JP4299431B2 - High CTOD guaranteed low temperature steel - Google Patents
High CTOD guaranteed low temperature steel Download PDFInfo
- Publication number
- JP4299431B2 JP4299431B2 JP2000063632A JP2000063632A JP4299431B2 JP 4299431 B2 JP4299431 B2 JP 4299431B2 JP 2000063632 A JP2000063632 A JP 2000063632A JP 2000063632 A JP2000063632 A JP 2000063632A JP 4299431 B2 JP4299431 B2 JP 4299431B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- tin
- ctod
- less
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、LPGタンク、LPG運搬船(タンカー)のタンク部、及びLNGタンカーにおいてLNGタンクを支持する部材等の鋼構造物で、−50℃の低温環境下で使用されることを前提に設計された大入熱溶接を適用した継手部においても、破壊靱性値であるCTOD値が高い特徴を有する溶接用構造用低温用鋼に関するものである。
【0002】
【従来の技術】
阪神大震災を契機に、脆性破壊を防止しようとするニーズが高まっている。脆性破壊を防止するためには、鋼材及びその溶接部において高い破壊靱性値を確保する必要がある。破壊靱性値として、CTOD値が広く用いられており、海洋構造物や重要建築物には、溶接継手部のCTOD値を保証させようとする施工主や設計者の要求があるが、溶接部のCTOD値は特に大きくばらつくために、CTOD値を保証することは極めて難しい。
一方、従来からシャルピー試験によるVノッチシャルピー衝撃試験での吸収エネルギーが靱性の尺度として広く用いられてきた。溶接部の靱性を確保するためには、鋼材側から様々な対策が提案されてきた。そのうち最も広く用いられているのは、例えば、特公昭55−26164号公報などの、鋼中に微細なTi窒化物(以下TiNと呼ぶ)を分散させることによって、HAZ(溶接熱影響部:Heat Affected Zone)のオーステナイト粒の成長を抑え、靱性を向上させる方法である。また、特開平3−264614号公報の、TiNとMnSとの複合析出物をHAZのフェライト生成核として活用し、HAZ靱性を向上させる方法が提案されている。HAZの中で、溶接金属との境界部(以下、溶接ボンド部と呼ぶ)の靱性が最も低いのは周知であるが、これは、最高到達温度が1400℃を超える溶接ボンド部ではオーステナイト粒の粒成長が著しく、そのために溶接ボンド部の組織が粗くなるためであり、TiNの分散によりオーステナイト粒の成長を抑制し、最終的なボンド組織を微細化することにより靱性を改善する、というのがTiN活用の基本的な考え方である。
【0003】
【発明が解決しようとする課題】
上記TiN活用技術によりシャルピー試験によるHAZ靱性を向上させる技術はいくつか提案されてきた。しかしながら、シャルピー試験で高い吸収エネルギーが得られた溶接継手部でも、CTOD試験を行うと0.05mm以下といった低値が発生することが多く、CTOD値を保証することは困難であった。
更に、鋼材中に様々な粒径、及び個数を持つTiNが分散していると、溶接方法、及び最高到達温度の違いにより、一部のTiNは鋼材中に固溶することでHAZ靱性を低下させ、またある一部のものは、鋼材中で粗大化することでHAZ靱性を低下させる原因となり、最終的にHAZ靱性を改善することが困難になるという問題があった。
本発明はかかる事情に鑑みてなされたもので、溶接部で大きくばらつくCTOD試験において、−50℃の低温環境下においても、0.1mm以上のCTOD値を保証しうる鋼材を提供するため、鋼材中のN量、Ti/N比、TiNの粒径、及びその粒径の個数を規定することで、溶接熱影響部靱性に優れた高CTOD保証低温用鋼を供することを目的とする。
設計温度において必要なCTOD値は、破壊防止設計の考え方により0.05mm以上であったり、0.1mm以上であったりと様々であるが、破壊靱性値が0.05mm以下のCTOD値の場合には、使用される鋼材の板厚程度の溶接欠陥(例えば20〜30mm)等が存在すれば降伏点の1/2〜2/3程度の設計応力下でも脆性破壊する危険性があり、危険物を低温貯蔵するような構造物では重大な問題をまねく可能性がある。0.1mm以上のCTOD値が保証でき、非破壊検査により板厚サイズ以上の欠陥の存在を否定できれば、設計応力下、あるいは設計応力の1.2倍程度の応力が負荷された場合でも脆性破壊を生ずることはないと考えられる。
【0004】
【課題を解決するための手段】
前記目的に沿う本発明に係る高CTOD保証低温用鋼は、質量%で、C:0.04〜0.15%、Si:0.050〜0.50%、Mn:0.80〜2.0%、P:0.015%以下、S:0.01%以下、Al:0.001〜0.06%、Ti:0.002〜0.015%、N:0.003%以下の成分を有し、残部が鉄及び不回避的不純物からなると共に、Ti/Nが1.0〜6.0を満足する鋼材で、しかも、溶接前の前記鋼材中に粒径0.01〜0.1μmのTiNが5×105〜5×106個/mm2存在し、かつ粒径0.5μm以上のTiNを10個/cm2以下とし、更に粒径0.01〜0.05μmのTiNが4×106個/mm2以下、及び粒径0.07〜0.1μmのTiNが5×104個/mm2以上存在して、−50℃の低温環境下でも溶接ボンド部で0.1mm以上のCTOD値を安定に確保できる。これにより、大入溶接下でのTiNによるピンニング効果、固溶Ti、固溶N、TiC析出効果、更にTiNの粗大化効果を配慮しつつ、CTOD試験においても高いCTOD値を確保するものである。
ここで、前記鋼材中の粒径0.01〜0.05μmのTiNを4×106個/mm2以下にすることにより、溶接した後、TiNが溶解して消滅することによる、母材中の固溶Ti、固溶Nの量の増大を抑制し、かつ脆性破壊の発生起点となる粗大TiNの存在を抑制することにより溶接熱影響部での高CTOD値を保証しうる溶接用構造用鋼とするものである。
【0005】
また、前記鋼材中の粒径0.07〜0.1μmのTiNを5×104個/mm2以上にすることにより、大入溶接下においても溶け残ることが可能で、しかもピンニング効果を発揮できるTiN量となるため、溶接熱影響部靱性に優れた高CTOD保証低温用鋼とすることができる。
更に、質量%でNを0.002%以下にすることが好ましい。これにより、固溶Nを大幅に低減することができる。
【0006】
そして、前記鋼材中に、Cu:1.0%以下、Ni:1.5%以下、Nb:0.05%以下、V:0.1%以下、Cr:0.6%以下、Mo:0.6%以下、B:0.0002〜0.003%の1種又は2種以上の成分、或いは、又は、更には、Ca:0.0002〜0.003%、Mg:0.0002〜0.005%、REM:0.001〜0.05%の1種又は2種以上の成分を有することが好ましい。ここで、Cu、Ni、Nb、V、Cr、Mo及びBの添加により、母材強度の向上や、低温靱性・溶接性を向上させることができる。また、Ca、Mg、REMの添加により、鋼材中の脱酸を有効に行うことができる。
なお、鋼材中に粒径0.01〜0.1μmのTiNを5×105 〜5×106 個/mm2 存在するようにするには、鋳造後の鋳片を冷却段階で900〜1300℃の間で10分間以上保持すればよいが、更に、この範囲で、温度、保持時間を調整することによりTiNの粒径、個数を調整する。
【0007】
本発明者は、種々のTi、N量、ならびにTi/N比を有する鋼板に、溶接ボンド部の熱影響を再現する熱サイクルを付与し、組織及び靱性を広範囲に調査した。特に、従来検討されてきていない母材中のTiNの粒径、及び個数について詳細に検討した。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る高CTOD保証低温用鋼を製造するために、以下に示すような種々の試験を行った。
図1は、0.12%C−0.2%Si−1.3%Mn系をベースとして、Ti、Nを添加した鋼板を実験室溶製し、更に、それに入熱100kJ/cm相当の熱サイクルを付与した後と前の、熱サイクル付与前後それぞれのTiNの粒径の分布図である。なお、TiNは、透過電子顕微鏡により観察し、粒径は画像処理により円相当径として算出した。この場合、溶接ボンド部の熱影響を再現する熱サイクルとしては、溶接ボンド部の最高到達温度は1400℃とし、溶接入熱の影響は、実測データを基に、加熱温度、最高温度での保持時間、冷却速度を制御することにより達成した。図より、TiNの粒径は、溶接入熱の影響を受けていない母材で0.04μmをピークとして0.01〜0.1μm、溶接ボンド部で0.13μmをピークとして0.05〜0.15μmの範囲にそれぞれ分布している。つまり、母材に存在するTiNの粒径は、0.01〜0.1μmの範囲に分布していることが分かる。以上のことより、大入溶接下におけるTiNの状態は、TiNの粒径0.05μmを境として、0.05μmより小さいものは母材中に溶解して固溶し、大きいものは逆に粗大化すると考えられる。
【0009】
更に、このTiNの粒径及び個数が、HAZ靱性にどのような影響を及ぼすのかを明確にするため、本発明者らは溶接ボンド部の熱影響を再現する熱サイクル試験を種々の鋼板に付与し、溶接入熱ごとにそれに相当する一定の溶接履歴を受けた鋼板の組織及びその靱性を調査し、鋼板の成分であるTiNの粒径、個数及びN量と溶接入熱の影響を検討した。
【0010】
以下に、溶接履歴を受けた鋼板から試験片を取り出し、−20℃に冷却した後、Vノッチシャルピー試験を実施した結果を示す。
図2は、0.10%C−0.2%Si−1.3%Mn系をベースとして、Ti、Nを添加した鋼板を実験室溶製し、それに入熱100kJ/cm相当の熱サイクルを付与したものを試験片として用い、その試験片の衝撃吸収エネルギー値(vE−20℃(J))と、熱サイクルを付与する前の試験片中に存在する粒径0.01〜0.1μmのTiN個数との関係を調べた結果図である。なお、この試験では、衝撃吸収エネルギー値が高いほど、靱性が優れていることを示している。
【0011】
熱サイクル前の試験片中に存在する粒径0.01〜0.1μmのTiNの個数を透過電子顕微鏡を用いて定量化した結果、TiNの個数が5×105 〜5×106 個/mm2 の範囲では、衝撃吸収エネルギー値が100〜260Jと高い数値を示した。しかし、TiNの個数が5×105 個/mm2 未満のときは衝撃吸収エネルギー値が低下し、また、5×106 個/mm2 より多いときも低下する。即ち、TiNの個数が5×105 個/mm2 未満のとき、大入熱溶接の熱サイクル下では、母材中に存在するTiNが、鋼中にTi、Nとして固溶するため、母材の結晶粒成長を抑制するための十分なTiN量を確保できなくなっている。その結果、TiNのピン止め効果が発揮できず、母材中の結晶粒が大きくなり、靱性を低下させている。一方、5×106 個/mm2 より多いとき、これは、大入熱溶接の熱サイクル下では、母材中に存在するTiNが、Ti、Nとして固溶する量が多くなり過ぎること、また、熱サイクルにより母材中に粗大化したTiNが増加することが衝撃吸収エネルギー低下の原因になると考えられる。粗大化したTiNは破壊の起点となり、衝撃吸収エネルギー値を低くすると考えられる。よって、溶接前の鋼材中に存在する粒径0.01〜0.1μmのTiN個数を5×105 〜5×106 個/mm2 にすることで、溶接ボンド部靱性に優れた高CTOD保証低温用鋼とすることが可能となる。
【0012】
次に、図1の母材部と溶接ボンド部のTiNの粒径分布の比較より得られた0.05μm以下のTiNに注目してプロットした図を、図3に示す。なお図3は、図2中の0.01〜0.1μmのTiN個数が5×105 〜5×106 個/mm2 である試験片を用い、その試験片の衝撃吸収エネルギー値と、熱サイクル前の試験片中に存在する粒径0.01〜0.05μmのTiN個数との関係を調査した。熱サイクル前の試験片中に存在する粒径0.01〜0.05μmのTiNの個数を透過電子顕微鏡を用いて定量化した結果、TiNの個数が4×106 個/mm2 以下の範囲では、衝撃吸収エネルギー値が150〜260Jと高い数値を示した。しかし、TiNの個数が4×106 個/mm2 より多いときは衝撃吸収エネルギー値は低下する。これは、粒径0.01〜0.05μmのTiNが、熱サイクルにより、母材中に、TiとNとして固溶したことが原因になっていると考えられる。よって、粒径0.01〜0.05μmのように小粒径のものは、少ない方が好ましいため、4×106 個/mm2 以下と規定した。
【0013】
図4は、図3中の0.01〜0.05μmのTiN個数が4×106 個/mm2 以下である試験片を用い、その試験片の衝撃吸収エネルギー値と、熱サイクル前の試験片中に存在する粒径0.07〜0.1μmのTiN個数との関係を調べた結果である。熱サイクル前の試験片中に存在する粒径0.07〜0.1μmのTiNの個数を透過電子顕微鏡を用いて定量化した結果、TiNの個数が5×104 個/mm2 以上の範囲では、衝撃吸収エネルギー値が235〜255Jと高い数値を示した。しかし、TiNの個数が5×104 個/mm2 より少ないときは衝撃吸収エネルギー値は低下する。大入熱溶接の溶接ボンド部で安定に溶け残るTiNの粒径は、0.07μm以上である。つまり、TiNで、粒径0.07〜0.1μmのものは、溶接のピーク温度1400℃以上の大入熱溶接下で溶け残るため、粒径0.07〜0.1μmのTiNの個数を5×104 個/mm2 以上にすることで、溶接ボンド部靱性に優れた高CTOD保証低温用鋼とすることが可能となる。
【0014】
図5は、0.12%C−0.2%Si−1.3%Mn系をベースとし、Ti、Nを添加した鋼板を実験室溶製し、更に入熱150kJ/cm相当の熱サイクルを付与したものから採取した試験片の衝撃吸収エネルギー値(vE−20℃)と、熱サイクル前の試験片中に存在するN量との関係を調べた結果である。図より、衝撃吸収エネルギーは、N量0.002%の所を境として大きく変化している。つまり、N量を0.002%以下に限定することでN量を低下させ、その結果、母材中に固溶するNが低減でき、溶接ボンド部靱性に優れた高CTOD保証低温用鋼とすることが可能となる。
【0015】
次に、これらの熱サイクル付与サンプルを用いてCTOD試験を実施した。試験温度は、−50℃で実施した。各温度において、破面を観察し、脆性破壊発生起点を走査型電子顕微鏡で観察した。その結果、粗大なTiNが脆性破壊の発生起点となっていることが判明した。この起点となっているTiNのサイズを円相当径で整理した結果、0.6μm程度のTiNが存在すると、破壊の起点となりうることが分かった。き裂先端にこれらの粗大なTiNが存在していると脆性破壊を発生するわけであり、CTOD値のバラツキはこの粗大なTiNがCTOD試験片の疲労き裂先端に存在するか否かの存在確率に大きく依存することを確認した。疲労き裂先端近傍の組織を詳細に調査した結果、0.5μm未満のサイズのTiNが存在していても、脆性破壊の核になっていないことを究明し、0.5μm以上の粗大なTiNの存在を抑制すれば高いCTOD値の得られることを知見した。
本発明の粗大TiNの許容サイズと存在確率(個数)を明確にするため、0.5μm以上のサイズのTiNの個数と、−50℃の限界CTOD値の関係を図6に示す。粒径0.01〜0.1μmのTiNが5×105〜5×106個/mm2存在している場合(本発明範囲)のデータAあり、この場合、粒径0.5μm以上のTiNの個数が10個/cm2以下であれば安定して0.1mm以上の限界CTOD値が得られている。一方、粒径0.01〜0.1μmのTiNが5×105個/mm2未満である場合(本発明範囲外)のデータBには、たとえ粒径0.5μm以上のTiNの個数が10個/cm2以下であっても、0.1mm以上の限界CTOD値は得ることができない。
したがって、−50℃の使用温度では、0.5μm以上のTiNの存在確率を低減することが望ましい。本発明の粗大TiNの許容サイズと存在確率(個数)は上記検討結果に基づき決定されたものである。
【0016】
次に、溶接熱影響部靱性に優れた高CTOD保証低温用鋼の化学成分(質量%)を前記のように限定した理由について述べる。
Cは、強度を向上するのに最も有効な元素であるが、C量が高いとセメンタイト相分率が高くなったり、溶接部において島状マルテンサイトが生成しやすくなり、脆性破壊を発生させる核(以降、脆性破壊発生核と称する)となる可能性が増大する。したがって0.15%を超える過剰な添加は好ましくないが、一方、Cが0.04%以下になると構造用鋼としての強度確保が困難になるので、下限は0.04%とする。
Siは、強度向上元素として有効であり安価な溶鋼の脱酸元素としても有用であるが、0.50%を超えると溶接部において島状マルテンサイトの生成を助長させる。また、0.050%未満では強度の向上効果が不十分でTiやAl等の高価な脱酸元素を多用する必要があるために、0.050〜0.50%に限定する。
Mnは、Cの含有量を抑制しつつ強度を向上する有用な元素である。Cを0.15%以下に抑制しているため、強度確保の観点から、Mnの必要下限を0.80%とする。一方、2.0%超のMnの添加は、不必要に強度上昇を招き、母材靱性・溶接性を阻害するため、0.80〜2.0%に限定する。
【0017】
Pは、母材靱性の観点から0.015%以下に限定した。なお、不純物としてのPは、できるだけ低いほど好ましいが、経済性も考慮する場合は、溶接性の点から0.005%以下が好ましい。
Sは、母材靱性の観点から0.01%以下に限定した。なお、不純物としてのSは、できるだけ低いほど好ましいが、経済性も考慮する場合は溶接性・加工性の点から0.005%以下が好ましい。
Alは、Si同様に脱酸上必要な元素であり、下限を0.001%とし、0.06%を超える過度の添加はHAZ靱性を損なうために、0.001〜0.06%に限定した。
【0018】
Tiは、Nと結合して鋼中にTiNを形成させるため、0.002%以上、かつTi/N比で1.0以上、6.0以下の範囲で添加する。ただし、0.015%を超えて添加すると、本発明の眼目である極低N化によるHAZ靱性改善効果を低下させ、更に高いTiはTiNを粗大化させる駆動力となるので、0.002〜0.015%とした。
Nは、本発明中、最も重要な元素である。高いN量は、粗大なTiNを生成させる一つの原因となり、かつ固溶N量も増大させるので、特に溶接部において高いCTOD値を確保することは困難となる。そこで、Nを0.003%以下に抑えることがHAZ部での高CTOD特性を向上させる本発明の眼目である。また、HAZ靱性とCTOD特性をより向上させるため、添加量は0.002%以下が好ましい。
【0019】
以上が、本発明が対象とする鋼の基本成分であるが、母材強度の向上や低温靱性・溶接性の改善を目的とした低炭素等量化のために、要求される品質特性、又は鋼材の大きさ・鋼板厚に応じて本発明で規定する合金元素(Cu、Ni、Nb、V、Cr、Mo、B)を強度・低温靱性・溶接性を向上する観点から、1種又は2種以上を添加しても本発明の効果は何ら損なわれることはない。
Cuは、鋼材の強度、靱性を向上させるために有効であるが、1.0%を超えるとHAZ靱性を低下させることから、1.0%を上限とする。
Niは、鋼材の強度、靱性を向上させるために有効であるが、Ni量の増加は製造コストを上昇させるので、1.5%を上限とする。
【0020】
Nbは、焼入れ性を向上させることにより母材の強度を向上させる有功な元素であるが、過剰な添加は粗大なNbCN析出物を生成せしめ、脆性破壊の発生核となることがあるので、0.05%を上限とした。
V、Cr、Moについても同様な効果を有することから、それぞれ0.1%、0.6%、0.6%を上限とした。
Bは、HAZ靱性に有害な粒界フェライトの粗大化、フェライトサイドプレートの成長抑制から有効であるが、過剰な添加は不必要に焼き入れ性を増大させ、特にショートアークを行った鋼板表面の硬度を著しく高め、場合によっては割れを生じさせることもあるので、0.0002%〜0.003%とした。
更に、Alに加えて、Ca、Mg、REMの脱酸元素を1種又は2種以上添加しても本発明の効果は何ら損なわれる事はない。ただし過剰な添加は粗大な酸化物生成の原因となり、粗大な酸化物や介在物が脆性破壊の発生核となる可能性もあるので、それぞれ0.0002〜0.003%、0.0002〜0.005%、0.001〜0.05%とした。
【0021】
次に、本発明でTi/N比を限定する理由を述べる。たとえNを極低化しても、Nがフリーの状態で鋼中に固溶するのは、HAZ靱性の観点から好ましくなく、少なくともTi/N重量比で1.0以上必要であるが、一方、Ti過剰な状態が過ぎると、フリーのTiがHAZ靱性に有害であるので、Ti/N比が6.0以下であることが必要である。
【0022】
【実施例】
表1及び表2に示した化学成分の鋼板を試作した。A1、B1、C〜Hが本発明鋼であり、A2、B2、J〜Rが比較鋼である。成分的には、A1とA2及びJ、B1とB2及びK、CとL、DとM、EとN、FとP、GとQ、HとRがほぼ一致しており、本発明鋼のTi量は、いずれも0.002〜0.005%、N量はいずれも0.003%以下、特にA1、B1、C〜E及びHは0.002%以下、またTi/N比は1.0〜6.0の範囲である。これに対し、比較鋼A2、B2は、発明鋼A1、B1と全く同じ化学成分、成分量を有している。また、比較鋼JはTi添加なし、N量は本発明範囲外、比較鋼K、M、P、QはTi量、N量のいずれか、又は両方が本発明の範囲外である。比較鋼NはVが本発明の請求項3の範囲を超えており、比較鋼LはCaが請求項4の範囲を超えている。また比較鋼L、QはTi/N比が、それぞれ本発明範囲を超えている。
【0023】
【表1】
【0024】
【表2】
【0025】
また、表3に示したTiNの個数については、本発明鋼A1、B1、C〜Hにおいて、粒径0.01〜0.1μm:5×105 〜5×106 個/mm2 、粒径0.01〜0.05μm:4×106 個/mm2 以下、粒径0.07〜0.1μm:5×104 個/mm2 以上、粒径0.5μm以上:10個/cm2 以下の範囲を満足している。これに対し、比較鋼JはTi添加なしであるためTiNは観察されず、比較鋼A2、B2、K、M、P、Rは粒径0.01〜0.1μm:5×105 〜5×106 個/mm2 の範囲を外れ、比較鋼A2、K、M、N、Pは粒径0.01〜0.05μm:4×106 個/mm2 以下の範囲を超え、比較鋼A2、Rは粒径0.07〜0.1μm:5×104 個/mm2 以上の範囲を下回っている。また、比較例B2、M〜Rは粒径0.5μm以上:10個/cm2 以下の範囲を超えている。なお、比較鋼A2、B2は鋳造後の鋳片の冷却条件が、A1、B1と異なっている。
【0026】
【表3】
【0027】
表4には、本発明鋼、及び比較鋼の溶接条件、及びHAZ靱性評価、CTODの結果を示す。本発明鋼、及び比較鋼は、いずれも転炉溶製し、連続鋳造にて280mm厚鋳片に鋳造後、加熱圧延にて表4に示す所定の板厚に仕上げた。試作した鋼板は、それぞれ表4に示す溶接法にて1パス溶接を行い、溶接ボンド部の靱性を評価した。すなわち溶接法としては、フラックスバッキング溶接(FB)、エレクトロガス溶接(EG)、エレクトロスラグ溶接(ES)を用い、それぞれ()内に示す適切な溶接入熱にて溶接を行った。また、溶接ボンド部靱性はシャルピー試験により評価した。評価温度は表4に示すとおりで、それぞれの鋼板成分で要求される典型的な温度を採用した。シャルピー試験の繰返し数は3(N=3)である。
【0028】
【表4】
【0029】
まず化学成分的に、発明鋼と比較鋼との比較を行う。鋼A1と鋼Jとの結果を比較すると、Ti含有の差、極低N量の効果は明白であり、溶接入熱の高いフラックスバッキング溶接において、HAZ靱性の差は極めて顕著に現れる。鋼B1と鋼Kとを比較すると、フラックスバッキング溶接、エレクトロガス溶接、いずれの溶接においても鋼B1のHAZ靱性が優れている。特に、入熱の高いエレクトロガス溶接を実施したときの、衝撃吸収エネルギーの最小値の差は大きい。同様の比較は鋼Dと鋼M、鋼Eと鋼Nでも見られる。また、鋼Cと鋼Lとの比較では、鋼CのHAZ靱性が非常に良好なのに対し、鋼Lでは、Ti量が多いのでTi/N比の適正範囲の逸脱、及び高Ca量によりHAZ靱性が大幅に低下している。同様に、鋼Gと鋼Qとの比較でも、鋼Qの過剰Ti量によるTi/N比の適正範囲の逸脱が、HAZ靱性の低下に大きく影響している。
【0030】
次に、TiNのそれぞれの粒径の個数について発明鋼と比較鋼との比較を行う。鋼A1と鋼Jとの結果を比較すると、Ti含有の差、極低Nの効果は明白である。鋼A1においては、各粒径におけるTiNの個数が、規定範囲に納まっている。一方、鋼Jは、母材中にTiNの結晶が存在しない。この結果、HAZ靱性及びCTOD値の差は極めて顕著に現れている。鋼Eと鋼Nとを比較すると、鋼Nは、粒径0.01〜0.05μm及び0.5μm以上のTiNの個数が規定範囲を逸脱しているため、HAZ靱性及びCTOD値が低下している。また、鋼M、N、P、Q、Rは、前記のように0.5μm以上の粒径を有するTiNが所定の個数以上であるため、それぞれの試験温度において充分なCTOD値が得られていない。
また、鋼Gと鋼QはTiN粒径0.5μm以上の個数が大きく異なることからHAZ靱性及びCTOD値が大幅に異なっている。
【0031】
更に、化学成分及び成分量は等しいが、鋳造後の鋳片の冷却条件が異なることでTiNの個数が異なる発明鋼A1、B1と比較鋼A2、B2との比較を行う。このように、鋳造後の鋳片を冷却段階で900〜1300℃で10分間以上保持し、この範囲で、温度、保持時間を調整できなければ、比較鋼A2のように、TiNの個数が、規定範囲を逸脱し、HAZ靱性を大きく低下させることが分かる。また、1200〜1300℃程度の高温で60分以上保持すると、TiNの粗大化現象が生じ、比較鋼B2のように0.5μm以上のTiNの個数が増加してしまうので、高いCTOD値を得ることはできなくなる。つまり、本発明においては、各粒径におけるTiNの個数を規定範囲に納めることが重要となるが、それには、化学成分、成分量及び鋳造後の鋳片適正な温度、保持時間が重要な要因となる。
【0032】
以上の結果から、本発明の効果は明らかであり、母材中のNを、N:0.003%以下と低減し、Ti/N比を1.0〜6.0に保ちながらTiを添加し、溶接前の鋼材中に粒径0.01〜0.1μmのTiNを5×105 〜5×106 個/mm2 存在させ、かつ0.5μm以上の粗大TiNの存在を抑制することにより、溶接HAZ靱性、とりわけ大入熱の溶接ボンド部靱性を安定かつ向上させ高CTODを保証することが可能となった。本発明により、近年の鋼構造物の大型化に伴う使用鋼材の厚手化、建造コストの削減、建造の高能率化の点から進められる溶接大入熱化に伴う溶接部靱性確保が可能となり、産業界が享受可能な経済的利益は多大なものがあると考えられる。
【0033】
【発明の効果】
本発明は、Nを0.003%以下にすることで固溶Nを低減し、Ti/N比を1.0〜6.0にすることで、Ti過剰、及びN過剰を抑制し、更に、TiNの粒子の粒径、及び個数を規定することで、大入溶接下でのTiNによるピンニング効果、固溶Ti、固溶N、TiC析出効果、更に脆性破壊の発生核となる粗大なTiNの排除を配慮した、溶接熱影響部靱性に優れた高CTOD保証低温用鋼を製造できる。特に、大入熱溶接を適用した溶接継手部においてでも、−50℃における低温環境下で0.1mm以上の限界CTOD値を安定して確保できるので、脆性破壊の発生を抑制する必要のある重要鋼構造物の鋼材として使用できるものである。
【図面の簡単な説明】
【図1】母材及び再現溶接ボンド部のTiNの粒径分布のグラフである。
【図2】HAZ靱性に及ぼす粒径0.01〜0.1μmのTiN個数の影響を示したグラフである。
【図3】HAZ靱性に及ぼす粒径0.01〜0.05μmのTiN個数の影響を示したグラフである。
【図4】HAZ靱性に及ぼす粒径0.07〜0.1μmのTiN個数の影響を示したグラフである。
【図5】HAZ靱性に及ぼすN量の影響を示したグラフである。
【図6】粒径別TiNの個数と、−50℃における大入熱溶接部の限界CTOD値の関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a steel structure such as an LPG tank, a tank part of an LPG carrier (tanker), and a member that supports the LNG tank in an LNG tanker, and is designed on the assumption that it is used in a low temperature environment of -50 ° C. The present invention also relates to a structural structural steel for welding having a high CTOD value, which is a fracture toughness value, even in a joint portion to which large heat input welding is applied.
[0002]
[Prior art]
With the Great Hanshin Earthquake, there is a growing need to prevent brittle fracture. In order to prevent brittle fracture, it is necessary to ensure a high fracture toughness value in the steel material and its welded portion. CTOD values are widely used as fracture toughness values, and marine structures and important buildings have the requirements of construction owners and designers to ensure the CTOD values of welded joints. Since the CTOD value varies greatly, it is extremely difficult to guarantee the CTOD value.
On the other hand, the absorbed energy in the V-notch Charpy impact test by the Charpy test has been widely used as a measure of toughness. In order to ensure the toughness of the weld, various measures have been proposed from the steel side. Among them, the most widely used one is, for example, HAZ (welding heat affected zone: Heat) by dispersing fine Ti nitride (hereinafter referred to as TiN) in steel such as Japanese Patent Publication No. 55-26164. (Affected Zone) is a method of suppressing the growth of austenite grains and improving toughness. In addition, a method of improving the HAZ toughness by utilizing a composite precipitate of TiN and MnS as ferrite-forming nuclei of HAZ in JP-A-3-264614 has been proposed. Among the HAZ, it is well known that the toughness of the boundary portion with the weld metal (hereinafter referred to as a weld bond portion) is the lowest, but this is because the weld bond portion where the maximum temperature reached 1400 ° C. This is because the grain growth is remarkable and the structure of the weld bond becomes rough, which suppresses the growth of austenite grains by the dispersion of TiN and improves the toughness by refining the final bond structure. This is the basic concept of using TiN.
[0003]
[Problems to be solved by the invention]
Several techniques for improving the HAZ toughness by the Charpy test using the TiN utilization technique have been proposed. However, even in a welded joint where high absorbed energy is obtained by the Charpy test, a low value of 0.05 mm or less often occurs when the CTOD test is performed, and it is difficult to guarantee the CTOD value.
Furthermore, if TiN with various particle sizes and numbers is dispersed in the steel material, due to the difference in the welding method and the maximum temperature reached, some TiN will dissolve in the steel material, reducing the HAZ toughness. In addition, some of them cause a reduction in the HAZ toughness due to coarsening in the steel material, and there is a problem that it is difficult to improve the HAZ toughness in the end.
The present invention has been made in view of such circumstances, and in order to provide a steel material capable of guaranteeing a CTOD value of 0.1 mm or more even in a low temperature environment of −50 ° C. in a CTOD test greatly varying in a welded portion. It is an object to provide a high CTOD guarantee low temperature steel excellent in welding heat affected zone toughness by defining the amount of N, Ti / N ratio, TiN grain size, and the number of grain sizes.
The required CTOD value at the design temperature is 0.05 mm or more or 0.1 mm or more depending on the concept of fracture prevention design, but when the fracture toughness value is a CTOD value of 0.05 mm or less. If there is a welding defect (for example, 20 to 30 mm) or the like of the steel material used, there is a risk of brittle fracture even under a design stress that is about 1/2 to 2/3 of the yield point. Such a structure that is stored at a low temperature may cause a serious problem. If a CTOD value of 0.1 mm or more can be guaranteed and the existence of defects larger than the plate thickness can be denied by non-destructive inspection, brittle fracture will occur even under design stress or when the stress is about 1.2 times the design stress. Is not expected to occur.
[0004]
[Means for Solving the Problems]
The high CTOD guaranteed low-temperature steel according to the present invention in accordance with the above object is in mass%, C: 0.04-0.15%, Si: 0.050-0.50%, Mn: 0.80-2. Components of 0%, P: 0.015% or less, S: 0.01% or less, Al: 0.001-0.06%, Ti: 0.002-0.015%, N: 0.003% or less And the balance is made of iron and inevitable impurities, and Ti / N satisfies 1.0 to 6.0, and the particle size of the steel before welding is 0.01 to 0.00. 1 μm TiN is 5 × 10 Five ~ 5x10 6 Piece /
Here, 4 × 10 TiN having a particle size of 0.01 to 0.05 μm in the steel material is used. 6 Piece / mm 2 By making the following, after welding, TiN dissolves and disappears, so that the increase in the amount of solute Ti and solute N in the base metal is suppressed, and coarse TiN that becomes a starting point of brittle fracture is generated. By suppressing the presence, a structural steel for welding that can guarantee a high CTOD value in the weld heat affected zone is obtained.
[0005]
Also in the steel of TiN with a particle size of 0.07 to 0.1
Furthermore, it is preferable that N is 0.002% or less by mass%. Thereby, solid solution N can be reduced significantly.
[0006]
And in the steel materials, Cu: 1.0% or less, Ni: 1.5% or less, Nb: 0.05% or less, V: 0.1% or less, Cr: 0.6% or less, Mo: 0 0.6% or less, B: 0.0002 to 0.003% of one or more components, or, or, Ca: 0.0002 to 0.003%, Mg: 0.0002 to 0 It is preferable to have one or more components of 0.005% and REM: 0.001 to 0.05%. Here, the addition of Cu, Ni, Nb, V, Cr, Mo, and B can improve the strength of the base material, and improve the low temperature toughness and weldability. Moreover, the deoxidation in steel materials can be performed effectively by addition of Ca, Mg, and REM.
In addition, 5 × 10 TiN having a particle diameter of 0.01 to 0.1 μm is contained in the steel material. Five ~ 5x10 6 Piece / mm 2 In order to make it exist, the cast slab may be held at 900 to 1300 ° C. for 10 minutes or more in the cooling stage. Furthermore, by adjusting the temperature and holding time in this range, the TiN Adjust the particle size and number.
[0007]
The inventor applied a thermal cycle that reproduces the thermal effect of the weld bond to steel sheets having various Ti, N contents and Ti / N ratios, and extensively investigated the structure and toughness. In particular, the particle size and the number of TiN in the base material, which has not been studied in the past, were examined in detail.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
In order to manufacture the high CTOD guaranteed low temperature steel according to one embodiment of the present invention, various tests as shown below were conducted.
FIG. 1 shows a case where a steel plate to which Ti and N are added based on a 0.12% C-0.2% Si-1.3% Mn system is melted in a laboratory, and the heat input is equivalent to 100 kJ / cm. It is a distribution map of the particle size of TiN after and before giving a heat cycle, before and after giving a heat cycle. TiN was observed with a transmission electron microscope, and the particle diameter was calculated as an equivalent circle diameter by image processing. In this case, as a thermal cycle that reproduces the thermal effect of the weld bond, the maximum temperature of the weld bond is 1400 ° C, and the effect of welding heat input is maintained at the heating temperature and the maximum temperature based on measured data. This was achieved by controlling the time and cooling rate. From the figure, the particle size of TiN is 0.01 to 0.1 μm with a peak of 0.04 μm for the base material not affected by welding heat input, and 0.05 to 0 with a peak of 0.13 μm for the weld bond portion. Each is distributed in a range of 15 μm. That is, it can be seen that the particle size of TiN present in the base material is distributed in the range of 0.01 to 0.1 μm. From the above, the TiN state under large welding is that the TiN particle size of 0.05 μm is the boundary, and those smaller than 0.05 μm are dissolved in the base material and solid solution, while larger ones are coarse. It is thought that.
[0009]
Furthermore, in order to clarify how the grain size and number of TiN affect the HAZ toughness, the present inventors applied various steel plates with a thermal cycle test that reproduces the thermal effect of the weld bond. The structure and toughness of the steel sheet that received a certain welding history corresponding to each welding heat input were investigated, and the effect of the welding heat input on the grain size, number and amount of TiN, which is a component of the steel sheet, was investigated. .
[0010]
Below, after taking out a test piece from the steel plate which received the welding history, and cooling to -20 degreeC, the result of having implemented the V notch Charpy test is shown.
FIG. 2 shows a steel cycle in which Ti and N are added based on a 0.10% C-0.2% Si-1.3% Mn system, and a thermal cycle corresponding to a heat input of 100 kJ / cm. Is used as a test piece, and the impact absorption energy value (vE-20 ° C. (J)) of the test piece and the particle diameter of 0.01 to 0. 0 existing in the test piece before applying the thermal cycle. It is a result figure which investigated the relationship with the number of TiN of 1 micrometer. This test shows that the higher the impact absorption energy value, the better the toughness.
[0011]
As a result of quantifying the number of TiN particles having a particle diameter of 0.01 to 0.1 μm present in the test piece before the thermal cycle using a transmission electron microscope, the number of TiNs was 5 × 10. Five ~ 5x10 6 Piece / mm 2 In this range, the impact absorption energy value was as high as 100 to 260 J. However, the number of TiN is 5 × 10 Five Piece / mm 2 When the value is less than the value, the impact absorption energy value decreases, and 5 × 10 6 Piece / mm 2 Decreases when more. That is, the number of TiN is 5 × 10. Five Piece / mm 2 When the temperature is less than 1, under the heat cycle of high heat input welding, TiN present in the base material dissolves as Ti and N in the steel, so that a sufficient amount of TiN to suppress the crystal grain growth of the base material. Can not be secured. As a result, the pinning effect of TiN cannot be exhibited, the crystal grains in the base material become large, and the toughness is reduced. On the other hand, 5 × 10 6 Piece / mm 2 When the amount is larger, this is because the amount of TiN present in the base metal is excessively dissolved as Ti and N under the heat cycle of high heat input welding, and the heat cycle is coarse in the base material. It is considered that the increase in TiN that is converted causes a reduction in shock absorption energy. The coarse TiN is considered to be the starting point of destruction and lower the impact absorption energy value. Therefore, the number of TiN particles having a particle size of 0.01 to 0.1 μm present in the steel material before welding is 5 × 10. Five ~ 5x10 6 Piece / mm 2 By making it, it becomes possible to set it as the high CTOD guarantee low temperature steel excellent in the weld bond part toughness.
[0012]
Next, FIG. 3 is a diagram plotted by paying attention to TiN of 0.05 μm or less obtained by comparing the particle size distribution of TiN in the base material portion and the weld bond portion in FIG. Note that FIG. 3 shows that the number of TiN of 0.01 to 0.1 μm in FIG. Five ~ 5x10 6 Piece / mm 2 The relationship between the impact absorption energy value of the test piece and the number of TiN particles having a particle diameter of 0.01 to 0.05 μm existing in the test piece before the heat cycle was investigated. As a result of quantifying the number of TiN particles having a particle diameter of 0.01 to 0.05 μm present in the test piece before the thermal cycle using a transmission electron microscope, the number of TiNs was 4 × 10. 6 Piece / mm 2 In the following range, the impact absorption energy value was as high as 150 to 260 J. However, the number of TiN is 4 × 10 6 Piece / mm 2 When it is more, the shock absorption energy value decreases. This is considered to be caused by TiN having a particle size of 0.01 to 0.05 μm dissolved as Ti and N in the base material by the thermal cycle. Therefore, a smaller particle size such as a particle size of 0.01 to 0.05 μm is preferable, so 4 × 10 6 Piece / mm 2 It was defined as follows.
[0013]
FIG. 4 shows that the number of TiN of 0.01 to 0.05 μm in FIG. 6 Piece / mm 2 It is the result of investigating the relationship between the impact absorption energy value of the test piece and the number of TiN particles having a particle size of 0.07 to 0.1 μm existing in the test piece before the thermal cycle, using the following test piece. As a result of quantifying the number of TiN particles having a particle diameter of 0.07 to 0.1 μm present in the test piece before the heat cycle using a transmission electron microscope, the number of TiNs was 5 × 10. Four Piece / mm 2 In the above range, the impact absorption energy value was as high as 235 to 255 J. However, the number of TiN is 5 × 10 Four Piece / mm 2 When the amount is smaller, the impact absorption energy value decreases. The particle size of TiN that remains stably melted at the weld bond portion of high heat input welding is 0.07 μm or more. That is, since TiN having a particle size of 0.07 to 0.1 μm remains undissolved under high heat input welding at a peak temperature of 1400 ° C. or higher, the number of TiN particles having a particle size of 0.07 to 0.1 μm is determined. 5 × 10 Four Piece / mm 2 By setting it as the above, it becomes possible to set it as the high CTOD guarantee low temperature steel excellent in the weld bond part toughness.
[0014]
FIG. 5 shows a laboratory cycle of a steel sheet based on 0.12% C-0.2% Si-1.3% Mn and added with Ti and N, and a thermal cycle corresponding to a heat input of 150 kJ / cm. It is the result of investigating the relationship between the impact absorption energy value (vE-20 ° C.) of the test piece collected from the test piece and the N amount existing in the test piece before the thermal cycle. As can be seen from the figure, the impact absorption energy changes greatly with the N amount of 0.002% as a boundary. In other words, by limiting the N content to 0.002% or less, the N content is reduced, and as a result, the amount of N dissolved in the base material can be reduced, and the high CTOD guaranteed low temperature steel with excellent weld bond toughness and It becomes possible to do.
[0015]
Next, a CTOD test was carried out using these heat cycle applied samples. The test temperature was -50 ° C. At each temperature, the fracture surface was observed, and the brittle fracture initiation point was observed with a scanning electron microscope. As a result, it was found that coarse TiN is the starting point of brittle fracture. As a result of arranging the size of TiN that is the starting point by the equivalent circle diameter, it was found that the presence of TiN of about 0.6 μm can be the starting point of destruction. If these coarse TiNs are present at the crack tip, brittle fracture occurs, and the variation in CTOD values indicates whether this coarse TiN exists at the fatigue crack tip of the CTOD specimen. It was confirmed that it greatly depends on the probability. As a result of detailed investigation of the structure in the vicinity of the fatigue crack tip, it was found that even if TiN of a size of less than 0.5 μm exists, it is not the core of brittle fracture, and a coarse TiN of 0.5 μm or more. It has been found that a high CTOD value can be obtained by suppressing the presence of.
In order to clarify the allowable size and existence probability (number) of coarse TiN of the present invention, the relationship between the number of TiN having a size of 0.5 μm or more and the critical CTOD value at −50 ° C. is shown in FIG. TiN with a particle size of 0.01-0.1 μm is 5 × 10 Five ~ 5x10 6 Piece / mm 2 There is data A when it exists (in the scope of the present invention). In this case, the number of TiN having a particle size of 0.5 μm or more is 10 /
Therefore, at a use temperature of −50 ° C., 0.5 μm more than It is desirable to reduce the existence probability of TiN. The allowable size and existence probability (number) of the coarse TiN of the present invention are determined based on the above examination results.
[0016]
Next, the reason why the chemical composition (mass%) of the high CTOD guaranteed low temperature steel excellent in weld heat affected zone toughness is limited as described above will be described.
C is the most effective element for improving the strength. However, if the amount of C is high, the cementite phase fraction becomes high, or island martensite is likely to be formed in the welded portion, which causes brittle fracture. (Hereinafter referred to as brittle fracture nuclei) increases. Therefore, excessive addition exceeding 0.15% is not preferable, but on the other hand, when C is 0.04% or less, it becomes difficult to ensure the strength as structural steel, so the lower limit is made 0.04%.
Si is effective as a strength improving element and is also useful as a deoxidizing element for inexpensive molten steel, but when it exceeds 0.50%, it promotes the formation of island martensite in the weld. On the other hand, if it is less than 0.050%, the effect of improving the strength is insufficient, and expensive deoxidizing elements such as Ti and Al need to be frequently used, so the content is limited to 0.050 to 0.50%.
Mn is a useful element that improves the strength while suppressing the C content. Since C is suppressed to 0.15% or less, the required lower limit of Mn is set to 0.80% from the viewpoint of securing strength. On the other hand, addition of Mn exceeding 2.0% unnecessarily increases the strength and inhibits the base metal toughness and weldability, so it is limited to 0.80 to 2.0%.
[0017]
P was limited to 0.015% or less from the viewpoint of base material toughness. In addition, although P as an impurity is so preferable that it is as low as possible, when considering also economical efficiency, 0.005% or less is preferable from the point of weldability.
S was limited to 0.01% or less from the viewpoint of base material toughness. Note that S as an impurity is preferably as low as possible, but is preferably 0.005% or less from the viewpoint of weldability and workability in consideration of economy.
Al is an element necessary for deoxidation like Si, and the lower limit is set to 0.001%, and excessive addition exceeding 0.06% is limited to 0.001 to 0.06% in order to impair HAZ toughness. did.
[0018]
Ti is combined with N to form TiN in the steel, so 0.002% or more and Ti / N ratio is added in the range of 1.0 or more and 6.0 or less. However, if added over 0.015%, the effect of improving the HAZ toughness due to the extremely low N, which is the eye of the present invention, is reduced, and even higher Ti becomes the driving force to coarsen TiN, so 0.002 to 0.015%.
N is the most important element in the present invention. A high N amount is one cause of generating coarse TiN and also increases a solid solution N amount, so that it is difficult to secure a high CTOD value particularly in a welded portion. Therefore, suppressing N to 0.003% or less is the eye of the present invention that improves the high CTOD characteristics in the HAZ part. Moreover, in order to improve HAZ toughness and CTOD characteristic more, the addition amount is preferably 0.002% or less.
[0019]
The above are the basic components of steel targeted by the present invention, but the required quality characteristics or steel materials for the purpose of reducing the carbon equivalent for the purpose of improving the base metal strength and improving low temperature toughness and weldability One or two alloy elements (Cu, Ni, Nb, V, Cr, Mo, B) specified in the present invention depending on the size of steel and the thickness of steel plate from the viewpoint of improving strength, low temperature toughness and weldability Even if it adds the above, the effect of this invention is not impaired at all.
Cu is effective for improving the strength and toughness of the steel material, but if it exceeds 1.0%, the HAZ toughness is lowered, so 1.0% is made the upper limit.
Ni is effective for improving the strength and toughness of the steel material, but an increase in the amount of Ni increases the manufacturing cost, so the upper limit is 1.5%.
[0020]
Nb is an effective element that improves the strength of the base material by improving the hardenability. However, excessive addition may generate coarse NbCN precipitates, which may cause brittle fracture nuclei. 0.05% was made the upper limit.
Since V, Cr, and Mo have the same effect, the upper limit was set to 0.1%, 0.6%, and 0.6%, respectively.
B is effective from the coarsening of grain boundary ferrite harmful to HAZ toughness and the suppression of the growth of ferrite side plates. However, excessive addition unnecessarily increases the hardenability, especially on the surface of a steel sheet subjected to a short arc. Hardness was remarkably increased, and cracks might be generated in some cases, so the content was made 0.0002% to 0.003%.
Furthermore, the effect of the present invention is not impaired at all even if one or more deoxidizing elements such as Ca, Mg, and REM are added in addition to Al. However, excessive addition causes the formation of coarse oxides, and the coarse oxides and inclusions may become nuclei of brittle fracture, so 0.0002 to 0.003% and 0.0002 to 0, respectively. 0.005% and 0.001 to 0.05%.
[0021]
Next, the reason for limiting the Ti / N ratio in the present invention will be described. Even if N is made extremely low, it is not preferable from the viewpoint of HAZ toughness that N is dissolved in the steel in a free state, and at least a Ti / N weight ratio of 1.0 or more is necessary. When the Ti-excess state passes, free Ti is harmful to the HAZ toughness, so the Ti / N ratio needs to be 6.0 or less.
[0022]
【Example】
Steel plates having the chemical components shown in Tables 1 and 2 were made on a trial basis. A1, B1, and C to H are steels of the present invention, and A2, B2, and J to R are comparative steels. In terms of components, A1 and A2 and J, B1 and B2 and K, C and L, D and M, E and N, F and P, G and Q, and H and R are almost the same. Ti content is 0.002-0.005% for all, N content is 0.003% or less, especially A1, B1, C-E and H are 0.002% or less, and Ti / N ratio is It is in the range of 1.0 to 6.0. In contrast, the comparative steels A2 and B2 have the same chemical components and component amounts as the inventive steels A1 and B1. Further, the comparative steel J has no Ti addition, the N amount is outside the scope of the present invention, the comparative steels K, M, P, and Q are either the Ti amount or the N amount, or both are outside the scope of the present invention. In the comparative steel N, V is the claim of the present invention. 3 The comparative steel L is claimed to be Ca. 4 Is out of range. Further, the comparative steels L and Q each have a Ti / N ratio exceeding the range of the present invention.
[0023]
[Table 1]
[0024]
[Table 2]
[0025]
Moreover, about the number of TiN shown in Table 3, in this invention steel A1, B1, C-H, the particle size of 0.01-0.1 micrometer: 5 * 10 Five ~ 5x10 6 Piece / mm 2 , Particle size 0.01-0.05 μm: 4 × 10 6 Piece / mm 2 Hereinafter, particle size 0.07 to 0.1 μm: 5 × 10 Four Piece / mm 2 Or more, particle size of 0.5 μm or more: 10 pieces / cm 2 The following ranges are satisfied. On the other hand, TiN is not observed since Comparative Steel J has no Ti addition, and Comparative Steels A2, B2, K, M, P, and R have a particle size of 0.01 to 0.1 μm: 5 × 10. Five ~ 5x10 6 Piece / mm 2 The comparative steels A2, K, M, N, and P have a particle size of 0.01 to 0.05 μm: 4 × 10. 6 Piece / mm 2 Exceeding the following range, comparative steels A2 and R have a particle size of 0.07 to 0.1 μm: 5 × 10 Four Piece / mm 2 It is below the above range. Comparative Examples B2 and M to R have a particle size of 0.5 μm or more: 10 / cm 2 The following range is exceeded. In comparison steels A2 and B2, the cooling conditions of the cast slab after casting are different from those of A1 and B1.
[0026]
[Table 3]
[0027]
Table 4 shows the welding conditions, the HAZ toughness evaluation, and the CTOD results of the steel of the present invention and the comparative steel. The steel of the present invention and the comparative steel were both melted in a converter, cast into a 280 mm thick cast piece by continuous casting, and finished to a predetermined plate thickness shown in Table 4 by hot rolling. Each of the prototype steel plates was subjected to one-pass welding by the welding method shown in Table 4, and the toughness of the weld bond portion was evaluated. That is, as the welding method, flux backing welding (FB), electrogas welding (EG), and electroslag welding (ES) were used, and welding was performed with appropriate welding heat input shown in parentheses. The weld bond toughness was evaluated by a Charpy test. The evaluation temperatures are as shown in Table 4, and typical temperatures required for each steel plate component were adopted. The number of repetitions of the Charpy test is 3 (N = 3).
[0028]
[Table 4]
[0029]
First, in terms of chemical composition, the invention steel and the comparative steel are compared. Comparing the results of Steel A1 and Steel J, the difference in Ti content and the effect of the extremely low N amount are obvious, and the difference in HAZ toughness appears remarkably in flux backing welding with high welding heat input. When steel B1 and steel K are compared, the HAZ toughness of steel B1 is excellent in both flux backing welding and electrogas welding. In particular, the difference in the minimum value of the shock absorption energy when performing electrogas welding with high heat input is large. Similar comparisons can be seen for Steel D and Steel M, Steel E and Steel N. Moreover, in comparison between steel C and steel L, the HAZ toughness of steel C is very good, whereas in steel L, the amount of Ti is large, so the deviation of the Ti / N ratio from the proper range and the high Ca content cause HAZ toughness. Has fallen significantly. Similarly, also in the comparison between steel G and steel Q, the deviation of the appropriate range of the Ti / N ratio due to the excess amount of Ti in steel Q greatly affects the reduction in HAZ toughness.
[0030]
Next, the invention steel and the comparative steel are compared with respect to the number of TiN particles. Comparing the results of Steel A1 and Steel J, the difference in Ti content, the effect of extremely low N, is obvious. In the steel A1, the number of TiNs in each particle size is within the specified range. On the other hand, Steel J has no TiN crystal in the base material. As a result, the difference between the HAZ toughness and the CTOD value is very remarkable. When steel E and steel N are compared, the number of TiN particles having a particle size of 0.01 to 0.05 μm and 0.5 μm or more deviates from the specified range in steel N, so that HAZ toughness and CTOD value are reduced. ing. In addition, since the steels M, N, P, Q, and R have a predetermined number or more of TiN having a particle diameter of 0.5 μm or more as described above, sufficient CTOD values are obtained at the respective test temperatures. Absent.
Steel G and steel Q are greatly different in HAZ toughness and CTOD value because the number of TiN grains having a particle size of 0.5 μm or more is greatly different.
[0031]
Furthermore, the steels A1 and B1 and the comparative steels A2 and B2 in which the number of TiN is different due to different cooling conditions of the cast slab after being cast are compared. Thus, the cast slab is held at 900 to 1300 ° C. for 10 minutes or more in the cooling stage, and if the temperature and holding time cannot be adjusted within this range, the number of TiNs as in Comparative Steel A2, It is understood that the HAZ toughness is greatly reduced by deviating from the specified range. In addition, when held at a high temperature of about 1200 to 1300 ° C. for 60 minutes or more, a TiN coarsening phenomenon occurs, and the number of TiNs of 0.5 μm or more increases as in the comparative steel B2, so that a high CTOD value is obtained. I can't do that. In other words, in the present invention, it is important to keep the number of TiN in each particle size within the specified range, but this is due to factors that are important in terms of chemical components, component amounts, and the appropriate slab temperature and holding time after casting. It becomes.
[0032]
From the above results, the effect of the present invention is clear. N in the base material is reduced to N: 0.003% or less, and Ti is added while maintaining the Ti / N ratio at 1.0 to 6.0. And 5 × 10 TiN having a particle size of 0.01 to 0.1 μm in the steel before welding. Five ~ 5x10 6 Piece / mm 2 By making it exist and suppressing the presence of coarse TiN of 0.5 μm or more, it has become possible to stably improve the weld HAZ toughness, especially the weld bond toughness of high heat input, and to ensure high CTOD. By the present invention, it becomes possible to secure the toughness of the welded part due to the increase in the heat input of welding that is advanced from the viewpoint of the thickening of the steel material used with the recent increase in the size of the steel structure, the reduction of the construction cost, and the improvement of the efficiency of the construction, The economic benefits that can be enjoyed by the industry are thought to be enormous.
[0033]
【The invention's effect】
The present invention reduces solid solution N by making N 0.003% or less, and suppresses Ti excess and N excess by making Ti / N ratio 1.0 to 6.0, By defining the particle size and the number of TiN particles, the pinning effect by TiN under large welding, solid Ti, solid N, TiC precipitation effect, and coarse TiN that becomes the nucleus of brittle fracture High CTOD guaranteed low temperature steel with excellent weld heat affected zone toughness can be manufactured. In particular, even in welded joints to which high heat input welding is applied, a critical CTOD value of 0.1 mm or more can be stably secured in a low temperature environment at −50 ° C., so it is important to suppress the occurrence of brittle fracture It can be used as a steel material for steel structures.
[Brief description of the drawings]
FIG. 1 is a graph of the particle size distribution of TiN in a base material and reproduced weld bond.
FIG. 2 is a graph showing the influence of the number of TiN particles having a particle size of 0.01 to 0.1 μm on HAZ toughness.
FIG. 3 is a graph showing the influence of the number of TiN particles having a particle size of 0.01 to 0.05 μm on HAZ toughness.
FIG. 4 is a graph showing the influence of the number of TiN particles having a particle size of 0.07 to 0.1 μm on HAZ toughness.
FIG. 5 is a graph showing the effect of N amount on HAZ toughness.
FIG. 6 is a graph showing the relationship between the number of TiNs by grain size and the critical CTOD value of a high heat input weld at −50 ° C.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000063632A JP4299431B2 (en) | 2000-03-08 | 2000-03-08 | High CTOD guaranteed low temperature steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000063632A JP4299431B2 (en) | 2000-03-08 | 2000-03-08 | High CTOD guaranteed low temperature steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001247932A JP2001247932A (en) | 2001-09-14 |
JP4299431B2 true JP4299431B2 (en) | 2009-07-22 |
Family
ID=18583466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000063632A Expired - Lifetime JP4299431B2 (en) | 2000-03-08 | 2000-03-08 | High CTOD guaranteed low temperature steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4299431B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5207914B2 (en) * | 2008-10-20 | 2013-06-12 | 株式会社神戸製鋼所 | Thick steel plate with excellent toughness of base metal and weld heat affected zone |
CN105980588B (en) * | 2013-12-12 | 2018-04-27 | 杰富意钢铁株式会社 | Steel plate and its manufacture method |
US10316385B2 (en) | 2014-03-31 | 2019-06-11 | Jfe Steel Corporation | High-tensile-strength steel plate and process for producing same |
CN109161789B (en) * | 2018-08-17 | 2020-09-25 | 南京钢铁股份有限公司 | Low-temperature steel plate for LPG ship and production method thereof |
-
2000
- 2000-03-08 JP JP2000063632A patent/JP4299431B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001247932A (en) | 2001-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5172970B2 (en) | Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part | |
EP1736562A1 (en) | Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding | |
WO2013147197A1 (en) | High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same | |
RU2393262C1 (en) | Steel sheet for hidden arc welding | |
KR20210136132A (en) | Manufacturing method of high strength welded joint for cryogenic use | |
JP4311740B2 (en) | Thick steel plate with high heat input welded joint toughness | |
WO2012108517A1 (en) | Weld metal with excellent creep characteristics | |
KR20030011148A (en) | Ferritic heat-resistant steel | |
JP2018053281A (en) | Rectangular steel tube | |
WO2017183719A1 (en) | High tensile steel and marine structure | |
EP3533891A1 (en) | Steel for high heat input welding | |
JP2003213366A (en) | Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone | |
EP0812646B1 (en) | Method of manufacturing large diameter welded steel pipe having high strength and toughness | |
JP4041447B2 (en) | Thick steel plate with high heat input welded joint toughness | |
WO2016059997A1 (en) | Thick steel plate for tank giving weld heat affected zone with excellent toughness | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JP4299431B2 (en) | High CTOD guaranteed low temperature steel | |
JP2005232515A (en) | Thick steel plate having excellent high heat input welded join toughness | |
JP3898842B2 (en) | Steel sheet with excellent low temperature toughness in the heat affected zone | |
WO2018066573A1 (en) | Austenitic heat-resistant alloy and welding joint using same | |
JP3492282B2 (en) | Welded structural steel with excellent weld heat affected zone toughness | |
JP3817216B2 (en) | Steel materials and steel welded parts with excellent toughness in weld heat affected zone | |
JP2003193178A (en) | Heat resistant low alloy ferritic steel | |
JP2001098340A (en) | Steel for welding structure excellent in heat-affected zone | |
EP3159418A1 (en) | Steel plate and bonded assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090407 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090417 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4299431 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |