JP6691217B2 - Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method of manufacturing the same - Google Patents
Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method of manufacturing the same Download PDFInfo
- Publication number
- JP6691217B2 JP6691217B2 JP2018532057A JP2018532057A JP6691217B2 JP 6691217 B2 JP6691217 B2 JP 6691217B2 JP 2018532057 A JP2018532057 A JP 2018532057A JP 2018532057 A JP2018532057 A JP 2018532057A JP 6691217 B2 JP6691217 B2 JP 6691217B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- low
- yield ratio
- stress corrosion
- corrosion cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 71
- 239000010959 steel Substances 0.000 title claims description 71
- 230000007797 corrosion Effects 0.000 title claims description 45
- 238000005260 corrosion Methods 0.000 title claims description 45
- 238000005336 cracking Methods 0.000 title claims description 44
- 239000000463 material Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000005096 rolling process Methods 0.000 claims description 59
- 238000001816 cooling Methods 0.000 claims description 41
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- 229910001563 bainite Inorganic materials 0.000 claims description 25
- 229910000859 α-Fe Inorganic materials 0.000 claims description 25
- 239000011572 manganese Substances 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 15
- 229910001566 austenite Inorganic materials 0.000 claims description 14
- 239000010955 niobium Substances 0.000 claims description 14
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 5
- -1 % By mass Inorganic materials 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 41
- 229910021529 ammonia Inorganic materials 0.000 description 19
- 230000000694 effects Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材に関する。 The present invention relates to a low yield ratio and high strength steel material having excellent stress corrosion cracking resistance and low temperature toughness.
液化ガス貯蔵用タンクに用いられる鋼材は、液化ガスの種類によって異なるが、通常、ガスの液化温度が常圧で低温(LPGの場合、−52℃)であるため、母材はいうまでもなく、溶接部にも優れた低温靭性が求められてきた。 The steel material used for the liquefied gas storage tank varies depending on the type of liquefied gas, but since the liquefaction temperature of the gas is normal pressure and low temperature (-52 ° C in the case of LPG), it goes without saying that it is the base material. However, excellent low temperature toughness has also been required for welded parts.
また、液体アンモニア(LAG)は、鋼材の応力腐食割れ(SCC:Stress Corrosion Cracking)を起こすことが知られており、IGC CODE(International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk)では、酸素分圧、温度などの製造時における操業条件を規制するとともに、鋼材のNi含有量を5%以下に制限し、実降伏強度を440MPa以下に制限するよう規定している。 In addition, liquid ammonia (LAG) is known to cause stress corrosion cracking (SCC) of a steel material, and in IGC CODE (International Code for Construction of Ships of Cleaning Liquids, Liquid-Ammonia (LAC)). It regulates the operating conditions during manufacturing such as oxygen partial pressure and temperature, limits the Ni content of steel to 5% or less, and limits the actual yield strength to 440 MPa or less.
また、ガスタンク(Gas Tank)用鋼材を溶接してガスタンク(Gas Tank)を製造する場合、溶接部の応力を除去することが重要である。溶接部の応力を除去する方法としては、熱処理によるPWHT(Post Welding Heat Treatment)方法、及び溶接部に静水圧を加えるなどにより応力を除去する機械的応力除去(MSR:Mechanical Stress Relief)方法がある。このうち、機械的応力除去(MSR)方法を用いて溶接部の応力を除去する場合、母材部にも水圧による変形が加えられるため、母材の降伏比を0.8以下に制限している。これは、MSR方法を用いて応力を除去する際に、高圧の水噴射によって母材部に降伏強度以上の変形が加えられる場合、降伏強度と引張強度との比が高いと、降伏が発生、すなわち、引張強度に達して破壊が発生する可能性があるため、降伏強度と引張強度との差が大きくなるように制限するものである。 Moreover, when manufacturing a gas tank (Gas Tank) by welding the steel material for gas tanks (Gas Tank), it is important to remove the stress of a welding part. As a method for removing stress in a welded portion, there is a PWHT (Post Welding Heat Treatment) method by heat treatment, and a mechanical stress relief (MSR: Mechanical Stress Relief) method for removing stress by applying hydrostatic pressure to the welded portion. . Of these, when the stress of the welded portion is removed by using the mechanical stress relief (MSR) method, the base material is also deformed by water pressure, so the yield ratio of the base material is limited to 0.8 or less. There is. This is because, when stress is removed by using the MSR method, when a deformation higher than the yield strength is applied to the base material portion by high-pressure water injection, if the ratio of the yield strength and the tensile strength is high, the yield occurs, That is, since the tensile strength may be reached and fracture may occur, it is limited so that the difference between the yield strength and the tensile strength becomes large.
特に、ガスタンク(Gas Tank)の場合、基本的に大型化する必要があるため、PWHT方法による応力除去が困難である。したがって、多くの造船所では機械的応力除去(MSR)方法を選択しており、ガスタンク(Gas Tank)を製造するための鋼材には、低降伏比特性が求められている。 Particularly, in the case of a gas tank, since it is basically necessary to increase the size, it is difficult to remove stress by the PWHT method. Therefore, many shipyards have selected a mechanical stress relieving (MSR) method, and a steel material for manufacturing a gas tank (Gas Tank) is required to have a low yield ratio characteristic.
このように、LPGとLAGが混在するタンクにおいては、低温靭性と、液体アンモニアの降伏強度の上限規制に伴う低降伏比化と、をともに達成することが大きな課題となっている。 As described above, in a tank in which LPG and LAG are mixed, achieving both low temperature toughness and lowering the yield ratio due to the upper limit regulation of the yield strength of liquid ammonia is a major issue.
一方、特許文献1では、優れた低温靭性を実現するために、6.5%〜12.0%のNiを添加する技術が提案されている。また、特許文献2では、特定の組成の鋼に焼入れ焼戻し処理を施して焼戻し(Tempered)マルテンサイトとベイナイトとを混用する技術が提案されている。
On the other hand,
しかし、一般に、多量のNiを添加すると、原子間の間隔が狭いため、変形されやすいFCC格子構造を有するオーステナイト相が多く生成され、このような変形されやすいFCC格子構造に応力及び腐食環境が繰り返して加えられると、腐食しやすくなり、割れが発生するようになる。したがって、上記発明は、高価なNiの含有量が高いため経済性に劣るという問題があり、応力腐食割れ(SCC)抵抗性の低下を誘発するという問題を有する。 However, in general, when a large amount of Ni is added, the austenite phase having a FCC lattice structure that is easily deformed is generated because the interatomic distance is narrow, and stress and a corrosive environment are repeatedly generated in the FCC lattice structure that is easily deformed. If it is added, it easily corrodes and cracks occur. Therefore, the above-mentioned invention has a problem that it is inferior in economic efficiency due to a high content of expensive Ni, and has a problem of inducing a decrease in stress corrosion cracking (SCC) resistance.
また、特許文献3では、低降伏比化を実現するために、鋼板の表層のみを軟化処理する技術が提案されている。しかし、この技術は、低温靭性及び低降伏比をそれぞれ達成することはできるものの、低温靭性及び低降伏比をともに得ることは困難であるという問題がある。
Further,
一方、鋼材に求められるさらなる特性である鋼材の強度を向上させる方法としては、析出強化、固溶強化、マルテンサイト(Martensite)強化などが挙げられるが、これら方法では、強度は向上させるが、靭性と伸びを劣化させるという問題がある。 On the other hand, as a method for improving the strength of steel, which is a further property required for steel, precipitation strengthening, solid solution strengthening, martensite strengthening, and the like can be mentioned. In these methods, strength is improved, but toughness is improved. There is a problem of deteriorating elongation.
また、様々な製造条件を適用して結晶粒を微細化させることで強度を強化させる場合には、高強度が得られるだけでなく、衝撃靭性遷移温度の減少によって靭性劣化を防止することができるが、結晶粒の微細化による降伏強度の上昇により、アンモニア応力腐食(SCC)が発生し得る降伏強度の上限(440MPa)を超えるようになり、低降伏比の確保が難しくなるという問題がある。 Further, when strengthening the strength by applying various manufacturing conditions to refine the crystal grains, not only high strength can be obtained, but also the toughness deterioration can be prevented by decreasing the impact toughness transition temperature. However, the increase in the yield strength due to the refinement of crystal grains exceeds the upper limit (440 MPa) of the yield strength at which ammonia stress corrosion (SCC) can occur, which makes it difficult to secure a low yield ratio.
したがって、応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材及びその製造方法の開発が求められている状況である。 Therefore, there is a demand for the development of a low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and a manufacturing method thereof.
本発明は、上記従来の問題点に鑑みてなされたものであって、本発明の目的は、応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材及びその製造方法を提供することにある。 The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and a manufacturing method thereof. It is in.
上記目的を達成するためになされた本発明の一態様による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材は、重量%で、炭素(C)を0.02%〜0.10%、マンガン(Mn)を0.5%〜2.0%、シリコン(Si)を0.05%〜0.5%、ニッケル(Ni)を0.05%〜1.0%、チタン(Ti)を0.005%〜0.1%、アルミニウム(Al)を0.005%〜0.5%、ニオブ(Nb)を0.005%以下、リン(P)を0.015%以下、硫黄(S)を0.015%以下含み、残りはFe及びその他の不可避不純物からなり、微細組織は、面積%で、針状フェライト(Acicular Ferrite)が60%以上であり、残りが、ベイナイト(Bainite)、ポリゴナルフェライト(Polygonal Ferrite)、及びMA(Martensite−Austenite constituent)のうちの1種以上からなることを特徴とする。 A low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to one embodiment of the present invention made to achieve the above object is 0.02% to 0.02% by weight of carbon (C). 10%, manganese (Mn) 0.5% to 2.0%, silicon (Si) 0.05% to 0.5%, nickel (Ni) 0.05% to 1.0%, titanium ( Ti) 0.005% to 0.1%, aluminum (Al) 0.005% to 0.5%, niobium (Nb) 0.005% or less, phosphorus (P) 0.015% or less, The content of sulfur (S) is 0.015% or less, the rest is Fe and other unavoidable impurities, the fine structure is% by area, acicular ferrite (Accular Ferrite) is 60% or more, and the rest is bainite ( Bainite), polygonal ferrite (Polyg) nal Ferrite), and characterized by comprising the MA (Martensite-Austenite constituent) 1 or more of.
上記目的を達成するためになされた本発明の一態様による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の製造方法は、重量%で、炭素(C)を0.02%〜0.10%、マンガン(Mn)を0.5%〜2.0%、シリコン(Si)を0.05%〜0.5%、ニッケル(Ni)を0.05%〜1.0%、チタン(Ti)を0.005%〜0.1%、アルミニウム(Al)を0.005%〜0.5%、ニオブ(Nb)を0.005%以下、リン(P)を0.015%以下、硫黄(S)を0.015%以下含み、残りはFe及びその他の不可避不純物からなるスラブを1000℃〜1200℃に加熱する段階と、前記加熱されたスラブを1100℃〜900℃の温度で粗圧延する段階と、前記粗圧延後に、中心部の温度を基準としてAr3+100℃〜Ar3+30℃の温度で仕上圧延する段階と、前記仕上圧延後に、300℃以下の温度まで冷却する段階と、を有することを特徴とする。 The method for producing a high-strength steel material having a low yield ratio and excellent in stress corrosion cracking resistance and low temperature toughness according to one embodiment of the present invention, which is made to achieve the above object, is 0.02% by weight of carbon (C). ~ 0.10%, manganese (Mn) 0.5% to 2.0%, silicon (Si) 0.05% to 0.5%, nickel (Ni) 0.05% to 1.0% , Titanium (Ti) 0.005% to 0.1%, aluminum (Al) 0.005% to 0.5%, niobium (Nb) 0.005% or less, and phosphorus (P) 0.015. % Or less and 0.015% or less of sulfur (S), and the rest of the slab consisting of Fe and other unavoidable impurities is heated to 1000 ° C. to 1200 ° C., and the heated slab is heated to 1100 ° C. to 900 ° C. After the rough rolling at a temperature and after the rough rolling, the temperature of the central portion is used as a reference. A step of finish rolling at Ar 3 + 100 ℃ ~Ar 3 + 30 ℃ temperature after the finish rolling, and having the the steps of cooling to a temperature of 300 ° C. or less.
尚、上記課題を解決するための手段は、本発明の特徴を全て列挙したものではない。本発明の様々な特徴とそれによる利点及び効果は、下記の具体的な実施形態を参照してより詳細に理解される。 It should be noted that the means for solving the above problem does not enumerate all the features of the present invention. The various features of the present invention and the advantages and effects thereof will be understood in more detail with reference to the following specific embodiments.
本発明によれば、合金組成及び微細組織を制御することで、応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材及びその製造方法を提供することができる効果を奏する。 According to the present invention, by controlling the alloy composition and the microstructure, it is possible to provide a low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness, and a manufacturing method thereof.
以下、本発明の好ましい実施形態について説明する。しかし、本発明の実施形態は多様に変形実施することが可能であり、本発明の技術範囲は以下で説明する実施形態に限定されない。また、本発明の実施形態は、当該技術分野における通常の知識を有する者に本発明をより完全に説明するために提供されるものである。 Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be variously modified and implemented, and the technical scope of the present invention is not limited to the embodiments described below. Also, the embodiments of the present invention are provided to more fully explain the present invention to those having ordinary skill in the art.
本発明者らは、アンモニア応力腐食割れ抵抗性と低温靭性とを、同時に優れたものとすることは困難であることを認知し、それを解決するために鋭意研究した。 The present inventors have recognized that it is difficult to simultaneously improve ammonia stress corrosion cracking resistance and low temperature toughness, and have conducted diligent research to solve them.
その結果、合金組成及び微細組織を制御することで、応力腐食割れ抵抗性及び低温靭性の両方に優れた低降伏比高強度鋼材及びその製造方法を提供できることを確認し、本発明を完成するに至った。 As a result, by controlling the alloy composition and the microstructure, it was confirmed that it is possible to provide a low yield ratio high strength steel material excellent in both stress corrosion cracking resistance and low temperature toughness and a method for producing the same, and to complete the present invention. I arrived.
以下、本発明の一実施形態による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材について詳細に説明する。 Hereinafter, a low yield ratio and high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to an embodiment of the present invention will be described in detail.
本発明の一実施形態による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材は、重量%で、炭素(C)を0.02%〜0.10%、マンガン(Mn)を0.5%〜2.0%、シリコン(Si)を0.05%〜0.5%、ニッケル(Ni)を0.05%〜1.0%、チタン(Ti)を0.005%〜0.1%、アルミニウム(Al)を0.005%〜0.5%、ニオブ(Nb)を0.005%以下、リン(P)を0.015%以下、硫黄(S)を0.015%以下含み、残りはFe及びその他の不可避不純物からなり、微細組織は、面積%で、針状フェライト(Acicular Ferrite)が60%以上であり、残りが、ベイナイト(Bainite)、ポリゴナルフェライト(Polygonal Ferrite)、及びMA(Martensite−Austenite constituent)のうちの1種以上からなる。 The low yield ratio and high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to an embodiment of the present invention contains, by weight%, carbon (C) of 0.02% to 0.10% and manganese (Mn). 0.5% -2.0%, silicon (Si) 0.05% -0.5%, nickel (Ni) 0.05% -1.0%, titanium (Ti) 0.005%- 0.1%, aluminum (Al) 0.005% to 0.5%, niobium (Nb) 0.005% or less, phosphorus (P) 0.015% or less, and sulfur (S) 0.015. % Or less, the rest is Fe and other unavoidable impurities, the fine structure is% by area, acicular ferrite (Accular Ferrite) is 60% or more, and the rest is bainite (Bainite), polygonal ferrite (Polygonal ferrite). Ferrite), and And MA (Martensite-Austenite constituent).
先ず、本発明の一実施形態による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の合金組成について詳細に説明する。以下、各成分の含有量は重量%で示す。 First, an alloy composition of a low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to an embodiment of the present invention will be described in detail. Hereinafter, the content of each component is shown by weight%.
C(炭素):0.02%〜0.10%
Cは、基本的な強度を確保するのに最も重要な元素であるため、適切な範囲内で鋼中に含有される必要がある。このような添加効果を得るために、Cは0.02%以上添加される。
C (carbon): 0.02% to 0.10%
Since C is the most important element for ensuring the basic strength, it must be contained in the steel within an appropriate range. In order to obtain such an addition effect, C is added by 0.02% or more.
Cの含有量が0.02%未満であると、強度の低下とともに、降伏比の低下をもたらす。これに対し、Cの含有量が0.10%を超えると、ベイナイトなどの低温変態相が多量に生成され、アンモニア応力腐食割れ(SCC)を誘発させる降伏強度の上限を超えてしまうという問題がある。 When the content of C is less than 0.02%, the yield ratio is reduced together with the reduction in strength. On the other hand, if the C content exceeds 0.10%, a large amount of low-temperature transformation phase such as bainite is generated, which exceeds the upper limit of the yield strength that induces ammonia stress corrosion cracking (SCC). is there.
したがって、Cの含有量は0.02%〜0.10%に限定する。より好ましくは0.05%〜0.08%である。 Therefore, the content of C is limited to 0.02% to 0.10%. More preferably, it is 0.05% to 0.08%.
Si(シリコン):0.05%〜0.5%
Siは、固溶強化によって強度を強化させる効果があり、製鋼工程では脱酸剤としても有用に用いられる元素である。
Si (silicon): 0.05% to 0.5%
Si has the effect of strengthening by solid solution strengthening, and is an element that is also useful as a deoxidizer in the steelmaking process.
Siの含有量が0.05%未満であると、脱酸効果及び強度向上効果が不十分となる。これに対し、Siの含有量が0.5%を超えると、低温靭性が低下するとともに、溶接性も悪化するという問題がある。 If the Si content is less than 0.05%, the deoxidizing effect and the strength improving effect are insufficient. On the other hand, if the Si content exceeds 0.5%, there is a problem that the low temperature toughness decreases and the weldability also deteriorates.
したがって、シリコンの含有量は0.05%〜0.5%に限定する。より好ましくは0.05%〜0.3%である。 Therefore, the content of silicon is limited to 0.05% to 0.5%. More preferably, it is 0.05% to 0.3%.
Mn(マンガン):0.5%〜2.0%
マンガンは、フェライトの細粒化に寄与し、固溶強化によって強度を向上させるのに有用な元素である。
Mn (manganese): 0.5% to 2.0%
Manganese is an element that contributes to the grain refinement of ferrite and is useful for improving strength by solid solution strengthening.
このような効果を得るためには、マンガンを0.5%以上添加する必要がある。但し、その含有量が2.0%を超えると、硬化能が過度に増加して上部ベイナイト(Upper bainite)及びマルテンサイトの生成が促進され、衝撃靭性及びアンモニア応力腐食割れ(SCC)抵抗性が著しく低下し、溶接熱影響部の靭性も低下する。 In order to obtain such an effect, it is necessary to add manganese at 0.5% or more. However, when the content exceeds 2.0%, the hardening ability excessively increases, the formation of upper bainite (Upper bainite) and martensite is promoted, and the impact toughness and ammonia stress corrosion cracking (SCC) resistance are increased. Remarkably, the toughness of the heat-affected zone of welding is also reduced.
したがって、Mnの含有量は0.5%〜2.0%に限定する。より好ましくは1.0%〜1.5%である。 Therefore, the Mn content is limited to 0.5% to 2.0%. It is more preferably 1.0% to 1.5%.
Ni(ニッケル):0.05%〜1.0%
Niは、低温で転位の交差すべり(Cross slip)を容易にして衝撃靭性を向上させ、硬化能を向上させて強度を向上させるのに重要な元素である。このような効果を得るためには、0.05%以上添加される。しかし、Niの含有量が1.0%を超えると、アンモニア応力腐食割れ(SCC)をもたらし、他の硬化能元素に比べて高コストであるため製造コストも上昇させる。
Ni (nickel): 0.05% to 1.0%
Ni is an important element for facilitating cross slip of dislocations (Cross slip) at a low temperature, improving impact toughness, improving hardenability, and improving strength. To obtain such effects, 0.05% or more is added. However, when the content of Ni exceeds 1.0%, ammonia stress corrosion cracking (SCC) is caused, and the manufacturing cost is increased because the cost is higher than that of other curable elements.
したがって、Niの含有量は0.05%〜1.0%に限定する。より好ましくは0.2%〜0.5%である。 Therefore, the Ni content is limited to 0.05% to 1.0%. More preferably, it is 0.2% to 0.5%.
Nb(ニオブ):0.005%以下
Nbは、高温に再加熱される時に固溶され、NbCの形態で極めて微細に析出され、オーステナイトの再結晶を抑えて組織を微細化させる効果があると知られている。
Nb (niobium): 0.005% or less Nb is solid-soluted when reheated to a high temperature and is extremely finely precipitated in the form of NbC, which has the effect of suppressing recrystallization of austenite and refining the structure. Are known.
このような組織の微細化により降伏強度が過度に上昇し、アンモニア応力腐食割れ(SCC)を誘発させる降伏強度の上限を超える虞れがあるため、Nbは0.005%以下に制御する。より好ましくは0.003%以下である。 Since the yield strength is excessively increased due to such refinement of the structure and there is a possibility that the yield strength exceeding the upper limit of the yield strength that induces ammonia stress corrosion cracking (SCC) may be exceeded, Nb is controlled to 0.005% or less. It is more preferably 0.003% or less.
Ti(チタン):0.005%〜0.1%
チタンは、鋼中に酸化物及び窒化物を形成させ、再加熱時に結晶粒の成長を抑えることで、低温靭性を著しく向上させることができ、溶接部の微細組織の微細化にも効果的である。
Ti (titanium): 0.005% to 0.1%
Titanium forms oxides and nitrides in steel and suppresses the growth of crystal grains during reheating, which can significantly improve low temperature toughness, and is also effective in refining the microstructure of the weld. is there.
このような効果を得るためには、チタンは0.005%以上添加される必要がある。但し、その含有量が0.1%を超えると、連鋳ノズルの詰まりや中心部の晶出によって低温靭性が減少するという問題がある。 To obtain such an effect, titanium needs to be added in an amount of 0.005% or more. However, if the content exceeds 0.1%, there is a problem that the low temperature toughness is reduced due to clogging of the continuous casting nozzle and crystallization of the central portion.
したがって、チタンの含有量は0.005%〜0.1%とする。より好ましくは0.01%〜0.03%である。 Therefore, the content of titanium is set to 0.005% to 0.1%. More preferably, it is 0.01% to 0.03%.
Al(アルミニウム):0.005%〜0.5%
アルミニウムは溶鋼の脱酸に有用な元素であって、そのためには0.005%以上添加される必要がある。但し、その含有量が0.5%を超えると、連続鋳造時にノズル詰まりを引き起こす。したがって、アルミニウムの含有量は0.005%〜0.5%とする。より好ましくは0.005%〜0.05%である。
Al (aluminum): 0.005% to 0.5%
Aluminum is an element useful for deoxidizing molten steel, and for that purpose, 0.005% or more must be added. However, if the content exceeds 0.5%, nozzle clogging occurs during continuous casting. Therefore, the content of aluminum is set to 0.005% to 0.5%. More preferably, it is 0.005% to 0.05%.
P(リン):0.015%以下
リンは、母材と溶接部で粒界偏析を引き起こす元素であって、鋼を脆化させる問題があるため、積極的に低減する必要がある。但し、このようなリンを極限まで低減させるためには、製鋼工程への負荷が大きくなり、リンの含有量が0.015%以下の場合には、上述の問題が大きくならないため、その上限を0.015%、より好ましくは0.010%に制限する。
P (Phosphorus): 0.015% or less Phosphorus is an element that causes grain boundary segregation in the base material and the welded portion and has a problem of embrittlement of steel, so it is necessary to actively reduce it. However, in order to reduce such phosphorus to the limit, the load on the steelmaking process becomes large, and when the phosphorus content is 0.015% or less, the above-mentioned problem does not become large, so the upper limit is set. It is limited to 0.015%, more preferably 0.010%.
S(硫黄):0.015%以下
硫黄(S)は、赤熱脆性を引き起こす元素であって、MnSなどを形成して衝撃靭性を著しく阻害する元素であるため、できる限り低く制御する。したがって、その含有量を0.015%以下、より好ましくは0.005%に制限する。
S (sulfur): 0.015% or less Sulfur (S) is an element that causes red heat embrittlement and forms MnS and the like and significantly impairs impact toughness, so it is controlled as low as possible. Therefore, the content is limited to 0.015% or less, and more preferably 0.005%.
本発明による低降伏比高強度鋼材の合金組成の残りの成分は鉄(Fe)である。但し、通常の製造工程では、原料または周辺環境から意図しない不純物が不可避に混入されるため、これを排除することはできない。これらの不純物は、通常の製造工程の技術者であれば誰でも周知のものであるため、その全ての内容を本明細書では特に言及しない。 The remaining component of the alloy composition of the low yield ratio high strength steel according to the present invention is iron (Fe). However, in the usual manufacturing process, unintended impurities are inevitably mixed from the raw materials or the surrounding environment, and thus cannot be excluded. Since these impurities are well known to those skilled in the art of ordinary manufacturing processes, the entire contents thereof are not particularly mentioned herein.
次に、本発明の一実施形態による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の微細組織について詳細に説明する。 Next, the microstructure of the low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to one embodiment of the present invention will be described in detail.
本発明による低降伏比高強度鋼材の微細組織は、面積%で、針状フェライト(Acicular Ferrite)が60%以上であり、残りが、ベイナイト(Bainite)、ポリゴナルフェライト(Polygonal Ferrite)、及びMA(Martensite−Austenite constituent)のうちの1種以上からなる。 The microstructure of the low-yield ratio high-strength steel material according to the present invention is, in area%, 60% or more of acicular ferrite (Acicular Ferrite), and the rest is bainite (Bainite), polygonal ferrite (Polygonal Ferrite), and MA. (Martensite-Austenite constituent).
ベイナイト(bainite)の分率が増加して針状フェライトが60%未満になると、硬質相の増加による衝撃靭性の劣化が発生する。また、ポリゴナルフェライト(Polygonal Ferrite)の分率が増加して針状フェライトの分率が60%未満になると、強度の劣化が発生する。したがって、針状フェライト(Acicular Ferrite)の面積分率は60%以上にする。 When the fraction of bainite increases and the acicular ferrite is less than 60%, the impact toughness deteriorates due to the increase of hard phase. Further, when the fraction of polygonal ferrite increases and the fraction of acicular ferrite becomes less than 60%, the strength deteriorates. Therefore, the area fraction of acicular ferrite is set to 60% or more.
また、パーライトを含む場合には、引張強度及び低温衝撃靭性が劣化するため、本発明による低降伏比高強度鋼材の微細組織はパーライトを含まない。 Further, when pearlite is contained, the tensile strength and the low temperature impact toughness deteriorate, so the microstructure of the low yield ratio high strength steel according to the present invention does not contain pearlite.
この際、針状フェライトは、円相当径として測定したサイズが30μm以下である。上記サイズが30μmを超えると、衝撃靭性が劣化する。 At this time, the acicular ferrite has a size of 30 μm or less measured as an equivalent circle diameter. If the size exceeds 30 μm, the impact toughness deteriorates.
また、ベイナイトは、粒状ベイナイト(granular bainite)及び上部ベイナイト(upper bainite)であることが好ましい。 In addition, the bainite is preferably granular bainite and upper bainite.
一方、ベイナイトの面積分率は30%以下であることが好ましい。ベイナイトの面積分率が30%を超えると、アンモニア応力腐食割れ(SCC)を誘発させる降伏強度の上限(440MPa)を超える虞れがあるため、ベイナイトの分率を制限する必要がある。 On the other hand, the area fraction of bainite is preferably 30% or less. If the area fraction of bainite exceeds 30%, the upper limit (440 MPa) of the yield strength that induces ammonia stress corrosion cracking (SCC) may be exceeded, so it is necessary to limit the fraction of bainite.
また、MA(MA相とも言う)は、10面積%以下であり、円相当径として測定したサイズが5μm以下であることが好ましい。MA(Martensite−Austenite constituent)は、島状マルテンサイトとも言う。 Further, MA (also referred to as MA phase) is preferably 10 area% or less, and the size measured as a circle equivalent diameter is preferably 5 μm or less. MA (Martensite-Austenite constituent) is also called island martensite.
MAの分率が10面積%を超えるか、又は、円相当径が5μmを超える場合には、母材及び溶接部の靭性が著しく低下する傾向にあるため、MAの分率及びサイズを制限する必要がある。 If the MA fraction exceeds 10% by area or the equivalent circle diameter exceeds 5 μm, the toughness of the base material and the welded portion tends to significantly decrease, so the MA fraction and size are limited. There is a need.
一方、上記の条件を満たす本発明による低降伏比高強度鋼材は、降伏比(YS/TS)が0.85以下、好ましくは0.8以下である。また、本鋼材は、引張強度が490MPa以上、例えば、510MPa〜610MPa程度と、優れた引張強度を有する。 On the other hand, the low yield ratio high strength steel material according to the present invention satisfying the above conditions has a yield ratio (YS / TS) of 0.85 or less, preferably 0.8 or less. Further, the present steel material has an excellent tensile strength of 490 MPa or more, for example, about 510 MPa to 610 MPa.
また、本発明による上記鋼材の降伏強度の上限は440MPa以下であって、アンモニア応力腐食割れ(SCC)を発生させる降伏強度の上限を超えないため、優れたアンモニア応力腐食割れ(SCC)抵抗性を有する。 In addition, the upper limit of the yield strength of the steel material according to the present invention is 440 MPa or less, which does not exceed the upper limit of the yield strength that causes ammonia stress corrosion cracking (SCC), and therefore has excellent ammonia stress corrosion cracking (SCC) resistance. Have.
また、上記鋼材の厚さ方向に1/4t部の衝撃遷移温度は−60℃以下と、優れた低温靭性を有する。ここで、tは、鋼材の厚さを意味する。 Further, the impact transition temperature of the ¼t portion in the thickness direction of the steel material is −60 ° C. or lower, which is excellent low temperature toughness. Here, t means the thickness of the steel material.
この際、上記鋼材は6mm以上の厚さを有し、好ましくは6mm〜50mmの厚さを有する。 At this time, the steel material has a thickness of 6 mm or more, preferably 6 mm to 50 mm.
このように、本発明による低降伏比高強度鋼材は、高強度、低降伏比、優れた低温靭性、及びアンモニア応力腐食割れ(SCC)抵抗性をすべて確保することができる。 As described above, the low yield ratio and high strength steel material according to the present invention can secure high strength, low yield ratio, excellent low temperature toughness, and ammonia stress corrosion cracking (SCC) resistance.
以下、本発明の一実施形態による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の製造方法について詳細に説明する。 Hereinafter, a method for producing a low yield ratio and high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to an embodiment of the present invention will be described in detail.
本発明の一実施形態による応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の製造方法は、上述の合金組成を有するスラブを1000℃〜1200℃に加熱する段階と、加熱されたスラブを1100℃〜900℃の温度で粗圧延する段階と、粗圧延後に、中心部の温度を基準としてAr3+100℃〜Ar3+30℃の温度で仕上圧延する段階と、仕上圧延後に、300℃以下の温度まで冷却する段階と、を有する。 According to an embodiment of the present invention, a method for manufacturing a high yield steel material having a low yield ratio and excellent resistance to stress corrosion cracking and low temperature toughness includes a step of heating a slab having the above alloy composition to 1000 ° C to 1200 ° C, and Rough rolling the slab at a temperature of 1100 ° C. to 900 ° C., after rough rolling, finishing rolling at a temperature of Ar 3 + 100 ° C. to Ar 3 + 30 ° C. based on the temperature of the central portion, and after finishing rolling, Cooling to a temperature of 300 ° C. or less.
<加熱段階>
上述の合金組成を有するスラブを1000℃〜1200℃に加熱する。
<Heating stage>
A slab having the above alloy composition is heated to 1000 ° C to 1200 ° C.
スラブの加熱温度は1000℃以上にする。これは、鋳造中に形成されたTi炭窒化物を固溶させるためである。また、スラブの加熱温度が低すぎると、圧延時の変形抵抗が高すぎて、後続の圧延工程でパス当たりの圧下率を大きくして加えることができないため、その下限を1000℃に制限する。但し、過度に高温に加熱すると、オーステナイトが粗大化して靭性が低下するため、加熱温度の上限は1200℃とする。 The heating temperature of the slab is 1000 ° C or higher. This is because the Ti carbonitride formed during casting is solid-dissolved. On the other hand, if the heating temperature of the slab is too low, the deformation resistance during rolling is too high to increase the rolling reduction per pass in the subsequent rolling step, so the lower limit is limited to 1000 ° C. However, if heated to an excessively high temperature, the austenite becomes coarse and the toughness decreases, so the upper limit of the heating temperature is 1200 ° C.
<粗圧延段階>
上記のように加熱したスラブを1100℃〜900℃の温度で粗圧延する。
<Rough rolling stage>
The slab heated as described above is roughly rolled at a temperature of 1100 ° C to 900 ° C.
粗圧延温度は、オーステナイトの再結晶が停止する温度(Tnr)以上にする。圧延により、鋳造中に形成されたデンドライトなどの鋳造組織が破壊され、オーステナイトのサイズを小さくする効果も得られる。このような効果を得るために、粗圧延の温度を1100℃〜900℃に制限する。 The rough rolling temperature is set to a temperature (Tnr) or higher at which recrystallization of austenite stops. By rolling, the casting structure such as dendrite formed during casting is destroyed, and the effect of reducing the size of austenite is also obtained. In order to obtain such an effect, the temperature of rough rolling is limited to 1100 ° C to 900 ° C.
この際、粗圧延は、最後の3パスに対してパス当たりの圧下率が10%以上となるように行う。 At this time, rough rolling is performed so that the rolling reduction per pass is 10% or more for the last three passes.
粗圧延時に中心部まで十分な変形を与えるためには、最後の3パスに対してパス当たりの圧下率が10%以上、総累積圧下率が30%以上である。 In order to give sufficient deformation to the central portion during rough rolling, the rolling reduction per pass is 10% or more and the total cumulative rolling reduction is 30% or more for the last three passes.
粗圧延時において、初期圧延によって再結晶された組織は、高い温度によって結晶粒の成長が起こるが、最後の3パスを行う時には、圧延待機中にバーが空冷されることにより、結晶粒の成長速度が遅くなる。これにより、粗圧延時の最後の3パスの圧下率が、最終微細組織の粒度に最も大きく影響する。 In the rough rolling, the structure recrystallized by the initial rolling causes the growth of crystal grains due to the high temperature, but during the last three passes, the bar is air-cooled while waiting for rolling, so that the crystal grains grow. Slow down. As a result, the rolling reduction in the last three passes during rough rolling has the greatest effect on the grain size of the final microstructure.
また、粗圧延のパス当たりの圧下率が低くなると、中心部に十分な変形が伝達されないため、中心部の粗大化に起因する靭性低下が発生する。したがって、最後の3パスのパス当たりの圧下率を10%以上に制限する。 In addition, when the rolling reduction per pass of rough rolling becomes low, sufficient deformation is not transmitted to the central portion, so that the toughness decreases due to the coarsening of the central portion. Therefore, the rolling reduction per pass of the last three passes is limited to 10% or more.
一方、中心部の組織の微細化のためには、粗圧延時の総累積圧下率を30%以上に設定する。 On the other hand, in order to refine the structure of the central portion, the total cumulative rolling reduction during rough rolling is set to 30% or more.
<仕上圧延段階>
粗圧延後に、中心部の温度を基準としてAr3+100℃〜Ar3+30℃の温度で仕上圧延する。
<Finishing rolling stage>
After the rough rolling, finish rolling is performed at a temperature of Ar 3 + 100 ° C. to Ar 3 + 30 ° C. based on the temperature of the central portion.
これは、より微細化した微細組織を得るためであり、Ar3(フェライト変態開始温度)+100℃〜Ar3+30℃の温度で仕上圧延を行うと、オーステナイトの内部に多量の変形帯が生成され、多量のフェライト核生成サイトが確保されることにより、鋼材の中心部まで微細な組織が確保される効果が得られる。 This is to obtain a finer microstructure, and when finish rolling is performed at a temperature of Ar 3 (ferrite transformation start temperature) + 100 ° C. to Ar 3 + 30 ° C., a large amount of deformation zone is generated inside austenite. By securing a large amount of ferrite nucleation sites, the effect of securing a fine structure up to the central portion of the steel material can be obtained.
仕上圧延温度をAr3+30℃未満に低めると、フェライト結晶粒度が微細になりすぎて、アンモニア応力腐食割れ(SCC)を発生させる降伏強度の上限(440MPa)を超えるようになる。また、Ar3+100℃を超える温度で仕上圧延を行うと、粒度の微細化に効果的ではない。したがって、仕上圧延温度をAr3+100℃〜Ar3+30℃で行う、このような条件で仕上圧延を行うことで、製造される鋼板の微細組織が、上記のような特徴を有する複合組織となる。 When the finish rolling temperature is lowered to less than Ar 3 + 30 ° C., the ferrite grain size becomes too fine and exceeds the upper limit (440 MPa) of the yield strength that causes ammonia stress corrosion cracking (SCC). Further, if the finish rolling is performed at a temperature higher than Ar 3 + 100 ° C., it is not effective in reducing the grain size. Therefore, performing finish rolling temperature at Ar 3 + 100 ℃ ~Ar 3 + 30 ℃, by performing the finish rolling under the above conditions, the microstructure of the steel sheet to be produced, the composite structure having the characteristics described above .
この際、Ar3は、Ar3=910−(310×C)−(80×Mn)−(55×Ni)により計算され、各元素記号は、重量%単位で測定した各元素の含有量を示し、Ar3の単位は℃である。 At this time, Ar 3 is calculated by Ar 3 = 910− (310 × C) − (80 × Mn) − (55 × Ni), and each element symbol represents the content of each element measured in weight%. Indicated, the unit of Ar 3 is ° C.
また、オーステナイトの内部に多量の変形帯を効果的に生成させるためには、仕上圧延時の累積圧下率を60%以上に維持し、最終形状調整圧延を除いては、パス当たりの圧下率を10%以上に維持する。 Further, in order to effectively generate a large amount of deformation zone inside the austenite, the cumulative reduction rate during finish rolling is maintained at 60% or more, and the reduction rate per pass is adjusted except for the final shape-adjusting rolling. Keep above 10%.
<冷却段階>
仕上圧延後に、300℃以下の温度まで冷却する。
<Cooling stage>
After finish rolling, it is cooled to a temperature of 300 ° C. or lower.
冷却は、仕上圧延後にAr3+30℃〜Ar3の温度で冷却し始め、300℃以下、例えば、100℃〜300℃程度の冷却停止温度(FCT:Finish Cooling Temperature)まで冷却する。
Cooling begins to cool at a temperature of Ar 3 + 30
冷却停止温度(FCT)が300℃を超えると、テンパリング(Tempering)効果によって微細なMA(MA相)が分解され、低降伏比を実現しにくいため、冷却停止温度は300℃以下にする。 When the cooling stop temperature (FCT) exceeds 300 ° C., fine MA (MA phase) is decomposed by the tempering effect and it is difficult to realize a low yield ratio, so the cooling stop temperature is set to 300 ° C. or lower.
この際、冷却段階では、Bs−10℃〜Bs+10℃まで中心部の冷却速度が15℃/s以上となるように1段階冷却を行った後、300℃以下まで中心部の冷却速度が10〜50℃/sとなるように2段階冷却を行う。 At this time, in the cooling stage, the cooling rate of the central portion is 10 to 100 degrees Celsius or less after performing one-step cooling so that the cooling rate of the central portion is 15 ° C./s or more from Bs−10 ° C. to Bs + 10 ° C. Two-stage cooling is performed so that the temperature becomes 50 ° C./s.
また、冷却開始温度はAr3+30℃〜Ar3である。
The cooling start temperature is Ar 3 + 30
1段階冷却では、仕上圧延後にAr3+30℃〜Ar3の温度で冷却し始め、Bs−10℃〜Bs+10℃まで鋼板の中心部の冷却速度が15℃/s以上、例えば、30℃/s以上となるように冷却する。
1 at the stage cooling, begins to cool at a temperature of Ar 3 + 30
1段階冷却で、Bs−10℃〜Bs+10℃まで鋼板の中心部の冷却速度が15℃/sより低いと、粗大なポリゴナルフェライト(Polygonal Ferrite)が形成され、引張強度及び衝撃靭性が低下するためである。 When the cooling rate of the central portion of the steel sheet is lower than 15 ° C / s from Bs-10 ° C to Bs + 10 ° C in the one-step cooling, coarse polygonal ferrite (Polygonal Ferrite) is formed, and tensile strength and impact toughness decrease. This is because.
この際、Bsは、Bs=830−(270×C)−(90×Mn)−(37×Ni)により計算され、各元素記号は重量%単位で測定した各元素の含有量を示し、Bsの単位は℃である。 At this time, Bs is calculated by Bs = 830- (270 * C)-(90 * Mn)-(37 * Ni), and each element symbol indicates the content of each element measured in weight% unit, and Bs The unit is ° C.
2段階冷却では、1段階冷却後に、300℃以下、例えば、100℃〜300℃の冷却停止温度まで鋼板の中心部の冷却速度が10℃/s〜50℃/sとなるように冷却する。 In the two-step cooling, after the one-step cooling, the cooling rate is 10 ° C./s to 50 ° C./s until the cooling stop temperature is 300 ° C. or lower, for example, 100 ° C. to 300 ° C.
2段階冷却で、鋼板の冷却速度が50℃/sを超えると、図1の1−(1)に示す微細組織のように、形成されるベイナイトの分率が30面積%以上となって、アンモニア応力腐食割れ(SCC)を発生させる降伏強度の上限(440MPa)を超えるようになり、強度の過度な上昇によって伸び及び衝撃靭性が低下する。 In the two-stage cooling, when the cooling rate of the steel sheet exceeds 50 ° C./s, the fraction of bainite formed becomes 30 area% or more, as in the fine structure shown in 1- (1) of FIG. The upper limit of yield strength (440 MPa) that causes ammonia stress corrosion cracking (SCC) is exceeded, and elongation and impact toughness decrease due to excessive increase in strength.
これに対し、2段階冷却で、鋼板の冷却速度が10℃/s未満であると、図1の1−(3)に示す微細組織のように、微細な針状フェライトではなく粗大なポリゴナルフェライトとパーライトが形成され、引張強度が490MPa以下になるとともに、シャルピー遷移温度が−60℃以上になる。 On the other hand, when the cooling rate of the steel sheet is less than 10 ° C./s in the two-stage cooling, coarse polygonal instead of fine acicular ferrite as in the fine structure shown in 1- (3) of FIG. Ferrite and pearlite are formed, the tensile strength becomes 490 MPa or less, and the Charpy transition temperature becomes −60 ° C. or more.
上述の製造方法により、応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材を製造する。 By the above-mentioned manufacturing method, a low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness is manufactured.
以下、実施例を挙げて本発明をより具体的に説明する。但し、下記の実施例は、本発明の一例を示してより詳細に説明するためのものにすぎず、本発明の技術範囲を限定するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples are merely for showing one example of the present invention and for more detailed description, and do not limit the technical scope of the present invention.
下記の表1の組成を有する厚さ300mmの鋼スラブを1100℃の温度に再加熱した後、1050℃の温度で粗圧延を行ってバーを製造した。粗圧延時の累積圧下率は、30%と同様に適用した。また、各鋼の組成によるAr3及びBs温度を計算して表1に記載した。 A steel slab having a thickness of 300 mm and having the composition shown in Table 1 below was reheated to a temperature of 1100 ° C. and then rough-rolled at a temperature of 1050 ° C. to manufacture a bar. The cumulative rolling reduction during rough rolling was applied in the same manner as 30%. In addition, the Ar 3 and Bs temperatures according to the composition of each steel were calculated and listed in Table 1.
粗圧延後に、下記の表2に示す仕上圧延温度とAr3温度との差を満たすように仕上圧延を行うことで、表2に示す厚さを有する鋼板を得た後、多段冷却により様々な冷却速度で冷却を行った。この際、1段階冷却の冷却停止温度は、各鋼のBs温度とした。 After the rough rolling, the finish rolling is performed so as to satisfy the difference between the finish rolling temperature and the Ar 3 temperature shown in Table 2 below to obtain a steel sheet having the thickness shown in Table 2, and then various cooling is performed by multistage cooling. Cooling was performed at the cooling rate. At this time, the cooling stop temperature of the one-step cooling was the Bs temperature of each steel.
上記のように製造された鋼板に対して、微細組織、降伏強度、引張強度、降伏比、シャルピー衝撃遷移温度、及びアンモニア応力腐食割れ(SCC)試験を行い、その結果を表3に示す。 The microstructure, yield strength, tensile strength, yield ratio, Charpy impact transition temperature, and ammonia stress corrosion cracking (SCC) test were conducted on the steel sheet manufactured as described above, and the results are shown in Table 3.
微細組織は、鋼板の1/4t部から試験片を採取して鏡面研磨し、それをナイタル(Nital)腐食液で腐食させた後、光学顕微鏡を用いて観察し、画像解釈により相分率を求めた。 The microstructure was obtained by taking a test piece from a 1/4 t portion of a steel plate, mirror-polishing it, corroding it with a Nital etchant, and then observing it using an optical microscope to determine the phase fraction by image interpretation. I asked.
MA相の分率は、1/4t部から試験片を採取して鏡面研磨し、それをラペラ(LePera)腐食液で腐食させた後、光学顕微鏡を用いて観察し、画像解釈により相分率を求めた。 The fraction of the MA phase was obtained by collecting a test piece from a 1/4 t portion, mirror-polishing it, corroding it with a LePera corrosive liquid, and then observing it using an optical microscope. I asked.
引張試験は、鋼板の1/4t部から圧延方向に垂直な方向にJIS4号試験片を採取し、常温で引張試験を行うことで、降伏強度、引張強度、及び降伏比を測定した。 In the tensile test, a JIS No. 4 test piece was sampled in a direction perpendicular to the rolling direction from the 1/4 t portion of the steel sheet, and the tensile test was performed at room temperature to measure the yield strength, the tensile strength, and the yield ratio.
低温衝撃靭性は、鋼板の1/4t部から圧延方向に垂直な方向に試験片を採取し、V−ノッチ試験片を製作した後、−20℃〜−100℃にて20℃間隔で、シャルピー衝撃試験を各温度当たり3回行った。各温度平均値の回帰式を導出し、100Jとなる温度を遷移温度として求めた。 The low temperature impact toughness was obtained by taking a test piece from a 1 / 4t part of a steel plate in a direction perpendicular to the rolling direction and producing a V-notch test piece, and then a Charpy at 20 ° C to -100 ° C at 20 ° C intervals. Impact tests were performed 3 times at each temperature. A regression equation of each temperature average value was derived, and the temperature at which it became 100 J was determined as the transition temperature.
また、アンモニア応力腐食割れ(SCC)試験は、プルーフリング(proof ring)試験片を製作し、表4に記載の試験溶液及び試験条件で行った。この際、加えた応力は実降伏応力の80%であり、720時間まで破断が発生しなかったものは合格と評価し、720時間経過前に破断したものは不合格と評価した。 Further, the ammonia stress corrosion cracking (SCC) test was carried out by producing proof ring test pieces and using the test solutions and test conditions shown in Table 4. At this time, the applied stress was 80% of the actual yield stress, and those which did not break until 720 hours were evaluated as pass, and those which were broken before 720 hours passed were evaluated as fail.
但し、表3において、AF、B、PF、及びMAは、それぞれAF:Acicular Ferrite、B:Bainite、PF:Polygonal ferrite、及びMA:Martensite/Austeniteを意味する。 However, in Table 3, AF, B, PF, and MA mean AF: Acoustic Ferrite, B: Bainite, PF: Polygonal ferrite, and MA: Martensite / Austenite, respectively.
表1〜3に示すように、本発明で提案する成分組成及び製造条件を満たす発明例は、高強度及び高靭性の特性を有するだけでなく、アンモニア応力腐食割れ(SCC:Stress Corrosion Cracking)抵抗性に優れており、降伏比が0.8以下と低降伏比特性を有する鋼材であることが確認された。また、発明例A−1の微細組織を顕微鏡で観察した結果、図1の1−(2)に示すように、面積%で、針状フェライト(Acicular Ferrite)が60%以上であり、残りは、ベイナイト(Bainite)、ポリゴナルフェライト(Polygonal Ferrite)、及びMA(Martensite−Austenite constituent)のうちの1種以上からなる混合組織であることが確認された。 As shown in Tables 1 to 3, the invention examples satisfying the component composition and manufacturing conditions proposed in the present invention not only have characteristics of high strength and high toughness, but also have ammonia stress corrosion cracking (SCC) resistance. It was confirmed that the steel material has excellent yield property and a yield ratio of 0.8 or less and low yield ratio characteristics. Moreover, as a result of observing the microstructure of Inventive Example A-1 with a microscope, as shown in 1- (2) of FIG. 1, the acicular ferrite is 60% or more in area%, and the rest is , Bainite, Polygonal Ferrite, and MA (Martensite-Austenite constituent).
これに対し、成分組成は本発明の範囲を満たすが、製造条件が本発明を満たさない比較例A−2、A−4、A−6、B−2、B−4、及びB−6では、ポリゴナルフェライトの分率が高すぎるか、又は、フェライトの結晶粒サイズが過度に粗大となり、引張強度及び低温靭性の確保が不可能であった。 On the other hand, in Comparative Examples A-2, A-4, A-6, B-2, B-4, and B-6 in which the component compositions satisfy the range of the present invention, but the production conditions do not satisfy the present invention. However, the fraction of polygonal ferrite was too high, or the crystal grain size of ferrite was excessively coarse, and it was impossible to secure tensile strength and low temperature toughness.
一方、比較例A−3、A−5、A−7〜B−3、B−5、及びB−7では、針状フェライトの結晶粒サイズが小さすぎるか、ベイナイトの分率が過度に高く生成されるか、又は、MA(MA相)が全く生産されないため、アンモニア応力腐食割れ(SCC)が発生する降伏強度の上限(440MPa)を超えてアンモニア応力腐食割れが発生し、低降伏比及び低温靭性の確保が不可能であった。 On the other hand, in Comparative Examples A-3, A-5, A-7 to B-3, B-5, and B-7, the crystal grain size of the acicular ferrite was too small, or the bainite fraction was too high. Since it is generated or MA (MA phase) is not produced at all, ammonia stress corrosion cracking occurs beyond the upper limit of yield strength (440 MPa) at which ammonia stress corrosion cracking (SCC) occurs. It was impossible to secure low temperature toughness.
また、製造条件は本発明を満たすが、成分組成が本発明の範囲を満たさない比較例C−1〜F−4では、ベイナイトの分率が過度に高く生成されるか、針状フェライトの結晶粒サイズが小さすぎるか、又は、MAの分率が高すぎるため、アンモニア応力腐食割れ(SCC)が発生する降伏強度の上限(440MPa)を超えてアンモニア応力腐食割れが発生し、低降伏比及び低温靭性の確保が不可能であった。 Further, in Comparative Examples C-1 to F-4 in which the production conditions satisfy the present invention, but the component composition does not satisfy the scope of the present invention, the bainite fraction is excessively high or the acicular ferrite crystals are formed. Either the grain size is too small or the MA fraction is too high, so ammonia stress corrosion cracking (SCC) occurs. Above the yield strength upper limit (440 MPa), ammonia stress corrosion cracking occurs, and the low yield ratio and It was impossible to secure low temperature toughness.
以上、実施例を参照して説明したが、当該技術分野に熟練した当業者であれは、本発明の技術範囲から逸脱しない範囲内で本発明を多様に変更実施することができる。 Although the present invention has been described above with reference to the embodiments, those skilled in the art can make various modifications to the present invention without departing from the technical scope of the present invention.
Claims (9)
質量%で、炭素(C)を0.02%〜0.10%、マンガン(Mn)を0.5%〜2.0%、シリコン(Si)を0.05%〜0.5%、ニッケル(Ni)を0.05%〜1.0%、チタン(Ti)を0.005%〜0.1%、アルミニウム(Al)を0.005%〜0.5%、ニオブ(Nb)を0.005%以下、リン(P)を0.015%以下、硫黄(S)を0.015%以下含み、残りはFe及びその他の不可避不純物からなり、
微細組織は、面積%で、針状フェライト(Acicular Ferrite)が60%以上であり、残りが、ベイナイト(Bainite)、ポリゴナルフェライト(Polygonal Ferrite)、及びMA(Martensite−Austenite constituent)のうちの1種以上からなり、
前記針状フェライトは、円相当径として測定したサイズが30μm以下であり、
前記ベイナイトは30面積%以下であり、
前記MAは10面積%以下であり、円相当径として測定したサイズが5μm以下であることを特徴とする応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材。 Low yield ratio high strength steel,
% By mass , carbon (C) 0.02% to 0.10%, manganese (Mn) 0.5% to 2.0%, silicon (Si) 0.05% to 0.5%, nickel (Ni) is 0.05% to 1.0%, titanium (Ti) is 0.005% to 0.1%, aluminum (Al) is 0.005% to 0.5%, and niobium (Nb) is 0. 0.005% or less, phosphorus (P) 0.015% or less, sulfur (S) 0.015% or less, and the balance Fe and other unavoidable impurities,
The fine structure has an area% of 60% or more of acicular ferrite (Accular Ferrite), and the rest is 1 of bainite (Bainite), polygonal ferrite (Polygonal Ferrite), and MA (Martensite-Austenite constituent). Ri Do not from seeds or more,
The acicular ferrite has a size measured as a circle equivalent diameter of 30 μm or less,
The bainite is 30 area% or less,
The MA is 10 area% or less, low yield ratio high-strength steel size measured as equivalent circle diameter and excellent stress corrosion cracking resistance and low-temperature toughness characterized der Rukoto below 5 [mu] m.
徴とする請求項1に記載の応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材。 The low yield ratio and high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to claim 1, wherein the steel material has a yield ratio of 0.85 or less and a tensile strength of 490 MPa or more.
腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材。 The low-yield ratio high-strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to claim 1, wherein the steel material has a yield strength of 440 MPa or less.
腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材。 The low yield ratio and high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to claim 1, wherein the impact transition temperature of the steel material is -60 ° C or less.
質量%で、炭素(C)を0.02%〜0.10%、マンガン(Mn)を0.5%〜2.
0%、シリコン(Si)を0.05%〜0.5%、ニッケル(Ni)を0.05%〜1.
0%、チタン(Ti)を0.005%〜0.1%、アルミニウム(Al)を0.005%
〜0.5%、ニオブ(Nb)を0.005%以下、リン(P)を0.015%以下、硫黄
(S)を0.015%以下含み、残りはFe及びその他の不可避不純物からなるスラブを
1000℃〜1200℃に加熱する段階と、
前記加熱されたスラブを1100℃〜900℃の温度で粗圧延する段階と、
前記粗圧延後に、中心部の温度を基準としてAr3+100℃〜Ar3+30℃の温度
で仕上圧延する段階と、
前記仕上圧延後に、300℃以下の温度まで冷却する段階と、を有することを特徴とす
る応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の製造方法。 It is a manufacturing method of the steel material as described in any one of Claim 1 thru | or 4, Comprising:
In mass %, carbon (C) is 0.02% to 0.10%, and manganese (Mn) is 0.5% to 2.
0%, silicon (Si) 0.05% to 0.5%, nickel (Ni) 0.05% to 1.
0%, titanium (Ti) 0.005% to 0.1%, aluminum (Al) 0.005%
.About.0.5%, niobium (Nb) 0.005% or less, phosphorus (P) 0.015% or less, sulfur (S) 0.015% or less, and the balance Fe and other unavoidable impurities. Heating the slab to 1000 ° C to 1200 ° C,
Roughly rolling the heated slab at a temperature of 1100 ° C to 900 ° C;
After the rough rolling, finish rolling at a temperature of Ar 3 + 100 ° C. to Ar 3 + 30 ° C. based on the temperature of the central portion,
And a step of cooling to a temperature of 300 ° C. or lower after the finish rolling, a method for producing a low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness.
以上となるように1段階冷却を行った後、
300℃以下まで中心部の冷却速度が10℃/s〜50℃/sとなるように2段階冷却
を行うことを特徴とする請求項5に記載の応力腐食割れ抵抗性及び低温靭性に優れた低降
伏比高強度鋼材の製造方法。 In the cooling step, the cooling rate of the central portion is 15 ° C / s from Bs-10 ° C to Bs + 10 ° C.
After performing one-step cooling as described above,
The stress corrosion cracking resistance and the low temperature toughness are excellent according to claim 5 , wherein the cooling is performed in two stages so that the cooling rate of the central portion is 10 ° C / s to 50 ° C / s up to 300 ° C or less. Low yield ratio High strength steel manufacturing method.
請求項5に記載の応力腐食割れ抵抗性及び低温靭性に優れた低降伏比高強度鋼材の製造方
法。 Cooling start temperature of said step of cooling is characterized by a Ar 3 + 30 ℃ ~Ar 3
The method for producing a low yield ratio and high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness according to claim 5 .
うことを特徴とする請求項5に記載の応力腐食割れ抵抗性及び低温靭性に優れた低降伏比
高強度鋼材の製造方法。 The low-yield excellent in stress corrosion cracking resistance and low temperature toughness according to claim 5 , wherein the rough rolling is performed so that a rolling reduction per pass for the last three passes is 10% or more. Method for producing high strength steel.
うに行うことを特徴とする請求項5に記載の応力腐食割れ抵抗性及び低温靭性に優れた低
降伏比高強度鋼材の製造方法。
The said finish rolling is performed so that the rolling reduction per pass may be 10% or more, and the cumulative rolling reduction may be 60% or more, The stress corrosion cracking resistance and the low temperature toughness excellent in low of Claim 5 characterized by the above-mentioned. Yield ratio High strength steel manufacturing method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0185496 | 2015-12-23 | ||
KR1020150185496A KR101767778B1 (en) | 2015-12-23 | 2015-12-23 | Low yield ratio high strength steel having excellent resistance for stress corrosion cracking and low temperature toughness, and method for manufacturing the same |
PCT/KR2016/015156 WO2017111526A1 (en) | 2015-12-23 | 2016-12-23 | Low-yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019504200A JP2019504200A (en) | 2019-02-14 |
JP6691217B2 true JP6691217B2 (en) | 2020-04-28 |
Family
ID=59089647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018532057A Active JP6691217B2 (en) | 2015-12-23 | 2016-12-23 | Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method of manufacturing the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180371588A1 (en) |
EP (1) | EP3395987B1 (en) |
JP (1) | JP6691217B2 (en) |
KR (1) | KR101767778B1 (en) |
CN (1) | CN108431274B (en) |
CA (1) | CA3009137C (en) |
WO (1) | WO2017111526A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101999018B1 (en) * | 2017-12-24 | 2019-07-10 | 주식회사 포스코 | Thick steel plate with excellent low-temperature toughness and method for manufacturing the same |
KR102164097B1 (en) * | 2018-10-26 | 2020-10-12 | 주식회사 포스코 | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof |
KR102307946B1 (en) * | 2019-12-09 | 2021-09-30 | 주식회사 포스코 | Steel plate for structure with a good seawater corrosion resistive property and method of manufacturing the same |
KR102326109B1 (en) * | 2019-12-16 | 2021-11-16 | 주식회사 포스코 | Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same |
KR102400036B1 (en) * | 2020-04-13 | 2022-05-19 | 주식회사 포스코 | Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same |
CN112342458B (en) * | 2020-09-01 | 2022-01-11 | 南京钢铁股份有限公司 | Low-yield-ratio stress corrosion cracking resistant high-strength steel and preparation method thereof |
CN113832399B (en) * | 2021-09-23 | 2022-10-11 | 马鞍山钢铁股份有限公司 | Economical pipeline steel resistant to hydrogen sulfide corrosion and production method thereof |
CN113913695B (en) * | 2021-10-13 | 2022-10-18 | 鞍钢股份有限公司 | Corrosion-resistant and fatigue-resistant pipeline steel for underwater oil and gas production and production method thereof |
CN114005602A (en) * | 2021-11-02 | 2022-02-01 | 兰州理工大学 | Low-carbon high-strength low-resistivity cable core material, preparation method and application |
KR20240134964A (en) * | 2022-04-20 | 2024-09-10 | 제이에프이 스틸 가부시키가이샤 | Steel sheet and its manufacturing method |
WO2023203702A1 (en) * | 2022-04-20 | 2023-10-26 | Jfeスチール株式会社 | Steel sheet and method for manufacturing same |
JP7401839B1 (en) * | 2023-05-18 | 2023-12-20 | 日本製鉄株式会社 | Evaluation method for stress corrosion cracking characteristics in liquid ammonia |
JP7401838B1 (en) * | 2023-05-18 | 2023-12-20 | 日本製鉄株式会社 | Evaluation method for stress corrosion cracking characteristics in liquid ammonia |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58153730A (en) | 1982-03-05 | 1983-09-12 | Sumitomo Metal Ind Ltd | Method of manufacturing high-tensile strength steel plate for use at low temperature |
JPS63290246A (en) | 1987-05-22 | 1988-11-28 | Kawasaki Steel Corp | Steel for low-temperature excellent in toughness in weld zone |
JPH0417613A (en) | 1990-05-12 | 1992-01-22 | Nippon Steel Corp | Manufacture of high tension steel having superior resistance to stress corrosion cracking |
JPH07188742A (en) * | 1993-12-28 | 1995-07-25 | Kawasaki Steel Corp | Production of steel for low temperature use |
JPH08209239A (en) * | 1995-02-01 | 1996-08-13 | Kobe Steel Ltd | Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c |
JPH0987802A (en) * | 1995-09-21 | 1997-03-31 | Kobe Steel Ltd | High tensile strength steel plate excellent in plating crack resistance and its production |
JP2003003228A (en) * | 2001-06-19 | 2003-01-08 | Nippon Steel Corp | Steel having excellent low temperature toughness in welded joint and stress corrosion cracking property and production method therefor |
JP4119676B2 (en) | 2002-05-01 | 2008-07-16 | 株式会社神戸製鋼所 | Low yield ratio type high strength steel plate excellent in bending workability and manufacturing method thereof |
WO2004113581A1 (en) * | 2003-06-19 | 2004-12-29 | Sumitomo Metal Industries, Ltd. | Steel product excellent in characteristics of resistance to fatigue crack extension and method for production thereof |
CN101289728B (en) * | 2007-04-20 | 2010-05-19 | 宝山钢铁股份有限公司 | Low-yield ratio, high heat input welding, high-strength and high ductility steel plate and method of manufacture |
JP5031531B2 (en) * | 2007-11-20 | 2012-09-19 | 新日本製鐵株式会社 | Low yield ratio high strength steel sheet excellent in base metal low temperature toughness and HAZ low temperature toughness and its manufacturing method |
EP2240618B1 (en) * | 2007-12-04 | 2013-01-23 | Posco | High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof |
KR101304824B1 (en) * | 2009-12-28 | 2013-09-05 | 주식회사 포스코 | API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate |
KR101181247B1 (en) * | 2010-04-20 | 2012-09-10 | 한국기계연구원 | Giga-class ultra-high strength steel plates with excellent deformability and low-temperature toughness and the method for preparation of steel plates thereof |
CN101906568B (en) * | 2010-08-12 | 2011-12-07 | 中国石油天然气集团公司 | High-grade large-strain pipeline steel and manufacturing method of steel pipe |
JP5842359B2 (en) * | 2010-10-28 | 2016-01-13 | Jfeスチール株式会社 | Non-tempered low yield ratio high tensile steel sheet and method for producing the same |
KR20130110643A (en) * | 2012-03-29 | 2013-10-10 | 현대제철 주식회사 | Steel and method of manufacturing the same |
KR101465088B1 (en) * | 2012-08-17 | 2014-11-26 | 포항공과대학교 산학협력단 | Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same |
KR101482359B1 (en) * | 2012-12-27 | 2015-01-13 | 주식회사 포스코 | Method for manufacturing high strength steel plate having excellent toughness and low-yield ratio property |
-
2015
- 2015-12-23 KR KR1020150185496A patent/KR101767778B1/en active IP Right Grant
-
2016
- 2016-12-23 JP JP2018532057A patent/JP6691217B2/en active Active
- 2016-12-23 CA CA3009137A patent/CA3009137C/en active Active
- 2016-12-23 CN CN201680075892.9A patent/CN108431274B/en active Active
- 2016-12-23 US US16/063,886 patent/US20180371588A1/en not_active Abandoned
- 2016-12-23 EP EP16879393.3A patent/EP3395987B1/en active Active
- 2016-12-23 WO PCT/KR2016/015156 patent/WO2017111526A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN108431274A (en) | 2018-08-21 |
EP3395987B1 (en) | 2020-04-29 |
EP3395987A1 (en) | 2018-10-31 |
KR101767778B1 (en) | 2017-08-14 |
CN108431274B (en) | 2021-12-07 |
CA3009137C (en) | 2021-04-13 |
US20180371588A1 (en) | 2018-12-27 |
EP3395987A4 (en) | 2018-11-07 |
JP2019504200A (en) | 2019-02-14 |
WO2017111526A1 (en) | 2017-06-29 |
KR20170075933A (en) | 2017-07-04 |
CA3009137A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6691217B2 (en) | Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method of manufacturing the same | |
JP6514777B2 (en) | Steel material for high strength pressure vessel excellent in low temperature toughness after PWHT and method for manufacturing the same | |
JP7161536B2 (en) | Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same | |
KR101253890B1 (en) | Ultra thick steel sheet for pressure vessel having excellent central properties and hydrogen induced cracking resistance, and method for manufacturing the same | |
JP6219405B2 (en) | High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same | |
CN108368594B (en) | High-strength steel material having excellent low-temperature strain aging impact characteristics and weld heat-affected zone impact characteristics, and method for producing same | |
JP7045459B2 (en) | High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods | |
JP6475837B2 (en) | High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof | |
JP2021509446A (en) | Steel materials for pressure vessels and their manufacturing methods | |
JP2019502018A (en) | High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same | |
JP7236540B2 (en) | Steel material excellent in toughness of welded heat affected zone and method for producing the same | |
JP6616002B2 (en) | High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same | |
JP2019501281A (en) | High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same | |
JP2019537667A (en) | Steel for pressure vessel excellent in resistance to hydrogen-induced cracking and method for producing the same | |
KR101585724B1 (en) | A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same | |
JP7183410B2 (en) | Steel plate for pressure vessel with excellent cryogenic toughness and ductility and its manufacturing method | |
JP2022505840A (en) | High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method | |
KR101299361B1 (en) | Steel and manufacturing method of steel pipe using the steel | |
KR20180073207A (en) | High strength steel sheet havig good low temperature toughness and resistance of stress corrosion cracking, and manufacturing method thereof | |
JP7265008B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method | |
KR101647226B1 (en) | Steel plate having excellent fracture resistance and yield ratio, and method for manufacturing the same | |
JP2009179840A (en) | Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property | |
JP7111718B2 (en) | Steel plate for pressure vessel with excellent PWHT resistance and method for producing the same | |
KR20240091614A (en) | Steel plate and method for manufacturing the same | |
KR101467030B1 (en) | Method for manufacturing high strength steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180814 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200409 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6691217 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |