JP2003003228A - Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor - Google Patents

Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor

Info

Publication number
JP2003003228A
JP2003003228A JP2001185361A JP2001185361A JP2003003228A JP 2003003228 A JP2003003228 A JP 2003003228A JP 2001185361 A JP2001185361 A JP 2001185361A JP 2001185361 A JP2001185361 A JP 2001185361A JP 2003003228 A JP2003003228 A JP 2003003228A
Authority
JP
Japan
Prior art keywords
steel
stress corrosion
corrosion cracking
temperature toughness
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001185361A
Other languages
Japanese (ja)
Inventor
Masanori Minagawa
昌紀 皆川
Masaaki Nagahara
政明 永原
Yuji Funatsu
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001185361A priority Critical patent/JP2003003228A/en
Publication of JP2003003228A publication Critical patent/JP2003003228A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide steel which satisfies both characteristics of low temperature toughness in a welded joint and stress corrosion cracking properties. SOLUTION: The steel having excellent low temperature toughness in a welded joint and stress corrosion cracking properties consists of steel containing, by mass, 0.05 to 0.18% C, 0.05 to 0.3% Si, 0.4 to 2% Mn, <=0.02% P, <=0.02% S, 0.1 to 1% Cu, 0.1 to 1% Ni, 0.005 to 0.04% Al, 0.005 to 0.03% Ti and 0.0005 to 0.003% Ca. In the steel, oxide grains having a diameter equivalent to a circle of 0.005 to 2.0 μm are contained in 100 to 3,000 pieces/mm<2> by piece density per unit area, and the composition of the oxide grains at least contains Ca, Al and O, and, as to the elements other than O, by mass, >=5% Ca and >=5% Al are respectively contained, and the total of Ca an Al is >=50%. Also, the steel has a bainitic microstructure of >=50% by area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LPG、LNG、
液体アンモニア等の低温液化ガスを輸送する船舶や貯槽
用タンクに使用するに適した応力腐食割れ特性及び溶接
継手低温靭性に優れた鋼材及びその製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to LPG, LNG,
The present invention relates to a steel material having excellent stress corrosion cracking properties and weld joint low temperature toughness suitable for use in ships for transporting low temperature liquefied gas such as liquid ammonia and tanks for storage tanks, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、液化ガス輸送用船舶や液化ガス貯
槽用タンクに使用される溶接用鋼材の材質特性に対する
要望は厳しさを増している。液化ガスの種類によって異
なるが、ガスの液化温度は一般に常圧では低温、例えば
LPGの場合は−48℃であるため、母材はもちろん溶
接継手部においても優れた低温靭性が要求される。
2. Description of the Related Art In recent years, demands for material characteristics of welding steel materials used in ships for transporting liquefied gas and tanks for liquefied gas storage tanks have become increasingly severe. Although it depends on the type of the liquefied gas, the liquefaction temperature of the gas is generally low at normal pressure, for example, −48 ° C. in the case of LPG, so excellent low temperature toughness is required not only in the base metal but also in the welded joint.

【0003】また、液体アンモニアは鋼材の応力腐食割
れを引き起こすことが知られており、IGC CODE
17.13(International Code
for the Construction and
Equipment ofShips Carryi
ng Liquefied Gases in Bul
k)では、酸素分圧、温度などの貯槽時の操業条件を規
制すると共に、鋼材のNi含有量を5%以下に制限する
ことや降伏強さを440N/mm以下に抑えること等
を規定している。
It is known that liquid ammonia causes stress corrosion cracking of steel materials, and IGC CODE
17.13 (International Code
for the Construction and
Equipment of Ships Carryi
ng Requested Gases in Bul
In k), the operating conditions such as oxygen partial pressure and temperature during storage are regulated, and the Ni content of steel is limited to 5% or less and the yield strength is limited to 440 N / mm 2 or less. is doing.

【0004】ところが、液化ガス輸送用船舶や貯槽用タ
ンクでは、LPGと液体アンモニアを混載することが要
求されるので、当然のことながら両者に要求される仕様
を満足する必要がある。
However, since LPG and liquid ammonia are required to be mixedly loaded in a liquefied gas transportation ship or a tank for a storage tank, it is naturally necessary to satisfy the specifications required for both.

【0005】ところが、鋼材の成分として、低降伏比化
を達成するには、高Cにすれば良いが、高Cにすると溶
接性や低温靭性を劣化させることとなる。つまり、低温
靭性と応力腐食割れを防止するための降伏比化とは相容
れず、両立させることは極めて困難である。
However, in order to achieve a low yield ratio as a component of the steel material, high C may be used, but high C deteriorates weldability and low temperature toughness. In other words, the low temperature toughness and the yield ratio for preventing stress corrosion cracking are incompatible with each other, and it is extremely difficult to make them compatible with each other.

【0006】さらに、船舶の大型化、タンクの大容量化
のために、これらに用いられる鋼材には500MPa以
上、さらには600MPa以上の引張強さが求められて
いる。
Further, in order to increase the size of ships and the capacity of tanks, the steel materials used for these are required to have a tensile strength of 500 MPa or more, and further 600 MPa or more.

【0007】引張強さ500MPa以上を達成するに
は、鋼成分系では、特にCを高めることが必要となる
が、これらの成分調整を行うと、溶接継手低温靭性が低
下するという問題が発生する。
In order to achieve a tensile strength of 500 MPa or more, it is necessary to increase C particularly in the steel component system, but if these components are adjusted, the problem of low temperature toughness of the welded joint occurs. .

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、溶接継手低温靭性と応力腐食割れ特性との両者の
性質を満足する鋼材及びその製造方法を提供することを
課題とするものである。
In view of the above situation, it is an object of the present invention to provide a steel material satisfying both properties of the welded joint low temperature toughness and stress corrosion cracking property, and a method for producing the same. is there.

【0009】[0009]

【課題を解決するための手段】本発明者は、引張強さ5
00MPa以上を確保しながら、降伏強度440MPa
以下とすることにより応力腐食割れを防止することを研
究した。その結果、鋼成分を調整し、かつ鋼中に酸化物
粒子を分散させることにより溶接熱影響部の応力腐食割
れが防止でき、さらに溶接継手低温靭性をも向上させる
ことができ、また、鋼組織を、ベイナイトが50%以上
の焼入組織とすると、引張強さ500MPa以上に高強
度化できると共に、降伏強度を低くすることができるこ
とで母材の応力腐食割れが防止できることを知見した。
The present inventors have found that the tensile strength is 5
Yield strength of 440MPa while securing more than 00MPa
The following was studied to prevent stress corrosion cracking. As a result, by adjusting the steel composition and dispersing the oxide particles in the steel, stress corrosion cracking in the weld heat affected zone can be prevented, and the low temperature toughness of the welded joint can be improved, and the steel structure can be improved. It was found that, when the bainite has a quenched structure of 50% or more, the tensile strength can be increased to 500 MPa or more and the yield strength can be lowered to prevent stress corrosion cracking of the base material.

【0010】本発明は、上記知見に基づいて完成したも
ので、その発明の要旨は以下の通りである。
The present invention has been completed based on the above findings, and the gist of the invention is as follows.

【0011】(1) 質量%で、C:0.05〜0.1
8%、Si:0.05〜0.3%、Mn:0.4〜2.
0%、P:0.02%以下、S:0.02%以下、C
u:0.1〜1.0%、Ni:0.1〜1.0%、A
l:0.005〜0.04%、Ti:0.005〜0.
03%、Ca:0.0005〜0.003%を含有し、
残部はFe及び不可避不純物から成る鋼で、かつ、この
鋼中に円相当径で0.005〜2.0μmの酸化物粒子
を単位面積当たりの個数密度で100〜3000個/m
含有し、その酸化物粒子の組成が少なくともCa、
Al、Oを含み、Oを除いた元素が質量比で、Ca:5
%以上、Al:5%以上をそれぞれ含有し、CaとAl
との合計が50%以上で、かつ鋼のミクロ組織が面積率
で50%以上のベイナイト組織から成ることを特徴とす
る溶接継手低温靭性と応力腐食割れ特性とに優れた鋼
材。
(1) C: 0.05 to 0.1 in mass%
8%, Si: 0.05 to 0.3%, Mn: 0.4 to 2.
0%, P: 0.02% or less, S: 0.02% or less, C
u: 0.1 to 1.0%, Ni: 0.1 to 1.0%, A
1: 0.005 to 0.04%, Ti: 0.005 to 0.
03%, Ca: 0.0005-0.003% is contained,
The balance is steel composed of Fe and unavoidable impurities, and oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm are contained in the steel at a number density per unit area of 100 to 3000 particles / m 2.
m 2 and the composition of the oxide particles is at least Ca,
The mass ratio of elements including Al and O and excluding O is Ca: 5.
%, Al: 5% or more, respectively, Ca and Al
And 50% or more in total, and the steel microstructure is composed of a bainite structure with an area ratio of 50% or more, a steel material excellent in low-temperature toughness and stress corrosion cracking characteristics of a welded joint.

【0012】(2) 前記酸化物粒子の組成が少なくと
もCa、Al、O、Sを含み、Oを除いた元素が質量比
で、Ca:5%以上、Al:5%以上、S:1%以上を
それぞれ含有し、CaとAlとSとの合計が51%以上
で、残部がその他不可避不純物から成ることを特徴とす
る上記(1)記載の溶接継手低温靭性と応力腐食割れ特
性とに優れた鋼材。
(2) The composition of the oxide particles contains at least Ca, Al, O, and S, and the elements excluding O are in a mass ratio of Ca: 5% or more, Al: 5% or more, S: 1%. Excellent in low-temperature toughness and stress corrosion cracking properties of the welded joint according to (1) above, characterized in that the total content of Ca, Al, and S is 51% or more, and the balance consists of other unavoidable impurities. Steel material.

【0013】(3) 質量%で、C:0.05〜0.1
8%、Si:0.05〜0.3%、Mn:0.4〜2.
0%、P:0.02%以下、S:0.02%以下、C
u:0.1〜1.0%、Ni:0.1〜1.0%、A
l:0.005〜0.04%、Ti:0.005〜0.
03%、Ca:0.0005〜0.003%、Mg:
0.002%以下を含有し、 残部はFe及び不可避不
純物から成る鋼で、かつ、この鋼中に円相当径で0.0
05〜2.0μmの酸化物粒子を単位面積当たりの個数
密度で100〜3000個/mm含有し、その酸化物
粒子の組成が少なくともCa、Al、Mg、Oを含み、
Oを除いた元素が質量比で、Ca:5%以上、Al:5
%以上、Mg:1%以上をそれぞれ含有し、CaとAl
とMgとの合計が51%以上で、かつ鋼のミクロ組織が
面積率で50%以上のベイナイト組織から成ることを特
徴とする溶接継手低温靭性と応力腐食割れ特性とに優れ
た鋼材。
(3) C: 0.05 to 0.1 in mass%
8%, Si: 0.05 to 0.3%, Mn: 0.4 to 2.
0%, P: 0.02% or less, S: 0.02% or less, C
u: 0.1 to 1.0%, Ni: 0.1 to 1.0%, A
1: 0.005 to 0.04%, Ti: 0.005 to 0.
03%, Ca: 0.0005 to 0.003%, Mg:
A steel containing 0.002% or less, the balance being Fe and inevitable impurities, and having a circle equivalent diameter of 0.0
It contains 100 to 3000 particles / mm 2 in number density per unit area of oxide particles of 05 to 2.0 μm, and the composition of the oxide particles contains at least Ca, Al, Mg and O,
The mass ratio of elements excluding O is Ca: 5% or more, Al: 5
% Or more, Mg: 1% or more, respectively, Ca and Al
A steel material excellent in low-temperature toughness and stress corrosion cracking characteristics of a welded joint, characterized in that the total amount of Mg and Mg is 51% or more and the microstructure of the steel is a bainite structure having an area ratio of 50% or more.

【0014】(4) 前記酸化物粒子の組成が少なくと
もCa、Al、Mg、O、Sを含み、Oを除いた元素が
質量比で、Ca:5%以上、Al:5%以上、Mg:1
%以上、S:1%以上をそれぞれ含有し、CaとAlと
MgとSとの合計が52%以上で、残部がその他不可避
不純物から成ることを特徴とする上記(3)記載の溶接
継手低温靭性と応力腐食割れ特性とに優れた鋼材。
(4) The composition of the oxide particles contains at least Ca, Al, Mg, O, and S, and the elements excluding O are in a mass ratio of Ca: 5% or more, Al: 5% or more, Mg: 1
%, S: 1% or more, respectively, the total of Ca, Al, Mg, and S is 52% or more, and the balance is composed of other unavoidable impurities. Steel with excellent toughness and stress corrosion cracking properties.

【0015】(5) 質量%で、Nb:0.05%以下
V:0.1%以下、Cr:0.6%以下、Mo:0.6
%以下の内の1種または2種以上を含有することを特徴
とする上記(1)〜(4)のいずれかに記載の溶接継手
低温靭性と応力腐食割れ特性とに優れた鋼材。
(5) In mass%, Nb: 0.05% or less, V: 0.1% or less, Cr: 0.6% or less, Mo: 0.6
% Or less, and a steel material excellent in low temperature toughness and stress corrosion cracking characteristics of the welded joint according to any one of the above (1) to (4), characterized by containing one or more kinds.

【0016】(6) 質量%で、B:0.0005〜
0.003%を含有することを特徴とする上記(1)〜
(5)のいずれかに記載の溶接継手低温靭性と応力腐食
割れ特性とに優れた鋼材。
(6) B: 0.0005 to 5% by mass
0.003% is contained, and the above (1) to
A steel material having excellent low temperature toughness and stress corrosion cracking characteristics according to any one of (5).

【0017】(7) 前記酸化物粒子が円相当径で0.
1〜2.0μmであることを特徴とする上記(1)〜
(6)のいずれかに記載の溶接継手低温靭性と応力腐食
割れ特性とに優れた鋼材。
(7) The oxide particles have an equivalent circle diameter of 0.
1 to 2.0 μm, characterized in that (1) to
A steel material having excellent low-temperature toughness and stress corrosion cracking properties according to any one of (6).

【0018】(8) 上記(1)、(3)、(5)また
は(6)のいずれかに記載の成分を有する鋼を、圧延
後、オーステナイト温度域から水冷を開始し、250℃
〜400℃で水冷を停止することを特徴とする溶接継手
低温靭性と応力腐食割れ特性とに優れた鋼材の製造方
法。
(8) After rolling the steel having the component described in any one of (1), (3), (5) or (6), water cooling is started from the austenite temperature range to 250 ° C.
A method for producing a steel material excellent in low temperature toughness and stress corrosion cracking characteristics of a welded joint, characterized in that water cooling is stopped at 400 ° C.

【0019】[0019]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らは溶接継手低温靭性を向上させる金属
組織要因として、1400℃以上に加熱されるHAZ領
域の再加熱オーステナイト細粒化を、酸化物を利用して
達成することを検討した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The present inventors examined the achievement of reheat austenite grain refinement in the HAZ region heated to 1400 ° C. or higher by using an oxide as a metallographic factor that improves the low temperature toughness of the welded joint.

【0020】再加熱オーステナイト粒を細粒化するため
には高温でのオーステナイト粒成長を抑制することが必
要である。その手段として最も有効な方法は、分散粒子
によりオーステナイトの粒界をピンニングし、粒界の移
動を止める方法が考えられる。そのような作用をする分
散粒子の一つとしては、従来、Ti窒化物と酸化物が有
効であると考えられていた。しかしながら、Ti窒化物
は1400℃以上の高温では固溶する割合が大きくなる
ため、ピンニング効果が小さく、ピンニング粒子に適さ
ない。このため、高温で安定な酸化物をピンニング粒子
として活用することにした。
In order to refine the reheated austenite grains, it is necessary to suppress the growth of austenite grains at high temperature. The most effective method is to pin the austenite grain boundaries with dispersed particles and stop the movement of the grain boundaries. As one of the dispersed particles having such a function, it has been conventionally considered that Ti nitride and oxide are effective. However, since Ti nitride has a large proportion of solid solution at a high temperature of 1400 ° C. or higher, it has a small pinning effect and is not suitable for pinning particles. Therefore, we decided to utilize oxides that are stable at high temperatures as pinning particles.

【0021】また、分散粒子による結晶粒界のピンニン
グ効果は、分散粒子の体積率が大きいほど、一個の粒子
径が大きいほど大きい。ただし、分散粒子の体積率は鋼
中に含まれる粒子を構成する元素の濃度によって上限が
あるので、体積率を一定と仮定した場合には、粒子径は
ある程度小さい方がピンニングには有効である。このよ
うな観点から、本発明者らは酸化物の体積分率を大き
く、かつ適正な粒子径となるよう、種々の検討を行っ
た。
Further, the pinning effect of the crystal grain boundaries by the dispersed particles becomes larger as the volume ratio of the dispersed particles becomes larger and the diameter of each particle becomes larger. However, since the volume ratio of dispersed particles has an upper limit depending on the concentration of the elements that make up the particles contained in the steel, if the volume ratio is assumed to be constant, a smaller particle size is more effective for pinning. . From such a viewpoint, the present inventors have made various studies so as to increase the volume fraction of the oxide and to obtain an appropriate particle size.

【0022】酸化物の体積分率を大きくする手段の一つ
として、酸素量を増大させることがあるが、酸素量の増
大は材質に有害な粗大酸化物をも多数生成する原因とな
るため、有効な手段ではない。そこで本発明者らは、酸
素を最大限に利用するため、酸素との溶解度積が小さい
元素を活用することを検討した。酸素との溶解度積が小
さい、すなわち強脱酸元素として、一般的にはAlが用
いられる。しかしながら、Alだけでは酸素を充分利用
するには不充分で、さらにAlよりも強い脱酸元素が必
要で、鉄鋼の脱酸工程で汎用的に使用されるCaを活用
することが重要である。Caは酸素との溶解度積が小さ
いため、同量の酸素に対してAlよりも一層多量の酸化
物を生成することができる。脱酸元素としてCaを用い
た実験を行った結果、鋼中に生成する酸化物粒子の組成
として、Caが5%以上、Alが5%以上含まれること
か必要であり、そして、その合計が50%以上含まれる
ことで、酸化物の体積分率すなわち酸化物量を大きくす
ることが可能となることを知見した。この結果を基に、
鋼中に含まれる酸化物粒子の組成を、少なくともCa、
Al、Oを含み、Oを除いた元素が質量比でCaを5%
以上、Alを5%以上、その合計を50%以上とした。
One of the means for increasing the volume fraction of oxide is to increase the amount of oxygen. Since increasing the amount of oxygen causes a large amount of coarse oxide, which is harmful to the material, Not an effective means. Therefore, the present inventors examined the utilization of an element having a small solubility product with oxygen in order to maximize the utilization of oxygen. Al is generally used as a strong deoxidizing element, which has a small solubility product with oxygen. However, Al alone is not sufficient to sufficiently utilize oxygen, and a deoxidizing element stronger than Al is necessary, and it is important to utilize Ca that is generally used in the deoxidizing step of steel. Since Ca has a small solubility product with oxygen, it is possible to generate a larger amount of oxide than Al for the same amount of oxygen. As a result of conducting an experiment using Ca as a deoxidizing element, it is necessary that the composition of the oxide particles formed in the steel is such that Ca is 5% or more and Al is 5% or more, and the total is It has been found that the inclusion of 50% or more makes it possible to increase the volume fraction of oxide, that is, the amount of oxide. Based on this result,
The composition of the oxide particles contained in the steel is at least Ca,
The elements containing Al and O and excluding O are 5% Ca by mass.
As described above, Al is set to 5% or more and the total is set to 50% or more.

【0023】また、Caと同時にMgを使用することも
酸化物を多数生成させることに有効である。MgはCa
ほどの効果はないものの、Alより強い脱酸元素であ
り、酸素との溶解度積が小さい。したがって、MgをC
aと複合して脱酸に使用することで酸化物個数を一層増
加させることが可能となる。発明者らは脱酸元素として
Caを用いた実験を行った結果、鋼中に生成する酸化物
粒子の組成として、Caが5%以上、Alが5%以上、
Mgが1%以上で、その合計が51%以上含まれること
で、酸化物の体積分率すなわち酸化物量を一層大きくす
ることが可能となることを知見した。この結果を基に、
鋼中に含まれる酸化物粒子の組成を、少なくともCa、
Al、Mg、Oを含み、Oを除いた元素が質量比でCa
を5%以上、Alを5%以上、Mgを1%以上、その合
計を51%以上とした。
It is also effective to use Mg together with Ca to produce a large number of oxides. Mg is Ca
Although not so effective, it is a deoxidizing element stronger than Al and has a small solubility product with oxygen. Therefore, Mg to C
By combining with a and using it for deoxidation, the number of oxides can be further increased. The inventors conducted an experiment using Ca as a deoxidizing element, and as a result, as a composition of oxide particles generated in steel, Ca was 5% or more and Al was 5% or more,
It has been found that when the content of Mg is 1% or more and the total content thereof is 51% or more, the volume fraction of oxide, that is, the amount of oxide can be further increased. Based on this result,
The composition of the oxide particles contained in the steel is at least Ca,
Elements containing Al, Mg, and O, except O, are Ca in mass ratio.
Was 5% or more, Al was 5% or more, Mg was 1% or more, and the total was 51% or more.

【0024】さらには、本発明者らは、酸化物の周囲に
CaS及びMgSといった硫化物が析出することで、酸
化物と硫化物とを併せてより一層の体積分率の増加が可
能となることを見出したのである。この結果をもとに、
鋼中に含まれる粒子の組成を、少なくともCa、Al、
O、Sを含み、Oを除いた元素が質量比でCaを5%以
上、Alを5%以上、Sを1%以上で、その合計が51
%以上、もしくは、少なくともCa、Al、Mg、O、
Sを含み、Oを除いた元素が質量比でCaを5%以上、
Alを5%以上、Mgを1%以上、Sを1%以上で、そ
の合計を52%以上とした。
Furthermore, the present inventors can further increase the volume fraction of oxides and sulfides by depositing sulfides such as CaS and MgS around the oxides. I found that. Based on this result
The composition of particles contained in steel is at least Ca, Al,
The mass ratio of the elements including O and S, excluding O, is 5% or more for Ca, 5% or more for Al, and 1% or more for S, and the total is 51%.
% Or more, or at least Ca, Al, Mg, O,
The elements including S and excluding O contain Ca in a mass ratio of 5% or more,
Al was 5% or more, Mg was 1% or more, S was 1% or more, and the total thereof was 52% or more.

【0025】次に、ピンニングに有効な酸化物粒子の大
きさについて述べる。
Next, the size of oxide particles effective for pinning will be described.

【0026】分散粒子による結晶粒界のピンニング効果
は、分散粒子の体積率が大きいほど、一個の粒子径が大
きいほど大きいが、粒子の体積率が一定のとき、一個の
酸化物粒子の大きさが小さい方が粒子数が多くなりピン
ニング効果が大きくなるが、あまり小さくなると粒界に
存在する粒子の割合が小さくなるため、その効果は低減
すると考えた。粒子の大きさを種々変化させた試験片を
用いて、高温に加熱したときのオーステナイト粒径を詳
細に調査した結果、ピンニングには粒子の大きさとし
て、0.005〜2.0μmのものが効果が大きいこと
をつきとめた。さらに、オーステナイト粒界の移動を止
めるピンニング力は分散粒子のサイズが大きいほど強い
ことが判明し、粒子径0.005〜2.0μmの中でも
0.1〜2.0μmの粒子の大きさが特に有効であるこ
とを知見するに至った。0.1μmより小さくなるとピ
ンニング効果は徐々に減少し、0.005μmより小さ
くなるとほとんどピンニング効果を発揮しない。また、
2.0μmより大きい酸化物粒子はピンニング効果はあ
るものの、脆性破壊の起点となることがあるため鋼材の
特性上不適である。この結果より、必要な粒子径を0.
005〜2.0μmとした。そして、その中でも特に
0.1〜2.0μmが好ましい。
The pinning effect of the crystal grain boundaries by the dispersed particles is larger as the volume ratio of the dispersed particles is larger and the particle diameter of one particle is larger, but when the volume ratio of the particles is constant, the size of one oxide particle is large. It was thought that the smaller the value, the larger the number of particles and the greater the pinning effect. As a result of detailed examination of the austenite grain size when heated to a high temperature using test pieces having various grain sizes changed, it was found that the grain size of 0.005 to 2.0 μm was found for pinning. He found that the effect was great. Further, it has been found that the pinning force for stopping the movement of the austenite grain boundaries is stronger as the size of the dispersed particles is larger, and the particle size of 0.1 to 2.0 μm is particularly preferable among the particle diameters of 0.005 to 2.0 μm. We came to discover that it was effective. When it is less than 0.1 μm, the pinning effect gradually decreases, and when it is less than 0.005 μm, the pinning effect is hardly exhibited. Also,
Oxide particles larger than 2.0 μm have a pinning effect, but may be the starting point of brittle fracture, and are unsuitable for the properties of steel materials. From this result, the required particle size was set to 0.
It was 005 to 2.0 μm. Among them, 0.1 to 2.0 μm is particularly preferable.

【0027】次に、HAZ靭性に必要なピンニング粒子
の個数について検討した。
Next, the number of pinning particles required for HAZ toughness was examined.

【0028】酸化物粒子個数が多いほど組織単位は微細
になり、粒子個数が多いほど溶接継手低温靭性が向上す
るが、特に要求特性が厳しいと考えられる液化ガス輸送
用船舶の鋼材は、高強度で大入熱溶接施工される場合に
要求される溶接継手低温靭性、例えば、試験温度−40
℃において吸収エネルギー50J以上を満足するために
は、図1に示すように、円相当径が0.005〜2.0
μmの酸化物粒子数が100個/mm2以上必要である
ことを知見した。ただし、粒子数が多くなるほど、その
靭性向上効果は小さくなり、必要以上に粒子個数を多く
することは靭性に有害な粗大な粒子が生成する可能性が
高くなることを考えると、粒子数の上限は3000個/
mm2が適切である。
The larger the number of oxide particles, the finer the structural unit, and the larger the number of particles, the better the low temperature toughness of the welded joint. However, the steel material of a liquefied gas transportation ship, which is considered to have particularly severe required characteristics, has a high strength. Weld joint low temperature toughness required when large heat input welding is performed at, for example, test temperature -40
In order to satisfy the absorbed energy of 50 J or more at ℃, as shown in FIG.
It was found that the number of μm oxide particles needs to be 100 particles / mm 2 or more. However, the larger the number of particles, the smaller the effect of improving the toughness, and considering that increasing the number of particles more than necessary increases the possibility that coarse particles harmful to the toughness will be generated. Is 3000 /
mm 2 is suitable.

【0029】これらの酸化物等粒子が分散していること
で、上述したように溶接熱影響部の再加熱オーステナイ
トが細粒化し、焼き入れ性が低下するため、溶接熱影響
部はフェライト組織になりやすい。フェライト組織は硬
度が低いため、耐応力腐食割れ特性が向上する。すなわ
ち、本発明の酸化物粒子分散は、溶接熱影響部の低温靭
性のみならず耐応力腐食割れ特性にも効果を発揮する。
Since the particles such as oxides are dispersed, the reheated austenite in the heat-affected zone of the weld becomes finer and the hardenability deteriorates as described above. Prone. Since the ferrite structure has low hardness, stress corrosion cracking resistance is improved. That is, the oxide particle dispersion of the present invention exerts an effect not only on the low temperature toughness of the weld heat affected zone but also on the stress corrosion cracking resistance.

【0030】この酸化物粒子の大きさ及び個数の測定
は、例えば以下の要領で行う。母材となる鋼板から抽出
レプリカを作製し、それを電子顕微鏡にて10000倍
で20視野以上、観察面積にして1000μm2以上を
観察することで該酸化物の大きさおよび個数を測定す
る。大きさの測定は、例えば粒子を撮影した写真をもと
に、その円相当径を求める。このとき鋼板の表層部から
中心部までどの部位から採取した抽出レプリカでもよ
い。また、粒子が適正に観察可能であれば、観察倍率を
低くしてもかまわない。
The size and number of the oxide particles are measured, for example, in the following manner. The size and number of the oxides are measured by making an extraction replica from a steel plate which is a base material, and observing it with an electron microscope at a magnification of 10,000 times for 20 fields or more and an observation area of 1000 μm 2 or more. To measure the size, for example, the equivalent circle diameter is obtained based on a photograph of particles. At this time, the extracted replica collected from any portion from the surface layer portion to the central portion of the steel sheet may be used. Further, if the particles can be properly observed, the observation magnification may be lowered.

【0031】鋼材を製造するプロセスは、圧延後の水冷
却においてオーステナイト温度域から冷却を開始し、停
止温度を250〜400℃とすることで、ミクロ組織が
面積率で50%以上のベイナイトで、フェライトおよび
/またはマルテンサイト等が存在する焼入れ組織となり
高強度化する一方、降伏強度は低くなり、耐応力腐食割
れ特性に優れた鋼材となる。
In the process for producing a steel material, cooling is started from the austenite temperature range in water cooling after rolling and the stop temperature is set to 250 to 400 ° C., so that bainite having a microstructure of 50% or more in area ratio can be obtained. The steel has a hardened structure in which ferrite and / or martensite, etc. are present, and has a high strength, while the yield strength is low and the steel material has excellent stress corrosion cracking resistance.

【0032】冷却停止温度が250℃未満では、降伏強
度450MPa以下を達成することができず、一方、冷
却停止温度が400℃を超えると引張強度が低下して引
張強度500MPa以上を達成することができない。こ
のため、本発明では冷却停止温度を250〜400℃と
したが、降伏強度と引張強度との関係を最適なものにす
るには、冷却停止温度を300〜350℃とすることが
好ましい。
If the cooling stop temperature is less than 250 ° C., the yield strength of 450 MPa or less cannot be achieved. On the other hand, if the cooling stop temperature exceeds 400 ° C., the tensile strength decreases and the tensile strength of 500 MPa or more can be achieved. Can not. Therefore, although the cooling stop temperature is set to 250 to 400 ° C. in the present invention, it is preferable to set the cooling stop temperature to 300 to 350 ° C. in order to optimize the relationship between the yield strength and the tensile strength.

【0033】また、冷却速度としては、4〜15℃/s
ec、特に4〜7.5℃/secとすることが好まし
い。
The cooling rate is 4 to 15 ° C./s.
ec, especially 4 to 7.5 ° C./sec is preferable.

【0034】さらに、本発明の基本成分範囲について述
べる。
Further, the range of basic components of the present invention will be described.

【0035】Cは鋼の強度を向上させる有効な成分であ
り、Cが0.05%未満では強度が確保できず、また過
剰の添加は、鋼材の溶接性や溶接継手低温靭性などを著
しく低下させるので、上限を0.18%とした。
C is an effective component for improving the strength of steel. If C is less than 0.05%, the strength cannot be ensured, and excessive addition significantly reduces the weldability of steel materials and the low temperature toughness of welded joints. Therefore, the upper limit was made 0.18%.

【0036】Siは母材の強度確保、脱酸などに0.0
5%以上必要な成分であるが、HAZの硬化により靭性
が低下するのを防止するため上限を0.3%とした。
Si is 0.0 for securing the strength of the base material and deoxidizing.
5% or more is a necessary component, but the upper limit was set to 0.3% in order to prevent deterioration of toughness due to hardening of HAZ.

【0037】Mnは母材の強度、靭性の確保に有効な成
分として0.4%以上の添加が必要であるが、溶接部の
靭性、割れ性などの許容できる範囲で上限を2.0%と
した。
Mn must be added in an amount of 0.4% or more as an effective component for securing the strength and toughness of the base metal, but the upper limit is 2.0% within the allowable range of toughness and cracking of the welded portion. And

【0038】Pは含有量が少ないほど望ましいが、不純
物であるこれを工業的に低減させるためには多大なコス
トがかかることから、0.02%を上限とした。
The smaller the content of P is, the more preferable it is. However, since it is very costly to industrially reduce this as an impurity, 0.02% is made the upper limit.

【0039】SはPと同様に含有量が少ないほど望まし
いが、これを工業的に低減させるためには多大なコスト
がかかることから、0.02%を上限とした。
As with P, the smaller the content of S is, the more desirable it is. However, it takes a great cost to reduce this industrially, so 0.02% was made the upper limit.

【0040】Cuは鋼材の強度を向上させるために有効
であり、0.1%以上必要であるが、1.0%を超える
とHAZ靭性を低下させることから、1.0%を上限と
した。
Cu is effective for improving the strength of the steel material and is required to be 0.1% or more. However, if it exceeds 1.0%, the HAZ toughness decreases, so 1.0% is made the upper limit. .

【0041】Niは鋼材の強度及び靭性を向上させるた
めに有効であり、0.1%以上必要であるが、Ni量の
増加は製造コストを上昇させるので、1.0%を上限と
した。
Ni is effective for improving the strength and toughness of the steel material and is required to be 0.1% or more. However, since an increase in the amount of Ni increases the manufacturing cost, 1.0% was made the upper limit.

【0042】Alは重要な脱酸元素であり、下限値を
0.005%とした。また、Alが多量に存在すると、
鋳片の表面品位が劣化するため、上限を0.04%とし
た。
Al is an important deoxidizing element, and the lower limit value is 0.005%. Also, when Al is present in a large amount,
Since the surface quality of the slab deteriorates, the upper limit was made 0.04%.

【0043】TiはNと結合してTi窒化物を形成して
スラブ中に微細析出し、圧延組織の細粒化に有効であ
り、また鋼板中に存在するTi窒化物は溶接時にHAZ
組織を微細化させる。これらの効果を得るために0.0
05%以上添加する。しかし、固溶Ti量が増加すると
HAZ靭性が低下するため、0.03%を上限とした。
Ti is combined with N to form Ti nitride, which is finely precipitated in the slab and is effective for grain refinement of the rolling structure. The Ti nitride present in the steel sheet is HAZ during welding.
To refine the tissue. 0.0 to obtain these effects
Add more than 05%. However, as the amount of solid solution Ti increases, the HAZ toughness decreases, so 0.03% was made the upper limit.

【0044】CaはCa系酸化物を生成させるために
0.0005%以上の添加が必要である。しかしなが
ら、過剰の添加は粗大介在物を生成させるため、0.0
03%を上限とした。
Ca is required to be added in an amount of 0.0005% or more in order to form a Ca-based oxide. However, since excessive addition produces coarse inclusions, 0.0
The upper limit was 03%.

【0045】MgはCaと複合して脱酸に使用すること
で酸化物個数を増加させる元素である。しかしながら、
過剰の添加は粗大介在物を生成させるため、Mgは0.
002%以下としたが、好ましくは、0.0001〜
0.002%である。
Mg is an element that increases the number of oxides when used in combination with Ca for deoxidation. However,
Since excessive addition produces coarse inclusions, Mg is less than 0.1%.
Although it was 002% or less, preferably 0.0001 to
It is 0.002%.

【0046】Nb、V、Cr、Moは鋼の強度及び靭性
を向上させる効果を有するがHAZ部においては過剰な
添加は靭性を著しく低下させるため、それぞれ0.05
%、0.1%、0.6%、0.6%を上限とした。
Nb, V, Cr, and Mo have the effect of improving the strength and toughness of the steel, but in the HAZ part, excessive addition significantly lowers the toughness, so 0.05% each.
%, 0.1%, 0.6%, and 0.6% were made the upper limits.

【0047】Bは鋼の焼入性を改善すると共に、強度を
向上させる元素であるが、0.0005%未満では充分
な効果が得られず、一方、0.003%を超えると焼入
性向上効果が飽和するだけでなく、靭性に有害なB析出
物を形成して靭性を低下させるので、Bは0.0005
〜0.003%とした。
B is an element which improves the hardenability of steel and also improves the strength. However, if it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.003%, the hardenability is increased. Not only is the improvement effect saturated, but the toughness is reduced by forming B precipitates that are harmful to the toughness, so B is 0.0005.
Was made 0.003%.

【0048】[0048]

【実施例】表1に示した化学成分で、鋼板を試作した。
1〜8が本発明鋼、9〜20が比較鋼である。試作鋼は
転炉溶製し、RHにて真空脱ガス処理時に脱酸を行って
いる。連続鋳造により280mm厚鋳片に鋳造した後、
加熱圧延水冷を経て、板厚30mmの鋼板として製造し
た。得られた鋼板を汎用の溶接材料を用いて総15パス
のCO2溶接した。入熱は各パス約30kJ/cmであ
る。
EXAMPLE A steel plate was made as a trial with the chemical composition shown in Table 1.
1 to 8 are steels of the present invention, and 9 to 20 are comparative steels. The trial steel is melted in a converter and deoxidized during vacuum degassing at RH. After casting into a 280 mm thick slab by continuous casting,
It was manufactured as a steel plate having a plate thickness of 30 mm through hot rolling and water cooling. The obtained steel plate was subjected to CO2 welding for a total of 15 passes using a general-purpose welding material. The heat input is about 30 kJ / cm for each pass.

【0049】表2、表3には、酸化物の組成、粒子数、
加熱圧延水冷条件、母材特性、ベイナイト分率、母材応
力腐食割れ(SCC)特性、HAZ靭性、HAZ硬さ、
およびHAZSCC特性を示す。靭性評価のためのシャ
ルピー値は、フュージョンライン部位で試験温度−60
℃にて3本の試験を行ない、その平均値である。
Tables 2 and 3 show the composition of oxides, the number of particles, and
Hot rolling water cooling conditions, base material properties, bainite fraction, base material stress corrosion cracking (SCC) properties, HAZ toughness, HAZ hardness,
And HAZSCC characteristics are shown. The Charpy value for toughness evaluation is the test temperature -60 at the fusion line site.
The average value is obtained by conducting three tests at ° C.

【0050】表2、表3から明らかなように、1〜8の
本発明鋼は比較鋼と比べて吸収エネルギー(vE−60
℃)が50J以上の優れたHAZ靭性を有し、ならびに
YPが440MPa以下でベイナイト分率が50%以上
で良好な耐応力腐食割れ特性(SCC特性評価)を有す
ることが判る。またHAZの耐応力腐食割れ特性も良好
である。
As is clear from Tables 2 and 3, the inventive steels 1 to 8 have absorbed energy (vE-60) as compared with the comparative steels.
It can be seen that the alloy has excellent HAZ toughness of 50 J or more, a YP of 440 MPa or less and a bainite fraction of 50% or more, and good stress corrosion cracking resistance (SCC characteristic evaluation). Also, the HAZ has good resistance to stress corrosion cracking.

【0051】一方、比較例の9〜20は、表2、3に示
されるようにHAZ靭性と耐応力腐食割れ特性とを同時
に満足することはない。9〜16は酸化物の組成もしく
は酸化物個数が本発明の範囲からはずれたため、HAZ
靭性およびHAZのSCC特性が劣っている。17、1
8は水冷停止温度が本発明の範囲から低く外れたためY
Pが440MPaを超え、母材のSCC特性が劣ってい
る。19、20は水冷停止温度が本発明の範囲から高く
外れたためYPが440MPaを超え、母材のSCC特
性が劣っているとともに、強度不足となっている。
On the other hand, Comparative Examples 9 to 20 do not simultaneously satisfy HAZ toughness and stress corrosion cracking resistance as shown in Tables 2 and 3. Nos. 9 to 16 had a composition of oxides or the number of oxides was out of the range of the present invention.
The toughness and HAZ SCC properties are poor. 17, 1
No. 8 was Y because the water cooling stop temperature was out of the range of the present invention.
P exceeds 440 MPa, and the SCC characteristics of the base material are inferior. In Nos. 19 and 20, since the water cooling stop temperature was out of the range of the present invention, YP exceeded 440 MPa, the SCC characteristics of the base material were poor, and the strength was insufficient.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【発明の効果】本発明は、耐溶接継手低温靭性と応力腐
食割れ特性との両方の性質に優れた500MPa級鋼材
を提供でき、液化ガス輸送用船舶や液化ガス貯槽タンク
等の溶接によって製造することが要求される構造物に適
用できる。
INDUSTRIAL APPLICABILITY The present invention can provide a 500 MPa class steel material which is excellent in both low temperature toughness of welded joints and stress corrosion cracking properties, and is manufactured by welding liquefied gas transportation vessels and liquefied gas storage tanks. It can be applied to structures that require that.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼中の酸化物粒子の個数とHAZ靭性との関係
を示す図である。
FIG. 1 is a diagram showing the relationship between the number of oxide particles in steel and HAZ toughness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船津 裕二 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CC03 CD02 CD03 CD06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuji Funazu             No. 1 Nishinoshu, Oita-shi, Nippon Steel Corporation             Company Oita Works F-term (reference) 4K032 AA01 AA02 AA04 AA05 AA08                       AA11 AA14 AA16 AA19 AA22                       AA23 AA27 AA29 AA31 AA35                       AA36 BA01 CA02 CC03 CD02                       CD03 CD06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.05〜0.18%、
Si:0.05〜0.3%、Mn:0.4〜2.0%、
P:0.02%以下、S:0.02%以下、Cu:0.
1〜1.0%、Ni:0.1〜1.0%、Al:0.0
05〜0.04%、Ti:0.005〜0.03%、C
a:0.0005〜0.003%を含有し、残部はFe
及び不可避不純物から成る鋼で、かつ、この鋼中に円相
当径で0.005〜2.0μmの酸化物粒子を単位面積
当たりの個数密度で100〜3000個/mm含有
し、その酸化物粒子の組成が少なくともCa、Al、O
を含み、Oを除いた元素が質量比で、Ca:5%以上、
Al:5%以上をそれぞれ含有し、CaとAlとの合計
が50%以上で、かつ鋼のミクロ組織が面積率で50%
以上のベイナイト組織から成ることを特徴とする溶接継
手低温靭性と応力腐食割れ特性とに優れた鋼材。
1. C: 0.05 to 0.18% by mass%,
Si: 0.05 to 0.3%, Mn: 0.4 to 2.0%,
P: 0.02% or less, S: 0.02% or less, Cu: 0.
1 to 1.0%, Ni: 0.1 to 1.0%, Al: 0.0
05-0.04%, Ti: 0.005-0.03%, C
a: 0.0005 to 0.003% is contained, and the balance is Fe
And an unavoidable impurity, wherein the steel contains oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm in a number density per unit area of 100 to 3000 particles / mm 2 , and the oxide thereof. The composition of particles is at least Ca, Al, O
And the elements excluding O are in a mass ratio of Ca: 5% or more,
Al: 5% or more, respectively, the total of Ca and Al is 50% or more, and the microstructure of steel is 50% in area ratio.
A steel material excellent in low-temperature toughness and stress corrosion cracking properties of a welded joint characterized by comprising the above bainite structure.
【請求項2】 前記酸化物粒子の組成が少なくともC
a、Al、O、Sを含み、Oを除いた元素が質量比で、
Ca:5%以上、Al:5%以上、S:1%以上をそれ
ぞれ含有し、CaとAlとSとの合計が51%以上で、
残部がその他不可避不純物から成ることを特徴とする請
求項1記載の溶接継手低温靭性と応力腐食割れ特性とに
優れた鋼材。
2. The composition of the oxide particles is at least C
The mass ratio of elements including a, Al, O and S, excluding O,
Ca: 5% or more, Al: 5% or more, S: 1% or more, respectively, and the total of Ca, Al and S is 51% or more,
The steel material excellent in low temperature toughness and stress corrosion cracking characteristics of the welded joint according to claim 1, characterized in that the balance comprises other unavoidable impurities.
【請求項3】 質量%で、C:0.05〜0.18%、
Si:0.05〜0.3%、Mn:0.4〜2.0%、
P:0.02%以下、S:0.02%以下、Cu:0.
1〜1.0%、Ni:0.1〜1.0%、Al:0.0
05〜0.04%、Ti:0.005〜0.03%、C
a:0.0005〜0.003%、Mg:0.002%
以下を含有し、残部はFe及び不可避不純物から成る鋼
で、かつ、この鋼中に円相当径で0.005〜2.0μ
mの酸化物粒子を単位面積当たりの個数密度で100〜
3000個/mm含有し、その酸化物粒子の組成が少
なくともCa、Al、Mg、Oを含み、Oを除いた元素
が質量比で、Ca:5%以上、Al:5%以上、Mg:
1%以上をそれぞれ含有し、CaとAlとMgとの合計
が51%以上で、かつ鋼のミクロ組織が面積率で50%
以上のベイナイト組織から成ることを特徴とする溶接継
手低温靭性と応力腐食割れ特性とに優れた鋼材。
3. In mass%, C: 0.05 to 0.18%,
Si: 0.05 to 0.3%, Mn: 0.4 to 2.0%,
P: 0.02% or less, S: 0.02% or less, Cu: 0.
1 to 1.0%, Ni: 0.1 to 1.0%, Al: 0.0
05-0.04%, Ti: 0.005-0.03%, C
a: 0.0005 to 0.003%, Mg: 0.002%
A steel containing the following, the balance being Fe and unavoidable impurities, and having a circle equivalent diameter of 0.005 to 2.0 μm in the steel.
The number density of the oxide particles of m is 100 to 100 per unit area.
Containing 3000 pieces / mm 2 , the composition of the oxide particles includes at least Ca, Al, Mg, and O, and the elements excluding O are mass ratio, Ca: 5% or more, Al: 5% or more, Mg:
1% or more, respectively, the total of Ca, Al and Mg is 51% or more, and the microstructure of steel is 50% in area ratio.
A steel material excellent in low-temperature toughness and stress corrosion cracking properties of a welded joint characterized by comprising the above bainite structure.
【請求項4】 前記酸化物粒子の組成が少なくともC
a、Al、Mg、O、Sを含み、Oを除いた元素が質量
比で、Ca:5%以上、Al:5%以上、Mg:1%以
上、S:1%以上をそれぞれ含有し、CaとAlとMg
とSとの合計が52%以上で、残部がその他不可避不純
物から成ることを特徴とする請求項3記載の溶接継手低
温靭性と応力腐食割れ特性とに優れた鋼材。
4. The composition of the oxide particles is at least C.
a, Al, Mg, O, S, elements other than O are contained in a mass ratio of Ca: 5% or more, Al: 5% or more, Mg: 1% or more, S: 1% or more, respectively. Ca, Al and Mg
The steel material excellent in low temperature toughness and stress corrosion cracking properties of the welded joint according to claim 3, wherein the total of S and S is 52% or more, and the balance is composed of other unavoidable impurities.
【請求項5】 質量%で、Nb:0.05%以下V:
0.1%以下、Cr:0.6%以下、Mo:0.6%以
下の内の1種または2種以上を含有することを特徴とす
る請求項1〜請求項4のいずれかに記載の溶接継手低温
靭性と応力腐食割れ特性とに優れた鋼材。
5. Nb: 0.05% or less by mass% V:
One or more of 0.1% or less, Cr: 0.6% or less, and Mo: 0.6% or less are contained, and any one of claims 1 to 4 is included. A steel material with excellent low temperature toughness and stress corrosion cracking properties.
【請求項6】 質量%で、B:0.0005〜0.00
3%を含有することを特徴とする請求項1〜請求項5の
いずれかに記載の溶接継手低温靭性と応力腐食割れ特性
とに優れた鋼材。
6. In mass%, B: 0.0005 to 0.00
3% is contained, The steel material excellent in the low temperature toughness of a welded joint and stress corrosion cracking characteristic in any one of Claims 1-5 characterized by the above-mentioned.
【請求項7】 前記酸化物粒子が円相当径で0.1〜
2.0μmであることを特徴とする請求項1〜請求項6
のいずれかに記載の溶接継手低温靭性と応力腐食割れ特
性とに優れた鋼材。
7. The oxide particles have a circle equivalent diameter of 0.1 to 0.1.
It is 2.0 micrometers, Claims 1-6 characterized by the above-mentioned.
A steel material excellent in low temperature toughness and stress corrosion cracking properties according to any one of 1.
【請求項8】 請求項1、3、5または6のいずれかに
記載の成分を有する鋼を、圧延後、オーステナイト温度
域から水冷を開始し、250℃〜400℃で水冷を停止
することを特徴とする溶接継手低温靭性と応力腐食割れ
特性とに優れた鋼材の製造方法。
8. A steel having the composition according to claim 1, 3, 5 or 6 is rolled, and then water cooling is started from an austenite temperature range and stopped at 250 ° C. to 400 ° C. A method for manufacturing a steel material having excellent low temperature toughness and stress corrosion cracking characteristics.
JP2001185361A 2001-06-19 2001-06-19 Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor Pending JP2003003228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185361A JP2003003228A (en) 2001-06-19 2001-06-19 Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185361A JP2003003228A (en) 2001-06-19 2001-06-19 Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor

Publications (1)

Publication Number Publication Date
JP2003003228A true JP2003003228A (en) 2003-01-08

Family

ID=19024957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185361A Pending JP2003003228A (en) 2001-06-19 2001-06-19 Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor

Country Status (1)

Country Link
JP (1) JP2003003228A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209412A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Steel for ship having excellent corrosion resistance
CN103060714A (en) * 2013-01-28 2013-04-24 南京钢铁股份有限公司 Corrosion-resistant low alloy steel plate for marine splash zones and production method thereof
JP2019504200A (en) * 2015-12-23 2019-02-14 ポスコPosco Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method for producing the same
CN111778451A (en) * 2020-06-24 2020-10-16 南京钢铁股份有限公司 07MnNiMoDR steel plate for spherical tank and production process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209412A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Steel for ship having excellent corrosion resistance
CN103060714A (en) * 2013-01-28 2013-04-24 南京钢铁股份有限公司 Corrosion-resistant low alloy steel plate for marine splash zones and production method thereof
JP2019504200A (en) * 2015-12-23 2019-02-14 ポスコPosco Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method for producing the same
CN111778451A (en) * 2020-06-24 2020-10-16 南京钢铁股份有限公司 07MnNiMoDR steel plate for spherical tank and production process

Similar Documents

Publication Publication Date Title
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
KR101846759B1 (en) Steel plate and method for manufacturing same
EP2128294B1 (en) Base metal for clad steel plate having high strength and excellent toughness in welding heat-affected zone, and method of producing the same
JP7147960B2 (en) Steel plate and its manufacturing method
CN111051553B (en) High Mn steel and method for producing same
EP3533891A1 (en) Steel for high heat input welding
JP3802810B2 (en) Steel for welded structures having no dependence on heat input of HAZ toughness and method for manufacturing
WO2016059997A1 (en) Thick steel plate for tank giving weld heat affected zone with excellent toughness
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
EP3378962B1 (en) High heat input welded steel material
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP2003003228A (en) Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP2003328080A (en) High-strength steel pipe superior in low-temperature toughness and deformability, and method for manufacturing steel plate for steel pipe
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
WO2021117382A1 (en) Steel sheet and method for manufacturing same
JP4299431B2 (en) High CTOD guaranteed low temperature steel
WO2000075388A1 (en) High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP6947330B2 (en) Steel and its manufacturing method
JP2003089844A (en) Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor
JP3502842B2 (en) 600MPa class steel with excellent low YR characteristics and super high heat input weld joint toughness
JP2018016890A (en) Thick steel sheet for tank excellent in toughness of hot affected zone

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203