JP2009179840A - Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property - Google Patents

Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property Download PDF

Info

Publication number
JP2009179840A
JP2009179840A JP2008018994A JP2008018994A JP2009179840A JP 2009179840 A JP2009179840 A JP 2009179840A JP 2008018994 A JP2008018994 A JP 2008018994A JP 2008018994 A JP2008018994 A JP 2008018994A JP 2009179840 A JP2009179840 A JP 2009179840A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
toughness
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008018994A
Other languages
Japanese (ja)
Other versions
JP5151510B2 (en
Inventor
Kiyoshi Ebihara
潔 海老原
Nobuhiko Mamada
伸彦 侭田
Akira Minami
晃 南
Hiroshi Hasegawa
泰士 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008018994A priority Critical patent/JP5151510B2/en
Publication of JP2009179840A publication Critical patent/JP2009179840A/en
Application granted granted Critical
Publication of JP5151510B2 publication Critical patent/JP5151510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high tensile steel excellent in low-temperature toughness and crack arrest properties, the high tensile steel being excellent in crack arrest properties as well as in strength and toughness. <P>SOLUTION: A steel blank containing specified contents of C, Si, Mn, P, S, Ni, Ti and N satisfying Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ≤0.25% and the balance Fe with inevitable impurities, is heated to 1,000-1,200°C, and the hot-rolling in ≥8% cumulative rolling-reduction ratio at Ac<SB>3</SB>point+20°C to Ar<SB>3</SB>point+100°C is applied to the heated steel blank, then an accelerated cooling starting from Ar<SB>3</SB>point-30°C to Ar<SB>3</SB>point+80°C and completing at ≤500°C, is applied to the hot-rolled steel at 5 to 100°C/sec cooling speed, and the thickness of prior γ grain on the surface layer, is controlled to ≤12 μm, and the crystal having ≤5 μm diameter on the surface layer after transforming, is present at an area ratio of 10% or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低温貯槽タンク用、低温圧力容器用などの鋼板の製造方法に関し、特に、圧延条件を制御することにより鋼板表面の旧γ粒(旧オーステナイト粒)の厚みを制御し、低温靭性や亀裂伝搬停止特性に優れさせた高張力鋼の製造方法に関する。   The present invention relates to a method for producing steel sheets for low-temperature storage tanks, low-temperature pressure vessels, and the like, and in particular, by controlling the rolling conditions, the thickness of old γ grains (former austenite grains) on the steel sheet surface is controlled, The present invention relates to a method for producing high-strength steel having excellent crack propagation stopping characteristics.

低温貯槽タンク、低温圧力容器、ラインパイプなどに用いられる鋼板においては、引張強度を向上させると、靭性は劣化する傾向にあり、両方の特性を満足させることは簡単ではない。しかしながら、LPGタンク用の鋼板について検討すると、液化ガスなどの貯留物を冷やしたまま貯蔵あるいは運搬するので鋼板の低温特性は特に重要であり、また、厚板鋼板であれば溶接して使用するので、溶接性も重要となる。   In steel sheets used for low-temperature storage tanks, low-temperature pressure vessels, line pipes, etc., when tensile strength is improved, toughness tends to deteriorate, and it is not easy to satisfy both characteristics. However, considering the steel sheet for the LPG tank, the low-temperature characteristics of the steel sheet are particularly important because the storage of liquefied gas or the like is stored or transported in the cold state. Also, weldability is important.

従来、強度を向上させながら靭性劣化を抑制させる方法の一例として、重量%でC:0.02%〜0.22%、Si:0.05〜0.6%、Mn:0.5〜2.5%、S:0.025%以下、Al:0.01〜0.08%、N:0.008%以下を含有し、残部鉄及び不可避不純物よりなる鋼を熱間加工にて板厚30mm以上の圧延した後、一次処理として直接焼き入れ処理し、又は圧延後、空冷し、再加熱し、焼きならし処理し、若しくは焼き入れ処理し、次いで二次処理として、(Ac変態点−30)℃以上で、(AC変態点+150)℃以下の範囲の温度で加熱し、ここに板厚をtmmとすると、その保定時間T(分)を0.1t−0.05t≦T≦0.1t+0.05tの範囲として、抽出し、二次処理の再加熱において、オーステナイト化しなかったフェライト及びベイナイトの混合組織を、鋼板断面の1/2を中心として、表面側及び裏面側にそれぞれ板厚の12.5%の範囲において、単位面積あたり10〜60%生成させるように、800〜500℃の範囲の温度の冷却速度を2〜10℃/秒として、常温まで強制冷却して焼き入れし、次いで三次処理として、Ac変態点以下の温度に加熱して、焼き戻しする技術が知られている。(特許文献1参照) Conventionally, as an example of a method for suppressing toughness deterioration while improving strength, C: 0.02% to 0.22% by weight%, Si: 0.05 to 0.6%, Mn: 0.5 to 2 .5%, S: 0.025% or less, Al: 0.01 to 0.08%, N: 0.008% or less, steel made of the remaining iron and unavoidable impurities by hot working After rolling for 30 mm or more, directly quenching treatment as a primary treatment, or after rolling, air cooling, reheating, normalizing treatment, or quenching treatment, and then as secondary treatment (Ac 3 transformation point) Heating at a temperature in the range of −30) ° C. or more and (AC 3 transformation point + 150) ° C. or less, and assuming that the plate thickness is tmm, the holding time T (min) is 0.1 t−0.05 t ≦ T In the range of ≦ 0.1t + 0.05t, extraction and reheating in the secondary treatment, A mixed structure of ferrite and bainite that have not been stenitized is generated at 10 to 60% per unit area in the range of 12.5% of the plate thickness on the front surface side and the back surface side, centering on 1/2 of the cross section of the steel plate. Then, the cooling rate of the temperature in the range of 800 to 500 ° C. is set to 2 to 10 ° C./second, forcibly cooled to normal temperature and quenched, and then heated to a temperature equal to or lower than the Ac 1 transformation point as the third treatment. The technology to return is known. (See Patent Document 1)

また、高強度を得ながら高靭性を確保するための技術の一例として、重量%でC:0.01%〜0.2%、Si:0.01〜1%、Mn:0.1〜3%、P:0.02%以下、S:0.01%以下、Al:0.01〜0.1%、Ni:0.3〜10%、Ti:0.03〜0.1%、N:0.002〜0.1%を含有し、残部鉄及び不可避不純物よりなる鋼片をAc3変態点〜1200℃に加熱し、平均オーステナイト粒径を20〜100μmとした上で、開始温度900℃以下、終了温度650℃以上で累積圧下率が30〜95%の熱間圧延を行い、引き続き、600℃以上から開始し、500℃以下で終了する冷却速度が1〜100℃/sの加速冷却を行う技術が知られている。(特許文献2参照)
特開平1−195242号公報 特開2001−123322号公報
Moreover, as an example of a technique for ensuring high toughness while obtaining high strength, C: 0.01% to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 3% by weight %, P: 0.02% or less, S: 0.01% or less, Al: 0.01 to 0.1%, Ni: 0.3 to 10%, Ti: 0.03 to 0.1%, N : A steel slab containing 0.002 to 0.1% and comprising the balance iron and inevitable impurities is heated to Ac3 transformation point to 1200 ° C, and the average austenite grain size is set to 20 to 100 µm, and the starting temperature is 900 ° C. Thereafter, hot rolling is performed at an end temperature of 650 ° C. or more and a cumulative reduction ratio of 30 to 95%, and subsequently, accelerated cooling is started at 600 ° C. or more and finished at 500 ° C. or less at a cooling rate of 1 to 100 ° C./s. Techniques for performing are known. (See Patent Document 2)
JP-A-1-195242 JP 2001-123322 A

以上のように高強度と高靭性の両立を指向した技術が知られているが、更に最近の技術開発要求において、鋼板に衝撃を付加した際の亀裂伝搬が広い範囲に広がらない、という特性が注目されている。
しなしながら、前述の特許文献1、2に開示されている技術おいてはこの亀裂伝搬停止特性という面に着目されておらず、その他の従来技術においても強度と靭性に優れた上に、亀裂伝搬停止特性に着目した技術が見あたらない状況であった。
As described above, a technology that is compatible with both high strength and high toughness is known. However, in recent technical development requirements, the property that crack propagation does not spread over a wide range when an impact is applied to a steel sheet. Attention has been paid.
However, in the techniques disclosed in Patent Documents 1 and 2 described above, attention has not been paid to the aspect of the crack propagation stop characteristic, and other conventional techniques have excellent strength and toughness, and cracks are also observed. There was no technology that paid attention to the propagation stop characteristics.

本願発明は前述の背景に鑑みてなされたもので、強度と靭性に優れた上に、亀裂伝搬停止特性においても優れた特徴を有する低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法の提供を目的とする。   The invention of the present application was made in view of the above-mentioned background. In addition to excellent strength and toughness, the method for producing high-tensile steel with excellent low temperature toughness and excellent crack propagation stopping characteristics having excellent characteristics in crack propagation stopping characteristics. The purpose is to provide.

本発明者等は、上記課題を解決すべく鋭意検討を加えた結果、これら従来の技術において強度と共に改善されたと報告されている靭性は、シャルピー衝撃値であり、亀裂伝搬停止特性の改善に努めて研究した結果、結果本願発明に到達した。
この種の厚板鋼板にあっては、鋼素材であるスラブを1000℃以上に加熱した後、粗圧延機、熱間矯正機に供した後、焼き入れ、焼き戻し処理を経て製造されている。
本発明者はこの製造工程において製造される厚板鋼板において、強度と靭性のバランスを図ることができる組成系に着目して鋼の組成範囲を調整するとともに、得られた鋼板の表層に存在する旧γ粒の直径と分布を制御することで亀裂伝搬停止特性を向上できることを見出した。
As a result of intensive studies to solve the above problems, the present inventors have reported that the toughness reported to be improved together with the strength in these conventional techniques is the Charpy impact value, and strives to improve the crack propagation stop characteristics. As a result, the present invention has been achieved.
In this type of thick steel plate, the slab, which is a steel material, is heated to 1000 ° C. or higher, then subjected to a roughing mill and a hot straightening machine, and then subjected to quenching and tempering processes. .
The present inventor adjusts the composition range of steel in a thick steel plate manufactured in this manufacturing process, focusing on the composition system capable of balancing strength and toughness, and exists in the surface layer of the obtained steel plate. It was found that the crack propagation stopping property can be improved by controlling the diameter and distribution of the old γ grains.

本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
(1)本発明は、質量%で、C:0.02%〜0.15%、Si:0.01〜1.0%、Mn:0.3〜3.0%、P:0.015%以下、S:0.01%以下、Ni:0.1〜10%、Ti:0.003〜0.1%、N:0.001〜0.01%、かつ、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下、残部が鉄および不可避的不純物からなる鋼素材を1000〜1200℃に加熱し、Ar点+20℃〜Ar点+100℃での累積圧下率が8%以上の熱間圧延実施後、Ar点−30℃〜Ar点+80℃から冷却を開始し、500℃以下で終了する加速冷却を冷却速度5〜100℃/secにて行い、表層の旧γ粒の厚みを12μm以下にコントロールすることにより、変態後表層に直径5μm以下の結晶を面積比率で10%以上存在させることを特徴とする低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) The present invention is mass%, C: 0.02% to 0.15%, Si: 0.01 to 1.0%, Mn: 0.3 to 3.0%, P: 0.015 % Or less, S: 0.01% or less, Ni: 0.1 to 10%, Ti: 0.003 to 0.1%, N: 0.001 to 0.01%, and Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.25% or less, and the steel material consisting of iron and inevitable impurities is heated to 1000 to 1200 ° C., Ar 3 points + 20 ° C. to Ar 3 points + 100 ° C. After performing hot rolling with a cumulative rolling reduction of 8% or more, cooling is started from Ar 3 point −30 ° C. to Ar 3 point + 80 ° C., and is terminated at 500 ° C. or lower, and cooling rate is 5 to 100 ° C./sec. The thickness of the old γ grains on the surface layer is controlled to 12 μm or less. It allows low-temperature toughness, the method of producing a high strength steel excellent in crack propagation stop characteristics, characterized in that is present more than 10% crystalline area ratio of the surface layer after metamorphosis diameter 5μm or less to.

(2)本発明は、鋼成分として更に、質量%で、Cu:0.05〜1.5%、Cr:0.05〜0.2%、Mo:0.05〜0.5%、Nb:0.005〜0.05%、V:0.005〜0.05%、B:30ppm以下の少なくとも1種を含有し、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下を満足する鋼素材を使用することを特徴とする(1)に記載の低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。
(3)本発明は、鋼成分として更に、質量%で、Y:0.001〜0.1%、Ca:0.0001〜0.01%、Mg:0.0001〜0.01%、REM:0.005〜0.1%の1種以上を含有する鋼素材を用いることを特徴とする(1)または(2)に記載の低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。
(2) In the present invention, the steel component is further in mass%, Cu: 0.05 to 1.5%, Cr: 0.05 to 0.2%, Mo: 0.05 to 0.5%, Nb : 0.005-0.05%, V: 0.005-0.05%, B: containing at least one of 30 ppm or less, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B The method for producing a high-strength steel excellent in low-temperature toughness and crack propagation stopping characteristics as described in (1), wherein a steel material satisfying 0.25% or less is used.
(3) The present invention further includes, as a steel component, in mass%, Y: 0.001 to 0.1%, Ca: 0.0001 to 0.01%, Mg: 0.0001 to 0.01%, REM. : Production of high-strength steel excellent in low temperature toughness and crack propagation stopping characteristics as described in (1) or (2), wherein a steel material containing one or more of 0.005 to 0.1% is used. Method.

(4)本発明は、前記加速冷却後に500℃以上、Ac1変態点未満の温度で焼き戻すことを特徴とする(1)〜(3)のいずれかに記載の低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。 (4) The present invention is characterized by low temperature toughness and crack propagation stopping characteristics according to any one of (1) to (3), wherein the tempering is performed at a temperature of 500 ° C. or higher and lower than the Ac1 transformation point after the accelerated cooling. An excellent high-strength steel manufacturing method.

本発明は、C、Si、Mn、P、S、Ni、Ti、Nを特定量含有し、更に組織において、表層の旧γ粒の厚みを12μm以下にコントロールすることにより、変態後表層に直径5μm以下の結晶を面積比率で10%以上存在させたので、強度を高いレベルで維持した上で良好な低温靭性を確保できるとともに、γ粒径の粗大化抑制と固溶強化における合金元素固溶を両立した条件にて加熱することにより強度と落重特性を改善して両立することができる高張力鋼を提供できる。
また、Ar点+20℃〜Ar3点+100℃での累積圧下率が20%以上の熱間圧延を実施することにより、鋼板表層での旧γ粒厚みを12μm以下に制御することができる。
そして、圧延に続けて加速冷却を開始することにより、12μm以下の厚さに抑制されたγ粒を粗大化することなく表面に存在させ、この微細なγ粒の粒界から析出させて微細なベイナイトを析出できるがために、低温靭性、亀裂伝搬性を示す落重特性を改善した鋼板を得ることができる。
The present invention contains a specific amount of C, Si, Mn, P, S, Ni, Ti, N, and in the structure, by controlling the thickness of the former γ grains of the surface layer to 12 μm or less, the diameter of the surface layer after transformation is Since crystals of 5 μm or less were present in an area ratio of 10% or more, it was possible to ensure good low temperature toughness while maintaining a high strength, and to prevent solidification of alloy elements in the suppression of γ grain size coarsening and solid solution strengthening. It is possible to provide a high-strength steel capable of improving both strength and drop weight characteristics by heating under the conditions satisfying the above conditions.
Moreover, the old γ grain thickness in the steel sheet surface layer can be controlled to 12 μm or less by carrying out hot rolling in which the cumulative rolling reduction at Ar 3 point + 20 ° C. to Ar 3 point + 100 ° C. is 20% or more.
Then, by starting accelerated cooling following rolling, γ grains suppressed to a thickness of 12 μm or less are present on the surface without coarsening, and precipitated from the grain boundaries of these fine γ grains. Since bainite can be precipitated, it is possible to obtain a steel sheet with improved drop weight characteristics exhibiting low temperature toughness and crack propagation.

以下、本発明を詳細に説明する。
まず、鋼板成分の限定理由について述べる。成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the steel plate components will be described. Unless otherwise specified, “%” notation relating to ingredients means mass%.

C:0.02〜0.15%
Cは強化元素である。パーライト組織や鉄系炭化物による高強度化、あるいは、NbやTiと結びついて析出物を形成することで高強度化に寄与する。あるいは、フェライト中の転位を固着することで、降伏応力の増大に寄与する。これら効果は、0.02%未満の添加では得難いことから、0.02%を下限値とする。一方では、0.15%を超える添加はこれら強化が強くなりすぎてしまい成形性の劣化を招くのでこれを上限とする。なお、0.07〜0.12%がより好ましい範囲である。
Si:0.01〜1.0%
Siは、脱酸剤として作用し、製鋼上必要であり、固溶強化による降伏応力の増加をもたらすことから添加しても良い。しかしながら、1.0%を超える添加は、溶接性の低下、焼鈍時に鋼板表面に酸化物を形成し易くなることなどから1.0%が上限である。一方で、0.01%未満とすることは、脱酸剤としての機能が低下し、製造コストの増加を招くことから、この値が下限値となる
C: 0.02-0.15%
C is a strengthening element. It contributes to high strength by increasing the strength by pearlite structure or iron-based carbide, or by forming precipitates in combination with Nb or Ti. Alternatively, fixing the dislocations in the ferrite contributes to an increase in yield stress. Since these effects are difficult to obtain with an addition of less than 0.02%, 0.02% is set as the lower limit. On the other hand, addition exceeding 0.15% makes these reinforcements too strong and causes deterioration of moldability. In addition, 0.07 to 0.12% is a more preferable range.
Si: 0.01 to 1.0%
Si acts as a deoxidizer, is necessary for steelmaking, and may increase the yield stress due to solid solution strengthening. However, the upper limit of 1.0% is the upper limit for addition exceeding 1.0% because of the decrease in weldability and the ease of forming oxides on the steel sheet surface during annealing. On the other hand, when the content is less than 0.01%, the function as a deoxidizing agent is reduced and the production cost is increased, so this value is the lower limit.

Mn:0.3〜3.0%
Mnは、強化元素である。しかし、過剰な添加は、マルテンサイトやベイナイトなどの生成を促進し降伏比の低下をもたらす。これらの理由から、3.0%を上限とする。一方、Mnが0.3%未満では必要な強度を得ることが難しくなるので、0.3%を下限とする。1.0〜1.8%がより好ましい範囲である。
Mn: 0.3 to 3.0%
Mn is a strengthening element. However, excessive addition promotes the formation of martensite, bainite, and the like, resulting in a decrease in yield ratio. For these reasons, the upper limit is 3.0%. On the other hand, if Mn is less than 0.3%, it is difficult to obtain the required strength, so 0.3% is made the lower limit. 1.0 to 1.8% is a more preferable range.

P:0.015%以下
Pは、鋼の強化元素であるが靭性の面では劣化を促進する。Pは鋼板の溶接部を脆化させる作用も有する。これらから鑑み、その適正範囲を0.015%以下に限定した。Pの下限値は特に定めないが、0.001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。
S:0.01%以下
Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.01%以下とした。Sの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。また、SはMnと結びついて粗大なMnSを形成することから、穴拡げ性を低下させる。このことから、穴拡げ性向上のためには、出来るだけ少なくする必要がある。
P: 0.015% or less P is a strengthening element of steel, but promotes deterioration in terms of toughness. P also has an effect of embrittlement of the welded portion of the steel plate. In view of these, the appropriate range is limited to 0.015% or less. Although the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.001%.
S: 0.01% or less S adversely affects weldability and manufacturability during casting and hot rolling. Therefore, the upper limit is set to 0.01% or less. Although the lower limit of S is not particularly defined, it is preferable to set this value as the lower limit because it is economically disadvantageous to make it less than 0.0001%. In addition, since S is combined with Mn to form coarse MnS, the hole expandability is lowered. For this reason, it is necessary to reduce as much as possible in order to improve hole expansibility.

N:0.001〜0.01%
Nは、転位を固着し、大きな降伏点伸びを得るのに有効であることから、添加することが望ましい。一方では、粗大な窒化物を形成したり、溶接時のブローホール発生の原因等になることから、含有量を0.01%以下に抑制する必要がある。
Cu:0.05〜1.5%
Ni:0.1〜10%
CuおよびNiは、高靭性を保ちつつ強度を増加させることが可能な元素で、HAZ靭性への影響も小さく、高強度化のためには有用な元素であり、所望する特性に応じ選択して現有できる。Cuは0.05%以上含有することが好ましいが、含有量が1.5%を超えると熱間脆性を生じやすくなる。Niは0.1%以上含有することが好ましいが、あまり多量に含有しても効果が飽和し、含有量に見合う効果が期待できなくなるので、経済的には不利となる。Cu含有量として好ましくは0.1〜0.5%の範囲、Ni含有量として好ましくは0.3〜0.7%の範囲となる。
N: 0.001 to 0.01%
N is preferably added because it is effective in fixing dislocations and obtaining a large yield point elongation. On the other hand, it is necessary to suppress the content to 0.01% or less because coarse nitrides are formed or blowholes are generated during welding.
Cu: 0.05 to 1.5%
Ni: 0.1 to 10%
Cu and Ni are elements that can increase strength while maintaining high toughness, have little effect on HAZ toughness, are useful elements for increasing strength, and are selected according to desired characteristics. Can exist now. Cu is preferably contained in an amount of 0.05% or more, but when the content exceeds 1.5%, hot brittleness tends to occur. Ni is preferably contained in an amount of 0.1% or more. However, even if it is contained in a large amount, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. The Cu content is preferably in the range of 0.1 to 0.5%, and the Ni content is preferably in the range of 0.3 to 0.7%.

Nb:0.005〜0.05%
Nbは、0.005%以上含有することが好ましいが、0.05%を超える含有量では母材靭性およびHAZ靭性に悪影響を及ぼす。このため、含有させる場合は、0.05%以下に限定することが望ましい。
Ti:0.003〜0.1%
Tiは鋼の強度向上に寄与し、また、Nとの親和力が強く凝固時にTiNとして析出し、HAZでのオーステナイト粒の粗大化を抑制して高靭化に寄与する。しかし多く含有させると母材靭性を劣化させるので、0.003〜0.1%の範囲が望ましい。Ti含有量として好ましくは0.005〜0.025%の範囲となる。
Nb: 0.005 to 0.05%
Nb is preferably contained in an amount of 0.005% or more, but if it exceeds 0.05%, the base material toughness and the HAZ toughness are adversely affected. For this reason, when it contains, it is desirable to limit to 0.05% or less.
Ti: 0.003-0.1%
Ti contributes to improving the strength of the steel, and has a strong affinity with N and precipitates as TiN during solidification, thereby suppressing the austenite grain coarsening in HAZ and contributing to high toughness. However, if contained in a large amount, the base material toughness deteriorates, so a range of 0.003 to 0.1% is desirable. The Ti content is preferably in the range of 0.005 to 0.025%.

また、これらの元素を主成分とする鋼にB、Cr、Mo、V、Ca、REM(REMとはLaおよびランタノイド系列の元素を指すものであり、例えば、LaやCe等の系列の元素を指す。)、Mgの一種以上を添加しても良い。   In addition, B, Cr, Mo, V, Ca, REM (REM refers to elements of the La and lanthanoid series, for example, elements of the series such as La and Ce, etc.) 1) or more of Mg may be added.

B:30ppm以下
Bは、微量の添加により焼き入れ性の向上を介して鋼の強度を向上させる作用を奏する。一方、多く含有させると、焼き入れ性を著しく増加させ、母材の靭性、延性の劣化をもたらすとともに溶接性を低下させる。このため、B含有量は、30ppm以下とする。
Cr:0.05〜0.2%
Mo:0.05〜0.5%
Cr、Moは、Mnと同様に固溶強化や組織強化により、鋼板強度と降伏比を増加させる。ただし、この効果は、0.01%以上でないと得られないことから、下限を0.05%とした。また、それぞれの上限値を超える量の添加は、焼鈍ラインでの、パーライト変態の遅延を招き、降伏比を低下させてしまうことから好ましくない。Cr含有量として好ましくは0.05〜0.15%の範囲、Mo含有量として好ましくは0.05〜0.20%の範囲となる。
B: 30 ppm or less B has an effect of improving the strength of steel through the improvement of hardenability by adding a small amount. On the other hand, if it is contained in a large amount, the hardenability is remarkably increased, and the toughness and ductility of the base metal are deteriorated and the weldability is lowered. For this reason, B content shall be 30 ppm or less.
Cr: 0.05-0.2%
Mo: 0.05-0.5%
Cr and Mo increase the steel plate strength and the yield ratio by solid solution strengthening and structure strengthening in the same manner as Mn. However, since this effect cannot be obtained unless it is 0.01% or more, the lower limit was made 0.05%. Moreover, addition of an amount exceeding the respective upper limit values is not preferable because it causes a delay of pearlite transformation in the annealing line and lowers the yield ratio. The Cr content is preferably in the range of 0.05 to 0.15%, and the Mo content is preferably in the range of 0.05 to 0.20%.

V:0.005〜0.05%
Vは炭化物形成元素であることから、NbやTiと同様に、析出強化あるいは細粒強化により、強度と降伏比を高めることが出来るので添加しても良い。この効果は、0.005%以上の添加で得やすくなることから、下限値は0.005%である。一方、多く添加するとコスト高を招くだけでなく、組織に影響を及ぼすので0.05%を上限とする。V含有量として好ましくは0.010〜0.050%の範囲となる。
Ca:0.0001〜0.01%
Caは、結晶粒の微細化を介して靭性を向上させる効果があることから、靭性を向上させるために添加してもよい。0.0001%以上の添加で効果を得やすくなることから、0.0001%以上添加することが好ましいが、一方で、0.01%を超えても効果は飽和するから、この値が上限となる。
V: 0.005-0.05%
Since V is a carbide forming element, it can be added because the strength and yield ratio can be increased by precipitation strengthening or fine grain strengthening, as with Nb and Ti. Since this effect is easily obtained by addition of 0.005% or more, the lower limit is 0.005%. On the other hand, addition of a large amount not only increases the cost but also affects the structure, so 0.05% is made the upper limit. The V content is preferably in the range of 0.010 to 0.050%.
Ca: 0.0001 to 0.01%
Since Ca has an effect of improving toughness through refinement of crystal grains, Ca may be added to improve toughness. Addition of 0.0001% or more makes it easier to obtain the effect, so 0.0001% or more is preferable. On the other hand, if the content exceeds 0.01%, the effect is saturated. Become.

Mg:0.0001〜0.01%
REM:0.005〜0.1%
REMやMgは、適量の添加により介在物、特に酸化物の微細分散化に寄与することから、Mgを0.0001%以上、REMを0.005%以上添加しても良い。一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため上記の上限とする。
REM(例えば、CeやLaのランタノイド系列の元素)は、ミッシュメタルにて添加されることが多く、LaやCe等のランタノイド系列の元素を複合で含有する場合が多い。これら元素を複合で含んでも、REMが本発明の範囲を満たすのであれば、介在物微細化による効果は得られる。ただし、金属LaやCeを添加したとしても本発明の効果は発揮される。
上述の元素の他に、不可避的不純物として、例えばSnやSbなどがあるがこれら元素を合計で0.2%以下の範囲で含有しても本発明の効果を損なうものではない。
Mg: 0.0001 to 0.01%
REM: 0.005-0.1%
Since REM and Mg contribute to the fine dispersion of inclusions, particularly oxides, by adding an appropriate amount, 0.0001% or more of Mg and 0.005% or more of REM may be added. On the other hand, excessive addition reduces the manufacturability such as castability and hot workability, and the ductility of the steel sheet product, so the upper limit is set.
REM (for example, a lanthanoid series element such as Ce or La) is often added by misch metal, and often contains a lanthanoid series element such as La or Ce in combination. Even if these elements are included in combination, the effect of refinement of inclusions can be obtained if the REM satisfies the scope of the present invention. However, the effects of the present invention are exhibited even when metal La or Ce is added.
In addition to the above-mentioned elements, there are unavoidable impurities such as Sn and Sb. However, even if these elements are contained in a total content of 0.2% or less, the effect of the present invention is not impaired.

Pcm:0.25%以下
本発明では、更に、以下の(1)式で定義されるPcmが0.25%以下となるように、各成分の含有量を調整する。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B …(1)
ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、B:各元素の含有量(質量%)で含有しないものは0とする。
Pcmは溶接部の低温割れ性の指標であり、できるだけ低いことが望ましい。Pcmが0.25を超えると、溶接性が著しく劣化するため、Pcmは0.25%以下に限定する。
Pcm: 0.25% or less In the present invention, the content of each component is further adjusted so that Pcm defined by the following formula (1) is 0.25% or less.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, B: The content (% by mass) of each element is 0.
Pcm is an index of the cold cracking property of the welded portion, and is desirably as low as possible. When Pcm exceeds 0.25, the weldability is remarkably deteriorated, so Pcm is limited to 0.25% or less.

また、炭素当量を示すCeqは以下の式において算出される。
Ceq(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15
この炭素当量については、0.30〜0.50の範囲が好ましい。
Moreover, Ceq which shows a carbon equivalent is computed in the following formula | equation.
Ceq (%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15
About this carbon equivalent, the range of 0.30-0.50 is preferable.

次に、本発明鋼板の製造条件の限定理由について説明する。
本発明では溶鋼を転炉、電気炉、真空溶解炉等を用いた常法により溶製して鋼素材を得、この鋼素材(スラブ)を1000℃〜1200℃の範囲の温度に再加熱する。なお、この再加熱処理とは別に1000〜1200℃に2〜48時間保持する溶体化処理を行って、鋼素材の歪取り、あるいは不要な析出物の固溶を促進してから後の圧延工程に供しても良い。
再加熱温度が1000℃未満では、鋳造中に析出したNbやTiの炭窒化物を再溶解させることができなくなるとともに、熱間圧延での変形抵抗が高くなり、1パス当たりの圧下量が大きく取れなくなることから、圧延パス数が増加し、圧延能率の低下を招き、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合も生じる。
一方、再加熱温度が1200℃を超えると、結晶として存在するγ粒を粗大化するおそれがあり、γ粒が粗大化すると靭性が低下するおそれがある。粗大なγ粒が残留すると、後の処理によっても鋼板組織の調整ができなくなるおそれがある。また、加熱温度が高温になるほど加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。このため、鋼素材の再加熱温度は1000〜1200℃の範囲とするのが好ましい。
Next, the reasons for limiting the production conditions of the steel sheet of the present invention will be described.
In the present invention, molten steel is melted by a conventional method using a converter, electric furnace, vacuum melting furnace or the like to obtain a steel material, and this steel material (slab) is reheated to a temperature in the range of 1000 ° C to 1200 ° C. . In addition, after this reheating treatment, a solution treatment that is maintained at 1000 to 1200 ° C. for 2 to 48 hours is performed, and after the steel material is strained or the solid solution of unnecessary precipitates is promoted, the subsequent rolling step You may use for.
When the reheating temperature is less than 1000 ° C., Nb and Ti carbonitrides precipitated during casting cannot be re-dissolved, deformation resistance in hot rolling is increased, and a reduction amount per pass is large. Since it cannot be removed, the number of rolling passes increases, the rolling efficiency decreases, and casting defects in the steel material (slab) cannot be crimped.
On the other hand, if the reheating temperature exceeds 1200 ° C., the γ grains existing as crystals may be coarsened, and if the γ grains are coarsened, the toughness may be reduced. If coarse γ grains remain, the steel sheet structure may not be adjusted by subsequent processing. Further, as the heating temperature becomes higher, surface flaws are more likely to occur due to the scale during heating, and the maintenance load after rolling increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1200 degreeC.

再加熱後、直ちに、Ar点+20℃〜Ar点+100℃での累積圧下率が20%以上の熱間圧延を実施する。この圧延時にAr点+20℃よりも低い温度で圧延すると、充分に圧下できなくなるおそれがあり、加工硬化が生じて強度と靭性が低下するおそれがある。また、圧延時にAr点+100℃を超える温度で圧延すると、後に行う工程を行っても組織が微細化しなくなるおそれがある。
前記温度範囲で行う圧延工程の累積圧下率は8%以上、50%以下、より好ましくは20%以上、50%以下とする。前記温度範囲において充分に圧下しないと鋼板組織のオーステナイトを充分に扁平に加工することができなくなる。また、50%を超える圧下率では通常設備における1パスあたりの適切な圧下量がとれないので、50%以下が好ましい。
この工程では例えば一例として830℃以下の温度で熱間圧延工程を終了する条件を採用することができる。例えば830℃以下にて圧延することにより、鋼板表層(例えば鋼板表面から距離10μm以下の領域)のγ粒に異方性を付与して圧延方向に長い組織とすることが可能となり、このγ粒の厚み(鋼板板厚方向の厚み)を制御することにより亀裂伝搬停止特性を改善することができる。
Immediately after the reheating, hot rolling is performed in which the cumulative rolling reduction at Ar 3 point + 20 ° C. to Ar 3 point + 100 ° C. is 20% or more. If rolling is performed at a temperature lower than Ar 3 point + 20 ° C. during rolling, there is a possibility that the rolling cannot be sufficiently reduced, and work hardening may occur and strength and toughness may be reduced. Further, when rolling at a temperature exceeding Ar 3 point + 100 ° C. during rolling, the structure may not be refined even if a subsequent step is performed.
The cumulative rolling reduction in the rolling process performed in the temperature range is 8% or more and 50% or less, more preferably 20% or more and 50% or less. Unless the steel sheet is sufficiently reduced in the above temperature range, the austenite of the steel sheet structure cannot be sufficiently flattened. Further, if the rolling reduction rate exceeds 50%, an appropriate rolling amount per pass in normal equipment cannot be obtained, so 50% or less is preferable.
In this step, for example, a condition for terminating the hot rolling step at a temperature of 830 ° C. or lower can be adopted as an example. For example, by rolling at 830 ° C. or less, it becomes possible to give anisotropy to the γ grains of the steel sheet surface layer (for example, a region having a distance of 10 μm or less from the steel sheet surface) to form a structure that is long in the rolling direction. By controlling the thickness (thickness in the thickness direction of the steel plate), the crack propagation stop characteristic can be improved.

圧延工程終了後、時間をおかずに(時間:t≦120秒)、水冷などの手段により冷却するが、冷却開始点の温度範囲をAr点−30℃〜Ar点+80℃として、この範囲の温度から冷却を開始し、500℃以下の温度範囲まで冷却する加速冷却工程を冷却速度5〜100℃/secにて行う。
この工程では例えば一例として、680℃以上の温度から、冷却速度10℃/sec以上にて水冷を開始し、150〜350℃の温度で水冷を停止した後、放冷し、焼き戻す処理を例示することができる。
加速冷却工程においては、水をかけて冷却を開始する際の温度範囲を整えることが重要であり、そのために、Ar点−30℃〜Ar点+80℃の範囲とする。温度範囲の上限をAr点+80℃としたのは圧延工程における最高温度のAr点+100℃から若干下がった温度として規定した。
この加速冷却の停止温度の上限は500℃であり、500℃以下まで冷却する必要があるが、これは、この温度以下まで加速冷却しないと、鋼板組織が変態しなくなるためであり、変態が満足になされないと、必要な強度が得られなくなる。
この鋼板組織の変態とは、表層の異方性を持たせたγ粒に圧延により圧延方向に長くする異方性を付与し、旧γ粒の厚みを12μm以下、より好ましくは、10μm以下に制御しておくことにより、表層に直径5μm以下の微細なベイナイト結晶を析出させることができ、このベイナイトが析出する場合の変態を意味する。
After completion of the rolling process, the cooling is performed by means such as water cooling without taking time (time: t ≦ 120 seconds). The temperature range of the cooling start point is Ar 3 points−30 ° C. to Ar 3 points + 80 ° C. Cooling is started from this temperature, and an accelerated cooling process of cooling to a temperature range of 500 ° C. or lower is performed at a cooling rate of 5 to 100 ° C./sec.
In this step, for example, water cooling is started at a cooling rate of 10 ° C./sec or higher from a temperature of 680 ° C. or higher, and after cooling at 150 to 350 ° C., the water is cooled and tempered. can do.
In the accelerated cooling step, it is important to adjust the temperature range when cooling is started by applying water, and for this purpose, the range of Ar 3 points −30 ° C. to Ar 3 points + 80 ° C. is used. The upper limit of the temperature range was defined as Ar 3 point + 80 ° C., which was defined as a temperature slightly lower than the maximum temperature Ar 3 point + 100 ° C. in the rolling process.
The upper limit of the stop temperature of this accelerated cooling is 500 ° C., and it is necessary to cool to 500 ° C. or less. This is because the steel sheet structure does not transform unless accelerated cooling to this temperature or less, and the transformation is satisfactory. Otherwise, the required strength cannot be obtained.
The transformation of the steel sheet structure is to impart anisotropy that lengthens in the rolling direction by rolling to the γ grains having the anisotropy of the surface layer, and the thickness of the old γ grains is 12 μm or less, more preferably 10 μm or less. By controlling it, a fine bainite crystal having a diameter of 5 μm or less can be deposited on the surface layer, which means a transformation when this bainite is deposited.

先に説明した如く粗大なγ粒の発生を抑制し、微細化されている旧γ粒を多く含む組織であるならば、γ粒の粒界から微細なベイナイト組織が析出し、目的の鋼板組織を得ることができる。
以上の加速冷却を先に説明した組成と組織の圧延鋼板に施すならば、マルテンサイト組織が析出する割合を少なくしてフェライト組織とベイナイト組織を主体とする組織に焼き戻すことができ、必要な高い強度と高い靭性のバランスした鋼板組織とすることができる。
以上説明した方法により得られる鋼板組織では、前述のγ粒において表層部に存在する旧γ粒の直径を12μm以下、望ましくは10μm以下の粒径に調整することができ、これらからベイナイト組織を析出できるので、鋼板表層部において直径5μm以下のベイナイトの結晶を面積比率で10%以上析出させることができる。
As described above, if it is a structure containing a large amount of refined old γ grains that suppresses the generation of coarse γ grains, a fine bainite structure precipitates from the grain boundaries of the γ grains, and the target steel sheet structure Can be obtained.
If the above accelerated cooling is applied to the rolled steel sheet having the composition and structure described above, the ratio of precipitation of the martensite structure can be reduced, and the structure can be tempered to a structure mainly composed of a ferrite structure and a bainite structure. A steel sheet structure having a balance between high strength and high toughness can be obtained.
In the steel sheet structure obtained by the method described above, the diameter of the old γ grains existing in the surface layer portion in the above-mentioned γ grains can be adjusted to a grain size of 12 μm or less, preferably 10 μm or less, from which a bainite structure is precipitated. Therefore, the bainite crystals having a diameter of 5 μm or less can be precipitated in an area ratio of 10% or more in the surface layer portion of the steel sheet.

以上のようにして製造した厚板鋼板は、610MPaクラスの高強度を発揮するとともに、亀裂伝搬停止特性の指標とされるNRL落重試験おいても優れた特性を示し、−40℃あるいはそれよりも低温域でも亀裂伝搬停止特性の優れたものが得られる。よって本発明により得られる厚板鋼板であるならば、LPGタンクなどの低温タンク、あるいは各種低温容器用途として優れた特徴を有する。
なお、このようにして得られた厚板鋼板に対し、必要に応じて酸洗などの表面処理を行ってから使用しても良い。酸洗は鋼板表面の酸化物の除去が可能である。酸洗は、インラインで行っても良いし、オフラインで行っても良い。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。
The steel plate manufactured as described above exhibits a high strength of the 610 MPa class and exhibits excellent characteristics even in the NRL drop weight test, which is an index of crack propagation stop characteristics, and is -40 ° C or higher. Even in the low temperature range, excellent crack propagation stop characteristics can be obtained. Therefore, if it is the thick steel plate obtained by this invention, it has the characteristic outstanding as low temperature tanks, such as a LPG tank, or various low temperature container uses.
In addition, you may use, after performing surface treatments, such as pickling, with respect to the thick steel plate obtained in this way as needed. Pickling can remove oxides on the surface of the steel sheet. Pickling may be performed inline or offline. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times.

次に、本発明を実施例により詳細に説明する。
表1に示す成分を有する鋼素材(スラブ)を溶製し、該鋼素材を1000〜1200℃に加熱し、表2に示す圧延温度、圧下率で表2に示す板厚とし、その後表2に示す冷却粗速度にて冷却終了温度まで加速冷却を行い、その後放冷して厚板鋼板を得た。
以上の如く得られた厚板鋼板のγ粒厚み(μm)、旧γ粒結晶(旧オーステナイト粒結晶)の面積比率(%)、引張強さ(TS)、無延性遷移温度(NDT)、母材延性・脆性遷移温度(vTrs)を測定した結果を表2に示す。
無延性遷移温度(NDT)とは、NRL(Naval Research Laboratory)落重試験と称されている方法で測定される値であり、亀裂伝搬停止特性を評価する指標である、
Next, the present invention will be described in detail with reference to examples.
A steel material (slab) having the components shown in Table 1 is melted, and the steel material is heated to 1000 to 1200 ° C. to obtain the sheet thickness shown in Table 2 at the rolling temperature and rolling reduction shown in Table 2, and then Table 2 Accelerated cooling to the cooling end temperature was performed at the cooling coarse rate shown in FIG.
Γ grain thickness (μm), area ratio (%) of old γ grain crystal (former austenite grain crystal), tensile strength (TS), non-ductile transition temperature (NDT), mother The results of measuring the material ductility / brittle transition temperature (vTrs) are shown in Table 2.
Non-ductile transition temperature (NDT) is a value measured by a method called NRL (Naval Research Laboratory) drop weight test, and is an index for evaluating crack propagation stop characteristics.

Figure 2009179840
Figure 2009179840

Figure 2009179840
Figure 2009179840

図1は表1と表2で示した各試料の表層旧γ粒厚み(μm)と、各試料で測定された無延性遷移温度(NDT)の値の相関関係を図示したグラフである。
図1に示す相関関係から、本実施例で得られた試料においてNDTの値において−40℃を大きく下回るように、換言すると−40℃よりも低温側にNDTの値をもたらすためには、表層旧γ粒の厚みを12μm以下にすることが重要であり、表層旧γ粒の厚みを10μm以下とすることがより好ましいことが判明した。
FIG. 1 is a graph illustrating the correlation between the surface layer old γ grain thickness (μm) of each sample shown in Tables 1 and 2 and the value of the non-ductile transition temperature (NDT) measured for each sample.
From the correlation shown in FIG. 1, in order to bring the NDT value to a temperature lower than −40 ° C., in other words, to bring the NDT value far below −40 ° C. in the sample obtained in this example, the surface layer It has been found that it is important to make the thickness of the old γ grains 12 μm or less, and it is more preferable to make the thickness of the surface old γ grains 10 μm or less.

図2はNDTの値が−40℃を示した試料Mの厚板鋼板における表層部の結晶粒径分布を示し、図3はNDTの値が+5℃を示した試料Cの厚板鋼板における表層部の結晶粒径分布を示すが、図2と図3の横軸の結晶粒径5μmのラインから左側の部分の面積率を測定することで、直径1μm〜5μmの結晶の面積率を算出し、この値を5μm以下の結晶の面積率とすることができる。図2と図3の縦軸は各粒径の面積率を示す。
なお、図2に示す試料の結晶の面積率は10%であり、図3に示す試料の結晶の面積率は3%であり、表2に示す各試料の結晶面積率は各試料において求めた結晶粒分布から求めたものである。
FIG. 2 shows the crystal grain size distribution of the surface layer portion of the thick steel plate of sample M having an NDT value of −40 ° C., and FIG. 3 shows the surface layer of the thick steel plate of sample C having a NDT value of + 5 ° C. The crystal grain size distribution of the part is shown. By measuring the area ratio of the left part from the line of the crystal grain diameter of 5 μm on the horizontal axis in FIGS. 2 and 3, the area ratio of the crystal having a diameter of 1 μm to 5 μm is calculated. This value can be the crystal area ratio of 5 μm or less. 2 and 3 indicate the area ratio of each particle size.
The crystal area ratio of the sample shown in FIG. 2 was 10%, the crystal area ratio of the sample shown in FIG. 3 was 3%, and the crystal area ratio of each sample shown in Table 2 was obtained for each sample. It is obtained from the crystal grain distribution.

本発明は、610MPa級以上の強度と亀裂伝搬停止特性に優れるという靭性のバランスを図り、低温用タンクや低温容器、パイプラインなどに用いて好適な厚板鋼板であり、産業上の効果は極めて高い。   The present invention is a thick steel plate suitable for use in low temperature tanks, low temperature containers, pipelines, etc., with a balance of toughness that is excellent in strength of 610 MPa class and excellent crack propagation stopping characteristics, and has an industrial effect extremely high.

図1は各試料の表層旧γ粒厚み(μm)と、各試料で測定された無延性遷移温度(NDT)の値の相関関係を図示したグラフである。FIG. 1 is a graph illustrating the correlation between the surface layer old γ grain thickness (μm) of each sample and the value of the non-ductile transition temperature (NDT) measured for each sample. 図2はNDTの値が−40℃を示した試料Mの厚板鋼板における表層部の結晶粒径分布を示す図。FIG. 2 is a view showing a crystal grain size distribution of a surface layer portion in a thick steel plate of Sample M in which an NDT value is −40 ° C. 図3はNDTの値が+5℃を示した試料Cの厚板鋼板における表層部の結晶粒径分布を示す図。FIG. 3 is a graph showing the crystal grain size distribution of the surface layer portion of the thick steel plate of Sample C in which the NDT value is + 5 ° C.

Claims (4)

質量%で、
C :0.02%〜0.15%、
Si:0.01〜1.0%、
Mn:0.3〜3.0%、
P :0.015%以下、
S :0.01%以下、
Ni:0.1〜10%、
Ti:0.003〜0.1%、
N :0.001〜0.01%、かつ、
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下、残部が鉄および不可避的不純物からなる鋼素材を1000〜1200℃に加熱し、Ar点+20℃〜Ar点+100℃での累積圧下率が8%以上の熱間圧延実施後、Ar点−30℃〜Ar点+80℃から冷却を開始し、500℃以下で終了する加速冷却を冷却速度5〜100℃/secにて行い、表層の旧γ粒の厚みを12μm以下にコントロールすることにより、変態後表層に直径5μm以下の結晶を面積比率で10%以上存在させることを特徴とする低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。
% By mass
C: 0.02% to 0.15%,
Si: 0.01 to 1.0%,
Mn: 0.3-3.0%
P: 0.015% or less,
S: 0.01% or less,
Ni: 0.1 to 10%,
Ti: 0.003 to 0.1%,
N: 0.001 to 0.01%, and
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is heated to 1000-1200 ° C. with a balance of 0.25% or less, the balance being iron and inevitable impurities, Ar 3 points + 20 ° C.- After hot rolling with a cumulative rolling reduction of 8% or more at Ar 3 points + 100 ° C., cooling starts from Ar 3 points −30 ° C. to Ar 3 points + 80 ° C. and ends at 500 ° C. or less. Performing at 5 to 100 ° C./sec, and controlling the thickness of the old γ grains on the surface layer to 12 μm or less, the crystals having a diameter of 5 μm or less are present in the surface layer after transformation at 10% or more by area ratio. A high-strength steel manufacturing method with excellent toughness and crack propagation stopping properties.
鋼成分として更に、質量%で、
Cu:0.05〜1.5%、Cr:0.05〜0.2%、Mo:0.05〜0.5%、Nb:0.005〜0.05%、V:0.005〜0.05%、B:30ppm以下の少なくとも1種を含有し、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下を満足する鋼素材を用いることを特徴とする請求項1記載の低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。
Furthermore, as a steel component, in mass%,
Cu: 0.05-1.5%, Cr: 0.05-0.2%, Mo: 0.05-0.5%, Nb: 0.005-0.05%, V: 0.005- A steel material containing at least one of 0.05% and B: 30 ppm or less and satisfying Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.25% or less is used. The method for producing a high-strength steel excellent in low-temperature toughness and crack propagation stopping characteristics according to claim 1.
鋼成分として更に、質量%で、Y:0.001〜0.1%、Ca:0.0001〜0.01%、Mg:0.0001〜0.01%、REM:0.005〜0.1%の1種以上を含有する鋼素材を用いることを特徴とする請求項1または2に記載の低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。   Furthermore, as a steel component, in mass%, Y: 0.001-0.1%, Ca: 0.0001-0.01%, Mg: 0.0001-0.01%, REM: 0.005-0. The method for producing a high-strength steel excellent in low-temperature toughness and crack propagation stopping characteristics according to claim 1 or 2, wherein a steel material containing 1% or more of 1% is used. 前記加速冷却後に500℃以上、Ac1変態点未満の温度で焼き戻すことを特徴とする請求項1〜3のいずれかに記載の低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法。   The method for producing high-tensile steel excellent in low-temperature toughness and crack propagation stopping characteristics according to any one of claims 1 to 3, wherein the tempering is performed at a temperature of 500 ° C or higher and lower than the Ac1 transformation point after the accelerated cooling.
JP2008018994A 2008-01-30 2008-01-30 Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties Active JP5151510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018994A JP5151510B2 (en) 2008-01-30 2008-01-30 Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018994A JP5151510B2 (en) 2008-01-30 2008-01-30 Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties

Publications (2)

Publication Number Publication Date
JP2009179840A true JP2009179840A (en) 2009-08-13
JP5151510B2 JP5151510B2 (en) 2013-02-27

Family

ID=41034042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018994A Active JP5151510B2 (en) 2008-01-30 2008-01-30 Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties

Country Status (1)

Country Link
JP (1) JP5151510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971407A (en) * 2018-03-22 2020-11-20 日本制铁株式会社 Wear-resistant steel and method for producing same
CN114480809A (en) * 2022-04-18 2022-05-13 江苏省沙钢钢铁研究院有限公司 500 MPa-grade crack arrest steel plate and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350688A (en) * 2004-06-08 2005-12-22 Sumitomo Metal Ind Ltd Ultrahigh steel sheet for line pipe, its production method and welded steel pipe
JP2006299365A (en) * 2005-04-22 2006-11-02 Kobe Steel Ltd Thick steel plate having less acoustic anisotropy and excellent base-material toughness, and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350688A (en) * 2004-06-08 2005-12-22 Sumitomo Metal Ind Ltd Ultrahigh steel sheet for line pipe, its production method and welded steel pipe
JP2006299365A (en) * 2005-04-22 2006-11-02 Kobe Steel Ltd Thick steel plate having less acoustic anisotropy and excellent base-material toughness, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971407A (en) * 2018-03-22 2020-11-20 日本制铁株式会社 Wear-resistant steel and method for producing same
CN114480809A (en) * 2022-04-18 2022-05-13 江苏省沙钢钢铁研究院有限公司 500 MPa-grade crack arrest steel plate and production method thereof
CN114480809B (en) * 2022-04-18 2022-08-19 江苏省沙钢钢铁研究院有限公司 500 MPa-grade crack arrest steel plate and production method thereof

Also Published As

Publication number Publication date
JP5151510B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US10358688B2 (en) Steel plate and method of producing same
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
US11628512B2 (en) Clad steel plate and method of producing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
CN113166884A (en) Steel material having excellent toughness in weld heat affected zone and method for producing same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
CN111051555B (en) Steel sheet and method for producing same
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP2004339550A (en) LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD
JP6135595B2 (en) High-efficiency manufacturing method for steel plates with excellent impact resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5151510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350