.
  • the C content exceeds 0.10%, there is a problem that the yield strength upper limit that can cause ammonia stress corrosion cracking (SCC) is generated a large amount of low-temperature transformation phase, such as bainite.
  • SCC stress corrosion cracking
  • the content of C is preferably limited to 0.02 to 0.10%. More preferably, it is 0.05 to 0.08%.
  • Si has the effect of strengthening the strength by solid solution strengthening effect, and is an element that is also usefully used as a deoxidizer in the steelmaking process.
  • the Si content is less than 0.05%, the deoxidation effect and the strength improving effect may be insufficient.
  • the Si content is more than 0.5%, there is a problem in lowering the low temperature toughness and at the same time deteriorating the weldability.
  • the content of the silicon is preferably limited to 0.05 ⁇ 0.5%. More preferably, it is 0.05 to 0.3%.
  • Manganese contributes to the ferrite grain refinement and is a useful element for enhancing strength by solid solution strengthening.
  • the Mn content is preferably limited to 0.5 to 2.0%. More preferably, it is 1.0 to 1.5%.
  • Ni is an important element for facilitating cross slip of dislocations at low temperatures, improving impact toughness, improving hardenability, and improving strength. To achieve this effect, Ni is preferably added at least 0.05%. However, when the Ni content is more than 1.0%, it may cause ammonia stress corrosion cracking (SCC), and the manufacturing cost may also increase due to the high cost of Ni relative to other hardenable elements.
  • SCC stress corrosion cracking
  • the Ni content is preferably limited to 0.05 to 1.0%. More preferably, it is 0.2 to 0.5%.
  • Nb is known to have an effect of refining austenite by inhibiting recrystallization of austenite because Nb precipitated very finely in the form of NbC when reheated to a high temperature.
  • the yield strength may be excessively increased, and thus the yield strength may be exceeded, which may cause ammonia stress corrosion cracking (SCC). Therefore, Nb is preferably controlled at 0.005% or less. More preferably, it is 0.003% or less.
  • Titanium can greatly improve low-temperature toughness by forming oxides and nitrides in steel to suppress grain growth upon reheating, and is effective for miniaturizing welded microstructures.
  • the titanium content is preferably 0.005 to 0.1%. More preferably, it is 0.01 to 0.03%.
  • Aluminum is a useful element for deoxidizing molten steel, which needs to be added at 0.005% by weight or more. However, if the content exceeds 0.5% by weight it is not preferable because it causes nozzle clogging during continuous casting. Therefore, the aluminum content is preferably 0.005 to 0.5%. More preferably, it is 0.005 to 0.05%.
  • Phosphorus is an element that causes grain boundary segregation in the base metal and the welded part, which causes the problem of embrittlement of the steel, and thus it is necessary to actively reduce it.
  • the load of the steelmaking process is intensified, and the above-mentioned problem does not occur significantly when the phosphorus content is less than 0.015%, so the upper limit thereof is limited to 0.015%, more preferably 0.010% by weight. .
  • Sulfur (S) is an element that causes MgS and the like to cause thermal embrittlement and thus greatly impairs impact toughness. Therefore, the sulfur (S) is preferably controlled as low as possible, so the content is limited to 0.015% by weight or less, and more preferably 0.005% by weight. do.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • the microstructure of the steel of the present invention is the area%, acicular ferrite (60% or more), the rest of the bainite (Bainite), polygonal ferrite (Polygonal Ferrite), MA (Martensite-Austenite constituent) at least one phase It includes.
  • the area fraction of acicular ferrite is preferably 60% or more.
  • the tensile strength and the low temperature impact toughness may be inferior, and thus the microstructure of the steel of the present invention may not include pearlite.
  • the acicular ferrite may have a size of 30 ⁇ m or less as measured by a circular equivalent diameter. If the size exceeds 30 ⁇ m, impact toughness may be inferior.
  • bainite is preferably granular bainite and upper bainite.
  • the bainite area fraction is preferably 30% or less. If the bainite area fraction exceeds 30%, it is necessary to limit the bainite fraction as it may exceed the upper limit of yield strength (440 MPa) that can cause ammonia stress corrosion cracking (SCC).
  • the said MA phase is 10 area% or less, and the magnitude
  • Martensite-Austenite constituent (MA) is also known as iconic martensite.
  • the toughness of the base material and the welded part tends to be greatly reduced, so it is necessary to limit the fraction and size of the MA phase.
  • the steel material of the present invention that satisfies the above condition may have a yield ratio (YS / TS) of 0.85 or less, preferably 0.8 or less.
  • the steel material may have excellent tensile strength of about 490 MPa or more, for example, about 510 to 610 MPa.
  • the upper limit of the steel yield strength does not exceed the upper limit of the yield strength for generating ammonia stress corrosion cracking (SCC) to 440MPa or less, it may be excellent in ammonia stress corrosion cracking (SCC) resistance.
  • the impact transition temperature of 1 / 4t portion in the thickness direction of the steel material can be excellent in low temperature toughness of -60 °C or less.
  • t means the thickness of the steel.
  • the steel has a thickness of 6mm or more, preferably 6 to 50mm.
  • the steel of the present invention can secure both high strength, resistance ratio, excellent low temperature toughness and ammonia stress corrosion cracking (SCC) resistance.
  • a method for producing a high-resistance steel sheet having excellent stress corrosion cracking resistance and low temperature toughness comprising: heating a slab having the aforementioned alloy composition to 1000 to 1200 ° C;
  • the slab having the alloy composition described above is heated to 1000 to 1200 ° C.
  • the slab heating temperature is preferably at least 1000 ° C, in order to solidify the Ti carbonitride formed during casting.
  • the slab heating temperature is too low, it is preferable to limit the lower limit to 1000 ° C. because the deformation resistance during rolling is so high that the rolling reduction per pass cannot be largely applied in the subsequent rolling process.
  • the upper limit of the heating temperature is preferably 1200 ° C.
  • the heated slab is rough rolled at a temperature of 1100 ⁇ 900 °C.
  • the rough rolling temperature is preferably limited to 1100 ⁇ 900 °C.
  • the rough rolling may be performed so that the last three passes have a reduction ratio per pass of 10% or more.
  • the rolling reduction per pass is 10% or more and the total cumulative rolling reduction is 30% or more for the last three passes during rough rolling.
  • the recrystallized structure causes grain growth due to the high temperature, but during the last three passes, the grain growth rate is slowed down as the bar is air-cooled in the rolling atmosphere. The rate of reduction of the pass is greatest for the particle size of the final microstructure.
  • the total cumulative reduction rate during rough rolling is preferably set to 30% or more in order to refine the central tissue.
  • finish rolling at a temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C. based on the central temperature.
  • the finish rolling temperature is lowered below Ar 3 + 30 ° C, the ferrite grain size becomes too fine, exceeding the upper limit of yield strength (440MPa) that generates ammonia stress corrosion cracking (SCC), and finish at the temperature exceeding Ar 3 + 100 ° C.
  • the finish rolling temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C., and the microstructure of the steel sheet manufactured by performing finish rolling under such conditions is a composite structure having the characteristics as described above. Can be.
  • the temperature is cooled to 300 ° C or lower.
  • Cooling is preferably started to cool at a temperature of Ar 3 + 30 °C ⁇ Ar 3 after the finish rolling to cool to 300 °C or less, such as 100 ⁇ 300 °C Finish Cooling Temperature (FCT, Finish Cooling Temperature).
  • FCT Finish Cooling Temperature
  • the cooling finish temperature (FCT, Finish Cooling Temperature) is more than 300 °C, due to the tempering (Tempering) effect may be difficult to implement the resistance ratio by decomposing the fine MA phase, the cooling finish temperature is preferably 300 °C or less.
  • the central cooling rate is 15 ° C./s or more at Bs-10 ° C. to Bs + 10 ° C., and then the central cooling rate is 10-50 ° C./s until 300 ° C. or less.
  • Two stage cooling can be performed as much as possible.
  • the cooling start temperature may be Ar 3 + 30 °C ⁇ Ar 3 .
  • the first stage cooling starts cooling at the temperature of Ar 3 + 30 °C ⁇ Ar 3 after the finish rolling to the Bs-10 °C ⁇ Bs + 10 °C central cooling rate of the steel sheet is 15 °C / s or more, for example 30 °C / It is preferable to cool at a cooling rate of s or more.
  • the two-stage cooling is preferably cooled to a cooling rate of 10 ° C / s ⁇ 50 ° C / s to the central cooling rate of the steel sheet to 300 ° C or less, for example, 100 ⁇ 300 ° C cooling finish temperature after the first stage cooling.
  • the bainite fraction is formed to 30 area% or more to ammonia stress corrosion cracking (SCC Yield strength exceeding the upper limit (440 MPa) for generating a), and there is a possibility of lowering the elongation and impact toughness due to excessive increase in strength.
  • finish rolling was performed to satisfy the difference between the finish rolling temperature and the Ar 3 temperature shown in Table 2 below to obtain a steel plate having the thickness shown in Table 2, and then cooled at various cooling rates through multi-stage cooling. . At this time, the cooling end temperature of one-step cooling was made into Bs temperature of each steel.
  • the microstructure was mirror-polished after taking specimens from 1 / 4t of steel plate, and then corroded with Nital corrosive solution and observed with optical microscope.
  • the fraction of MA phase was mirror-polished after specimens were taken from the 1 / 4t site, corroded with LePera corrosion solution, and then observed with an optical microscope.
  • yield strength, tensile strength, and yield ratio were measured by collecting a JIS No. 4 specimen in a direction perpendicular to the rolling direction from a 1 / 4t portion of the steel sheet and performing a tensile test at room temperature.
  • ammonia stress corrosion cracking (SCC) test was carried out using the test solution and test conditions described in Table 4 by making a proof ring specimen, wherein the stress applied was 80% of the actual yield stress, 720 If no fracture occurred during the time, it was evaluated as passing. If the fracture occurred before 720 hours passed, it was evaluated as failed.
  • SCC ammonia stress corrosion cracking
  • AF, B, PF, and MA mean AF: Acicular Ferrite, B: Bainite, PF: Polygonal ferrite, and MA: Martensite / Austenite.
  • the invention examples satisfying the composition and manufacturing conditions proposed by the present invention not only have high strength and high toughness, but also have excellent resistance to ammonia stress corrosion cracking (SCC).
  • the yield ratio is 0.8 or less, it can be seen that the steel having a resistance yield ratio characteristics.
  • the area percent, acicular ferrite (60% or more), the remainder bainite (Bainite), Polygonal Ferrite (Polygonal Ferrite), MA (Martensite-Austenite constituent) It can be confirmed that the mixed tissue consisting of one or more phases.
  • component composition satisfies the present invention, but in the case of Comparative Examples A-2, A-4, A-6, B-2, B-4 and B-6 where the manufacturing conditions do not satisfy the present invention, Polygonal The ferrite fraction was too high or the ferrite grain size was too coarse to secure tensile strength and low temperature toughness.
  • the production conditions satisfy the present invention, but in the case of Comparative Examples C-1 to F-4 in which the composition of the composition does not satisfy the present invention, the Bainite fraction is too high, the Acicular Ferrite grain size is too small, or MA As the fraction of phase becomes too high, ammonia stress corrosion cracking (SCC) can occur.
  • SCC ammonia stress corrosion cracking
  • the yield strength exceeded the upper limit (440 MPa), resulting in ammonia stress corrosion cracking, and it was not possible to secure a resistance ratio and low temperature toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

An aspect of the present invention relates to a low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness, the steel comprising, by weight, 0.02-0.10% of carbon (C), 0.5-2.0% of manganese (Mn), 0.05-0.5% of silicon (Si), 0.05-1.0% of nickel (Ni), 0.005-0.1% of titanium (Ti), 0.005-0.5% of aluminum (Al), 0.005% or less of niobium (Nb), 0.015% or less of phosphorus (P), 0.015% or less of sulfur (S), and the balanced amount of Fe and inevitable impurities, the microstructure of which comprises, by area, 60% or more of acicular ferrite and a balanced amount of one or more phases of bainite, polygonal ferrite and martensite-austenite constituent (MA).

Description

응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재High-strength, high-strength steel with excellent stress corrosion cracking resistance and low temperature toughness
본 발명은 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재에 관한 것이다. The present invention relates to a high-resistance steel composite with excellent resistance to stress corrosion cracking resistance and low temperature toughness.
액화 가스 저장용 탱크에 사용되는 강재는, 액화 가스의 종류에 따라 다르지만, 가스의 액화 온도는 일반적으로 상압에서는 저온(LPG의 경우, -52℃)이기 때문에, 모재는 물론 용접부도 우수한 저온인성이 요구되어 왔다.The steel used for the liquefied gas storage tank varies depending on the type of liquefied gas, but the liquefaction temperature of the gas is generally low temperature (-52 ° C in the case of LPG) at normal pressure, so that the low temperature toughness of the base metal and the weld is excellent. Has been required.
또한, 액체 암모니아(LAG)는 강재의 응력 부식 균열(SCC, Stress Corrosion Cracking)을 일으키는 것이 알려져 IGC CODE(International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk)에서는, 산소 분압, 온도 등의 제조시의 조업 조건을 규제하는 동시에, 강재의 Ni함유량을 5% 이하로 제한하고, 실제 항복강도를 440MPa 이하로 제한하는 것을 규정하고 있다.In addition, liquid ammonia (LAG) is known to cause stress corrosion cracking (SCC) of steel, and in the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC CODE), oxygen partial pressure, temperature, etc. In addition to regulating the operating conditions at the time of manufacture, the Ni content of the steel is limited to 5% or less and the actual yield strength is limited to 440 MPa or less.
또한, 가스 탱크(Gas Tank)용 강재를 용접하여 가스 탱크(Gas Tank)를 제조할 경우, 용접부의 응력제거가 중요한 부분을 차지한다. 이에, 용접부 응력을 제거하는 방법으로, 열처리에 의한 PWHT(Post Welding Heat Treatment) 방법이 있으며, 용접부에 정수압을 부가하는 등을 통해 응력을 제거하는 기계적 응력제거(MSR: Mechanical Stress Relief) 방법이 있다. 이 중, 기계적 응력제거(MSR) 방법을 이용하여 용접부 응력을 제거하는 경우에는 모재부에도 수압에 의한 변형이 가해지기 때문에, 모재의 항복비를 0.8 이하로 제한하고 있다. 이는, MSR을 이용하여 응력을 제거함에 있어서 고압의 수분사로 인해 모재부에 항복강도 이상의 변형이 가해질 경우, 항복강도와 인장강도 비가 높으면 항복발생 즉, 인장강도에 도달하여 파괴가 발생할 가능성이 있기 때문에, 항복강도와 인장강도의 차이가 크게 나도록 제한하는 것이다.In addition, when manufacturing a gas tank by welding steel materials for the gas tank, the stress relief of the weld portion is an important part. Thus, as a method of removing the weld stress, there is a PWHT (Post Welding Heat Treatment) method by heat treatment, and there is a mechanical stress relief (MSR) method for removing stress by adding hydrostatic pressure to the weld. . Among these, when the weld stress is removed using the mechanical stress relief (MSR) method, since the deformation due to the hydraulic pressure is applied to the base metal part, the yield ratio of the base material is limited to 0.8 or less. This is because when the stress of the MSR is applied to the base material due to the high-pressure water spray to remove the stress, if the yield strength and the tensile strength ratio are high, the yield strength, that is, the tensile strength may be reached and fracture may occur. This limits the difference between yield strength and tensile strength.
특히, 가스 탱크(Gas Tank)의 경우 기본적으로 대형화가 이루어져야 하므로 PWHT 방법에 의한 응력제거가 어려우며, 이에 따라 대부분의 조선사에서는 기계적 응력제거(MSR) 방법을 선호하고 있어 가스 탱크(Gas Tank)를 제조하기 위한 강재는 저항복비 특성이 요구된다.In particular, in the case of a gas tank, it is difficult to remove stress by the PWHT method because the size of the gas tank should be basically increased. Accordingly, most shipbuilders prefer a mechanical stress relief (MSR) method to manufacture a gas tank. The steel to be used requires a resistive ratio property.
이와 같이, 상기 LPG와 LAG를 혼재하는 탱크에서는 저온인성과 액체 암모니아로부터의 항복강도의 상한 규제에 수반하는 저항복비화의 동시 달성이 큰 과제가 되고 있다.As described above, in the tank in which the LPG and the LAG are mixed, the simultaneous achievement of the resistance ratio accompanying the upper limit of the yield strength from low temperature toughness and liquid ammonia has been a major problem.
한편, 특허문헌 1에서는 우수한 저온인성을 구현하기 위하여 6.5~12.0%의 Ni를 첨가하는 기술을 제안된 바 있다. 또한, 특허문헌 2에서는 특정 조성의 강을 담금질 뜨임 처리를 실시하여 템퍼드(Tempered) 마르텐사이트와 베이나이트를 혼용하는 기술이 제안된바 있다. On the other hand, Patent Document 1 has been proposed a technique for adding 6.5 to 12.0% Ni in order to implement excellent low-temperature toughness. In addition, Patent Literature 2 has proposed a technique of mixing tempered martensite and bainite by quenching a steel having a specific composition.
그러나 일반적으로 다량의 Ni을 첨가하게 되면 원자간 간격이 좁아 쉽게 변형이 되는 FCC 격자구조를 갖는 오스테나이트상이 많이 만들어지고 이렇게 쉽게 변형이 되는 FCC 격자구조에 반복적인 응력과 부식환경이 가해지면 쉽게 부식이 발생하여 균열이 발생하게 된다. 따라서 상기 발명은 높은 고가의 Ni 함량으로 경제성이 떨어지는 문제가 있고, 응력 부식 균열(SCC) 저항성의 저하를 유발할 수 있는 문제점을 가지고 있다. In general, however, the addition of a large amount of Ni produces many austenite phases with FCC lattice structures that are easily deformed due to the narrow interatomic spacing.Easily corroded when repeated stress and corrosion conditions are applied to these easily deformed FCC lattice structures This occurs and cracks are generated. Therefore, the present invention has a problem of inferior economic efficiency due to high expensive Ni content, and has a problem that may cause a decrease in stress corrosion cracking (SCC) resistance.
또한, 특허문헌 3에서는 저항복비화를 구현하기 위하여 강판의 표층만 연화 처리하는 기술이 제안된 바가 있다. 그러나 이 기술은 저온인성 및 저항복비를 각각 달성할 수는 있으나, 저온인성 및 저항복비를 동시에 얻는 것은 어려운 문제점이 있다. In addition, Patent Document 3 has been proposed a technique for softening only the surface layer of the steel sheet in order to implement a resistance compounding. However, this technique can achieve low-temperature toughness and resistance ratio, respectively, it is difficult to obtain the low-temperature toughness and resistance ratio at the same time.
한편, 강재에 요구되는 또 하나의 특성인 강재의 강도를 향상시키는 방법으로는 석출강화, 고용강화, 마르텐사이트(Martensite) 강화 등이 있으나, 이러한 방법들은 강도를 향상시키는 반면에 인성과 연신율을 열화시키는 문제점이 있다.Meanwhile, methods for improving the strength of steel, which are required for steel, include precipitation strengthening, solid solution strengthening, and martensite, but these methods improve strength while deteriorating toughness and elongation. There is a problem.
또한, 다양한 제조조건의 적용으로 결정립을 미세화시켜 강도를 강화시키는 경우에는 고강도를 얻을 수 있을 뿐만 아니라, 충격인성 천이온도의 감소로 인하여 인성 열화를 방지할 수 있으나 결정립 미세화에 의한 항복강도의 상승으로 암모니아 응력부식(SCC) 발생이 되는 항복강도 상한 440MPa을 초과하게 되고, 저항복비 확보가 어려운 문제점이 있다. In addition, in the case of reinforcing the strength by miniaturizing the crystal grains by applying various manufacturing conditions, not only high strength can be obtained, but also the toughness deterioration can be prevented due to the reduction of the impact toughness transition temperature. Yield strength to generate ammonia stress corrosion (SCC) exceeds the upper limit of 440MPa, there is a problem that it is difficult to secure a resistance ratio.
따라서, 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다.Therefore, there is a demand for development of a high-resistance-strength high strength steel having excellent stress corrosion cracking resistance and low temperature toughness and a manufacturing method thereof.
(선행기술문헌)(Prior art document)
(특허문헌 1) 특허문헌 1: 일본 공개특허공보 특개소63-290246호(Patent Document 1) Patent Document 1: Japanese Patent Application Laid-Open No. 63-290246
(특허문헌 2) 특허문헌 2: 일본 공개특허공보 특개소58-153730호(Patent Document 2) Patent Document 2: Japanese Patent Application Laid-Open No. 58-153730
(특허문헌 3) 특허문헌 3: 일본 공개특허공보 특개평4-17613호(Patent Document 3) Patent Document 3: Japanese Patent Application Laid-Open No. 4-17613
본 발명의 일 측면은 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재 및 그 제조방법을 제공하기 위함이다.One aspect of the present invention is to provide a high-resistance-ratio high-strength steel and its manufacturing method excellent in stress corrosion cracking resistance and low temperature toughness.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.In addition, the subject of this invention is not limited to the content mentioned above. The problem of the present invention will be understood from the general contents of the present specification, those skilled in the art will have no difficulty understanding the additional problem of the present invention.
본 발명의 일 측면은 중량%로, 탄소(C): 0.02~0.10%, 망간(Mn): 0.5~2.0%, 실리콘(Si): 0.05~0.5%, 니켈(Ni): 0.05~1.0%, 타타늄(Ti): 0.005~0.1%, 알루미늄(Al): 0.005~0.5%, 나이오븀(Nb): 0.005% 이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 미세조직은 면적%로, 침상 페라이트(Acicular Ferrite)가 60%이상, 나머지는 베이나이트(Bainite), 폴리고날 페라이트(Polygonal Ferrite), MA(Martensite-Austenite constituent) 중 1상 이상을 포함하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재에 관한 것이다.One aspect of the present invention by weight, carbon (C): 0.02 ~ 0.10%, manganese (Mn): 0.5 ~ 2.0%, silicon (Si): 0.05 ~ 0.5%, nickel (Ni): 0.05 ~ 1.0%, Titanium (Ti): 0.005 to 0.1%, Aluminum (Al): 0.005 to 0.5%, Niobium (Nb): 0.005% or less, Phosphorus (P): 0.015% or less, Sulfur (S): 0.015% or less Contains Fe and other unavoidable impurities, microstructure is area%, acicular ferrite is more than 60%, the remainder is bainite, polygonal ferrite, martensite-austenite constituent (MA) The present invention relates to a high-resistance-resistant high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness including at least one phase.
또한, 본 발명의 다른 일 측면은 중량%로, 탄소(C): 0.02~0.10%, 망간(Mn): 0.5~2.0%, 실리콘(Si): 0.05~0.5%, 니켈(Ni): 0.05~1.0%, 타타늄(Ti): 0.005~0.1%, 알루미늄(Al): 0.005~0.5%, 나이오븀(Nb): 0.005% 이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1000~1200℃로 가열하는 단계; In addition, another aspect of the present invention is by weight, carbon (C): 0.02 ~ 0.10%, manganese (Mn): 0.5 ~ 2.0%, silicon (Si): 0.05 ~ 0.5%, nickel (Ni): 0.05 ~ 1.0%, Titanium (Ti): 0.005 to 0.1%, Aluminum (Al): 0.005 to 0.5%, Niobium (Nb): 0.005% or less, Phosphorus (P): 0.015% or less, Sulfur (S): 0.015% Hereinafter, heating the slab containing the remaining Fe and other unavoidable impurities to 1000 ~ 1200 ℃;
상기 가열된 슬라브를 1100~900℃의 온도에서 조압연하는 단계; Rough rolling the heated slab at a temperature of 1100-900 ° C .;
상기 조압연 후 중심부 온도를 기준으로 Ar3 + 100℃ ~ Ar3 + 30℃ 사이의 온도에서 마무리 압연하는 단계; 및 Finishing rolling at a temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C. based on the central temperature after the rough rolling; And
상기 마무리압연 후 300℃ 이하의 온도까지 냉각하는 단계를 포함하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법에 관한 것이다. It relates to a stress corrosion cracking resistance and low-temperature toughness high strength steels excellent manufacturing method comprising the step of cooling to a temperature below 300 ℃ after the finish rolling.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다. In addition, the solution of the said subject does not enumerate all the characteristics of this invention. Various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.
본 발명에 의하면, 합금조성 및 미세조직을 제어함으로써 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재 및 그 제조방법을 제공할 수 있는 효과가 있다. According to the present invention, by controlling the alloy composition and the microstructure, there is an effect that can provide a high-resistance-ratio high-strength steel and excellent method for stress corrosion cracking resistance and low temperature toughness.
도 1은 냉각속도에 따른 발명강 A의 상변태도 이다. 1 is a phase transformation diagram of the inventive steel A according to the cooling rate.
도 2는 비교예인 A-5의 강판의 1/4t부의 미세조직을 광학현미경으로 관찰한 사진(도 1의 1-(1))이다. Figure 2 is a microstructure of 1 / 4t part of the steel sheet of A-5 of Comparative Example It is the photograph (1- (1) of FIG. 1) observed with the optical microscope.
도 3은 발명예인 A-1의 강판의 1/4t부의 미세조직을 광학현미경으로 관찰한 사진(도 1의 1-(2))이다. Figure 3 is a microstructure of 1 / 4t part of the steel sheet of the invention A-1 It is the photograph (1- (2) of FIG. 1) observed with the optical microscope.
도 4는 비교예인 A-6의 강판의 1/4t부의 미세조직을 광학현미경으로 관찰한 사진(도 1의 1-(3))이다. Figure 4 is a microstructure of 1 / 4t part of the steel sheet of A-6 of Comparative Example It is the photograph (1- (3) of FIG. 1) observed with the optical microscope.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명자들은 암모니아 응력부식균열 저항성 및 저온인성을 모두 우수하게 하는 것은 어려운 문제점이 있음을 인지하고, 이를 해결하기 위해 깊이 연구하였다. The present inventors have recognized that it is difficult to improve both ammonia stress corrosion cracking resistance and low temperature toughness, and studied in depth to solve this problem.
그 결과, 합금조성 및 미세조직을 제어함으로써 응력부식균열 저항성 및 저온인성이 모두 우수한 저항복비 고강도 강재 및 그 제조방법을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.As a result, it was confirmed that by controlling the alloy composition and microstructure, it is possible to provide a high-resistance-ratio high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness, and a method of manufacturing the same.
이하, 본 발명의 일 측면에 따른 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재에 대하여 상세히 설명한다.Hereinafter, the stress-corrosion crack resistance and low-temperature toughness excellent strength ratio high strength steel according to an aspect of the present invention will be described in detail.
본 발명의 일 측면에 따른 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재는 중량%로, 탄소(C): 0.02~0.10%, 망간(Mn): 0.5~2.0%, 실리콘(Si): 0.05~0.5%, 니켈(Ni): 0.05~1.0%, 타타늄(Ti): 0.005~0.1%, 알루미늄(Al): 0.005~0.5%, 나이오븀(Nb): 0.005%이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고,In accordance with an aspect of the present invention, the stress-ratio crack resistance and the low-temperature toughness high strength steel having excellent low temperature toughness are% by weight, carbon (C): 0.02 to 0.10%, manganese (Mn): 0.5 to 2.0%, and silicon (Si): 0.05 to 0.5%, nickel (Ni): 0.05 to 1.0%, titanium (Ti): 0.005 to 0.1%, aluminum (Al): 0.005 to 0.5%, niobium (Nb): 0.005% or less, phosphorus (P) : 0.015% or less, sulfur (S): 0.015% or less, containing the remaining Fe and other unavoidable impurities,
미세조직은 면적%로, 침상 페라이트(Acicular Ferrite)가 60%이상, 나머지는 베이나이트(Bainite), 폴리고날 페라이트(Polygonal Ferrite), MA(Martensite-Austenite constituent) 중 1상 이상을 포함한다. Microstructure is the area%, acicular ferrite (Acicular Ferrite) is more than 60%, the rest includes at least one phase of bainite (Bainite), Polygonal Ferrite (Martensite-Austenite constituent).
먼저, 본 발명의 일 측면에 따른 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 합금조성에 대하여 상세히 설명한다. 이하, 각 성분의 함량은 중량%를 의미한다. First, the alloy composition of the high-resistance-strength high strength steel excellent in corrosion resistance and stress corrosion cracking resistance according to an aspect of the present invention will be described in detail. Hereinafter, the content of each component means weight%.
C(탄소): 0.02~0.10 %C (carbon): 0.02 to 0.10%
C은 기본적인 강도를 확보하는데 가장 중요한 원소이므로 적절한 범위 내에서 강 중에 함유될 필요가 있으며, 이러한 첨가효과를 얻기 위해서는 C은 0.02 %이상 첨가하는 것이 바람직하다.Since C is the most important element for securing basic strength, it needs to be contained in steel within an appropriate range, and in order to obtain such an addition effect, it is preferable to add C 0.02% or more.
C 함량이 0.02 %미만인 경우, 강도의 하락과 함께 항복비의 저하를 초래할 수 있어 바람직하지 못하다. 반면에, C 함량이 0.10 %를 초과하는 경우, 베이나이트 등의 저온 변태상이 다량 생성되어 암모니아 응력부식균열(SCC)을 유발시킬수 있는 항복강도 상한을 초과하는 문제점이 있다. If the C content is less than 0.02%, it is not preferable because it can lead to a decrease in yield ratio with a drop in strength. On the other hand, if the C content exceeds 0.10%, there is a problem that the yield strength upper limit that can cause ammonia stress corrosion cracking (SCC) is generated a large amount of low-temperature transformation phase, such as bainite.
따라서, 상기 C의 함량은 0.02~0.10 %로 한정하는 것이 바람직하다. 보다 바람직하게는 0.05~0.08 %이다. Therefore, the content of C is preferably limited to 0.02 to 0.10%. More preferably, it is 0.05 to 0.08%.
Si(실리콘): 0.05~0.5 %Si (silicon): 0.05-0.5%
Si은 고용강화 효과로 강도를 강화시키는 효과가 있으며, 제강공정에서는 탈산제로도 유용하게 사용되는 원소이다. Si has the effect of strengthening the strength by solid solution strengthening effect, and is an element that is also usefully used as a deoxidizer in the steelmaking process.
Si 함량이 0.05 %미만인 경우, 탈산 효과 및 강도 향상효과가 불충분 할 수 있다. 반면에, Si 함량이 0.5 %를 초과하는 경우, 저온인성을 저하시키며 동시에 용접성도 악화시키는 문제점이 있다.If the Si content is less than 0.05%, the deoxidation effect and the strength improving effect may be insufficient. On the other hand, when the Si content is more than 0.5%, there is a problem in lowering the low temperature toughness and at the same time deteriorating the weldability.
따라서, 상기 실리콘의 함량은 0.05~0.5 %로 한정하는 것이 바람직하다. 보다 바람직하게는 0.05~0.3 %이다.Therefore, the content of the silicon is preferably limited to 0.05 ~ 0.5%. More preferably, it is 0.05 to 0.3%.
Mn(망간): 0.5~2.0 %Mn (manganese): 0.5-2.0%
망간은 페라이트 세립화에 기여하며, 고용강화에 의해 강도를 향상시키는데 유용한 원소이다. Manganese contributes to the ferrite grain refinement and is a useful element for enhancing strength by solid solution strengthening.
이러한 망간의 효과를 얻기 위해서는 0.5 %이상으로 첨가될 필요가 있다. 다만, 그 함량이 2.0 %를 초과하는 경우, 경화능이 과도하게 증가하여 상부 베이나이트(Upper bainite) 및 마르텐사이트 생성을 촉진하여 충격인성 및 암모니아 응력부식균열(SCC) 저항성을 크게 저하시키며 용접 열영향부의 인성 또한 저하시킨다. It is necessary to add more than 0.5% in order to obtain such a manganese effect. However, if the content exceeds 2.0%, the hardenability is excessively increased to promote the formation of upper bainite and martensite, greatly reducing the impact toughness and ammonia stress corrosion cracking (SCC) resistance, and the welding heat effect. Negative toughness is also lowered.
따라서, 상기 Mn 함량은 0.5~2.0%로 한정하는 것이 바람직하다. 보다 바람직하게는 1.0 ~ 1.5 %이다.Therefore, the Mn content is preferably limited to 0.5 to 2.0%. More preferably, it is 1.0 to 1.5%.
Ni(니켈): 0.05~1.0%Ni (nickel): 0.05-1.0%
Ni은 저온에서 전위의 교차슬립(Cross slip)을 용이하게 만들어 충격인성을 향상시키고 경화능을 향상시켜 강도를 향상시키는데 중요한 원소로서, 이러한 효과를 얻기 위해서는 0.05% 이상 첨가되는 것이 바람직하다. 그러나, Ni 함량이 1.0 %를 초과하는 경우, 암모니아 응력부식균열(SCC)을 초래할 수 있고, 타 경화능 원소 대비 Ni의 비싼 원가로 인해 제조원가도 상승시킬 수 있다.Ni is an important element for facilitating cross slip of dislocations at low temperatures, improving impact toughness, improving hardenability, and improving strength. To achieve this effect, Ni is preferably added at least 0.05%. However, when the Ni content is more than 1.0%, it may cause ammonia stress corrosion cracking (SCC), and the manufacturing cost may also increase due to the high cost of Ni relative to other hardenable elements.
따라서, 상기 Ni 함량은 0.05~1.0 %로 한정하는 것이 바람직하다. 보다 바람직하게는 0.2 ~ 0.5 %이다.Therefore, the Ni content is preferably limited to 0.05 to 1.0%. More preferably, it is 0.2 to 0.5%.
Nb(니오븀): 0.005 %이하Nb (niobium): 0.005% or less
Nb는 고온으로 재가열시에 고용된 Nb는 NbC의 형태로 매우 미세하게 석출되어 오스테나이트의 재결정을 억제하여 조직을 미세화시키는 효과가 있다고 알려져 있다. Nb is known to have an effect of refining austenite by inhibiting recrystallization of austenite because Nb precipitated very finely in the form of NbC when reheated to a high temperature.
이러한 조직 미세화에 따라 항복강도를 지나치게 올릴 수 있어 암모니아 응력부식균열(SCC)을 유발시킬 수 있는 항복강도 상한을 초과할 수 있으므로, Nb는 0.005% 이하로 제어하는 것이 바람직하다. 보다 바람직하게는 0.003% 이하이다. According to the microstructure, the yield strength may be excessively increased, and thus the yield strength may be exceeded, which may cause ammonia stress corrosion cracking (SCC). Therefore, Nb is preferably controlled at 0.005% or less. More preferably, it is 0.003% or less.
Ti(티타늄): 0.005~0.1 %Ti (titanium): 0.005 to 0.1%
티타늄은 강 중 산화물 및 질화물을 형성시켜 재가열시 결정립의 성장을 억제하여 저온인성을 크게 향상시킬 수 있으며, 또한 용접부 미세조직 미세화에 효과적이다. Titanium can greatly improve low-temperature toughness by forming oxides and nitrides in steel to suppress grain growth upon reheating, and is effective for miniaturizing welded microstructures.
이러한 효과를 얻기 위해서는 티타늄을 0.005 중량% 이상으로 첨가될 필요가 있다. 다만, 그 함량이 0.1 중량%를 초과하는 경우에는 연주 노즐의 막힘이나 중심부 정출에 의해 저온인성이 감소되는 문제가 있다. To obtain this effect, it is necessary to add titanium at 0.005% by weight or more. However, if the content exceeds 0.1% by weight, there is a problem that low-temperature toughness is reduced due to clogging of the playing nozzle or crystallization of the center portion.
따라서, 티타늄 함량은 0.005~0.1%인 것이 바람직하다. 보다 바람직하게는 0.01~0.03 %이다.Therefore, the titanium content is preferably 0.005 to 0.1%. More preferably, it is 0.01 to 0.03%.
Al(알루미늄): 0.005~0.5%Al (aluminum): 0.005-0.5%
알루미늄은 용강을 탈산시키는데 유용한 원소로서, 이를 위해서는 0.005 중량% 이상으로 첨가될 필요가 있다. 다만, 그 함량이 0.5 중량%를 초과하는 경우에는 연속주조시 노즐 막힘을 야기하므로 바람직하지 못하다. 따라서, 알루미늄 함량은 0.005~0.5 %인 것이 바람직하다. 보다 바람직하게는 0.005~0.05 %이다.Aluminum is a useful element for deoxidizing molten steel, which needs to be added at 0.005% by weight or more. However, if the content exceeds 0.5% by weight it is not preferable because it causes nozzle clogging during continuous casting. Therefore, the aluminum content is preferably 0.005 to 0.5%. More preferably, it is 0.005 to 0.05%.
P(인): 0.015% 이하P (phosphorus): 0.015% or less
인은 모재와 용접부에서 입계편석을 일으키는 원소로서, 강을 취화시키는 문제를 발생시키므로 적극적으로 저감할 필요가 있다. 다만, 이러한 인을 극한까지 저감시키기 위해서는 제강공정의 부하가 심화되고, 인의 함량이 0.015 %이하에서는 상술한 문제점이 크게 발생되지는 않으므로 그 상한을 0.015 %, 보다 바람직하게는 0.010 중량%로 제한한다.Phosphorus is an element that causes grain boundary segregation in the base metal and the welded part, which causes the problem of embrittlement of the steel, and thus it is necessary to actively reduce it. However, in order to reduce such phosphorus to an extreme, the load of the steelmaking process is intensified, and the above-mentioned problem does not occur significantly when the phosphorus content is less than 0.015%, so the upper limit thereof is limited to 0.015%, more preferably 0.010% by weight. .
S(황): 0.015% 이하S (sulfur): 0.015% or less
황(S)은 적열취성을 일으키는 원소로서 MnS 등을 형성하여 충격인성을 크게 저해하는 원소이므로, 가능한 낮게 제어함이 바람직하므로, 그 함량을 0.015 중량% 이하, 보다 바람직하게는 0.005 중량%로 제한한다.Sulfur (S) is an element that causes MgS and the like to cause thermal embrittlement and thus greatly impairs impact toughness. Therefore, the sulfur (S) is preferably controlled as low as possible, so the content is limited to 0.015% by weight or less, and more preferably 0.005% by weight. do.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
다음으로, 본 발명의 일 측면에 따른 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 미세조직에 대하여 상세히 설명한다.Next, the microstructure of the resistive crack ratio high strength steel excellent in stress corrosion cracking resistance and low temperature toughness according to an aspect of the present invention will be described in detail.
본 발명의 강재의 미세조직은 면적%로, 침상 페라이트(Acicular Ferrite)가 60%이상, 나머지는 베이나이트(Bainite), 폴리고날 페라이트(Polygonal Ferrite), MA(Martensite-Austenite constituent) 중 1상 이상을 포함한다. The microstructure of the steel of the present invention is the area%, acicular ferrite (60% or more), the rest of the bainite (Bainite), polygonal ferrite (Polygonal Ferrite), MA (Martensite-Austenite constituent) at least one phase It includes.
베이나이트(bainite) 분율 증가에 따라 침상 페라이트가 60% 미만인 경우에는 경질상의 증가에 따른 충격인성의 열화가 발생할 수 있고, 폴리고날 페이라트(Polygonal Ferrite) 분율 증가에 따라 침상 페라이트 분율이 60% 미만인 경우 강도의 열화가 발생할 수 있다. 따라서, 침상 페라이트(Acicular Ferrite)의 면적분율은 60%이상인 것이 바람직하다.If the needle ferrite is less than 60% as the bainite fraction increases, the impact toughness may occur due to the increase in the hard phase, and the needle ferrite fraction is less than 60% as the Polygonal Ferrite fraction increases. In this case, deterioration of strength may occur. Therefore, the area fraction of acicular ferrite is preferably 60% or more.
또한, 펄라이트를 포함하는 경우에는 인장강도 및 저온 충격인성이 열위해질 수 있으므로, 본 발명의 강재의 미세조직은 펄라이트를 포함하지 않을 수 있다. In addition, when the pearlite is included, the tensile strength and the low temperature impact toughness may be inferior, and thus the microstructure of the steel of the present invention may not include pearlite.
이때, 상기 침상 페라이트는 원상당 직경으로 측정한 크기가 30㎛ 이하일 수 있다. 상기 크기가 30㎛를 초과하는 경우, 충격인성이 열위해질 수 있다. In this case, the acicular ferrite may have a size of 30 μm or less as measured by a circular equivalent diameter. If the size exceeds 30 μm, impact toughness may be inferior.
또한, 상기 베이나이트는 그래뉼라 베이나이트(granular bainite) 및 상부 베이나이트(upper bainite)인 것이 바람직하다. In addition, the bainite is preferably granular bainite and upper bainite.
한편, 상기 베이나이트 면적분율은 30% 이하인 것이 바람직하다. 베이나이트 면적분율이 30%를 초과할 경우, 암모니아 응력부식균열(SCC) 유발시킬 수 있는 항복강도 상한(440MPa)을 초과할 수 있으므로 베이나이트 분율을 제한할 필요가 있다. On the other hand, the bainite area fraction is preferably 30% or less. If the bainite area fraction exceeds 30%, it is necessary to limit the bainite fraction as it may exceed the upper limit of yield strength (440 MPa) that can cause ammonia stress corrosion cracking (SCC).
또한, 상기 MA 상은 10면적% 이하이고, 원상당 직경으로 측정한 크기가 5㎛ 이하인 것이 바람직하다. MA(Martensite-Austenite constituent)은 도상 마르텐사이트라고도 한다. In addition, it is preferable that the said MA phase is 10 area% or less, and the magnitude | size measured by the circular equivalent diameter is 5 micrometers or less. Martensite-Austenite constituent (MA) is also known as iconic martensite.
상기 MA 상의 분율이 10%를 초과하거나, 원상당 직경이 5㎛ 를 초과하게 되면 모재 및 용접부 인성이 크게 저하되는 경향이 있으므로 MA상의 분율 및 크기를 제한할 필요가 있다. If the fraction of the MA phase exceeds 10%, or the original equivalent diameter exceeds 5㎛, the toughness of the base material and the welded part tends to be greatly reduced, so it is necessary to limit the fraction and size of the MA phase.
한편, 상기의 조건을 만족하는 본 발명의 강재는 항복비(YS/TS)가 0.85 이하, 바람직하게는 0.8 이하일 수 있다. 또한, 상기의 강재는 인장강도가 490MPa 이상, 예컨대 510~610MPa 정도로 인장강도가 우수할 수 있다.Meanwhile, the steel material of the present invention that satisfies the above condition may have a yield ratio (YS / TS) of 0.85 or less, preferably 0.8 or less. In addition, the steel material may have excellent tensile strength of about 490 MPa or more, for example, about 510 to 610 MPa.
또한, 상기의 강재 항복강도의 상한은 440MPa 이하로 암모니아 응력부식균열(SCC)를 발생시키는 항복강도의 상한을 초과하지 않으므로 암모니아 응력부식균열(SCC) 저항성이 우수할 수 있다. In addition, the upper limit of the steel yield strength does not exceed the upper limit of the yield strength for generating ammonia stress corrosion cracking (SCC) to 440MPa or less, it may be excellent in ammonia stress corrosion cracking (SCC) resistance.
또한, 상기 강재의 두께 방향으로 1/4t부의 충격 천이온도가 -60℃ 이하로 저온인성이 우수할 수 있다. 여기서 상기 t는 강재의 두께를 의미한다. In addition, the impact transition temperature of 1 / 4t portion in the thickness direction of the steel material can be excellent in low temperature toughness of -60 ℃ or less. Where t means the thickness of the steel.
이때, 상기 강재는 6mm 이상의 두께를 갖고, 바람직하게는 6 ~ 50mm의 두께를 가질 수 있다. In this case, the steel has a thickness of 6mm or more, preferably 6 to 50mm.
이와 같이, 본 발명의 강재는 고강도, 저항복비, 우수한 저온인성 및 암모니아 응력부식균열(SCC) 저항성을 모두 확보할 수 있다.Thus, the steel of the present invention can secure both high strength, resistance ratio, excellent low temperature toughness and ammonia stress corrosion cracking (SCC) resistance.
이하, 본 발명의 다른 일 측면에 따른 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법에 관하여 상세히 설명한다.Hereinafter, a method for manufacturing a high-resistance high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness according to another aspect of the present invention will be described in detail.
본 발명의 다른 일 측면에 따른 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법은 상술한 합금조성을 갖는 슬라브를 1000~1200℃로 가열하는 단계; According to another aspect of the present invention, there is provided a method for producing a high-resistance steel sheet having excellent stress corrosion cracking resistance and low temperature toughness, comprising: heating a slab having the aforementioned alloy composition to 1000 to 1200 ° C;
상기 가열된 슬라브를 1100~900℃의 온도에서 조압연하는 단계; Rough rolling the heated slab at a temperature of 1100-900 ° C .;
상기 조압연 후 중심부 온도를 기준으로 Ar3 + 100℃ ~ Ar3 + 30℃ 사이의 온도에서 마무리 압연하는 단계; 및Finishing rolling at a temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C. based on the central temperature after the rough rolling; And
상기 마무리압연 후 300℃ 이하의 온도까지 냉각하는 단계를 포함한다.And cooling to a temperature of 300 ° C. or less after the finishing rolling.
가열 단계Heating stage
상술한 합금조성을 갖는 슬라브를 1000~1200℃로 가열한다.The slab having the alloy composition described above is heated to 1000 to 1200 ° C.
슬라브 가열온도는 1000℃ 이상으로 하는 것이 바람직한데, 이는 주조 중에 형성된 Ti 탄질화물을 고용시키기 위함이다. 또한, 슬라브 가열온도가 너무 낮으면 압연시 변형저항이 너무 높아 후속되는 압연공정에서 패스당 압하율을 크게 가할 수 없기 때문에 그 하한을 1000℃로 제한하는 것이 바람직하다. 다만, 과다하게 높은 온도로 가열할 경우에는 오스테나이트가 조대화되어 인성을 저하시킬 우려가 있으므로, 상기 가열온도의 상한은 1200℃인 것이 바람직하다.The slab heating temperature is preferably at least 1000 ° C, in order to solidify the Ti carbonitride formed during casting. In addition, if the slab heating temperature is too low, it is preferable to limit the lower limit to 1000 ° C. because the deformation resistance during rolling is so high that the rolling reduction per pass cannot be largely applied in the subsequent rolling process. However, when heating to excessively high temperature, austenite may coarsen and deteriorate toughness, so the upper limit of the heating temperature is preferably 1200 ° C.
조압연 단계Rough rolling stage
상기 가열한 슬라브를 1100~900℃의 온도에서 조압연한다.The heated slab is rough rolled at a temperature of 1100 ~ 900 ℃.
조압연 온도는 오스테나이트의 재결정이 멈추는 온도(Tnr) 이상으로 하는 것이 바람직하다. 압연에 의해 주조 중에 형성된 덴드라이트 등 주조조직이 파괴되고 오스테나이트의 크기를 작게 하는 효과도 얻을 수 있다. 이러한 효과를 얻기 위하여 조압연 온도는 1100~900℃로 제한하는 것이 바람직하다.It is preferable to make rough rolling temperature more than the temperature (Tnr) at which recrystallization of austenite stops. The casting structure such as dendrites formed during casting by rolling is destroyed, and the effect of reducing the size of austenite can also be obtained. In order to obtain such an effect, the rough rolling temperature is preferably limited to 1100 ~ 900 ℃.
이때, 상기 조압연은 마지막 3패스가 패스당 압하율이 10%이상이 되도록 행할 수 있다.At this time, the rough rolling may be performed so that the last three passes have a reduction ratio per pass of 10% or more.
조압연 시 중심부까지 충분한 변형을 주기 위해서는 조압연 시 마지막 3 패스에 대해서는 패스 당 압하율은 10% 이상, 총 누적 압하율은 30% 이상으로 하는 것이 바람직하기 때문이다.In order to give sufficient deformation to the center part during rough rolling, it is preferable that the rolling reduction per pass is 10% or more and the total cumulative rolling reduction is 30% or more for the last three passes during rough rolling.
조압연 시 초기 압연으로 인해 재결정된 조직은 높은 온도로 인해 결정립 성장이 일어나게 되지만, 마지막 3패스를 실시할 때에는 압연 대기 중 바가 공냉됨에 따라 결정립 성장 속도가 느려지게 되며, 이로 인해 조압연 시 마지막 3 패스의 압하율이 최종 미세조직의 입도에 가장 크게 미치게 된다. In the early rolling during the rough rolling, the recrystallized structure causes grain growth due to the high temperature, but during the last three passes, the grain growth rate is slowed down as the bar is air-cooled in the rolling atmosphere. The rate of reduction of the pass is greatest for the particle size of the final microstructure.
또한 조압연의 패스당 압하율이 낮아지게 될 경우 중심부에 충분한 변형이 전달되지 않아 중심부 조대화로 인한 인성 저하가 발생할 수 있다. 따라서, 마지막 3 패스의 패스당 압하율을 10% 이상으로 제한하는 것이 바람직하다. In addition, when the rolling reduction per pass of the rough rolling is lowered, sufficient deformation is not transmitted to the center, and thus toughness may be reduced due to the coarsening of the center. Therefore, it is desirable to limit the rolling reduction per pass of the last three passes to 10% or more.
한편, 중심부의 조직의 미세화를 위하여 조압연 시 총 누적 압하율은 30% 이상으로 설정하는 것이 바람직하다.On the other hand, the total cumulative reduction rate during rough rolling is preferably set to 30% or more in order to refine the central tissue.
마무리 압연 단계Finishing rolling steps
상기 조압연 후 중심부 온도를 기준으로 Ar3 + 100℃ ~ Ar3 + 30℃ 사이의 온도에서 마무리 압연한다.After the rough rolling, finish rolling at a temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C. based on the central temperature.
이는 보다 미세화된 미세조직을 얻기 위해서이며, Ar3(페라이트 변태 개시 온도) + 100℃ ~ Ar3 + 30℃ 온도에서 마무리 압연을 실시할 경우, 오스테나이트 내부에 변형띠를 다량 생성시켜 페라이트 핵생성처를 다량 확보함으로써 강재의 중심부까지 미세한 조직이 확보되는 효과를 얻을 수 있다. This is to obtain a finer microstructure, and when the finish rolling is carried out at Ar 3 (ferrite transformation start temperature) + 100 ℃ ~ Ar 3 + 30 ℃ temperature, a large amount of strain bands are formed inside austenite to form ferrite nucleation By securing a large amount of features, it is possible to obtain an effect of securing a fine structure to the center of the steel.
마무리 압연온도를 Ar3 +30℃ 미만으로 낮출 경우 페라이트 결정립도가 지나치게 미세해져서 암모니아 응력부식균열(SCC) 발생시키는 항복강도 상한(440MPa)을 초과하게 되며, Ar3 +100℃를 초과하는 온도에서 마무리 압연 될 경우 입도미세화에 효과적이지 못하다. 따라서, 마무리 압연 온도를 Ar3 +100℃ ~ Ar3 +30℃ 사이에서 실시하는 것이 바람직하며, 이러한 조건의 마무리 압연을 수행해야 제조되는 강판의 미세조직이 상기한 바와 같은 특징을 가지는 복합조직일 수 있다.If the finish rolling temperature is lowered below Ar 3 + 30 ° C, the ferrite grain size becomes too fine, exceeding the upper limit of yield strength (440MPa) that generates ammonia stress corrosion cracking (SCC), and finish at the temperature exceeding Ar 3 + 100 ° C. When rolled, it is not effective for fine grain size. Therefore, it is preferable to perform the finish rolling temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C., and the microstructure of the steel sheet manufactured by performing finish rolling under such conditions is a composite structure having the characteristics as described above. Can be.
이때, 상기 Ar3은 Ar3=910-(310*C)-(80*Mn)-(55*Ni)로 계산될 수 있으며, 각 원소기호는 중량%단위로 측정한 각 원소의 함량을 나타내고, Ar3의 단위는 ℃이다. In this case, Ar 3 may be calculated as Ar 3 = 910- (310 * C)-(80 * Mn)-(55 * Ni), and each element symbol represents the content of each element measured in weight% unit. , Ar 3 is a unit.
또한, 오스테나이트 내부에 변형띠를 효과적으로 다량 생성시키기 위하여 마무리압연 시 누적 압하율을 60% 이상으로 유지하고, 최종 형상 고르기 압연을 제외한 패스당 압하율을 10% 이상으로 유지하는 것이 보다 바람직하다.In addition, in order to effectively produce a large amount of strain bands in the austenite, it is more preferable to maintain the cumulative reduction ratio at the time of finish rolling at 60% or more, and to maintain the reduction ratio per pass except the final shape even rolling at 10% or more.
냉각 단계Cooling stage
상기 마무리압연 후 300℃ 이하의 온도까지 냉각한다.After the finish rolling, the temperature is cooled to 300 ° C or lower.
냉각은 마무리 압연 후 Ar3 + 30℃ ~ Ar3의 온도에서 냉각을 시작하여 300℃ 이하, 예컨대 100~300℃ 정도의 냉각마침온도(FCT, Finish Cooling Temperature)까지 냉각하는 것이 바람직하다. Cooling is preferably started to cool at a temperature of Ar 3 + 30 ℃ ~ Ar 3 after the finish rolling to cool to 300 ℃ or less, such as 100 ~ 300 ℃ Finish Cooling Temperature (FCT, Finish Cooling Temperature).
냉각마침온도(FCT, Finish Cooling Temperature)가 300℃ 초과일 경우, 템퍼링(Tempering) 효과에 의해서 미세한 MA 상이 분해되어 저항복비를 구현하기 어려울 가능성이 있어, 냉각마침온도는 300℃ 이하인 것이 바람직하다.If the cooling finish temperature (FCT, Finish Cooling Temperature) is more than 300 ℃, due to the tempering (Tempering) effect may be difficult to implement the resistance ratio by decomposing the fine MA phase, the cooling finish temperature is preferably 300 ℃ or less.
이때, 상기 냉각하는 단계는 Bs-10℃ ~ Bs+10℃까지 중심부 냉각속도가 15℃/s 이상이 되도록 1단계 냉각을 행한 후, 300℃이하까지 중심부 냉각속도가 10~50℃/s가 되도록 2단계 냉각을 행할 수 있다. At this time, in the cooling step, the central cooling rate is 15 ° C./s or more at Bs-10 ° C. to Bs + 10 ° C., and then the central cooling rate is 10-50 ° C./s until 300 ° C. or less. Two stage cooling can be performed as much as possible.
또한, 냉각 개시 온도는 Ar3 + 30℃ ~ Ar3 일 수 있다.In addition, the cooling start temperature may be Ar 3 + 30 ℃ ~ Ar 3 .
상기 1단계 냉각은 마무리 압연 후 Ar3 + 30℃ ~ Ar3 의 온도에서 냉각을 시작하여 Bs-10℃ ~ Bs+10℃까지 상기 강판의 중심부 냉각속도가 15℃/s 이상, 예컨대 30℃/s 이상의 냉각속도로 냉각하는 것이 바람직하다. The first stage cooling starts cooling at the temperature of Ar 3 + 30 ℃ ~ Ar 3 after the finish rolling to the Bs-10 ℃ ~ Bs + 10 ℃ central cooling rate of the steel sheet is 15 ℃ / s or more, for example 30 ℃ / It is preferable to cool at a cooling rate of s or more.
상기 1단계 냉각에서 Bs-10℃ ~ Bs+10℃까지 상기 강판의 중심부 냉각속도가 15℃/s 보다 낮을 경우 조대한 폴리고날 페라이트(Polygonal Ferrite)를 형성시켜 인장강도 및 충격인성을 저하시킬 가능성이 있기 때문이다. When the central part cooling rate of the steel sheet is lower than 15 ° C / s from Bs-10 ° C to Bs + 10 ° C in the first stage cooling, coarse polygonal ferrite may be formed to lower tensile strength and impact toughness. Because of this.
이때, 상기 Bs는 Bs=830-(270*C)-(90*Mn)-(37*Ni)로 계산될 수 있으며, 각 원소기호는 중량%단위로 측정한 각 원소의 함량을 나타내고, Bs의 단위는 ℃이다.In this case, Bs may be calculated as Bs = 830- (270 * C)-(90 * Mn)-(37 * Ni), and each element symbol represents the content of each element measured in weight% unit, and Bs The unit of is ° C.
상기 2단계 냉각은 상기 1 단계 냉각 후에 300℃ 이하, 예컨대 100~300℃의 냉각마침온도까지 상기 강판의 중심부 냉각속도가 10℃/s ~ 50℃/s 의 냉각속도로 냉각하는 것이 바람직하다. The two-stage cooling is preferably cooled to a cooling rate of 10 ° C / s ~ 50 ° C / s to the central cooling rate of the steel sheet to 300 ° C or less, for example, 100 ~ 300 ° C cooling finish temperature after the first stage cooling.
상기 2단계 냉각에서 상기 강판의 냉각속도가 50℃/s 를 초과할 경우, 도 1의 1-(1)의 미세조직과 같이 베이나이트 분율이 30면적% 이상으로 형성되어 암모니아 응력부식균열(SCC)을 발생시키는 항복강도 상한(440MPa)을 초과하게 되며, 지나친 강도의 상승으로 연신율 및 충격인성을 저하시킬 가능성이 있다.When the cooling rate of the steel sheet in the two-stage cooling exceeds 50 ℃ / s, as shown in the microstructure of 1- (1) of FIG. 1, the bainite fraction is formed to 30 area% or more to ammonia stress corrosion cracking (SCC Yield strength exceeding the upper limit (440 MPa) for generating a), and there is a possibility of lowering the elongation and impact toughness due to excessive increase in strength.
반면에, 2단계 냉각에서 상기 강판의 냉각속도가 10℃/s 미만일 경우, 도 1의 1-(3)의 미세조직과 같이 미세한 침상 페라이트가 아닌 조대한 폴리고날 페라이트와 펄라이트가 형성되어 인장강도가 490MPa 이하 및 샤르피 천이온도가 -60℃ 이상으로 될 가능성이 있다.On the other hand, when the cooling rate of the steel sheet in the two-stage cooling is less than 10 ℃ / s, coarse polygonal ferrite and pearlite is formed rather than the fine needle-like ferrite like the microstructure of 1- (3) of Figure 1 tensile strength There is a possibility that the 490 MPa or less and the Charpy transition temperature become -60 ° C or more.
상술한 제조방법에 따라서 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재를 제조할 수 있다. According to the above-described manufacturing method it is possible to manufacture a high-resistance-ratio high strength steel excellent in stress corrosion cracking resistance and low temperature toughness.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it is necessary to note that the following examples are only intended to illustrate the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
하기 표 1의 조성을 갖는 300mm 두께의 강 슬라브를 1100℃의 온도로 재가열한 후, 1050℃의 온도에서 조압연을 실시하여 바를 제조하였다. 조압연 시 누적 압하율은 30%로 동일하게 적용하였다. 또한, 각 강의 조성에 따른 Ar3 및 Bs 온도를 계산하여 하기 표 1에 기재하였다. After reheating a 300 mm thick steel slab having the composition shown in Table 1 at a temperature of 1100 ° C., rough rolling was performed at a temperature of 1050 ° C. to prepare a bar. The cumulative reduction rate was roughly 30% for rough rolling. In addition, it calculates the Ar 3 and Bs temperature according to the composition of each steel is shown in Table 1 below.
상기 조압연 후, 하기 표 2에 나타낸 마무리 압연온도와 Ar3 온도간의 차이를 만족하도록 마무리 압연을 행하여 하기 표 2의 두께를 갖는 강판을 얻은 다음, 다단냉각을 통하여 다양한 냉각속도로 냉각을 수행하였다. 이때, 1단계 냉각의 냉각종료온도는 각 강의 Bs 온도로 하였다. After the rough rolling, finish rolling was performed to satisfy the difference between the finish rolling temperature and the Ar 3 temperature shown in Table 2 below to obtain a steel plate having the thickness shown in Table 2, and then cooled at various cooling rates through multi-stage cooling. . At this time, the cooling end temperature of one-step cooling was made into Bs temperature of each steel.
상기와 같이 제조된 강판에 대하여 미세조직, 항복강도, 인장강도, 항복비, 샤르피 충격천이온도, 암모니아 응력부식균열(SCC) 시험을 수행하고 그 결과를 표 3에 나타내었다.Microstructure, yield strength, tensile strength, yield ratio, Charpy impact transition temperature, ammonia stress corrosion cracking (SCC) test for the steel sheet prepared as described above and the results are shown in Table 3.
미세조직은 강판의 1/4t 부위로부터 시편을 채취한 후 경면연마하고, 이것을 Nital 부식액을 이용하여 부식시킨 후 광학현미경을 이용하여 관찰 후 화상해석을 통하여 상분율을 구하였다.The microstructure was mirror-polished after taking specimens from 1 / 4t of steel plate, and then corroded with Nital corrosive solution and observed with optical microscope.
MA상의 분율은 1/4t 부위로부터 시편을 채취한 후 경면연마하고, 이것을 LePera 부식액을 이용하여 부식시킨 후 광학현미경을 이용하여 관찰 후 화상해석을 통하여 상분율을 구하였다.The fraction of MA phase was mirror-polished after specimens were taken from the 1 / 4t site, corroded with LePera corrosion solution, and then observed with an optical microscope.
인장시험는 강판의 1/4t 부위로부터 압연방향에 수직한 방향으로 JIS4호 시편을 채취하여 상온에서 인장시험을 실시함으로써 항복강도, 인장강도, 항복비를 측정하였다.In the tensile test, yield strength, tensile strength, and yield ratio were measured by collecting a JIS No. 4 specimen in a direction perpendicular to the rolling direction from a 1 / 4t portion of the steel sheet and performing a tensile test at room temperature.
저온 충격인성은 강판의 1/4t 부위로부터 압연방향에 수직한 방향으로 시편을 채취하여 V-노치 시험편을 제작한 후, -20 ~ -100℃ 에서 20℃ 간격으로 샤르피 충격시험을 각 온도당 3회 시험하여 각 온도 평균값의 회귀식을 도출하여 100J 이 되는 온도를 천이온도로 구하였다. Low-temperature impact toughness after making the V- notch test specimens were taken for the specimen in a direction perpendicular to the rolling direction from the 1 / 4t part of the steel sheet, - from 20 to -100 ℃ to 20 ℃ interval the Charpy impact test for each three per temperature The test was conducted once to derive the regression equation of each temperature average value, and the temperature of 100 J was determined as the transition temperature.
또한, 암모니아 응력부식균열(SCC) 시험은 프루프링(proof ring) 시험편을 제작하여 표 4에 기재된 시험용액 및 시험조건으로 수행하였으며, 이때 가해준 응력은 실제 항복응력의 80%를 가했고, 720시간 동안 파단이 일어나지 않으면 통과로 평가하였으며, 720시간이 지나기 전에 파단이 일어나면 불합격으로 평가하였다. In addition, the ammonia stress corrosion cracking (SCC) test was carried out using the test solution and test conditions described in Table 4 by making a proof ring specimen, wherein the stress applied was 80% of the actual yield stress, 720 If no fracture occurred during the time, it was evaluated as passing. If the fracture occurred before 720 hours passed, it was evaluated as failed.
Figure PCTKR2016015156-appb-T000001
Figure PCTKR2016015156-appb-T000001
Figure PCTKR2016015156-appb-T000002
Figure PCTKR2016015156-appb-T000002
Figure PCTKR2016015156-appb-T000003
Figure PCTKR2016015156-appb-T000003
단, 상기 표 3에서 AF, B, PF 및 MA는 AF: Acicular Ferrite, B: Bainite, PF: Polygonal ferrite 및 MA: Martensite/Austenite을 의미한다.However, in Table 3, AF, B, PF, and MA mean AF: Acicular Ferrite, B: Bainite, PF: Polygonal ferrite, and MA: Martensite / Austenite.
Figure PCTKR2016015156-appb-T000004
Figure PCTKR2016015156-appb-T000004
상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에서 제안하는 성분조성 및 제조조건을 만족하는 발명예들의 경우 고강도 및 고인성의 특성을 가질 뿐만 아니라 암모니아 응력부식균열 (SCC:Stress Corrosion Cracking) 저항성이 우수하며, 항복비가 0.8 이하로 저항복비 특성을 갖는 강재인 것을 확인할 수 있다. 또한, 발명예 A-1에 대하여 현미경으로 미세조직을 관찰하여 본 결과, 도 1의 1-(2)에 나타낸 바와 같이 면적%로, 침상 페라이트(Acicular Ferrite)가 60%이상, 나머지는 베이나이트(Bainite), 폴리고날 페라이트(Polygonal Ferrite), MA(Martensite-Austenite constituent) 중 1상 이상으로 이루어진 혼합조직 임을 확인 할 수 있다.As shown in Tables 1 to 3, the invention examples satisfying the composition and manufacturing conditions proposed by the present invention not only have high strength and high toughness, but also have excellent resistance to ammonia stress corrosion cracking (SCC). The yield ratio is 0.8 or less, it can be seen that the steel having a resistance yield ratio characteristics. In addition, as a result of observing the microstructure of the invention A-1 with a microscope, as shown in 1- (2) of Figure 1, the area percent, acicular ferrite (60% or more), the remainder bainite (Bainite), Polygonal Ferrite (Polygonal Ferrite), MA (Martensite-Austenite constituent) It can be confirmed that the mixed tissue consisting of one or more phases.
이에 반면, 성분조성은 본 발명을 만족하지만, 제조조건이 본 발명을 만족하지 않는 비교예 A-2, A-4, A-6, B-2, B-4 및 B-6 의 경우에는 Polygonal Ferrite 분율이 너무 높거나, Ferrite 결정립 사이즈가 너무 조대하여 인장강도 및 저온인성의 확보가 불가하였다.On the other hand, component composition satisfies the present invention, but in the case of Comparative Examples A-2, A-4, A-6, B-2, B-4 and B-6 where the manufacturing conditions do not satisfy the present invention, Polygonal The ferrite fraction was too high or the ferrite grain size was too coarse to secure tensile strength and low temperature toughness.
한편, 비교예 A-3, A-5, A-7 내지 B-3, B-5, B-7의 경우에는 Acicular Ferrite 결정립 사이즈가 너무 작거나, Bainite 분율이 너무 높게 생성되거나, MA상이 전혀 생산되지 못함에 따라 암모니아 응력부식균열(SCC) 발생 가능 항복강도 상한 (440MPa)을 초과하여 암모니아 응력부식균열을 발생시키며, 저항복비 및 저온인성 확보가 불가하였다. On the other hand, in Comparative Examples A-3, A-5, A-7 to B-3, B-5, and B-7, the Acicular Ferrite grain size is too small, the Bainite fraction is too high, or the MA phase is not at all. As it could not be produced, ammonia stress corrosion cracking (SCC) could occur. The yield strength exceeded the upper limit (440 MPa), resulting in ammonia stress corrosion cracking, and it was impossible to secure a resistance ratio and low temperature toughness.
또한, 제조조건은 본 발명을 만족하지만, 성분조성이 본 발명을 만족하지 않는 비교예 C-1 내지 F-4의 경우에는 Bainite 분율이 너무 높게 생성되거나, Acicular Ferrite 결정립 사이즈가 너무 작거나, MA상의 분율이 너무 높아짐에 따라 암모니아 응력부식균열(SCC) 발생 가능 항복강도 상한 (440MPa)을 초과하여 암모니아 응력부식균열을 발생시키며, 저항복비 및 저온인성 확보가 불가하였다. In addition, the production conditions satisfy the present invention, but in the case of Comparative Examples C-1 to F-4 in which the composition of the composition does not satisfy the present invention, the Bainite fraction is too high, the Acicular Ferrite grain size is too small, or MA As the fraction of phase becomes too high, ammonia stress corrosion cracking (SCC) can occur. The yield strength exceeded the upper limit (440 MPa), resulting in ammonia stress corrosion cracking, and it was not possible to secure a resistance ratio and low temperature toughness.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although described with reference to the embodiments above, those skilled in the art will understand that the present invention can be variously modified and changed without departing from the spirit and scope of the invention as set forth in the claims below. Could be.

Claims (12)

  1. 중량%로, 탄소(C): 0.02~0.10%, 망간(Mn): 0.5~2.0%, 실리콘(Si): 0.05~0.5%, 니켈(Ni): 0.05~1.0%, 타타늄(Ti): 0.005~0.1%, 알루미늄(Al): 0.005~0.5%, 나이오븀(Nb): 0.005%이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고,By weight%, carbon (C): 0.02-0.10%, manganese (Mn): 0.5-2.0%, silicon (Si): 0.05-0.5%, nickel (Ni): 0.05-1.0%, titanium (Ti): 0.005 to 0.1%, aluminum (Al): 0.005 to 0.5%, niobium (Nb): 0.005% or less, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, remaining Fe and other unavoidable impurities Including,
    미세조직은 면적%로, 침상 페라이트(Acicular Ferrite)가 60% 이상, 나머지는 베이나이트(Bainite), 폴리고날 페라이트(Polygonal Ferrite), MA(Martensite-Austenite constituent) 중 1상 이상을 포함하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재.Microstructure is the area%, stress corrosion including at least 60% acicular ferrite, the remainder is at least one of bainite, polygonal ferrite, martensite-austenite constituent (MA) High-strength, high-strength steel with excellent crack resistance and low temperature toughness.
  2. 제1항에 있어서, The method of claim 1,
    상기 침상 페라이트는 원상당 직경으로 측정한 크기가 30㎛ 이하인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재. The needle-like ferrite is a high-strength-resistant high-strength steel with excellent stress corrosion cracking resistance and low temperature toughness, characterized in that the size measured by the equivalent diameter of 30㎛ or less.
  3. 제1항에 있어서, The method of claim 1,
    상기 베이나이트는 30면적% 이하인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재. The bainite is excellent in stress corrosion cracking resistance and low temperature toughness high strength steel, characterized in that less than 30 area%.
  4. 제1항에 있어서, The method of claim 1,
    상기 MA 상은 10면적% 이하이고, 원상당 직경으로 측정한 크기가 5㎛ 이하인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재. The MA phase is 10 area% or less, the stress corrosion cracking resistance and low-temperature toughness excellent strength ratio high strength steel, characterized in that the size measured by the equivalent diameter of the circle.
  5. 제1항에 있어서, The method of claim 1,
    상기 강재의 항복비는 0.85이하이고, 인장강도는 490MPa이상인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재. Yield ratio of the steel is less than 0.85, the tensile strength is 490MPa or more characterized in that the stress corrosion cracking resistance and low-temperature toughness excellent strength ratio high strength steel.
  6. 제1항에 있어서, The method of claim 1,
    상기 강재의 항복강도는 440MPa이하인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재. The yield strength of the steel is excellent in corrosion resistance cracking resistance and low temperature toughness high strength steel, characterized in that less than 440MPa.
  7. 제1항에 있어서, The method of claim 1,
    상기 강재의 충격 천이온도가 -60℃ 이하인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재. A high strength corrosion-resistant high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness, characterized in that the impact transition temperature of the steel is -60 ℃ or less.
  8. 중량%로, 탄소(C): 0.02~0.10%, 망간(Mn): 0.5~2.0%, 실리콘(Si): 0.05~0.5%, 니켈(Ni): 0.05~1.0%, 타타늄(Ti): 0.005~0.1%, 알루미늄(Al): 0.005~0.5%, 나이오븀(Nb): 0.005% 이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1000~1200℃로 가열하는 단계; By weight%, carbon (C): 0.02-0.10%, manganese (Mn): 0.5-2.0%, silicon (Si): 0.05-0.5%, nickel (Ni): 0.05-1.0%, titanium (Ti): 0.005 to 0.1%, aluminum (Al): 0.005 to 0.5%, niobium (Nb): 0.005% or less, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, remaining Fe and other unavoidable impurities Heating the slab to 1000 to 1200 ° C;
    상기 가열된 슬라브를 1100~900℃의 온도에서 조압연하는 단계; Rough rolling the heated slab at a temperature of 1100-900 ° C .;
    상기 조압연 후 중심부 온도를 기준으로 Ar3 + 100℃ ~ Ar3 + 30℃ 사이의 온도에서 마무리 압연하는 단계; 및 Finishing rolling at a temperature between Ar 3 + 100 ° C. and Ar 3 + 30 ° C. based on the central temperature after the rough rolling; And
    상기 마무리압연 후 300℃ 이하의 온도까지 냉각하는 단계를 포함하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법. Method for producing a high strength corrosion resistance cracking resistance and low temperature toughness resistance corrosion resistance comprising the step of cooling to a temperature below 300 ℃ after the finish rolling.
  9. 제8항에 있어서, The method of claim 8,
    상기 냉각하는 단계는 Bs-10℃ ~ Bs+10℃까지 중심부 냉각속도가 15℃/s 이상이 되도록 1단계 냉각을 행한 후, The cooling step is performed after the first stage cooling to the central cooling rate of 15 ℃ / s or more to Bs-10 ℃ ~ Bs + 10 ℃,
    300℃이하까지 중심부 냉각속도가 10~50℃/s가 되도록 2단계 냉각을 행하는 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법. A method for producing a high strength corrosion resistant cracking resistance and low temperature toughness, characterized by performing two-stage cooling so that the cooling rate of the central part is 10 to 50 ° C / s until 300 ° C or less.
  10. 제8항에 있어서, The method of claim 8,
    냉각 개시 온도는 Ar3 + 30℃ ~ Ar3 인 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법. Cooling start temperature is Ar 3 + 30 ℃ ~ Ar 3 The stress corrosion cracking resistance and low-temperature toughness excellent resistance ratio high-strength steel manufacturing method characterized in that.
  11. 제8항에 있어서, The method of claim 8,
    상기 조압연은 마지막 3 패스가 패스당 압하율이 10%이상이 되도록 행하는 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법. The rough rolling is a method of producing a high strength corrosion resistance cracking resistance and low temperature toughness crack resistance, characterized in that the last three passes are performed so that the reduction rate per pass is 10% or more.
  12. 제8항에 있어서, The method of claim 8,
    상기 마무리 압연은 패스당 압하율 10% 이상, 누적 압하율 60% 이상이 되도록 행하는 것을 특징으로 하는 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재의 제조방법. The finish rolling is a method for producing a high strength corrosion resistant cracking resistance and low temperature toughness excellent resistance to corrosion, characterized in that the rolling reduction per pass 10% or more, cumulative reduction rate 60% or more.
PCT/KR2016/015156 2015-12-23 2016-12-23 Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness WO2017111526A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16879393.3A EP3395987B1 (en) 2015-12-23 2016-12-23 Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
JP2018532057A JP6691217B2 (en) 2015-12-23 2016-12-23 Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method of manufacturing the same
US16/063,886 US20180371588A1 (en) 2015-12-23 2016-12-23 Low yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
CN201680075892.9A CN108431274B (en) 2015-12-23 2016-12-23 Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness
CA3009137A CA3009137C (en) 2015-12-23 2016-12-23 Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0185496 2015-12-23
KR1020150185496A KR101767778B1 (en) 2015-12-23 2015-12-23 Low yield ratio high strength steel having excellent resistance for stress corrosion cracking and low temperature toughness, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017111526A1 true WO2017111526A1 (en) 2017-06-29

Family

ID=59089647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015156 WO2017111526A1 (en) 2015-12-23 2016-12-23 Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness

Country Status (7)

Country Link
US (1) US20180371588A1 (en)
EP (1) EP3395987B1 (en)
JP (1) JP6691217B2 (en)
KR (1) KR101767778B1 (en)
CN (1) CN108431274B (en)
CA (1) CA3009137C (en)
WO (1) WO2017111526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730640A4 (en) * 2017-12-24 2020-10-28 Posco Thick steel plate having excellent low-temperature toughness and manufacturing method therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102164097B1 (en) * 2018-10-26 2020-10-12 주식회사 포스코 High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR102307946B1 (en) * 2019-12-09 2021-09-30 주식회사 포스코 Steel plate for structure with a good seawater corrosion resistive property and method of manufacturing the same
KR102326109B1 (en) * 2019-12-16 2021-11-16 주식회사 포스코 Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same
KR102400036B1 (en) * 2020-04-13 2022-05-19 주식회사 포스코 Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
CN112342458B (en) * 2020-09-01 2022-01-11 南京钢铁股份有限公司 Low-yield-ratio stress corrosion cracking resistant high-strength steel and preparation method thereof
CN113832399B (en) * 2021-09-23 2022-10-11 马鞍山钢铁股份有限公司 Economical pipeline steel resistant to hydrogen sulfide corrosion and production method thereof
CN113913695B (en) * 2021-10-13 2022-10-18 鞍钢股份有限公司 Corrosion-resistant and fatigue-resistant pipeline steel for underwater oil and gas production and production method thereof
CN114005602A (en) * 2021-11-02 2022-02-01 兰州理工大学 Low-carbon high-strength low-resistivity cable core material, preparation method and application
WO2023203702A1 (en) * 2022-04-20 2023-10-26 Jfeスチール株式会社 Steel sheet and method for manufacturing same
AU2023255865A1 (en) * 2022-04-20 2024-08-15 Jfe Steel Corporation Steel plate and method of producing same
JP7401839B1 (en) * 2023-05-18 2023-12-20 日本製鉄株式会社 Evaluation method for stress corrosion cracking characteristics in liquid ammonia
JP7401838B1 (en) * 2023-05-18 2023-12-20 日本製鉄株式会社 Evaluation method for stress corrosion cracking characteristics in liquid ammonia

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153730A (en) 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd Method of manufacturing high-tensile strength steel plate for use at low temperature
JPS63290246A (en) 1987-05-22 1988-11-28 Kawasaki Steel Corp Steel for low-temperature excellent in toughness in weld zone
JPH0417613A (en) 1990-05-12 1992-01-22 Nippon Steel Corp Manufacture of high tension steel having superior resistance to stress corrosion cracking
KR20110075627A (en) * 2009-12-28 2011-07-06 주식회사 포스코 Api steel plate for line pipe and method for manufacturing the api steel plate
KR20110116760A (en) * 2010-04-20 2011-10-26 한국기계연구원 Giga-class ultra-high strength steel plates with excellent deformability and low-temperature toughness and the method for preparation of steel plates thereof
JP2012107310A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp Non-tempered low-yield-ratio high-tensile-strength steel plate and method for manufacturing the same
KR20130110643A (en) * 2012-03-29 2013-10-10 현대제철 주식회사 Steel and method of manufacturing the same
KR20140023787A (en) * 2012-08-17 2014-02-27 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188742A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of steel for low temperature use
JPH08209239A (en) * 1995-02-01 1996-08-13 Kobe Steel Ltd Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JPH0987802A (en) * 1995-09-21 1997-03-31 Kobe Steel Ltd High tensile strength steel plate excellent in plating crack resistance and its production
JP2003003228A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor
JP4119676B2 (en) 2002-05-01 2008-07-16 株式会社神戸製鋼所 Low yield ratio type high strength steel plate excellent in bending workability and manufacturing method thereof
WO2004113581A1 (en) * 2003-06-19 2004-12-29 Sumitomo Metal Industries, Ltd. Steel product excellent in characteristics of resistance to fatigue crack extension and method for production thereof
CN101289728B (en) * 2007-04-20 2010-05-19 宝山钢铁股份有限公司 Low-yield ratio, high heat input welding, high-strength and high ductility steel plate and method of manufacture
JP5031531B2 (en) * 2007-11-20 2012-09-19 新日本製鐵株式会社 Low yield ratio high strength steel sheet excellent in base metal low temperature toughness and HAZ low temperature toughness and its manufacturing method
US8647564B2 (en) * 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
CN101906568B (en) * 2010-08-12 2011-12-07 中国石油天然气集团公司 High-grade large-strain pipeline steel and manufacturing method of steel pipe
KR101482359B1 (en) * 2012-12-27 2015-01-13 주식회사 포스코 Method for manufacturing high strength steel plate having excellent toughness and low-yield ratio property

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153730A (en) 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd Method of manufacturing high-tensile strength steel plate for use at low temperature
JPS63290246A (en) 1987-05-22 1988-11-28 Kawasaki Steel Corp Steel for low-temperature excellent in toughness in weld zone
JPH0417613A (en) 1990-05-12 1992-01-22 Nippon Steel Corp Manufacture of high tension steel having superior resistance to stress corrosion cracking
KR20110075627A (en) * 2009-12-28 2011-07-06 주식회사 포스코 Api steel plate for line pipe and method for manufacturing the api steel plate
KR20110116760A (en) * 2010-04-20 2011-10-26 한국기계연구원 Giga-class ultra-high strength steel plates with excellent deformability and low-temperature toughness and the method for preparation of steel plates thereof
JP2012107310A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp Non-tempered low-yield-ratio high-tensile-strength steel plate and method for manufacturing the same
KR20130110643A (en) * 2012-03-29 2013-10-10 현대제철 주식회사 Steel and method of manufacturing the same
KR20140023787A (en) * 2012-08-17 2014-02-27 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730640A4 (en) * 2017-12-24 2020-10-28 Posco Thick steel plate having excellent low-temperature toughness and manufacturing method therefor

Also Published As

Publication number Publication date
CA3009137C (en) 2021-04-13
CN108431274B (en) 2021-12-07
KR20170075933A (en) 2017-07-04
JP6691217B2 (en) 2020-04-28
CA3009137A1 (en) 2017-06-29
EP3395987A1 (en) 2018-10-31
EP3395987B1 (en) 2020-04-29
KR101767778B1 (en) 2017-08-14
EP3395987A4 (en) 2018-11-07
US20180371588A1 (en) 2018-12-27
JP2019504200A (en) 2019-02-14
CN108431274A (en) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017111526A1 (en) Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2017111416A1 (en) Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2015099221A1 (en) Steel sheet having high strength and low density and method of manufacturing same
WO2017222342A1 (en) Clad steel plate having excellent strength and formability, and production method therefor
WO2019132478A1 (en) Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2018117545A1 (en) Steel material for pressure vessels which has excellent resistance to hydrogen induced cracking and manufacturing method thereof
WO2018117767A1 (en) High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
WO2018117509A1 (en) Ultra-high strength steel having low yield ratio and method for manufacturing same
WO2021054672A1 (en) High-strength ultra-thick steel plate having superb impact toughness at low-temperatures, and method for manufacturing same
WO2016105064A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2019088762A1 (en) Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone post weld heat treatment, and method for manufacturing same
WO2017095190A1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
WO2016105059A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2017095175A1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
WO2019124945A1 (en) High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same
WO2018088761A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2020111874A2 (en) Steel plate having excellent heat affected zone toughness and method for manufacturing thereof
WO2018117766A1 (en) High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2018117466A1 (en) Hot rolled steel plate for electric resistance welded steel pipe having excellent weldability, and manufacturing method thereof
WO2019124926A1 (en) Steel material for low yield ratio, high-strength steel pipe having excellent low-temperature toughness, and manufacturing method therefor
WO2019124809A1 (en) Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
WO2020130436A2 (en) High-strength structural steel having excellent cold bendability, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3009137

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879393

Country of ref document: EP

Effective date: 20180723